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ABSTRACT 1 INTRODUCTION

The design of the buffer manager in database management
systems (DBMSs) is influenced by the performance character-
istics of volatile memory (DRAM) and non-volatile storage
(e.g., SSD). The key design assumptions have been that the
data must be migrated to DRAM for the DBMS to operate
on it and that storage is orders of magnitude slower than
DRAM. But the arrival of new non-volatile memory (NVM)
technologies that are nearly as fast as DRAM invalidates
these previous assumptions.

This paper presents techniques for managing and design-
ing a multi-tier storage hierarchy comprising of DRAM,
NVM, and SSD. Our main technical contributions are a multi-
tier buffer manager and a storage system designer that lever-
age the characteristics of NVM. We propose a set of optimiza-
tions for maximizing the utility of data migration between
different devices in the storage hierarchy. We demonstrate
that these optimizations have to be tailored based on de-
vice and workload characteristics. Given this, we present a
technique for adapting these optimizations to achieve a near-
optimal buffer management policy for an arbitrary workload
and storage hierarchy without requiring any manual tuning.
We finally present a recommendation system for designing a
multi-tier storage hierarchy for a target workload and system
cost budget. Our results show that the NVM-aware buffer
manager and storage system designer improve throughput
and reduce system cost across different transaction and ana-
lytical processing workloads.
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The buffer manager in a DBMS provides access to data stored
on non-volatile storage (e.g., SSD) by bringing them into
volatile memory (DRAM) when they are needed. The canon-
ical approaches for buffer management in DBMSs are predi-
cated on the assumptions that (1) the data must be copied
to DRAM for the DBMS to operate on it, and (2) storage
is orders of magnitude slower than DRAM [15, 27, 48]. But
emerging non-volatile memory (NVM) technologies upend
these design assumptions.

NVM is a broad class of memory technologies, including
phase-change memory [5, 7, 19, 49] and memristors [6, 53]*.
NVM devices support low latency reads and writes similar to
DRAM, but with persistent writes and large storage capacity
like an SSD. The traditional approaches for buffer manage-
ment are incompatible with this new hardware landscape.
This stems from two differences between NVM and canonical
storage technologies. First, to process disk-resident data, the
buffer manager must copy it to DRAM before the DBMS can
perform any operations. In contrast, the CPU can directly
operate on NVM-resident data. Second, NVM shrinks the
performance gap between volatile and non-volatile devices.

In this paper, we present techniques for managing and de-
signing a multi-tier storage hierarchy comprising of DRAM,
NVM, and SSD 2. We propose a set of optimizations for maxi-
mizing the utility of data migration between different devices
in the storage hierarchy. These optimizations are enabled by
the introduction of NVM. For example, since the DBMS can
directly operate on NVM-resident data, the buffer manager
need not eagerly copy data from NVM to DRAM. Our results
show that such a lazy data migration technique ensures that
only frequently referenced data is promoted to DRAM.

Recent research has focused on optimizing the buffer man-
agement policy for a particular NVM technology and storage
hierarchy. Renen et al. present a multi-tier buffer manager
that eagerly migrates data from SSD to DRAM [56]. When
a page is evicted from DRAM, the buffer manager admits

!ntel is shipping Optane DIMMs that bring NVM onto the DDR4 memory
bus since mid 2018 [19].

2First-generation NVM devices are expected to be slower (and less expen-
sive) than DRAM and, at the same time, faster (but more expensive) than
SSD [7]. To maximize performance and minimize cost of the storage system,
NVM will likely co-exist with DRAM and SSD.



it into the NVM buffer based on whether it was recently
accessed. Kwon et al. present a multi-tier file-system that
does not cache NVM-resident data on DRAM and bypasses
DRAM while performing synchronous write operations [34].
Although these buffer management policies work well in
their target environment, they do not generalize to other
NVM technologies, storage hierarchies, and workloads.

We address this problem by introducing a taxonomy for
data migration optimizations that subsumes the specific tech-
niques employed in previous systems. We illustrate that the
buffer management policy must be tailored based on device
and workload characteristics. Given this, we make the case
for an adaptation mechanism in the buffer manager, called
adaptive data migration, that achieves a near-optimal buffer
management policy for an arbitrary workload and storage
hierarchy without requiring any manual tuning. Prior re-
search on NVM-aware storage management has not tackled
the problem of designing a multi-tier storage system for a tar-
get workload and system cost budget [11, 24, 32, 34, 45, 56].
We present a storage system recommender to address this
problem. In summary, we make the following contributions:

e We introduce a taxonomy for NVM-aware data migra-
tion optimizations and present a policy for managing a
multi-tier storage hierarchy (Section 3).

e We introduce an adaptation mechanism in the buffer
manager that achieves a near-optimal policy for an arbi-
trary workload and storage hierarchy without requiring
any manual tuning (Section 4).

o We introduce a recommendation system for designing
a multi-tier storage hierarchy for a target workload and
system cost budget (Section 5).

o We demonstrate that the NVM-aware buffer manager
and storage system designer improve throughput and
reduce cost across different transaction and analytical
processing workloads (Section 6).

2 BACKGROUND

We now provide an overview of buffer management in DBMSs.

We then make the case for the introduction of NVM in the
storage hierarchy.

2.1 Buffer Management

The buffer manager partitions the available memory into
a set of fixed-size slots, which is collectively termed as a
buffer. The higher-level components of the DBMS, such as
the query execution engine, need not concern themselves
with whether a page is in the buffer or not. They only need
to request the buffer manager to retrieve a page. If a page
requested by another component is not present in the buffer,
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the buffer manager transparently retrieves the page from
non-volatile storage.

The buffer manager maintains transient meta-data about
each page in the in-memory buffer. This meta-data includes
the number of active references made to the page and whether
the page has been modified since it was brought into the
buffer from storage. If a page requested by another compo-
nent is already present in the buffer, then it increments the
number of active references to the page and returns the ad-
dress of the slot containing the page. Otherwise, the buffer
manager chooses a slot for replacement based on the replace-
ment policy (e.g., least recently used) [43]. If the page selected
for replacement contains any modifications, the buffer man-
ager propagates those changes to the corresponding page
on non-volatile storage. It then copies the requested page
from storage into the replacement slot and returns the slot’s
address.

The buffer manager does not have complete autonomy
over when and what pages are flushed to non-volatile stor-
age [9, 25]. It coordinates with the DBMS’s log manager to
ensure that the changes made by a transaction are durable
when it is committed, and that the changes made by transac-
tions that were not committed at the time of a system failure
are reversed during recovery. These constraints are referred
to as the durability and failure atomicity properties.

If a transaction modifies a block and then commits, and
the buffer manager has not yet written the updated block
to durable storage, then a failure will leave the block in its
old invalid state, thereby violating the durability property.
On the other hand, if the buffer manager decides to write a
modified block belonging to an active transaction, it violates
the atomicity property. To prevent such scenarios, the buffer
manager refrains from making autonomous replacement
decisions.

Since the contents of the DRAM buffer are lost after a
system failure, the log manager records information needed
to recover from a failure on durable storage. Before updating
a page, the DBMS writes its old contents to the log (i.e., the
before image of the page). Similarly, when a page is about
to be evicted from the buffer pool, its current contents are
recorded in the log (i.e., the after image of the page). During
recovery, the DBMS uses the information in the log to restore
the database to a transactionally consistent state. To bound
the amount of time taken to replay the log during recovery,
the DBMS periodically takes checkpoints at runtime [41].

