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ABSTRACT
The design of the buffer manager in database management

systems (DBMSs) is influenced by the performance character-

istics of volatile memory (DRAM) and non-volatile storage

(e.g., SSD). The key design assumptions have been that the

data must be migrated to DRAM for the DBMS to operate

on it and that storage is orders of magnitude slower than

DRAM. But the arrival of new non-volatile memory (NVM)

technologies that are nearly as fast as DRAM invalidates

these previous assumptions.

This paper presents techniques for managing and design-

ing a multi-tier storage hierarchy comprising of DRAM,

NVM, and SSD. Our main technical contributions are a multi-

tier buffer manager and a storage system designer that lever-

age the characteristics of NVM.We propose a set of optimiza-

tions for maximizing the utility of data migration between

different devices in the storage hierarchy. We demonstrate

that these optimizations have to be tailored based on de-

vice and workload characteristics. Given this, we present a

technique for adapting these optimizations to achieve a near-

optimal buffer management policy for an arbitrary workload

and storage hierarchy without requiring any manual tuning.

We finally present a recommendation system for designing a

multi-tier storage hierarchy for a target workload and system

cost budget. Our results show that the NVM-aware buffer

manager and storage system designer improve throughput

and reduce system cost across different transaction and ana-

lytical processing workloads.
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1 INTRODUCTION
The buffer manager in a DBMS provides access to data stored

on non-volatile storage (e.g., SSD) by bringing them into

volatile memory (DRAM) when they are needed. The canon-

ical approaches for buffer management in DBMSs are predi-

cated on the assumptions that (1) the data must be copied

to DRAM for the DBMS to operate on it, and (2) storage

is orders of magnitude slower than DRAM [15, 27, 48]. But

emerging non-volatile memory (NVM) technologies upend

these design assumptions.

NVM is a broad class of memory technologies, including

phase-change memory [5, 7, 19, 49] and memristors [6, 53]
1
.

NVM devices support low latency reads and writes similar to

DRAM, but with persistent writes and large storage capacity

like an SSD. The traditional approaches for buffer manage-

ment are incompatible with this new hardware landscape.

This stems from two differences between NVM and canonical

storage technologies. First, to process disk-resident data, the

buffer manager must copy it to DRAM before the DBMS can

perform any operations. In contrast, the CPU can directly

operate on NVM-resident data. Second, NVM shrinks the

performance gap between volatile and non-volatile devices.

In this paper, we present techniques for managing and de-

signing a multi-tier storage hierarchy comprising of DRAM,

NVM, and SSD
2
. We propose a set of optimizations for maxi-

mizing the utility of data migration between different devices

in the storage hierarchy. These optimizations are enabled by

the introduction of NVM. For example, since the DBMS can

directly operate on NVM-resident data, the buffer manager

need not eagerly copy data from NVM to DRAM. Our results

show that such a lazy data migration technique ensures that

only frequently referenced data is promoted to DRAM.

Recent research has focused on optimizing the buffer man-

agement policy for a particular NVM technology and storage

hierarchy. Renen et al. present a multi-tier buffer manager

that eagerly migrates data from SSD to DRAM [56]. When

a page is evicted from DRAM, the buffer manager admits

1
Intel is shipping Optane DIMMs that bring NVM onto the DDR4 memory

bus since mid 2018 [19].

2
First-generation NVM devices are expected to be slower (and less expen-

sive) than DRAM and, at the same time, faster (but more expensive) than

SSD [7]. To maximize performance and minimize cost of the storage system,

NVM will likely co-exist with DRAM and SSD.
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it into the NVM buffer based on whether it was recently

accessed. Kwon et al. present a multi-tier file-system that

does not cache NVM-resident data on DRAM and bypasses

DRAM while performing synchronous write operations [34].

Although these buffer management policies work well in

their target environment, they do not generalize to other

NVM technologies, storage hierarchies, and workloads.

We address this problem by introducing a taxonomy for

data migration optimizations that subsumes the specific tech-

niques employed in previous systems. We illustrate that the

buffer management policy must be tailored based on device

and workload characteristics. Given this, we make the case

for an adaptation mechanism in the buffer manager, called

adaptive data migration, that achieves a near-optimal buffer

management policy for an arbitrary workload and storage

hierarchy without requiring any manual tuning. Prior re-

search on NVM-aware storage management has not tackled

the problem of designing a multi-tier storage system for a tar-

get workload and system cost budget [11, 24, 32, 34, 45, 56].

We present a storage system recommender to address this

problem. In summary, we make the following contributions:

• We introduce a taxonomy for NVM-aware data migra-

tion optimizations and present a policy for managing a

multi-tier storage hierarchy (Section 3).

• We introduce an adaptation mechanism in the buffer

manager that achieves a near-optimal policy for an arbi-

trary workload and storage hierarchy without requiring

any manual tuning (Section 4).

• We introduce a recommendation system for designing

a multi-tier storage hierarchy for a target workload and

system cost budget (Section 5).

• We demonstrate that the NVM-aware buffer manager

and storage system designer improve throughput and

reduce cost across different transaction and analytical

processing workloads (Section 6).

2 BACKGROUND
Wenowprovide an overview of buffermanagement inDBMSs.

We then make the case for the introduction of NVM in the

storage hierarchy.

2.1 Buffer Management
The buffer manager partitions the available memory into

a set of fixed-size slots, which is collectively termed as a

buffer. The higher-level components of the DBMS, such as

the query execution engine, need not concern themselves

with whether a page is in the buffer or not. They only need

to request the buffer manager to retrieve a page. If a page

requested by another component is not present in the buffer,

the buffer manager transparently retrieves the page from

non-volatile storage.

The buffer manager maintains transient meta-data about

each page in the in-memory buffer. This meta-data includes

the number of active referencesmade to the page andwhether

the page has been modified since it was brought into the

buffer from storage. If a page requested by another compo-

nent is already present in the buffer, then it increments the

number of active references to the page and returns the ad-

dress of the slot containing the page. Otherwise, the buffer

manager chooses a slot for replacement based on the replace-

ment policy (e.g., least recently used) [43]. If the page selected

for replacement contains any modifications, the buffer man-

ager propagates those changes to the corresponding page

on non-volatile storage. It then copies the requested page

from storage into the replacement slot and returns the slot’s

address.

The buffer manager does not have complete autonomy

over when and what pages are flushed to non-volatile stor-

age [9, 25]. It coordinates with the DBMS’s log manager to
ensure that the changes made by a transaction are durable

when it is committed, and that the changes made by transac-

tions that were not committed at the time of a system failure

are reversed during recovery. These constraints are referred

to as the durability and failure atomicity properties.

If a transaction modifies a block and then commits, and

the buffer manager has not yet written the updated block

to durable storage, then a failure will leave the block in its

old invalid state, thereby violating the durability property.

On the other hand, if the buffer manager decides to write a

modified block belonging to an active transaction, it violates

the atomicity property. To prevent such scenarios, the buffer

manager refrains from making autonomous replacement

decisions.

Since the contents of the DRAM buffer are lost after a

system failure, the log manager records information needed

to recover from a failure on durable storage. Before updating

a page, the DBMS writes its old contents to the log (i.e., the

before image of the page). Similarly, when a page is about

to be evicted from the buffer pool, its current contents are

recorded in the log (i.e., the after image of the page). During

recovery, the DBMS uses the information in the log to restore

the database to a transactionally consistent state. To bound

the amount of time taken to replay the log during recovery,

the DBMS periodically takes checkpoints at runtime [41].

2.2 Non-Volatile Memory DBMSs
A DBMS’s performance is constrained by the speed with

which it can retrieve data from and persist data (e.g., pages

containing log records) on disk [26]. As illustrated in Fig-

ure 1a, the buffer manager copies pages from SSD to DRAM

2
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DRAM PCM RRAM SSD HDD

Read latency 50 ns 50 ns 100 ns 25 µs 10 ms

Write latency 50 ns 200 ns 100 ns 300 µs 10 ms

Bandwidth 60 GB/s 10 GB/s 10 GB/s 1 GB/s 0.1 GB/s

$/GB 10 1 1 0.2 0.02

Persistent No Yes Yes Yes Yes

Endurance >1016 10
10

10
15

10
5 >1016

Table 1: Comparison of candidate NVM technologies [16, 23,

42, 47]: phase-change memory (PCM) [5, 7, 49] and memristors

(RRAM) [6, 53]. The price of NVM is derived from the current price

of Intel’s 3D XPoint-based Optane SSD 900P [8].

for the DBMS to operate on them. Since DRAM accesses are

100× faster than SSD operations, DBMSs manage a large

buffer pool on DRAM. It is difficult, however, to deploy high-

capacity DRAM systems due to three factors. First, it drives

up the total cost of the system since it is 50× more expen-

sive than secondary storage technologies. Second, increasing

DRAM capacity raises the total system power consumption.

Lefurgy et al. report that as much as 40% of the total system

energy is consumed by DRAM in commercial servers [36].

Lastly, DRAM scaling faces significant challenges due to lim-

itations in scaling techniques used in earlier generations for

transistors and capacitors [39].

Emerging NVM technologies bridge the performance and

cost differentials between DRAM and SSD. Table 1 compares

the characteristics of candidate NVM technologies. NVM

latency is within an order of magnitude higher than that

of DRAM. Unlike SSDs/HDDs that use the SAS or SATA

interfaces, NVM can be plugged into DIMM slots to deliver

higher bandwidths and lower latencies to CPUs.

NVM supports higher data density than DRAM due to its

intrinsic device characteristics
3
. It is, therefore, less expen-

sive than DRAM. Similar to SSDs, the number of write cycles

per bit is limited in NVM technologies. Reducing the number

of writes using an NVM-aware buffer management policy

extends the lifetime of devices with limited write-endurance.

Since NVM devices are slower than DRAM, replacing the

latter with a similarly priced NVM device with higher ca-

pacity can reduce the performance of the DBMS. This ar-

chitecture, as illustrated in Figure 1b, delivers performance

comparable to that of a DRAM-SSD hierarchy only if NVM

latency is less than 2× that of DRAM (Section 6.7).

A multi-tier storage hierarchy with DRAM, NVM, and

SSD, as shown in Figure 1c, can simultaneously maximize

performance and minimize cost of the storage system. The

reasons for this are twofold. First, the NVM buffer caches a

3
For example, phase-change memory (PCM) is a NVM technology that

exploits the ability of chalcogenide glass to oscillate between amorphous

and crystalline states when heated using electrical pulses [49]. A PCM cell

can exist in different degrees of partial crystallization, thereby enabling

more than one bit to be stored in each cell.

DRAM

SSD

Database Write-Ahead Log

Buffer Pool

(a) DRAM-SSD Hierarchy

NVM

SSD

Database Write-Ahead Log

Buffer Pool

(b) NVM-SSD Hierarchy

NVM

SSD

Database Write-Ahead Log

Buffer Pool

DRAM

Buffer Pool

(c) DRAM-NVM-SSD Hierarchy

Figure 1: Storage Hierarchies – Candidate storage hierarchies:

(a) DRAM-SSD, (b) NVM-SSD, and (c) DRAM-NVM-SSD.

significant fraction of the working set, thereby reducing SSD

accesses. Second, the DRAM buffer serves as a cache on top

of NVM and only stores the hottest pages in the database.

In a DRAM-SSD hierarchy, the buffer manager decides

what pages to move between disk and memory and when
to move them. With a DRAM-NVM-SSD system, however,

in addition to deciding what/when data should be migrated,

it must also decide where to move them (i.e., what storage

tier). In the next section, we discuss how this decision is

influenced by the characteristics of NVM.

3 NVM-AWARE BUFFER MANAGEMENT
NVM introduces new data flow paths in the storage hierarchy.

By leveraging these additional options, the buffermanager re-

duces data movement between different tiers and minimizes

the number of writes to NVM. The former results in improv-

ing the DBMS’s performance, while the latter extends the

lifetime of NVM devices with limited write-endurance [49].

Figure 2 presents the data flow paths in the multi-tier stor-

age hierarchy. The default read path comprises of three steps:

moving data from SSD to NVM (➊), then to DRAM (➋), and

lastly to the processor cache (➌). Similarly, the default write

path consists of three steps: moving data from processor

cache to DRAM (➍), then to NVM (➎), and finally to SSD

(➏). We now describe how the buffer manager leverages the

additional data flow paths in Figure 2 (➐,➑,➒,➓) to minimize

3
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2

NVM

SSD

Database Write-Ahead Log

Buffer Pool

DRAM

Buffer Pool
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Figure 2: Data Flow Paths – The different data flow paths in a

multi-tier storage hierarchy consisting of DRAM, NVM, and SSD.

the performance impact of NVM and to extend the lifetime

of the NVM device.

3.1 Bypass DRAM during Reads
Unlike SSDs, the processor can directly access data on NVM

via read operations (➐). To access a block on SSD, in a disk-

centric DBMS, the DBMS copies it over to DRAM (➒), before

it can operate on the copied data. With NVM, the buffer man-

ager can leverage this new data flow path to lazily migrate

data from NVM to DRAM while serving read operations.

Let Dr represent the probability that the buffer manager

copies data to DRAM during read operations. With existing

storage technologies, Dr = 1. We refer to this data migration

policy as eager migration. With NVM, the buffer manager can

employ a wider range of lazy migration policies with smaller

values for Dr . Such policies reduce upward data migration

between NVM and DRAM during read operations. They are

beneficial when the capacity of DRAM is smaller than that

of NVM. A lazy migration strategy ensures that colder data

(i.e., data that has not been frequently accessed) on NVM do

not evict hotter data in DRAM.

The optimal value of Dr depends on the application’s

workload. An eager migration policy (Dr ≤ 0.5) works well

if the working set fits within the DRAM buffer. A lazier policy

would delay the promotion of data to DRAM, thereby increas-

ing the impact of NVM latency on performance. However, a

migration policy with higher Dr works well if the working

set does not fit in DRAM and fits in the NVM buffer. This

strategy ensures that only the hot data is stored in DRAM.

In addition to the size of the working set, Dr depends

on the ratio between the capacities of the DRAM and NVM

buffers. In a storage hierarchy where the ratio approaches

one, a more eager policy enables the buffer manager to lever-

age the space available in DRAM. Smaller values forDr work

well when the ratio approaches zero since they ensure that

the DRAM buffer only contains frequently referenced data.

With the eager migration policy, the buffer manager al-

ways brings the block to DRAM while serving the read op-

eration. Consequently, if the application then updates the

same block, the writes are performed on DRAM. In contrast,

a lazy migration policy increases the number of writes on

NVM. This is because it is more likely that the block being

updated is residing on NVMwhen the buffer manager adopts

such a policy. This is not a problem for DBMS applications

with skewed access patterns [13, 50]. Such applications tend

to modify hot data that is cached in DRAM even when the

buffer manager employs a lazy migration policy.

3.2 Bypass DRAM during Writes
Ensuring the persistence of pages containing log and check-

point records is critical for the recoverability of the DBMS

as we discussed in Section 2.1. The DBMS’s performance is

constrained by the I/O overhead associated with persisting

these pages on non-volatile storage. As transactions tend to

generate multiple log records that are each small in size, most

DBMSs use the group commit optimization to reduce this I/O

overhead [21]. The DBMS first batches the log records for

a group of transactions in the DRAM buffer (➍) and then

flushes them together with a single write to SSD (➏). This

improves the operational throughput and amortizes the I/O

overhead across multiple transactions.