2.2 Non-Volatile Memory DBMSs

A DBMS’s performance is constrained by the speed with
which it can retrieve data from and persist data (e.g., pages
containing log records) on disk [26]. As illustrated in Fig-
ure 1a, the buffer manager copies pages from SSD to DRAM
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DRAM |[PCM  RRAM [SSD  HDD

Read latency 50ns |[50ns  100ns |25us 10 ms
Write latency 50 ns 200ns 100ns |300 us 10 ms

Bandwidth 60 GB/s | 10 GB/s 10 GB/s |1 GB/s 0.1 GB/s
$/GB 10 1 1 0.2 0.02
Persistent No Yes Yes Yes Yes
Endurance  >10'¢ |10%0 101 10° >1010

Table 1: Comparison of candidate NVM technologies [16, 23,
42, 47]: phase-change memory (PCM) [5, 7, 49] and memristors
(RRAM) [6, 53]. The price of NVM is derived from the current price
of Intel’s 3D XPoint-based Optane SSD 900P [8].

for the DBMS to operate on them. Since DRAM accesses are
100x faster than SSD operations, DBMSs manage a large
buffer pool on DRAM. It is difficult, however, to deploy high-
capacity DRAM systems due to three factors. First, it drives
up the total cost of the system since it is 50X more expen-
sive than secondary storage technologies. Second, increasing
DRAM capacity raises the total system power consumption.
Lefurgy et al. report that as much as 40% of the total system
energy is consumed by DRAM in commercial servers [36].
Lastly, DRAM scaling faces significant challenges due to lim-
itations in scaling techniques used in earlier generations for
transistors and capacitors [39].

Emerging NVM technologies bridge the performance and
cost differentials between DRAM and SSD. Table 1 compares
the characteristics of candidate NVM technologies. NVM
latency is within an order of magnitude higher than that
of DRAM. Unlike SSDs/HDDs that use the SAS or SATA
interfaces, NVM can be plugged into DIMM slots to deliver
higher bandwidths and lower latencies to CPUs.

NVM supports higher data density than DRAM due to its
intrinsic device characteristics®. It is, therefore, less expen-
sive than DRAM. Similar to SSDs, the number of write cycles
per bit is limited in NVM technologies. Reducing the number
of writes using an NVM-aware buffer management policy
extends the lifetime of devices with limited write-endurance.

Since NVM devices are slower than DRAM, replacing the
latter with a similarly priced NVM device with higher ca-
pacity can reduce the performance of the DBMS. This ar-
chitecture, as illustrated in Figure 1b, delivers performance
comparable to that of a DRAM-SSD hierarchy only if NVM
latency is less than 2x that of DRAM (Section 6.7).

A multi-tier storage hierarchy with DRAM, NVM, and
SSD, as shown in Figure 1c, can simultaneously maximize
performance and minimize cost of the storage system. The
reasons for this are twofold. First, the NVM buffer caches a

3For example, phase-change memory (PCM) is a NVM technology that
exploits the ability of chalcogenide glass to oscillate between amorphous
and crystalline states when heated using electrical pulses [49]. A PCM cell
can exist in different degrees of partial crystallization, thereby enabling
more than one bit to be stored in each cell.
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Figure 1: Storage Hierarchies — Candidate storage hierarchies:
(a) DRAM-SSD, (b) NVM-SSD, and (c) DRAM-NVM-SSD.

significant fraction of the working set, thereby reducing SSD
accesses. Second, the DRAM buffer serves as a cache on top
of NVM and only stores the hottest pages in the database.

In a DRAM-SSD hierarchy, the buffer manager decides
what pages to move between disk and memory and when
to move them. With a DRAM-NVM-SSD system, however,
in addition to deciding what/when data should be migrated,
it must also decide where to move them (i.e., what storage
tier). In the next section, we discuss how this decision is
influenced by the characteristics of NVM.

3 NVM-AWARE BUFFER MANAGEMENT

NVM introduces new data flow paths in the storage hierarchy.
By leveraging these additional options, the buffer manager re-
duces data movement between different tiers and minimizes
the number of writes to NVM. The former results in improv-
ing the DBMS’s performance, while the latter extends the
lifetime of NVM devices with limited write-endurance [49].

Figure 2 presents the data flow paths in the multi-tier stor-
age hierarchy. The default read path comprises of three steps:
moving data from SSD to NVM (@), then to DRAM (8), and
lastly to the processor cache (). Similarly, the default write
path consists of three steps: moving data from processor
cache to DRAM (@), then to NVM (@), and finally to SSD
(®@). We now describe how the buffer manager leverages the
additional data flow paths in Figure 2 (@,0,0,0) to minimize
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Figure 2: Data Flow Paths - The different data flow paths in a
multi-tier storage hierarchy consisting of DRAM, NVM, and SSD.

the performance impact of NVM and to extend the lifetime
of the NVM device.

3.1 Bypass DRAM during Reads

Unlike SSDs, the processor can directly access data on NVM
via read operations (@). To access a block on SSD, in a disk-
centric DBMS, the DBMS copies it over to DRAM (@), before
it can operate on the copied data. With NVM, the buffer man-
ager can leverage this new data flow path to lazily migrate
data from NVM to DRAM while serving read operations.

Let D, represent the probability that the buffer manager
copies data to DRAM during read operations. With existing
storage technologies, D, = 1. We refer to this data migration
policy as eager migration. With NVM, the buffer manager can
employ a wider range of lazy migration policies with smaller
values for D,. Such policies reduce upward data migration
between NVM and DRAM during read operations. They are
beneficial when the capacity of DRAM is smaller than that
of NVM. A lazy migration strategy ensures that colder data
(i.e., data that has not been frequently accessed) on NVM do
not evict hotter data in DRAM.

The optimal value of O, depends on the application’s
workload. An eager migration policy (D, < 0.5) works well
if the working set fits within the DRAM buffer. A lazier policy
would delay the promotion of data to DRAM, thereby increas-
ing the impact of NVM latency on performance. However, a
migration policy with higher O, works well if the working
set does not fit in DRAM and fits in the NVM buffer. This
strategy ensures that only the hot data is stored in DRAM.

In addition to the size of the working set, D, depends
on the ratio between the capacities of the DRAM and NVM
buffers. In a storage hierarchy where the ratio approaches
one, a more eager policy enables the buffer manager to lever-
age the space available in DRAM. Smaller values for D, work
well when the ratio approaches zero since they ensure that
the DRAM buffer only contains frequently referenced data.
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With the eager migration policy, the buffer manager al-
ways brings the block to DRAM while serving the read op-
eration. Consequently, if the application then updates the
same block, the writes are performed on DRAM. In contrast,
a lazy migration policy increases the number of writes on
NVM. This is because it is more likely that the block being
updated is residing on NVM when the buffer manager adopts
such a policy. This is not a problem for DBMS applications
with skewed access patterns [13, 50]. Such applications tend
to modify hot data that is cached in DRAM even when the
buffer manager employs a lazy migration policy.

3.2 Bypass DRAM during Writes

Ensuring the persistence of pages containing log and check-
point records is critical for the recoverability of the DBMS
as we discussed in Section 2.1. The DBMS’s performance is
constrained by the I/O overhead associated with persisting
these pages on non-volatile storage. As transactions tend to
generate multiple log records that are each small in size, most
DBMSs use the group commit optimization to reduce this I/O
overhead [21]. The DBMS first batches the log records for
a group of transactions in the DRAM buffer (@) and then
flushes them together with a single write to SSD (®). This
improves the operational throughput and amortizes the I/O
overhead across multiple transactions.