Unlike SSDs, the CPU can directly persist data on NVM via

write operations (➑). The buffer manager leverages this path

to provide synchronous persistence with lower overhead [12,

34]. The write operation bypasses DRAM since the data must

be eventually persisted, and this data migration optimization

shrinks the overall latency of the operation, especially on

NVM devices whose write latencies are comparable to that

of DRAM. In addition to eliminating the redundant write to

DRAM, it also avoids potential eviction of other hot pages

from the DRAM buffer.

Let Dw represent the probability with which the buffer

manager copies data into DRAM during write operations.

With canonical storage technologies, similar to Dr , Dw =

1. With NVM, the buffer manager can employ lazy migra-

tion policies with smaller Dw . Such policies reduce the fre-

quency of downward data migration to DRAM during write

operations thereby ensuring that pages containing log and

checkpoint records do not evict hotter data in DRAM.

3.3 Bypass NVM During Reads
The data migration optimizations presented in Sections 3.1

and 3.2 improve the performance of the DBMS at the expense

of increasing the number of writes to NVM. We next present

optimizations for reducing the number of writes to NVM

using alternate data flow paths.

4
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The default read path consists of moving the data from

SSD to NVM (➊) and eventually migrating it to DRAM (➋).

This optimization makes use of the direct data flow path

from SSD to DRAM (➒). When the buffer manager observes

that a requested page is not present in both the DRAM and

NVM buffers, it copies the data on SSD directly to DRAM,

thus bypassing NVM during read operations. If the data read

into the DRAM buffer is not subsequently modified, and is

selected for replacement, then the buffer manager discards

it. If the page is modified and later selected for eviction from

DRAM, the buffer manager considers admitting it to NVM

(➎).

Let Nr represent the probability with which the buffer

manager copies data from SSD to NVM during read opera-

tions. With the default read path, Nr = 1. When a page is

fetched from SSD and later evicted from DRAM, an eager

policy necessitates two writes to NVM: once at fetch time

and again when the page is evicted from DRAM. With a lazy

policy (i.e., smaller Nr ), the buffer manager installs a copy

of a modified page on NVM only after it has been evicted

from DRAM. This eliminates the first write to NVM when

the page is fetched from SSD.

3.4 Bypass NVM During Writes
Another data migration optimization for reducing the num-

ber of writes to NVM consists of bypassing NVM while serv-

ing write operations. The default write path consists of mov-

ing the data from DRAM to NVM (➎) and then eventually

migrating it to SSD (➏). Instead of using the default path,

this optimization makes use of the direct data flow path from

DRAM to SSD (➓).

By bypassing NVM during writes, the buffer manager en-

sures that only pages frequently swapped out of DRAM are

stored on NVM [56]. This optimization reduces the num-

ber of writes to NVM since only warmer pages identified

by the buffer manager are stored in the NVM buffer. If the

buffer manager employs an eager policy while reading data

into DRAM (i.e., high Dr ), this optimization prevents colder

DRAM-resident pages from polluting the NVM buffer.

Let Nw represent the probability with which the buffer

manager copies data from DRAM to NVM during write op-

erations. With the default write path, Nw = 1. Lower values

of Nw reduce downward data migration into NVM. Such

a lazy policy is beneficial when the capacity of DRAM is

comparable to that of NVM since it ensures that colder data

on DRAM does not evict warmer data in the NVM buffer.

4 ADAPTIVE DATA MIGRATION
The data migration policy consists of the probabilities with

which the buffer manager bypasses DRAM and NVM while

serving read and write operations (Sections 3.1 to 3.4). All

of the above data migration optimizations are moot unless

the buffer manager can effectively adapt the overall policy

based on the characteristics of the workload and the storage

hierarchy. We now present an adaptation mechanism in the

buffer manager that achieves a near-optimal policy for an

arbitrary workload and storage hierarchy without requiring

any manual tuning.

The crux of our approach is to track the target metrics
on recent query workload at runtime, and then periodically

adapt the policy in the background. Over time, this process

automatically optimizes the policy for the application’s work-

load and the storage hierarchy, and amortizes the adaptation

cost across multiple queries. We now describe the informa-

tion that the buffer manager collects to guide this process.

The buffer manager keeps track of two target metrics

while executing the workload. These include the operational

throughput of the buffer manager and the number of write

operations performed on NVM. The goal is to determine

the optimal configuration of the data migration policies that

maximizes the throughput and minimizes writes to NVM.

The cost function associated with a candidate data migration

policy configuration consists of two weighted components

associated with these target metrics.

Cost(T ,W ) = T + (λ/W )

To adapt the buffer manager’s data migration policy, we

employ an iterative searchmethod called simulated annealing
(SA) [33]. This technique searches for a policy configuration

that maximizes the cost function presented. An attractive

feature of SA is that it avoids getting caught at local op-

tima, which are configurations that are better than any other

nearby configurations, but are not the globally optimal con-

figuration [29]. It is a probabilistic hill climbing algorithm

that migrates through a set of local optima in search of the

global extremum.

SA consists of two stochastic processes for generating

candidate policy configurations and for accepting a new con-

figuration. Algorithm 1 presents the algorithm for tuning

the data migration policy using SA. At each time step, SA

randomly selects a new configuration (C ′
) close to the cur-

rent one (C). It then evaluates the cost of that configuration

(E ′
). Lastly, it decides to accept the configuration C ′

or stay

with C based on whether the cost of C ′
is lower or higher

than that of the current configuration. If C ′
is better than C ,

then it immediately transitions toC ′
. Otherwise, it randomly

accepts the new configuration with higher cost (C ′
) based

on the Boltzmann acceptance probability factor.

SA is theoretically guaranteed to reach the global optima

with high probability. The control parameter T determines

the magnitude of the perturbations of the energy function E.
SA gradually decreases T over time. During the initial steps

of SA, at high temperatures, the probability of uphill moves

5
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Algorithm 1 Data Migration Policy Tuning Algorithm

Require: temperature reduction parameter α ,
threshold for number of accepted transitions γ ,
initial data policy configuration C0,

initial temperature T0,
final temperature Tmin
function UPDATE-CONFIGURATION(α ,γ ,C0,T0,Tmin )

# Initialization
current configuration C = C0

energy E = cost(C)
temperature T = T0
# Iterative Search
while T > Tmin do

while number of accepted transitions < γ do
new configuration C ′

= neighbor(C)
energy E ′ = cost(C ′

)

energy delta ∆E = E ′ -E

Boltzmann acceptance probability P = e
−∆E
T

if ∆E < 0 or with acceptance probability P then
# Accept new policy configuration
C = C ′

end if
end while
# Reduce temperature
T = T * α

end while
end function

in the energy function (∆E > 0) is large. Despite temporarily

increasing the energy, such non-beneficial downhill steps

(∆E < 0) allows for a more extensive search for the global

optimal configuration. Over time, SA reduces the tempera-

ture. This gradual cooling mechanism corresponds to slowly

decreasing the probability of accepting worse configurations

as it explores the configuration state space.

5 STORAGE HIERARCHY SELECTION
We have so far focused on identifying an optimal data mi-

gration policy configuration for a particular workload given

a storage hierarchy. The tuning algorithm presented in Sec-

tion 4 assumes that we have already provisioned a multi-tier

storage hierarchy that is a good fit for the workload. It is un-

clear, however, how to select such a hierarchy for a particular

workload given a system cost constraint.

In this section, we formulate an analytical model of a hi-

erarchical storage system to improve the intuition behind

provisioning a multi-tier storage hierarchy. We then iden-

tify the limitation of the model and present a recommender

system that addresses them.

5.1 Hierarchical Storage System Model
We can model the multi-tier storage system as a linear hi-

erarchy with n levels, L1, L2,. . ., Ln . The performance of a

particular level Li in the hierarchy is determined by two

factors: the average access time ti and the device capacity

Ci [30]. We assume that a copy of all blocks in level i exists
in every level greater than i (i.e., in all lower levels in the

hierarchy). The maximum information that can be stored in

the system is equal to the capacity of the lowest level Cn ,

since copies of all blocks stored in the higher levels of the

system must be present in Ln .
We can characterize the performance impact of the device

capacity at a particular level by the probability of finding

the requested data block in that level. This is termed as the

hit ratio H . H is a monotonically increasing function with

respect to device capacityC . Let the cost per storage unit (e.g.,
per GB) of the device technology used at a particular level be

given by the cost function P(ti ). It decreases monotonically

with respect to the access time ti of the device technology.
Since a copy of all data blocks at level i exists in every

level greater than i , the probability of a hit in level Li and
misses in the higher levels, is given by:

hi = H (Ci ) − H (Ci−1)

Here, hi represents the relative number of successful data

accesses at level i in the storage hierarchy. The effective
average access time per block request, is then given by:

T =
n∑
i=1

hi (
i∑
j=1

tj )

To maximize the operational throughput of the DBMS, we

need tominimizeT subject to storage system cost constraints.

Given a storage system cost budget B, the goal is to select

the device technology ti and determine the device capacity

Ci for each level in the storage hierarchy. We formulate this

problem as follows:

Minimize:

T =
n∑
i=1

(1 − H (Ci−1))ti .

Subject to the storage system cost budget:

n∑
i=1

P(ti )Ci ≤ B

5.2 Storage Hierarchy Recommender
System

H is a function of the workload locality and does not have

a closed-form expression. We circumvent this limitation by

developing a recommender system that measures the actual

throughput on a target workload across candidate storage

hierarchies to identify the optimal system. The goal of the

6
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recommender system is to identify a multi-tier storage hier-

archy consisting of DRAM, NVM, and/or SSD that maximizes

a user-defined objective function given a system cost budget.

The recommender system searches across candidate stor-

age hierarchies that meet the user-specified budget. Let {D0,
D1,D2, . . . ,Dp } represent the set of candidate DRAM de-

vices, {N0,N1,N2, . . . ,Nq} the set of candidate NVM de-

vices, and {S0, S1, S2, . . . , Sr } the set of candidate SSD de-

vices. These devices have varying capacities and costs. We

are provided with a cost function P that returns the cost of a

particular device. For instance, P(Di ) returns the cost of the
DRAM device with capacity Di .

We can prune the set of candidate storage hierarchies by

only considering devices whose capacities are powers of

two. With this restriction, the size of set of candidate storage

hierarchies is small (p, q, and r < 10). The recommender

system does a pure grid search over the entire set [14]. During
a particular trial on a grid, we only consider device triples

{Di ,Nj , Sk } that meet the user-specified budget B, as given
by:

P(Di ) + P(Nj ) + P(Sk ) ≤ B

The system then measures the operational throughput

on the storage hierarchy corresponding to the device triple

{Di ,Nj , Sk }. We configure D0 = 0 to model storage hierar-

chies containing only NVM and SSD devices (i.e., those that

do not have DRAM). Similarly, we set N0 = 0 and S0 = 0 to

model storage hierarchies without NVM and SSD, respec-

tively. We note that the entire database must fit in the lowest

level of storage hierarchy. Since the cost of NVM is 10×
higher than that of SSD, the latter device will likely continue

to occupy the lowest level.

6 EXPERIMENTAL EVALUATION
In this section, we present an analysis of the proposed NVM-

aware buffer management policies and the storage hierarchy

recommendation system. Our goal is to demonstrate that:

• NVM improves throughput by reducing accesses to

canonical storage devices due to its higher capacity-

cost ratio compared to DRAM (Section 6.4).

• The selection of a data migration policy depends on the

runtime performance requirements, write endurance

characteristics of NVM, and the relative size of the

DRAM buffer compared to NVM (Section 6.5).

• Tuning the buffer management policy for the workload

and the storage hierarchy improves throughput and

extends the lifetime of the NVM device (Section 6.6).

• The selection of a multi-tier storage hierarchy for a

given workload depends on the working set size, the

frequency of persistent writes, the system cost budget,

and the performance and cost characteristics of NVM

(Section 6.7).

• A combination of data migration optimizations pre-

sented in Section 3 outperforms the state-of-the-art

buffer management policy (Section 6.8).

6.1 Trace-Driven Buffer Manager
We developed a trace-driven buffer manager to evaluate dif-

ferent storage hierarchy designs and data migration policies.

We gather traces from a real DBMS by running OLTP, OLAP,

and HTAP workloads. The trace contains information about

individual buffer pool operations.

At the beginning of the trace period, we take a snapshot of

the DBMS’s meta-data regarding the blocks stored in mem-

ory and on storage. This snapshot does not contain any user

data. The buffer manager only simulates the movement of

user data blocks and not their actual contents. This allows

us to effectively run simulations of buffer management oper-

ations on large databases and devices.

The buffer manager runs on top of a multi-tier storage

hierarchy consisting of DRAM, NVM, and/or SSD. For in-

stance, in case of a three-tier DRAM-NVM-SSD hierarchy,

it maintains two buffer pools on DRAM and NVM. While

processing the trace requests, the buffer manager issues read

and write operations to the appropriate devices depending

on the data migration policy. The simulator models the phys-

ical contiguity of the user-data blocks while distributing the

I/O operations across the device.

We conduct our experiments on a NVM hardware emula-

tor. Existing NVM devices cannot store large databases due

to their limited capacities and prohibitive costs. We instead

use the persistent memory evaluation platform (PMEP) de-

veloped by Intel Labs [23, 59]. PMEP models the latency and

bandwidth characteristics of upcoming NVM technologies.

It allows us to tune the memory read and write latencies

and bandwidths. This enables us to evaluate multiple NVM

device profiles that are not specific to a particular technology.

A detailed description of PMEP is provided in Appendix A.

6.2 Experimental Setup
We perform our experiments by running the trace-driven

buffer manager on the NVM hardware emulator. By default,

we set the capacity of the DRAM and NVM buffers to be 2 GB

and 128 GB, respectively. Unless otherwise stated, we config-

ured the NVM latency to be 2× that of DRAM and validated

these settings using Intel’s memory latency checker. The

emulator’s storage hierarchy also includes two additional

devices:

• HDD: Seagate Barracuda (3 TB, 7200 RPM, SATA 3.0)

• SSD: Intel DC S3700 (400 GB, SATA 2.6)
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Workloads We next describe the workloads from the

OLTP-Bench testbed that we use in our evaluation [1, 22].

These workloads differ in their workload skews and frequen-

cies of persistent writes.

TPC-C: This benchmark is the industry standard for eval-

uating the performance of OLTP systems [55]. It simulates

an order-entry application of a wholesale supplier and con-

sists of five transaction types with nine tables.

Voter: This is an OLTP benchmark that simulates a phone-

based election application. It is derived from the software

system used to record votes for a television talent show.

The workload consists of short-lived transactions that each

update a small number of tuples.

CH-benCHmark: This is a complex HTAPworkload that

is derived from a transactional workload based on the or-

der entry processing of TPC-C and a corresponding TPC-H-

equivalent OLAP query suite. It is useful to evaluate DBMSs

designed to serve both OLTP and OLAP workloads. CH-

benCHmark extends the TPC-C benchmark with 22 addi-

tional analytical queries.

AuctionMark: This is an OLTP benchmark that models

the workload characteristics of an on-line auction site [10].

The user-to-item ratio follows a highly skewed Zipfian dis-

tribution. The total number of transactions that target each

item is temporally skewed, as items receive more activity as

the auction approaches its closing.