Unlike SSDs, the CPU can directly persist data on NVM via
write operations (). The buffer manager leverages this path
to provide synchronous persistence with lower overhead [12,
34]. The write operation bypasses DRAM since the data must
be eventually persisted, and this data migration optimization
shrinks the overall latency of the operation, especially on
NVM devices whose write latencies are comparable to that
of DRAM. In addition to eliminating the redundant write to
DRAM, it also avoids potential eviction of other hot pages
from the DRAM buffer.

Let D,, represent the probability with which the buffer
manager copies data into DRAM during write operations.
With canonical storage technologies, similar to D,, D,, =
1. With NVM, the buffer manager can employ lazy migra-
tion policies with smaller D,,. Such policies reduce the fre-
quency of downward data migration to DRAM during write
operations thereby ensuring that pages containing log and
checkpoint records do not evict hotter data in DRAM.

3.3 Bypass NVM During Reads

The data migration optimizations presented in Sections 3.1
and 3.2 improve the performance of the DBMS at the expense
of increasing the number of writes to NVM. We next present
optimizations for reducing the number of writes to NVM
using alternate data flow paths.
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The default read path consists of moving the data from
SSD to NVM (@) and eventually migrating it to DRAM (8).
This optimization makes use of the direct data flow path
from SSD to DRAM (@®). When the buffer manager observes
that a requested page is not present in both the DRAM and
NVM buffers, it copies the data on SSD directly to DRAM,
thus bypassing NVM during read operations. If the data read
into the DRAM buffer is not subsequently modified, and is
selected for replacement, then the buffer manager discards
it. If the page is modified and later selected for eviction from
DRAM, the buffer manager considers admitting it to NVM
(®).

Let N, represent the probability with which the buffer
manager copies data from SSD to NVM during read opera-
tions. With the default read path, N, = 1. When a page is
fetched from SSD and later evicted from DRAM, an eager
policy necessitates two writes to NVM: once at fetch time
and again when the page is evicted from DRAM. With a lazy
policy (i.e., smaller N;), the buffer manager installs a copy
of a modified page on NVM only after it has been evicted
from DRAM. This eliminates the first write to NVM when
the page is fetched from SSD.

3.4 Bypass NVM During Writes

Another data migration optimization for reducing the num-
ber of writes to NVM consists of bypassing NVM while serv-
ing write operations. The default write path consists of mov-
ing the data from DRAM to NVM (@) and then eventually
migrating it to SSD (0®). Instead of using the default path,
this optimization makes use of the direct data flow path from
DRAM to SSD (D).

By bypassing NVM during writes, the buffer manager en-
sures that only pages frequently swapped out of DRAM are
stored on NVM [56]. This optimization reduces the num-
ber of writes to NVM since only warmer pages identified
by the buffer manager are stored in the NVM buffer. If the
buffer manager employs an eager policy while reading data
into DRAM (i.e., high D,), this optimization prevents colder
DRAM-resident pages from polluting the NVM buffer.

Let N,, represent the probability with which the buffer
manager copies data from DRAM to NVM during write op-
erations. With the default write path, N,, = 1. Lower values
of N,, reduce downward data migration into NVM. Such
a lazy policy is beneficial when the capacity of DRAM is
comparable to that of NVM since it ensures that colder data
on DRAM does not evict warmer data in the NVM buffer.

4 ADAPTIVE DATA MIGRATION

The data migration policy consists of the probabilities with
which the buffer manager bypasses DRAM and NVM while
serving read and write operations (Sections 3.1 to 3.4). All

of the above data migration optimizations are moot unless
the buffer manager can effectively adapt the overall policy
based on the characteristics of the workload and the storage
hierarchy. We now present an adaptation mechanism in the
buffer manager that achieves a near-optimal policy for an
arbitrary workload and storage hierarchy without requiring
any manual tuning.

The crux of our approach is to track the target metrics
on recent query workload at runtime, and then periodically
adapt the policy in the background. Over time, this process
automatically optimizes the policy for the application’s work-
load and the storage hierarchy, and amortizes the adaptation
cost across multiple queries. We now describe the informa-
tion that the buffer manager collects to guide this process.

The buffer manager keeps track of two target metrics
while executing the workload. These include the operational
throughput of the buffer manager and the number of write
operations performed on NVM. The goal is to determine
the optimal configuration of the data migration policies that
maximizes the throughput and minimizes writes to NVM.
The cost function associated with a candidate data migration
policy configuration consists of two weighted components
associated with these target metrics.

Cost(T,W) =T + (/W)

To adapt the buffer manager’s data migration policy, we
employ an iterative search method called simulated annealing
(SA) [33]. This technique searches for a policy configuration
that maximizes the cost function presented. An attractive
feature of SA is that it avoids getting caught at local op-
tima, which are configurations that are better than any other
nearby configurations, but are not the globally optimal con-
figuration [29]. It is a probabilistic hill climbing algorithm
that migrates through a set of local optima in search of the
global extremum.

SA consists of two stochastic processes for generating
candidate policy configurations and for accepting a new con-
figuration. Algorithm 1 presents the algorithm for tuning
the data migration policy using SA. At each time step, SA
randomly selects a new configuration (C’) close to the cur-
rent one (C). It then evaluates the cost of that configuration
(E’). Lastly, it decides to accept the configuration C’ or stay
with C based on whether the cost of C’ is lower or higher
than that of the current configuration. If C’ is better than C,
then it immediately transitions to C’. Otherwise, it randomly
accepts the new configuration with higher cost (C’) based
on the Boltzmann acceptance probability factor.

SA is theoretically guaranteed to reach the global optima
with high probability. The control parameter T determines
the magnitude of the perturbations of the energy function E.
SA gradually decreases T over time. During the initial steps
of SA, at high temperatures, the probability of uphill moves



Algorithm 1 Data Migration Policy Tuning Algorithm

Require: temperature reduction parameter «,
threshold for number of accepted transitions y,
initial data policy configuration Cy,
initial temperature Tp,
final temperature Ty,in
function UPDATE-CONFIGURATION(«, y, Co, To, Trnin)
# Initialization
current configuration C = Cp
energy E = cost(C)
temperature T = Ty
# Iterative Search
while T > Ty, do
while number of accepted transitions < y do
new configuration C’ = neighbor(C)
energy E’ = cost(C’)
energy delta AE = E’ -E
Boltzmann acceptance probability P = e
if AE < 0 or with acceptance probability P then
# Accept new policy configuration
c=C’
end if
end while
# Reduce temperature
T=T"a
end while
end function

in the energy function (AE > 0) is large. Despite temporarily
increasing the energy, such non-beneficial downhill steps
(AE < 0) allows for a more extensive search for the global
optimal configuration. Over time, SA reduces the tempera-
ture. This gradual cooling mechanism corresponds to slowly
decreasing the probability of accepting worse configurations
as it explores the configuration state space.

5 STORAGE HIERARCHY SELECTION

We have so far focused on identifying an optimal data mi-
gration policy configuration for a particular workload given
a storage hierarchy. The tuning algorithm presented in Sec-
tion 4 assumes that we have already provisioned a multi-tier
storage hierarchy that is a good fit for the workload. It is un-
clear, however, how to select such a hierarchy for a particular
workload given a system cost constraint.

In this section, we formulate an analytical model of a hi-
erarchical storage system to improve the intuition behind
provisioning a multi-tier storage hierarchy. We then iden-
tify the limitation of the model and present a recommender
system that addresses them.

5.1 Hierarchical Storage System Model

We can model the multi-tier storage system as a linear hi-
erarchy with n levels, Ly, Ly,. . ., L,. The performance of a
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particular level L; in the hierarchy is determined by two
factors: the average access time t; and the device capacity
C; [30]. We assume that a copy of all blocks in level i exists
in every level greater than i (i.e., in all lower levels in the
hierarchy). The maximum information that can be stored in
the system is equal to the capacity of the lowest level Cp,,
since copies of all blocks stored in the higher levels of the
system must be present in L.

We can characterize the performance impact of the device
capacity at a particular level by the probability of finding
the requested data block in that level. This is termed as the
hit ratio H. H is a monotonically increasing function with
respect to device capacity C. Let the cost per storage unit (e.g.,
per GB) of the device technology used at a particular level be
given by the cost function P(t;). It decreases monotonically
with respect to the access time ¢; of the device technology.

Since a copy of all data blocks at level i exists in every
level greater than i, the probability of a hit in level L; and
misses in the higher levels, is given by:

h; = H(C;) — H(Ci-1)

Here, h; represents the relative number of successful data
accesses at level i in the storage hierarchy. The effective
average access time per block request, is then given by:

T= Zl hi(; )

To maximize the operational throughput of the DBMS, we
need to minimize T subject to storage system cost constraints.
Given a storage system cost budget B, the goal is to select
the device technology t; and determine the device capacity
C; for each level in the storage hierarchy. We formulate this
problem as follows:

Minimize:

T =

1

n
(1-H(Ci-))t;.

=1

Subject to the storage system cost budget:

n
Z P(t;)C; < B
i=1

5.2 Storage Hierarchy Recommender
System

H is a function of the workload locality and does not have
a closed-form expression. We circumvent this limitation by
developing a recommender system that measures the actual
throughput on a target workload across candidate storage
hierarchies to identify the optimal system. The goal of the
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recommender system is to identify a multi-tier storage hier-
archy consisting of DRAM, NVM, and/or SSD that maximizes
a user-defined objective function given a system cost budget.

The recommender system searches across candidate stor-
age hierarchies that meet the user-specified budget. Let {D,,
D1,Ds,...,D,} represent the set of candidate DRAM de-
vices, {Ny, N1, Nz, ...,Ng} the set of candidate NVM de-
vices, and {S¢, S1, Ss, ..., S} the set of candidate SSD de-
vices. These devices have varying capacities and costs. We
are provided with a cost function P that returns the cost of a
particular device. For instance, P(D;) returns the cost of the
DRAM device with capacity D;.

We can prune the set of candidate storage hierarchies by
only considering devices whose capacities are powers of
two. With this restriction, the size of set of candidate storage
hierarchies is small (p, g, and r < 10). The recommender
system does a pure grid search over the entire set [14]. During
a particular trial on a grid, we only consider device triples
{Di, Nj, Sk} that meet the user-specified budget B, as given

by:
P(D;) + P(N;j) + P(S¢) < B

The system then measures the operational throughput
on the storage hierarchy corresponding to the device triple
{Di, Nj, S }. We configure Dy = 0 to model storage hierar-
chies containing only NVM and SSD devices (i.e., those that
do not have DRAM). Similarly, we set Ny = 0 and Sy = 0 to
model storage hierarchies without NVM and SSD, respec-
tively. We note that the entire database must fit in the lowest
level of storage hierarchy. Since the cost of NVM is 10x
higher than that of SSD, the latter device will likely continue
to occupy the lowest level.

6 EXPERIMENTAL EVALUATION

In this section, we present an analysis of the proposed NVM-
aware buffer management policies and the storage hierarchy
recommendation system. Our goal is to demonstrate that:

e NVM improves throughput by reducing accesses to
canonical storage devices due to its higher capacity-
cost ratio compared to DRAM (Section 6.4).

o The selection of a data migration policy depends on the
runtime performance requirements, write endurance
characteristics of NVM, and the relative size of the
DRAM buffer compared to NVM (Section 6.5).

e Tuning the buffer management policy for the workload
and the storage hierarchy improves throughput and
extends the lifetime of the NVM device (Section 6.6).

e The selection of a multi-tier storage hierarchy for a
given workload depends on the working set size, the
frequency of persistent writes, the system cost budget,

and the performance and cost characteristics of NVM
(Section 6.7).

e A combination of data migration optimizations pre-
sented in Section 3 outperforms the state-of-the-art
buffer management policy (Section 6.8).

6.1 Trace-Driven Buffer Manager

We developed a trace-driven buffer manager to evaluate dif-
ferent storage hierarchy designs and data migration policies.
We gather traces from a real DBMS by running OLTP, OLAP,
and HTAP workloads. The trace contains information about
individual buffer pool operations.

At the beginning of the trace period, we take a snapshot of
the DBMS’s meta-data regarding the blocks stored in mem-
ory and on storage. This snapshot does not contain any user
data. The buffer manager only simulates the movement of
user data blocks and not their actual contents. This allows
us to effectively run simulations of buffer management oper-
ations on large databases and devices.

The buffer manager runs on top of a multi-tier storage
hierarchy consisting of DRAM, NVM, and/or SSD. For in-
stance, in case of a three-tier DRAM-NVM-SSD hierarchy,
it maintains two buffer pools on DRAM and NVM. While
processing the trace requests, the buffer manager issues read
and write operations to the appropriate devices depending
on the data migration policy. The simulator models the phys-
ical contiguity of the user-data blocks while distributing the
I/O operations across the device.

We conduct our experiments on a NVM hardware emula-
tor. Existing NVM devices cannot store large databases due
to their limited capacities and prohibitive costs. We instead
use the persistent memory evaluation platform (PMEP) de-
veloped by Intel Labs [23, 59]. PMEP models the latency and
bandwidth characteristics of upcoming NVM technologies.
It allows us to tune the memory read and write latencies
and bandwidths. This enables us to evaluate multiple NVM
device profiles that are not specific to a particular technology.
A detailed description of PMEP is provided in Appendix A.

6.2 Experimental Setup

We perform our experiments by running the trace-driven
buffer manager on the NVM hardware emulator. By default,
we set the capacity of the DRAM and NVM buffers to be 2 GB
and 128 GB, respectively. Unless otherwise stated, we config-
ured the NVM latency to be 2X that of DRAM and validated
these settings using Intel’s memory latency checker. The
emulator’s storage hierarchy also includes two additional
devices:

e HDD: Seagate Barracuda (3 TB, 7200 RPM, SATA 3.0)
e SSD: Intel DC $3700 (400 GB, SATA 2.6)



Workloads We next describe the workloads from the
OLTP-Bench testbed that we use in our evaluation [1, 22].
These workloads differ in their workload skews and frequen-
cies of persistent writes.

TPC-C: This benchmark is the industry standard for eval-
uating the performance of OLTP systems [55]. It simulates
an order-entry application of a wholesale supplier and con-
sists of five transaction types with nine tables.

Voter: This is an OLTP benchmark that simulates a phone-
based election application. It is derived from the software
system used to record votes for a television talent show.
The workload consists of short-lived transactions that each
update a small number of tuples.

CH-benCHmark: This is a complex HTAP workload that
is derived from a transactional workload based on the or-
der entry processing of TPC-C and a corresponding TPC-H-
equivalent OLAP query suite. It is useful to evaluate DBMSs
designed to serve both OLTP and OLAP workloads. CH-
benCHmark extends the TPC-C benchmark with 22 addi-
tional analytical queries.

AuctionMark: This is an OLTP benchmark that models
the workload characteristics of an on-line auction site [10].
The user-to-item ratio follows a highly skewed Zipfian dis-
tribution. The total number of transactions that target each
item is temporally skewed, as items receive more activity as
the auction approaches its closing.