Trace CollectionWe collect traces by running the bench-

marks on an instrumented fork of Postgres DBMS (v9.4) [3].

All the transactions execute with the same serializable isola-

tion level and durability guarantees. To collect the traces, we

first ran each benchmark for a warm-up period. At the end of

the warm-up period, we take a snapshot of the DBMS’s meta-

data regarding the location of blocks in volatile memory and

on durable storage. We then start recording the buffer pool

references in the trace. During simulation, the buffer man-

ager first loads the snapshot before executing the operations

recorded in the trace.

The amount of data referenced at least once in a trace is

termed as its footprint. An important issue in using trace-

driven simulations to study storage hierarchy design is that

the traces must have a sufficiently large footprint for the

storage configurations of interest [28]. Table 2 presents the

footprints of the traces associated with different benchmarks.

For all experiments, we used half of the trace to warm-up the

simulator. We collect system statistics only after the buffer

pools have been warmed up.

Benchmark Footprint

TPC-C 1.32 TB

CH-benCHmark 1.13 TB

Voter 1.05 TB

AuctionMark 815 GB

Table 2: Trace Footprints: Footprints of the traces associated

with different benchmarks.
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Figure 3:Workload SkewCharacterisation:CDF of the number

of times a block is referenced in the traces associated with different

workloads. Due to the inherent skew present in certain workloads,

most of the buffer pool accesses are made to a small fraction of

blocks.

6.3 Workload Skew Characterization
We begin with a characterization of the workload skew

present in the different workloads. Figure 3 shows the cumu-

lative distribution function (CDF) of the number of buffer

pool accesses per block in the workload traces.

For the TPC-C benchmark shown in Figure 3a, 13% of

buffer pool references are made to 75% of the blocks and

25% of the blocks only account for 0.05% of the accesses.

This illustrates that this workload is not highly skewed and

has a large working set. Similarly, the CH-benCHmark also

exhibits low skew as depicted in Figure 3d. 50% and 75% of the

blocks account for 9% and 43% of the buffer pool references,

respectively.

Figure 3b shows that the Voter benchmark exhibits the

lowest degree of skew among all workloads since 75% of

the referenced blocks account for only 6% of buffer pool

references. This is because the workload consists of short-

lived transactions that generate writes to the log. In contrast,

AuctionMark exhibits the highest degree of skew among all

workloads. 0.001% of the blocks account for 8% of the buffer

pool references and 61% of the buffer pool accesses are made

to 25% of the blocks. We attribute this to the temporally

skewed item access patterns in AuctionMark.
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Figure 4: Impact of NVM on Runtime Performance: Compar-

ison of the buffer manager’s throughput on similarly priced NVM-

SSD and DRAM-SSD storage hierarchies under different NVM la-

tency configurations.

6.4 Impact of NVM on Runtime
Performance

In this section, we compare the buffer manager’s through-

put on similarly priced NVM-SSD and DRAM-SSD storage

hierarchies to examine the impact of NVM on runtime perfor-

mance. We do not consider a DRAM-NVM-SSD hierarchy in

this experiment to isolate the utility of NVM. We configured

the cost budget to be $10,000. Given this budget, the capacity

of the NVM and DRAM devices are 128 GB and 1 TB, respec-

tively
4
. The latter device’s capacity is 8× higher than that

of the former due to NVM’s higher capacity-cost ratio. To

obtain insights that are applicable for a wider range of NVM

technologies, we quantify the impact of NVM on different

latency configurations. We ran the experiment under three

NVM latency configurations for the emulator ranging from

2–8× DRAM latency (320–1280 ns).

The results shown in Figure 4 illustrate that the NVM-SSD

hierarchy outperforms its DRAM-based counterpart on most

workloads and latency configurations. On the TPC-C bench-

mark, we observe that with the 2× latency configuration, the

NVM-based hierarchy outperforms the DRAM-SSD hierar-

chy by 4.3×. This is because NVM reduces the number of SSD

accesses by 19× due to its capacity advantage over DRAM.

The reduction in time spent on disk operations overrides the

performance impact of slower NVM accesses. With the 4×
latency configuration, the performance gap drops to 2.1×.
This illustrates the impact of NVM’s higher latency relative

to DRAM. The 8× latency configuration is the break-even

point at which both storage hierarchies deliver comparable

4
The cost of NVM is derived from the price of Intel’s 3D XPoint-based

Optane SSD 905P [8]

throughput. In this setting, slower NVM accesses nullify the

benefits of its higher capacity.

The impact of NVM is more pronounced on the Voter

benchmark. This benchmark saturates the DBMS with short-

lived transactions that each update a small number of tuples.

The buffer manager frequently flushes dirty blocks to durable

storage while executing this workload. NVM improves run-

time performance by efficiently absorbing these writes. As

shown in Figure 4b, the performance gap between the two

storage hierarchies varies from 10.5× to 2.8× on the 2× and

8× latency configurations, respectively.

On the AuctionMark workload shown in Figure 4c, the

NVM-SSD hierarchy outperforms its DRAM-based counter-

part by 2.2×with the 2× latency configuration. However, the

trend reverses on the 8× latency configuration, where the

latter hierarchy delivers 1.8× higher throughput than the

former. We attribute this to the workload’s smaller working

set that fits in the DRAM buffer. So, the NVM buffer is not as

beneficial on this workload, particularly with slower latency

configurations.

The results for the CH-benCHmark workload, shown

in Figure 4d, illustrate that the NVM-based hierarchy de-

livers 5.9× higher throughput compared to its DRAM-based

counterpart on the 2× latency configuration. We attribute

this to the larger working set associated with this workload.

Even on the 8× latency configuration, the former storage hi-

erarchy delivers 1.7× higher throughput than the latter. This

demonstrates the performance impact of NVM on HTAP

workloads.

6.5 Data Migration Policies
In this section, we look at the impact of data migration poli-

cies on runtime performance and the number of writes per-

formed on NVM. We begin by comparing the performance

of the buffer manager when it employs the lazy and eager

policies presented in Section 3. We consider a storage hierar-

chy with 16 GB DRAM and 1 TB NVM buffers on top of SSD.

We quantify the performance impact of four data flow opti-

mizations: (1) bypassing DRAM (Dr , Dw ), and (2) bypassing

NVM (Nr , Nw ) while serving read and write operations. To

derive insights that are applicable for a wider range of NVM

technologies, we do this analysis across three NVM latency

configurations ranging from 2–8× DRAM latency.

Performance Impact of Bypassing DRAM Figure 5 il-

lustrates the performance impact of bypassing DRAM while

serving reads and write operations. We vary the DRAM mi-

gration probabilities (Dr , Dw ) in lockstep from 1 through 0.

We configured the buffer manager to adopt an eager policy

for NVM (Nr , Nw = 1). Since the DRAM migration probabil-

ities are updated in lockstep in this experiment, we denote

9
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Figure 5: Performance Impact of Bypassing DRAM: Compar-

ison of the buffer manager’s throughput when it adopts lazy and

eager data migration policies for DRAM. We measure the perfor-

mance impact of these policies across different NVM latency con-

figurations and DRAM migration frequencies (D).

them byD. With the baseline policy (D = 1), the buffer man-

ager eagerly moves data to DRAM. The results in Figure 5

demonstrate that the lazy migration policies work well for

DRAM on most workloads.

For the TPC-C benchmark shown in Figure 5a, the through-

put observed whenD is 0.01 is 79% higher than that with the

eager migration policy on the 2× latency configuration. The

reasons for this are twofold. First, the lazy policy reduces

the data migration between NVM and DRAM. Second, it

ensures that only frequently referenced data are moved to

DRAM. The performance gap drops to 33% on the 8× latency

configuration. This is because the lazy policy amplifies the

performance impact of slower NVM operations.

The benefits of lazy data migration are more prominent on

the write-intensive Voter workload. Bypassing DRAM while

performing writes nearly doubles the throughput, as shown

in Figure 5b.With the lazy policy, the buffer manager directly

flushes dirty blocks to NVM instead of first writing them

on DRAM. Since DRAM write latencies are comparable to

those of NVM, particularly on the 2× latency configuration,

bypassing DRAM during writes shrinks the overall write

latency.

Unlike other workloads, eager policy works well for the

AuctionMark workload, as depicted in Figure 5c. It outper-

forms the lazy policy (D = 0.1) by 60% on the 2× latency

configuration. This is because the workload’s working set

fits in the DRAM buffer and shifts over time. But, the lazy

policy delays the migration of hot data from NVM to DRAM,

thereby reducing the utility of the DRAM buffer. The perfor-

mance gap shrinks to 32% with a lazier policy (D = 0.001).

The reduction in data movement between DRAM and NVM

dampens the impact of delayed migration of the working set.

Lastly, on the CH-benCHmark workload, lazy policy de-

livers 85% higher throughput than its eager counterpart, as
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Figure 6: Performance Impact of Bypassing NVM: Compari-

son of the buffer manager’s throughput when it adopts lazy and ea-

ger data migration policies for NVM. We measure the performance

impact of these policies across different NVM latency configura-

tions and NVM migration frequencies (N ).

shown in Figure 5d. The working set of this workload is

comparatively more stable. So, even though the lazy policy

results in delayed migration, the buffer manager eventually

loads the working set in the DRAM buffer. Thus, the optimal

migration policy depends on the workload characteristics.

Performance Impact of Bypassing NVM Figure 6 il-

lustrates the performance impact of bypassing NVM while

serving reads and write operations. In this experiment, we

vary the NVM migration probabilities (Nr , Nw ) in lockstep

from 1 through 0. We configured the buffer manager to adopt

an eager policy for DRAM (Dr , Dw = 1). Since the NVM mi-

gration probabilities are updated in lockstep, we denote them

by N . The results in Figure 6 show that eager migration (N
= 1) works well for NVM on most workloads.

For the TPC-C benchmark shown in Figure 6a, the through-

put observed when N is set to 0.1 is 68% lower than that

with the eager policy on the 2× latency configuration. This

is because the time spent on SSD operations increases by

15× due to bypassing NVM during writes. The performance

impact of lazy migration marginally drops to 43% on the

8× latency configuration. Slower NVM accesses dampen the

effect of writes landing on SSD with this configuration.

The performance impact of NVM bypass is more promi-

nent on the Voter workload shown in Figure 6b. The through-

put drops by 91% whenN is set to 0.1 on the 2× latency con-

figuration. These results illustrate that while lazy migration

policies work well for DRAM, eager policies are a better fit

for NVM.

Impact of NVM Bypass on Writes to NVM Although

lazy data migration negatively impacts runtime performance,

it reduces the number of writes performed on NVM. Figure 7

presents the impact of NVM bypass on the number of NVM

writes. For the TPC-C benchmark, as shown in Figure 7a,

the buffer manager performs 5.5× fewer writes to NVM with

a lazy migration policy (N = 0.1) in comparison to eager

migration. The impact of NVM bypass on the number of

writes performed on NVM is equally pronounced on the
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Figure 7: Impact of Bypassing NVM onWrites to NVM: Com-

parison of the number of writes performed on NVM when the

buffer manager adopts lazy and eager data migration policies for

NVM. We measure the impact of these policies across different

NVM migration frequencies (N ).
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Figure 8: Impact of Storage Hierarchy: Comparison of the opti-

mal data migration policy decision for bypassing DRAM across dif-

ferent storage hierarchies, NVM latency configurations, and DRAM

migration frequencies.

Voter workload as shown in Figure 7b. Adopting a lazy mi-

gration policy (N = 0.1) reduces the number of NVM writes

by 8.5×.
These results illustrate that the optimal data migration pol-

icy must be chosen depending on the runtime performance

requirements and write endurance characteristics of NVM.

Impact of Storage HierarchyWe next consider how the

optimal data migration policy varies across storage hierar-

chies. In this experiment, we consider two three-tier storage

hierarchies with 4 GB and 64 GB DRAM buffers. We config-

ured both systems to use a 1 TB NVM buffer on top of SSD.

The results for the TPC-C benchmark depicted in Figure 8

show that the utility of lazy data migration varies across

storage systems.

On the first system, as shown in Figure 8a, the throughput

with lazy migration (D = 0.01) is 94% higher than that with

its eager counterpart. The performance gap between the

policies on this system is larger than that observed with a

larger DRAM buffer (16 GB) in Figure 5a. This is because

the lazy policy increases the utility of the smaller DRAM

buffer by not polluting it with colder data. For this system,

the optimal migration frequency remains unchanged even

on slower latency configurations.

The results for the second system shown in Figure 8b

illustrate that the lazy policy delivers 38% higher throughput

on the 2× latency configuration. The utility of lazy migration

is not as prominent on this system since the capacity of the

DRAM buffer is one-sixteenth of that of the NVM buffer. The
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Figure 9: Adaptive Data Migration: The impact of buffer man-

agement policy adaptation on runtime performance across different

workloads.

performance with the eager policy (D = 1) is comparable to

that with its lazy counterpart on the 8× latency configuration.

This is because the latter policy amplifies the impact of slower

NVM operations, particularly when the relative size of the

DRAM buffer compared to the NVM buffer is large.

These results show that the optimal migration policy de-

pends not only on the workload and device characteristics,

but also on the relative size of the DRAM buffer compared

to the NVM buffer.

6.6 Adaptive Data Migration
In the previous experiments, we examined the utility of a

fixed data migration policy. In the real world, identifying the

optimal data migration policy is challenging due to diversity

of workloads and storage hierarchies. Thus, we now exam-

ine the ability of buffer manager to automatically adapt the

management policy at runtime. In this experiment, the buffer

manager begins executing the workload with an eager policy

for both DRAM (D = 1) and NVM (N = 1). During execu-

tion, it adapts the policy using the simulated annealing (SA)

algorithm presented in Section 4. This technique searches

for the policy that maximizes the throughput given a tar-

get workload and storage hierarchy. We use an operation

sequence with 100 M entries. We set α and γ to 0.9 and 10,

respectively. We configure the initial and final temperatures

of the annealing process to 800 and 0.00008. We configure

the duration of a tuning step to be 1 M operations to ensure

that the impact of policy changes are prominently visible to

the SA algorithm.

The results in Figure 9 show that the buffer manager

converges to a near-optimal policy for different workloads

without requiring any manual tuning. For the TPC-C and

Voter workloads, tuning the data migration policy increases

throughput by 79% and 92%, respectively. The buffer man-

ager converges to a hybrid policy, with lazy migration for

DRAM and eager migration for NVM on both workloads.

The throughput converges to a global optima over time. We

attribute this to the gradual cooling mechanism in SA that

decreases the probability of accepting worse policies.
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6.7 Storage System Recommendation
We next focus on the storage hierarchy recommendation

problem presented in Section 5. In this experiment, we com-

pare the performance/price numbers of multi-tier storage hi-

erarchies. If the cost of a storage hierarchy is $ C and the

throughput it delivers is T operations per second, then the

performance/price number is given by
T
C . This represents

the number of operations executed per second per dollar.

Given a system cost budget and a target workload, the rec-

ommender system identifies the storage hierarchy with the

highest performance/price number.

Each storage system consists of at most three devices:

DRAM, NVM, and SSD. We vary the capacity of the DRAM

and NVM devices from 4 GB through 64 GB, and from 512 GB

through 2 TB, respectively. We configured the capacity of the

SSD device to 2 TB. We examine the runtime performance

of the buffer manager on both two- and three-tier storage

hierarchies: DRAM-SSD, NVM-SSD, and DRAM-NVM-SSD.