Trace Collection We collect traces by running the bench-
marks on an instrumented fork of Postgres DBMS (v9.4) [3].
All the transactions execute with the same serializable isola-
tion level and durability guarantees. To collect the traces, we
first ran each benchmark for a warm-up period. At the end of
the warm-up period, we take a snapshot of the DBMS’s meta-
data regarding the location of blocks in volatile memory and
on durable storage. We then start recording the buffer pool
references in the trace. During simulation, the buffer man-
ager first loads the snapshot before executing the operations
recorded in the trace.

The amount of data referenced at least once in a trace is
termed as its footprint. An important issue in using trace-
driven simulations to study storage hierarchy design is that
the traces must have a sufficiently large footprint for the
storage configurations of interest [28]. Table 2 presents the
footprints of the traces associated with different benchmarks.
For all experiments, we used half of the trace to warm-up the
simulator. We collect system statistics only after the buffer
pools have been warmed up.
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Benchmark Footprint
TPC-C 132 TB
CH-benCHmark 1.13 TB
Voter 1.05 TB
AuctionMark 815 GB

Table 2: Trace Footprints: Footprints of the traces associated
with different benchmarks.

100 100

0.01 0.01

0.0001 0.0001

1 5 10 25 50 75 100 1 5 10 25 50 75 100
% of Blocks % of Blocks

(a) TPCC (b) VOTER

% of Accesses
% of Accesses

100 100

0.01 0.01

% of Accesses
% of Accesses

0.0001 0.0001

1 5 10 25 50 75 100 1 5 10 25 50 75 100
% of Blocks % of Blocks

(¢) AUCTIONMARK (d) CHBENCHMARK
Figure 3: Workload Skew Characterisation: CDF of the number
of times a block is referenced in the traces associated with different
workloads. Due to the inherent skew present in certain workloads,

most of the buffer pool accesses are made to a small fraction of

blocks.
6.3 Workload Skew Characterization

We begin with a characterization of the workload skew
present in the different workloads. Figure 3 shows the cumu-
lative distribution function (CDF) of the number of buffer
pool accesses per block in the workload traces.

For the TPC-C benchmark shown in Figure 3a, 13% of
buffer pool references are made to 75% of the blocks and
25% of the blocks only account for 0.05% of the accesses.
This illustrates that this workload is not highly skewed and
has a large working set. Similarly, the CH-benCHmark also
exhibits low skew as depicted in Figure 3d. 50% and 75% of the
blocks account for 9% and 43% of the buffer pool references,
respectively.

Figure 3b shows that the Voter benchmark exhibits the
lowest degree of skew among all workloads since 75% of
the referenced blocks account for only 6% of buffer pool
references. This is because the workload consists of short-
lived transactions that generate writes to the log. In contrast,
AuctionMark exhibits the highest degree of skew among all
workloads. 0.001% of the blocks account for 8% of the buffer
pool references and 61% of the buffer pool accesses are made
to 25% of the blocks. We attribute this to the temporally
skewed item access patterns in AuctionMark.
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Figure 4: Impact of NVM on Runtime Performance: Compar-
ison of the buffer manager’s throughput on similarly priced NVM-
SSD and DRAM-SSD storage hierarchies under different NVM la-
tency configurations.

6.4 Impact of NVM on Runtime
Performance

In this section, we compare the buffer manager’s through-
put on similarly priced NVM-SSD and DRAM-SSD storage
hierarchies to examine the impact of NVM on runtime perfor-
mance. We do not consider a DRAM-NVM-SSD hierarchy in
this experiment to isolate the utility of NVM. We configured
the cost budget to be $10,000. Given this budget, the capacity
of the NVM and DRAM devices are 128 GB and 1 TB, respec-
tively*. The latter device’s capacity is 8x higher than that
of the former due to NVM’s higher capacity-cost ratio. To
obtain insights that are applicable for a wider range of NVM
technologies, we quantify the impact of NVM on different
latency configurations. We ran the experiment under three
NVM latency configurations for the emulator ranging from
2-8x DRAM latency (320-1280 ns).

The results shown in Figure 4 illustrate that the NVM-SSD
hierarchy outperforms its DRAM-based counterpart on most
workloads and latency configurations. On the TPC-C bench-
mark, we observe that with the 2x latency configuration, the
NVM-based hierarchy outperforms the DRAM-SSD hierar-
chy by 4.3x. This is because NVM reduces the number of SSD
accesses by 19% due to its capacity advantage over DRAM.
The reduction in time spent on disk operations overrides the
performance impact of slower NVM accesses. With the 4x
latency configuration, the performance gap drops to 2.1x.
This illustrates the impact of NVM’s higher latency relative
to DRAM. The 8% latency configuration is the break-even
point at which both storage hierarchies deliver comparable

4The cost of NVM is derived from the price of Intel’s 3D XPoint-based
Optane SSD 905P [8]

throughput. In this setting, slower NVM accesses nullify the
benefits of its higher capacity.

The impact of NVM is more pronounced on the Voter
benchmark. This benchmark saturates the DBMS with short-
lived transactions that each update a small number of tuples.
The buffer manager frequently flushes dirty blocks to durable
storage while executing this workload. NVM improves run-
time performance by efficiently absorbing these writes. As
shown in Figure 4b, the performance gap between the two
storage hierarchies varies from 10.5X to 2.8 on the 2X and
8% latency configurations, respectively.

On the AuctionMark workload shown in Figure 4c, the
NVM-SSD hierarchy outperforms its DRAM-based counter-
part by 2.2x with the 2x latency configuration. However, the
trend reverses on the 8x latency configuration, where the
latter hierarchy delivers 1.8x higher throughput than the
former. We attribute this to the workload’s smaller working
set that fits in the DRAM buffer. So, the NVM buffer is not as
beneficial on this workload, particularly with slower latency
configurations.

The results for the CH-benCHmark workload, shown
in Figure 4d, illustrate that the NVM-based hierarchy de-
livers 5.9 higher throughput compared to its DRAM-based
counterpart on the 2X latency configuration. We attribute
this to the larger working set associated with this workload.
Even on the 8% latency configuration, the former storage hi-
erarchy delivers 1.7x higher throughput than the latter. This
demonstrates the performance impact of NVM on HTAP
workloads.

6.5 Data Migration Policies

In this section, we look at the impact of data migration poli-
cies on runtime performance and the number of writes per-
formed on NVM. We begin by comparing the performance
of the buffer manager when it employs the lazy and eager
policies presented in Section 3. We consider a storage hierar-
chy with 16 GB DRAM and 1 TB NVM buffers on top of SSD.
We quantify the performance impact of four data flow opti-
mizations: (1) bypassing DRAM (D,, D,,), and (2) bypassing
NVM (N;, N,,) while serving read and write operations. To
derive insights that are applicable for a wider range of NVM
technologies, we do this analysis across three NVM latency
configurations ranging from 2—-8x DRAM latency.

Performance Impact of Bypassing DRAM Figure 5 il-
lustrates the performance impact of bypassing DRAM while
serving reads and write operations. We vary the DRAM mi-
gration probabilities (D,, D,,) in lockstep from 1 through 0.
We configured the buffer manager to adopt an eager policy
for NVM (N;, N,, = 1). Since the DRAM migration probabil-
ities are updated in lockstep in this experiment, we denote
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Figure 5: Performance Impact of Bypassing DRAM: Compar-
ison of the buffer manager’s throughput when it adopts lazy and
eager data migration policies for DRAM. We measure the perfor-
mance impact of these policies across different NVM latency con-
figurations and DRAM migration frequencies (D).

them by 9. With the baseline policy (D = 1), the buffer man-
ager eagerly moves data to DRAM. The results in Figure 5
demonstrate that the lazy migration policies work well for
DRAM on most workloads.