We configured the NVM latency to be 2× that of DRAM.

Storage System Cost: Figure 10a presents the cost of

candidate storage hierarchies. The cost of the DRAM-SSD

hierarchy raises from $339 to $924 whenwe vary the capacity

of the DRAM device from 2 GB through 32 GB. The cost of

the NVM-SSD hierarchy increases from $800 to $2300 when

we vary the capacity of the NVM device from 512 GB through

2 TB.

StorageHierarchyRecommendation: Figure 10 shows
the performance/price numbers of candidate storage hierar-

chies across different workloads. The recommender system

performs a grid search to identify the storage hierarchy with

the highest performance/price number on a target workload

given a cost budget.

For the TPC-C benchmark, as shown in Figure 10b, the

storage system that delivers the highest performance/price

number consists of 16 GB DRAM and 1 TB NVM on top of

SSD. Expanding the capacity of the DRAM buffer to 64 GB

improves performance by 7%. But, this also raises the storage

system cost by 32%. Similarly, reducing the capacity of the

DRAM buffer to 4 GB shrinks performance and cost by 10%

and 8%, respectively. The recommended storage hierarchy

outperforms its NVM-SSD counterpart by 19%. This is be-

cause the DRAM buffer reduces the time spent on NVM read

operations by 63%.

The optimal storage system for the Voter workload con-

sists of 4 GB DRAM and 128 GB NVM, as shown in Fig-

ure 10c. While executing this workload, the buffer manager

frequently flushes dirty blocks to durable storage. In the ab-

sence of NVM, the buffer manager spends more time flushing
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Figure 10: Storage Hierarchy Recommendation: (a) The total
cost of the DRAM, NVM, and SSD devices used in a multi-tier

storage system. (b-f) The performance/price numbers of candi-

date storage hierarchies on different benchmarks. Given a system

cost budget and a target workload, the recommendation system

performs a grid search to identify the storage hierarchy with the

highest performance/price number.

data to SSD. So, the performance/price number on a simi-

larly priced 128 GB DRAM-SSD system is 16× lower than its

NVM-based counterpart.

On the AuctionMark workload, as shown in Figure 10d, a

DRAM-SSD system consisting of 8 GB DRAM delivers the

highest performance/price number. It delivers 2.9× lower

throughput compared to a 3.4× higher priced NVM-SSD sys-

tem with 1 TB NVM. We attribute this to the workload’s

smaller working set that fits in the DRAM buffer. So, the util-

ity of the NVM buffer is not as prominent on this workload.

Adding a 4 GB DRAM buffer on top of NVM-SSD hierarchy

does not improve performance on the AuctionMark work-

load. Instead, it reduces throughput by 6%. The I/O overhead

associated with data migration between DRAM and NVM

overrides the utility of caching data on DRAM.
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Policy Dr Dw Nr Nw

A [56] 1 1 0.01 0.5

B 0.01 0.01 0.2 1

C 0.01 0.01 0.2 0.5

D 0.01 0.01 0.2 0.3

Table 3: Policy Comparison: List of buffer management policies.

For the CH-benCHmarkworkload, the results in Figure 10e

show that the maximal performance/price number is deliv-

ered by a DRAM-NVM-SSD system with 4 GB DRAM and

1 TB NVM. Adding a 4 GB DRAM buffer on top of NVM in-

creases throughput by 5% on this workload. This is because

it reduces time spent on NVM operations by 11%, thereby

justifying the cost of data migration.

Impact of NVM latency:We next examine the impact of

NVM latency on the selection of storage hierarchy. Figure 10f

presents the results for the TPC-C benchmark with the 8×
latency configuration. The storage system that delivers the

highest performance/price number consists of 16 GB DRAM

and 512 GB NVM on top of SSD. The capacity of the NVM

buffer has shrunk from 1 TB with the 2× latency configu-

ration. This shows that the utility of the NVM buffer has

decreased due to slower NVM accesses.

The results in Figure 10 illustrate how the selection of

a multi-tier storage system for a given workload depends

on the working set size, the frequency of persistent writes,

the performance and cost characteristics of NVM, and the

system cost budget.

6.8 Policy Comparison
We now compare a family of buffer management policies

against the policy presented in [56]. As shown in Table 3,

A consists of eager migration for DRAM (Dr = 1, Dw =

1), and lazy migration for NVM during reads (Nr = 0.01)

and writes (Nw = 0.5). We construct policies B, C, and D
based on the data migration optimizations in Section 6.5 to

improve runtime performance and extend the lifetime of the

NVM device. These policies adopt lazy migration to DRAM

(Dr = 0.01, Dw = 0.01) and NVM during reads (Nr = 0.2),

and differ in how they migrate data to NVM during writes

(Nw = [1, 0.5, 0.3]). They differ from A in two ways. With

A, the buffer manager initially moves data to DRAM and

stores data evicted from DRAM on NVM. It bypasses NVM

during writes to ensure that only frequently referenced data

is stored on NVM. In contrast, with the former policies, the

buffer manager initially moves data into NVM and lazily

migrates it to DRAM. It frequently bypasses DRAM during

writes and directly persists data on NVM.
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Figure 11: Impact of Policies on Runtime Performance: The
impact of different buffer management policies on runtime perfor-

mance across different NVM latency configurations.
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Figure 12: Impact of Policies on NVM Device Lifetime: The
impact of different policies on lifetime of NVM device.

The results in Figure 11 illustrate that B works well across

different workloads. For the TPC-C workload shown in Fig-

ure 11a, it outperforms A by 3.5×. The reasons for this are
twofold. First, with A, the buffer manager bypasses NVM

during writes. Although this scheme reduces the number

of writes to NVM by 2×, it increases the time spent by the

buffer manager on SSD operations by 8.8×. The former pol-

icy circumvents this problem by absorbing more writes on

NVM. The buffer manager reclaims space in the NVM buffer

by discarding unmodified blocks. Second, bypassing DRAM

during reads (Dr = 0.01) reduces the data migration overhead

between NVM and DRAM and ensures that only frequently

referenced blocks are stored on DRAM.

The results in Figure 11b show the utility of eager migra-

tion to NVM during writes. B outperforms A by 6.6× on

this workload. With the former policy, the buffer manager

directly persists data on NVM instead of first buffering it

on DRAM. Since DRAM write latencies are comparable to

those of NVM, particularly on the 2× latency configuration,

bypassing DRAM during writes reduces the overall write

latency, thereby improving runtime performance.

The performance impact of NVM latency is not as promi-

nent with A. The throughput only drops by 18% when we

transition from a 2× latency configuration to a 8× configu-

ration. This is because lazy migration to NVM increases the

time spent on SSD operations, thereby reducing the impact

of slower NVM operations.

Impact on NVM Device Lifetime: With B, the buffer

manager performs 2× more writes to NVM than with A.
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This shrinks the lifetime of NVM devices with limited write-

endurance [49]. To circumvent this problem, we construct

policies C and D, which lazily migrate data to NVM during

writes (i.e., Nw < 1).

The results in Figure 12 illustrate the impact of these poli-

cies on device lifetime. In comparison to B, the number of

writes to NVM on the TPC-C workload drops by 1.4× and

2.1× with C and D, respectively. These policies outperform

A by 2.2× and 1.6×, respectively. The buffer manager picks

among these policies depending on thewrite-endurance char-

acteristics of the NVM device.

The results in Figures 11 and 12 illustrate how a combina-

tion of data migration optimizations presented in Section 3

maximizes both runtime performance and device lifetime.

7 RELATED WORK
We now discuss the previous research on NVM, especially

in the context of buffer management in DBMSs and file-

systems.