For the TPC-C benchmark shown in Figure 5a, the through-
put observed when D is 0.01 is 79% higher than that with the
eager migration policy on the 2x latency configuration. The
reasons for this are twofold. First, the lazy policy reduces
the data migration between NVM and DRAM. Second, it
ensures that only frequently referenced data are moved to
DRAM. The performance gap drops to 33% on the 8X latency
configuration. This is because the lazy policy amplifies the
performance impact of slower NVM operations.

The benefits of lazy data migration are more prominent on
the write-intensive Voter workload. Bypassing DRAM while
performing writes nearly doubles the throughput, as shown
in Figure 5b. With the lazy policy, the buffer manager directly
flushes dirty blocks to NVM instead of first writing them
on DRAM. Since DRAM write latencies are comparable to
those of NVM, particularly on the 2x latency configuration,
bypassing DRAM during writes shrinks the overall write
latency.

Unlike other workloads, eager policy works well for the
AuctionMark workload, as depicted in Figure 5c. It outper-
forms the lazy policy (D = 0.1) by 60% on the 2x latency
configuration. This is because the workload’s working set
fits in the DRAM buffer and shifts over time. But, the lazy
policy delays the migration of hot data from NVM to DRAM,
thereby reducing the utility of the DRAM buffer. The perfor-
mance gap shrinks to 32% with a lazier policy (D = 0.001).
The reduction in data movement between DRAM and NVM
dampens the impact of delayed migration of the working set.

Lastly, on the CH-benCHmark workload, lazy policy de-
livers 85% higher throughput than its eager counterpart, as
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Figure 6: Performance Impact of Bypassing NVM: Compari-
son of the buffer manager’s throughput when it adopts lazy and ea-
ger data migration policies for NVM. We measure the performance
impact of these policies across different NVM latency configura-
tions and NVM migration frequencies (N).

shown in Figure 5d. The working set of this workload is
comparatively more stable. So, even though the lazy policy
results in delayed migration, the buffer manager eventually
loads the working set in the DRAM buffer. Thus, the optimal
migration policy depends on the workload characteristics.

Performance Impact of Bypassing NVM Figure 6 il-
lustrates the performance impact of bypassing NVM while
serving reads and write operations. In this experiment, we
vary the NVM migration probabilities (N,, N,,) in lockstep
from 1 through 0. We configured the buffer manager to adopt
an eager policy for DRAM (D, D,, = 1). Since the NVM mi-
gration probabilities are updated in lockstep, we denote them
by N. The results in Figure 6 show that eager migration (N
= 1) works well for NVM on most workloads.

For the TPC-C benchmark shown in Figure 6a, the through-
put observed when N is set to 0.1 is 68% lower than that
with the eager policy on the 2x latency configuration. This
is because the time spent on SSD operations increases by
15X due to bypassing NVM during writes. The performance
impact of lazy migration marginally drops to 43% on the
8x latency configuration. Slower NVM accesses dampen the
effect of writes landing on SSD with this configuration.

The performance impact of NVM bypass is more promi-
nent on the Voter workload shown in Figure 6b. The through-
put drops by 91% when N is set to 0.1 on the 2X latency con-
figuration. These results illustrate that while lazy migration
policies work well for DRAM, eager policies are a better fit
for NVM.

Impact of NVM Bypass on Writes to NVM Although
lazy data migration negatively impacts runtime performance,
it reduces the number of writes performed on NVM. Figure 7
presents the impact of NVM bypass on the number of NVM
writes. For the TPC-C benchmark, as shown in Figure 7a,
the buffer manager performs 5.5x fewer writes to NVM with
a lazy migration policy (N = 0.1) in comparison to eager
migration. The impact of NVM bypass on the number of
writes performed on NVM is equally pronounced on the
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Voter workload as shown in Figure 7b. Adopting a lazy mi-
gration policy (NV = 0.1) reduces the number of NVM writes
by 8.5x.

These results illustrate that the optimal data migration pol-
icy must be chosen depending on the runtime performance
requirements and write endurance characteristics of NVM.

Impact of Storage Hierarchy We next consider how the
optimal data migration policy varies across storage hierar-
chies. In this experiment, we consider two three-tier storage
hierarchies with 4 GB and 64 GB DRAM buffers. We config-
ured both systems to use a 1 TB NVM buffer on top of SSD.
The results for the TPC-C benchmark depicted in Figure 8
show that the utility of lazy data migration varies across
storage systems.

On the first system, as shown in Figure 8a, the throughput
with lazy migration (D = 0.01) is 94% higher than that with
its eager counterpart. The performance gap between the
policies on this system is larger than that observed with a
larger DRAM buffer (16 GB) in Figure 5a. This is because
the lazy policy increases the utility of the smaller DRAM
buffer by not polluting it with colder data. For this system,
the optimal migration frequency remains unchanged even
on slower latency configurations.

The results for the second system shown in Figure 8b
illustrate that the lazy policy delivers 38% higher throughput
on the 2x latency configuration. The utility of lazy migration
is not as prominent on this system since the capacity of the
DRAM buffer is one-sixteenth of that of the NVM buffer. The
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Figure 9: Adaptive Data Migration: The impact of buffer man-
agement policy adaptation on runtime performance across different
workloads.

performance with the eager policy (D = 1) is comparable to
that with its lazy counterpart on the 8 latency configuration.
This is because the latter policy amplifies the impact of slower
NVM operations, particularly when the relative size of the
DRAM buffer compared to the NVM buffer is large.

These results show that the optimal migration policy de-
pends not only on the workload and device characteristics,
but also on the relative size of the DRAM buffer compared
to the NVM buffer.

6.6 Adaptive Data Migration

In the previous experiments, we examined the utility of a
fixed data migration policy. In the real world, identifying the
optimal data migration policy is challenging due to diversity
of workloads and storage hierarchies. Thus, we now exam-
ine the ability of buffer manager to automatically adapt the
management policy at runtime. In this experiment, the buffer
manager begins executing the workload with an eager policy
for both DRAM (D = 1) and NVM (N = 1). During execu-
tion, it adapts the policy using the simulated annealing (SA)
algorithm presented in Section 4. This technique searches
for the policy that maximizes the throughput given a tar-
get workload and storage hierarchy. We use an operation
sequence with 100 M entries. We set « and y to 0.9 and 10,
respectively. We configure the initial and final temperatures
of the annealing process to 800 and 0.00008. We configure
the duration of a tuning step to be 1 M operations to ensure
that the impact of policy changes are prominently visible to
the SA algorithm.

The results in Figure 9 show that the buffer manager
converges to a near-optimal policy for different workloads
without requiring any manual tuning. For the TPC-C and
Voter workloads, tuning the data migration policy increases
throughput by 79% and 92%, respectively. The buffer man-
ager converges to a hybrid policy, with lazy migration for
DRAM and eager migration for NVM on both workloads.
The throughput converges to a global optima over time. We
attribute this to the gradual cooling mechanism in SA that
decreases the probability of accepting worse policies.



6.7 Storage System Recommendation

We next focus on the storage hierarchy recommendation
problem presented in Section 5. In this experiment, we com-
pare the performance/price numbers of multi-tier storage hi-
erarchies. If the cost of a storage hierarchy is $ C and the
throughput it delivers is 7~ operations per second, then the
performance/price number is given by % . This represents
the number of operations executed per second per dollar.
Given a system cost budget and a target workload, the rec-
ommender system identifies the storage hierarchy with the
highest performance/price number.

Each storage system consists of at most three devices:
DRAM, NVM, and SSD. We vary the capacity of the DRAM
and NVM devices from 4 GB through 64 GB, and from 512 GB
through 2 TB, respectively. We configured the capacity of the
SSD device to 2 TB. We examine the runtime performance
of the buffer manager on both two- and three-tier storage
hierarchies: DRAM-SSD, NVM-SSD, and DRAM-NVM-SSD.
We configured the NVM latency to be 2X that of DRAM.

Storage System Cost: Figure 10a presents the cost of
candidate storage hierarchies. The cost of the DRAM-SSD
hierarchy raises from $339 to $924 when we vary the capacity
of the DRAM device from 2 GB through 32 GB. The cost of
the NVM-SSD hierarchy increases from $800 to $2300 when
we vary the capacity of the NVM device from 512 GB through
2TB.

Storage Hierarchy Recommendation: Figure 10 shows
the performance/price numbers of candidate storage hierar-
chies across different workloads. The recommender system
performs a grid search to identify the storage hierarchy with
the highest performance/price number on a target workload
given a cost budget.

For the TPC-C benchmark, as shown in Figure 10b, the
storage system that delivers the highest performance/price
number consists of 16 GB DRAM and 1 TB NVM on top of
SSD. Expanding the capacity of the DRAM bulffer to 64 GB
improves performance by 7%. But, this also raises the storage
system cost by 32%. Similarly, reducing the capacity of the
DRAM buffer to 4 GB shrinks performance and cost by 10%
and 8%, respectively. The recommended storage hierarchy
outperforms its NVM-SSD counterpart by 19%. This is be-
cause the DRAM buffer reduces the time spent on NVM read
operations by 63%.

The optimal storage system for the Voter workload con-
sists of 4 GB DRAM and 128 GB NVM, as shown in Fig-
ure 10c. While executing this workload, the buffer manager
frequently flushes dirty blocks to durable storage. In the ab-
sence of NVM, the buffer manager spends more time flushing
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data to SSD. So, the performance/price number on a simi-
larly priced 128 GB DRAM-SSD system is 16X lower than its
NVM-based counterpart.

On the AuctionMark workload, as shown in Figure 10d, a
DRAM-SSD system consisting of 8 GB DRAM delivers the
highest performance/price number. It delivers 2.9% lower
throughput compared to a 3.4x higher priced NVM-SSD sys-
tem with 1 TB NVM. We attribute this to the workload’s
smaller working set that fits in the DRAM buffer. So, the util-
ity of the NVM buffer is not as prominent on this workload.
Adding a 4 GB DRAM buffer on top of NVM-SSD hierarchy
does not improve performance on the AuctionMark work-
load. Instead, it reduces throughput by 6%. The 1/O overhead
associated with data migration between DRAM and NVM
overrides the utility of caching data on DRAM.
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show that the maximal performance/price number is deliv- Figure 11: Impact of Policies on Runtime Performance: The

ered by a DRAM-NVM-SSD system with 4 GB DRAM and impact of different buffer management policies on runtime perfor-

1 TB NVM. Adding a 4 GB DRAM buffer on top of NVM in- mance across different NVM latency configurations.
creases throughput by 5% on this workload. This is because
it reduces time spent on NVM operations by 11%, thereby 400000 200000

justifying the cost of data migration. 450000 67500
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Impact of NVM latency: We next examine the impact of I . . . I I .
NVM latency on the selection of storage hierarchy. Figure 10f
presents the results for the TPC-C benchmark with the 8x ’ ’ ’ ! ’ ’ ’
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highest performance/price number consists of 16 GB DRAM Figure 12: Impact of Policies on NVM Device Lifetime: The
and 512 GB NVM on top of SSD. The capacity of the NVM impact of different policies on lifetime of NVM device.
buffer has shrunk from 1 TB with the 2x latency configu-
ration. This shows that the utility of the NVM buffer has
decreased due to slower NVM accesses.

The results in Figure 10 illustrate how the selection of
a multi-tier storage system for a given workload depends
on the working set size, the frequency of persistent writes,
the performance and cost characteristics of NVM, and the
system cost budget.

150000

Throughput (K Ops)
Throughput (K Ops)

225000

0 0
A

The results in Figure 11 illustrate that 8 works well across
different workloads. For the TPC-C workload shown in Fig-
ure 11a, it outperforms A by 3.5%. The reasons for this are
twofold. First, with A, the buffer manager bypasses NVM
during writes. Although this scheme reduces the number
of writes to NVM by 2X, it increases the time spent by the
buffer manager on SSD operations by 8.8%. The former pol-
icy circumvents this problem by absorbing more writes on
NVM. The buffer manager reclaims space in the NVM buffer
by discarding unmodified blocks. Second, bypassing DRAM
6.8 Policy Comparison during reads (D, = 0.01) reduces the data migration overhead
between NVM and DRAM and ensures that only frequently
referenced blocks are stored on DRAM.

The results in Figure 11b show the utility of eager migra-
tion to NVM during writes. 8 outperforms A by 6.6X on
this workload. With the former policy, the buffer manager
directly persists data on NVM instead of first buffering it
on DRAM. Since DRAM write latencies are comparable to
those of NVM, particularly on the 2x latency configuration,
bypassing DRAM during writes reduces the overall write
latency, thereby improving runtime performance.

The performance impact of NVM latency is not as promi-
nent with A. The throughput only drops by 18% when we
transition from a 2x latency configuration to a 8x configu-
ration. This is because lazy migration to NVM increases the
time spent on SSD operations, thereby reducing the impact
of slower NVM operations.

We now compare a family of buffer management policies
against the policy presented in [56]. As shown in Table 3,
A consists of eager migration for DRAM (D, = 1, D,, =
1), and lazy migration for NVM during reads (N, = 0.01)
and writes (N,, = 0.5). We construct policies B, C, and D
based on the data migration optimizations in Section 6.5 to
improve runtime performance and extend the lifetime of the
NVM device. These policies adopt lazy migration to DRAM
(D, =0.01, D,, = 0.01) and NVM during reads (N, = 0.2),
and differ in how they migrate data to NVM during writes
(M = [1, 0.5, 0.3]). They differ from A in two ways. With
A, the buffer manager initially moves data to DRAM and
stores data evicted from DRAM on NVM. It bypasses NVM
during writes to ensure that only frequently referenced data
is stored on NVM. In contrast, with the former policies, the
buffer manager initially moves data into NVM and lazily

migrates it to DRAM. It frequently bypasses DRAM during Impact on NVM Device Lifetime: With 8B, the buffer
writes and directly persists data on NVM. manager performs 2X more writes to NVM than with A.
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This shrinks the lifetime of NVM devices with limited write-
endurance [49]. To circumvent this problem, we construct
policies C and D, which lazily migrate data to NVM during
writes (i.e., N, < 1).

The results in Figure 12 illustrate the impact of these poli-
cies on device lifetime. In comparison to B, the number of
writes to NVM on the TPC-C workload drops by 1.4x and
2.1x with C and D, respectively. These policies outperform
A by 2.2x and 1.6X, respectively. The buffer manager picks
among these policies depending on the write-endurance char-
acteristics of the NVM device.

The results in Figures 11 and 12 illustrate how a combina-
tion of data migration optimizations presented in Section 3
maximizes both runtime performance and device lifetime.

7 RELATED WORK

We now discuss the previous research on NVM, especially
in the context of buffer management in DBMSs and file-
systems.

NVM-Aware Buffer Management in DBMSs: Renen
et al. present a NVM-aware multi-tier buffer manager that
eagerly migrates data from SSD to DRAM [56]. When a page
is evicted from DRAM, the buffer manager considers admit-
ting it into the NVM buffer. The key idea is to only admit
recently referenced pages. The buffer manager maintains
an admission queue to keep track of pages considered for
admission and only admits pages that were recently denied
admission. While this buffer management policy works well
in their target storage hierarchy, it does not generalize to
other NVM technologies, storage hierarchies, and workloads.
We introduce a taxonomy of data migration optimizations
that subsumes the specific scheme adopted in their system.
We study how the optimal policy depends on workload and
storage system characteristics and address the problem of
designing a multi-tier storage system.