NVM-Aware Buffer Management in DBMSs: Renen
et al. present a NVM-aware multi-tier buffer manager that

eagerly migrates data from SSD to DRAM [56]. When a page

is evicted from DRAM, the buffer manager considers admit-

ting it into the NVM buffer. The key idea is to only admit

recently referenced pages. The buffer manager maintains

an admission queue to keep track of pages considered for

admission and only admits pages that were recently denied

admission. While this buffer management policy works well

in their target storage hierarchy, it does not generalize to

other NVM technologies, storage hierarchies, and workloads.

We introduce a taxonomy of data migration optimizations

that subsumes the specific scheme adopted in their system.

We study how the optimal policy depends on workload and

storage system characteristics and address the problem of

designing a multi-tier storage system.

SOFORT [45] is a hybrid storage engine that targets a

two-tier storage system with DRAM and NVM. The engine

stores the primary copy of the data on NVM, and supports

the maintenance of auxiliary data structures on DRAM and

NVM. FOEDUS is a scalable OLTP engine designed for a two-

tier storage system with DRAM and NVM [32]. It is based on

the dual page primitive that points to a pair of logically equiv-

alent pages, a mutable volatile page in DRAM containing the

latest changes, and an immutable snapshot page on NVM.

Arulraj et al. compare three storage management architec-

tures for an NVM-only system and demonstrate that in-place

updates architecture maximizes performance and minimizes

the wear on the NVM device [11]. Unlike these systems, this

paper focuses on managing and designing multi-tier storage

hierarchy with DRAM, NVM, and SSD.

NVM-aware BufferManagement in File Systems: Be-
yond DBMSs, researchers have explored using NVM in file-

systems. BPFS uses a variant of shadow paging on NVM to

support atomic fine-grained updates by relying on a special

hardware instruction that ensures ordering between writes

in different epochs [17]. PMFS is another filesystem from

Intel Labs that is designed for byte-addressable NVM [23].

It relies on a write-ahead logging for meta-data and uses

shadow paging for data. EXT4 DAX extends the EXT4 file

system to support direct mapping of NVM by bypassing the

buffer cache [18]. Aerie provides direct access for file data

I/O using user-level leases for NVM updates [57]. NOVA is a

novel per-inode log-structured file system that provide syn-

chronous file system semantics on NVM, but requires system

calls for every operation [58]. F2FS is an SSD-optimized log-

structured file system that sorts data to reduce file system

write amplification [35].

Strata is a cross-media file system that supports performance-

isolated access to NVM using a per-application log by effi-

ciently operating on SSDs and HDDs [34]. This system is

optimized for a specific NVM technology that is 2× slower

than DRAM. So it does not cache NVM-resident data on

DRAM. For the same reason, it bypasses DRAM while per-

forming synchronous write operations. While this buffer

management policy works well in their target environment,

it does not generalize to other NVM technologies, storage hi-

erarchies, and workloads. We tackle the buffer management

problem within the context of a DBMS. Operating inside

a DBMS allows us to support, and requires us to handle, a

broader class of application access patterns.

Buffer Management in Systems without NVM: Be-
fore the advent of NVM technologies, researchers have stud-

ied multi-tier buffer management in storage systems without

NVM. FlashStore is a key-value store that uses an SSD as

a fast cache between DRAM and HDD and minimizes the

number of SSD accesses [20]. RAMCloud is a sharded data

storage system that uses disk as a back up for data stored

on replicated DRAM [46]. It improves the DRAM utilization

by employing a log-structured design on both DRAM and

disk [44]. Nitro is an SSD caching system that relies on data

compression and deduplication to maximize storage utiliza-

tion [37]. RIPQ is a novel caching layer that shrinks write

amplification by using the local SSD as a read-only cache for

remote storage [54]. Unlike these systems, this paper focuses

on NVM-aware buffer management.

8 CONCLUSION
This paper presented techniques for managing and designing

a multi-tier storage hierarchy comprising of DRAM, NVM,

and SSD. We introduced a taxonomy for NVM-aware data
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migration optimizations and discussed how the buffer man-

agement policy can be synthesized based on the performance

requirements and write endurance characteristics of NVM.

We presented an adaptation mechanism in the buffer man-

ager that achieves a near-optimal policy for an arbitrary

workload and storage hierarchy without requiring any man-

ual tuning. We developed a recommendation system for de-

signing a multi-tier storage hierarchy for a target workload

and system cost budget. Our results demonstrate that the

NVM-aware buffer manager and storage system designer

improve system throughput and reduce system cost across

different transaction and analytical processing workloads.
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A NVM HARDWARE EMULATOR
The hardware emulator is a dual-socket system equipped

with Intel Xeon E5-4620 CPUs (2.6 GHz), each with eight

cores and a 20 MB L3 cache. Each processor supports four

DDR3 channels with twoDIMMs per channel. PMEP reserves

half of the memory channels on each processor for emulated

NVM while using the rest for regular memory. The emula-

tor’s custom BIOS firmware partitions the physical memory

address space into separate address spaces for DRAM and

emulated NVM.

NVM technologies have higher read and write latency

than DRAM. PMEP emulates the latency for the NVM parti-

tion using custom CPU microcode. The microcode estimates

the additional cycles that the CPU would have to wait if

DRAM is replaced by slower NVM and then stalls the CPU

for those cycles. The accuracy of the latency emulationmodel

has been validated by comparing the performance of appli-

cations on emulated NVM and slower NUMA memory [23].

The emulator throttles the write bandwidth by limiting the

number of DDR operations performed per microsecond.

The buffer manager uses the filesystem interface exported

by the emulator. This allows the buffer manager to use

the POSIX filesystem interface to read/write data to files

stored on NVM. This interface is implemented by the per-
sistent memory filesystem, a special filesystem optimized for

NVM [2]. Normally, in a block-oriented filesystem, file I/O

requires two copies; one involving the block device and an-

other involving the user buffer. The emulator’s optimized

filesystem, however, requires only one copy between the file

and the user buffers.

B ADDITIONAL RELATED WORK
In-memory DBMSs: Prior research has shown that there

is significant overhead associated with buffer management

in a DBMS. When all the data fits in main memory, the

cost of maintaining a buffer pool is nearly one-third of all

the CPU cycles used by the DBMS [26]. This is because the

buffer manager must keep track of meta-data about pages

in the pool to enforce the buffer replacement policy and

synchronize concurrent accesses from different threads to the

pool. The overhead associated with managing disk-resident

data has given rise to a class of new in-memory DBMSs that

manage the entire database in main memory and do not

contain a buffer pool [4, 21, 40].

In-memory DBMSs provide better throughput and lower

latency than disk-based DBMSs on OLTP applications due to

this main memory orientation [31]. The fundamental limita-

tion of in-memory DBMSs, however, is that they can deliver

this improved performance only when the database is smaller

than the amount of DRAM available in the system. If the

dataset grows larger than the memory capacity, then the op-

erating system will start to page virtual memory, and main

memory accesseswill cause page faults [52]. The execution of

transactions is stalled until the pages are retrieved from non-

volatile storage. The performance of an in-memory DBMS

drops by up to 66% when the dataset exceeds the memory

capacity, even if the working set fits in memory [51].

Larger-than-MemoryDataManagement: Several tech-
niques have been proposed to improve the performance of

in-memory DBMSs while operating on larger-than-memory

databases [38]. These techniques exploit the skewed access

patterns observed in modern database applications. In these

workloads, certain hot data tuples are accessed more fre-

quently than other cold tuples. While handling such work-

loads, it is advantageous to cache the hot data in memory

since it is likely to be modified during this period. But then

once the age of particular tuple crosses some threshold, the

buffer manager can migrate the cold tuple out to cheaper

secondary storage. With this data migration technique, the

DBMS can still deliver high performance for transactions

that operate on hot in-memory tuples while still being able

to access the cold data if needed at a later point in time. This

paper generalizes these buffer management techniques to a

multi-tier storage hierarchy.
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