SOFORT [45] is a hybrid storage engine that targets a
two-tier storage system with DRAM and NVM. The engine
stores the primary copy of the data on NVM, and supports
the maintenance of auxiliary data structures on DRAM and
NVM. FOEDUS is a scalable OLTP engine designed for a two-
tier storage system with DRAM and NVM [32]. It is based on
the dual page primitive that points to a pair of logically equiv-
alent pages, a mutable volatile page in DRAM containing the
latest changes, and an immutable snapshot page on NVM.
Arulraj et al. compare three storage management architec-
tures for an NVM-only system and demonstrate that in-place
updates architecture maximizes performance and minimizes
the wear on the NVM device [11]. Unlike these systems, this
paper focuses on managing and designing multi-tier storage
hierarchy with DRAM, NVM, and SSD.
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NVM-aware Buffer Management in File Systems: Be-
yond DBMSs, researchers have explored using NVM in file-
systems. BPFS uses a variant of shadow paging on NVM to
support atomic fine-grained updates by relying on a special
hardware instruction that ensures ordering between writes
in different epochs [17]. PMFS is another filesystem from
Intel Labs that is designed for byte-addressable NVM [23].
It relies on a write-ahead logging for meta-data and uses
shadow paging for data. EXT4 DAX extends the EXT4 file
system to support direct mapping of NVM by bypassing the
buffer cache [18]. Aerie provides direct access for file data
I/0 using user-level leases for NVM updates [57]. NOVA is a
novel per-inode log-structured file system that provide syn-
chronous file system semantics on NVM, but requires system
calls for every operation [58]. F2FS is an SSD-optimized log-
structured file system that sorts data to reduce file system
write amplification [35].

Strata is a cross-media file system that supports performance-
isolated access to NVM using a per-application log by effi-
ciently operating on SSDs and HDDs [34]. This system is
optimized for a specific NVM technology that is 2x slower
than DRAM. So it does not cache NVM-resident data on
DRAM. For the same reason, it bypasses DRAM while per-
forming synchronous write operations. While this buffer
management policy works well in their target environment,
it does not generalize to other NVM technologies, storage hi-
erarchies, and workloads. We tackle the buffer management
problem within the context of a DBMS. Operating inside
a DBMS allows us to support, and requires us to handle, a
broader class of application access patterns.

Buffer Management in Systems without NVM: Be-
fore the advent of NVM technologies, researchers have stud-
ied multi-tier buffer management in storage systems without
NVM. FlashStore is a key-value store that uses an SSD as
a fast cache between DRAM and HDD and minimizes the
number of SSD accesses [20]. RAMCloud is a sharded data
storage system that uses disk as a back up for data stored
on replicated DRAM [46]. It improves the DRAM utilization
by employing a log-structured design on both DRAM and
disk [44]. Nitro is an SSD caching system that relies on data
compression and deduplication to maximize storage utiliza-
tion [37]. RIPQ is a novel caching layer that shrinks write
amplification by using the local SSD as a read-only cache for
remote storage [54]. Unlike these systems, this paper focuses
on NVM-aware buffer management.

8 CONCLUSION

This paper presented techniques for managing and designing
a multi-tier storage hierarchy comprising of DRAM, NVM,
and SSD. We introduced a taxonomy for NVM-aware data



Multi-Tier Buffer Management and Storage System Design for Non-Volatile Memory

migration optimizations and discussed how the buffer man-
agement policy can be synthesized based on the performance
requirements and write endurance characteristics of NVM.
We presented an adaptation mechanism in the buffer man-
ager that achieves a near-optimal policy for an arbitrary
workload and storage hierarchy without requiring any man-
ual tuning. We developed a recommendation system for de-
signing a multi-tier storage hierarchy for a target workload
and system cost budget. Our results demonstrate that the
NVM-aware buffer manager and storage system designer
improve system throughput and reduce system cost across
different transaction and analytical processing workloads.
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A NVM HARDWARE EMULATOR

The hardware emulator is a dual-socket system equipped
with Intel Xeon E5-4620 CPUs (2.6 GHz), each with eight
cores and a 20 MB L3 cache. Each processor supports four
DDR3 channels with two DIMMs per channel. PMEP reserves
half of the memory channels on each processor for emulated
NVM while using the rest for regular memory. The emula-
tor’s custom BIOS firmware partitions the physical memory
address space into separate address spaces for DRAM and
emulated NVM.

NVM technologies have higher read and write latency
than DRAM. PMEP emulates the latency for the NVM parti-
tion using custom CPU microcode. The microcode estimates
the additional cycles that the CPU would have to wait if
DRAM is replaced by slower NVM and then stalls the CPU
for those cycles. The accuracy of the latency emulation model
has been validated by comparing the performance of appli-
cations on emulated NVM and slower NUMA memory [23].
The emulator throttles the write bandwidth by limiting the
number of DDR operations performed per microsecond.

The buffer manager uses the filesystem interface exported
by the emulator. This allows the buffer manager to use
the POSIX filesystem interface to read/write data to files
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stored on NVM. This interface is implemented by the per-
sistent memory filesystem, a special filesystem optimized for
NVM [2]. Normally, in a block-oriented filesystem, file I/O
requires two copies; one involving the block device and an-
other involving the user buffer. The emulator’s optimized
filesystem, however, requires only one copy between the file
and the user buffers.

B ADDITIONAL RELATED WORK

In-memory DBMSs: Prior research has shown that there
is significant overhead associated with buffer management
in a DBMS. When all the data fits in main memory, the
cost of maintaining a buffer pool is nearly one-third of all
the CPU cycles used by the DBMS [26]. This is because the
buffer manager must keep track of meta-data about pages
in the pool to enforce the buffer replacement policy and
synchronize concurrent accesses from different threads to the
pool. The overhead associated with managing disk-resident
data has given rise to a class of new in-memory DBMSs that
manage the entire database in main memory and do not
contain a buffer pool [4, 21, 40].

In-memory DBMSs provide better throughput and lower
latency than disk-based DBMSs on OLTP applications due to
this main memory orientation [31]. The fundamental limita-
tion of in-memory DBMSs, however, is that they can deliver
this improved performance only when the database is smaller
than the amount of DRAM available in the system. If the
dataset grows larger than the memory capacity, then the op-
erating system will start to page virtual memory, and main
memory accesses will cause page faults [52]. The execution of
transactions is stalled until the pages are retrieved from non-
volatile storage. The performance of an in-memory DBMS
drops by up to 66% when the dataset exceeds the memory
capacity, even if the working set fits in memory [51].

Larger-than-Memory Data Management: Several tech-
niques have been proposed to improve the performance of
in-memory DBMSs while operating on larger-than-memory
databases [38]. These techniques exploit the skewed access
patterns observed in modern database applications. In these
workloads, certain hot data tuples are accessed more fre-
quently than other cold tuples. While handling such work-
loads, it is advantageous to cache the hot data in memory
since it is likely to be modified during this period. But then
once the age of particular tuple crosses some threshold, the
buffer manager can migrate the cold tuple out to cheaper
secondary storage. With this data migration technique, the
DBMS can still deliver high performance for transactions
that operate on hot in-memory tuples while still being able
to access the cold data if needed at a later point in time. This
paper generalizes these buffer management techniques to a
multi-tier storage hierarchy.


http://www.tpc.org/tpcc/
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