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1 CLOUD-NATIVE DATABASE SYSTEMS
The availability of cost-effective, highly-available, performant cloud computing platforms (e.g.,
Amazon Web Services, Microsoft Azure) over the last decade has given rise to a new class of
cloud-native database management systems (DBMSs) [12]. These systems differ from their
traditional counterparts in the following ways:

• Hardware Disaggregation: Cloud-native DBMSs enable independent scaling of com-
pute, storage, and networking resources. They only consume as much hardware resources
as is truly needed for the workload that they are serving.

• Data Differentiation: Data has immense value when it is created, but that value dimin-
ishes over time. Cloud-native DBMSs leverage this property by storing older data on less
expensive storage technologies.

• Shared-Storage Architecture: Traditional DBMSs are typically based on a shared-
nothing architecture [1, 10], as illustrated in Figure 1a. In this model, each compute
node has its own set of storage devices. Cloud-native DBMSs instead tend to adopt a
shared-disk model to decouple compute and storage resources as shown in Figure 1b.
This allows them to scale these resources independently.

• Deeper Storage Hierarchy: The cloud opens up many more shared-storage options,
including: (1) local persistent memory (PM) [4], (2) remote PM-based SSDs accessible via
NVMe-over-Fabrics (NVMe-oF) [3], and (3) long-term cold storage. Each of these tiers
exhibit different price-performance characteristics.

2 STORAGE ARCHITECTURE
Cloud-native DBMSs adopt a shared-disk model so that they can independently scale the
compute and storage resources. The canonical storage hierarchy of these systems consists of
the following tiers:

• Local Persistent Memory: The DBMS caches frequently-accessed data (e.g., indices)
on the PM devices that are directly attached to the compute server where the database
instance is running. The CPU directly accesses these PM devices through load and store
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Fig. 1. DBMS Architectures - Comparison of shared-nothing and shared-disk architectures.

assembly instructions [4, 11]. The DBMS uses the direct access (DAX) mechanism to
bypass the traditional I/O stack (page cache and block layer). It manages the data on a
file system extended for DAX-enabled PM (e.g., XFS on a fsdax device [6]). DAX enables
direct, byte-addressable access to the contents of the file system.

• Remote SSDs: Only the DBMS’s working set resides on the compute server. The rest of
the state resides on a collection of dis-aggregated storage devices attached to the compute
server accesses via an NVMe-over-Fabric (NVMe-oF) interface. Cloud-native DBMSs
often leverage distributed storage systems backed by these remote storage devices (e.g.,
distributed shared log [12]). These systems are designed around the assumption that
network bandwidth is plentiful and cheap.

• Long-Term Cold Storage: Database backups are infrequently used in cloud-native
DBMSs due to their reliance on replication. So, these backups are migrated to a cheaper
remote, long-term cold storage tier. They are only leveraged during disaster recovery.
They help meet governance and compliance needs for long-term retention of data.

3 CASE STUDY: INTEL DATA MANAGEMENT PLATFORM
We now illustrate the design principles of cloud-native database systems through a case study.
We present the architecture of the Data Management Platform (DMP) developed by Intel [5].
We later discuss how we extend a transactional DBMS to leverage PM on DMP.
Overview: DMP is a distributed, data management system that is geared towards diverse
workloads (e.g., transactional databases, machine learning pipelines). It manages a collection
of dis-aggregated, containerized NVMe SSDs that are accessible via an NVMe-over-Fabric
(NVMe-oF) interface [3]. The logical volumes residing in these containers are optimized for
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Fig. 2. MySQL on Intel’s Data Management Platform:MySQL instance with a MyRocks storage
engine hosted on Intel’s Data Management Platform [2, 8].

sequential I/O and serve as a replacement for high-capacity SATA/SAS HDDs. DMP relies on
top of two distributed storage systems that are backed by these remote volumes: (1) distributed
object store, and (2) distributed shared log.
MySQL on DMP: We next discuss how DMP supports transactional database workloads.
Consider a MySQL instance with a MyRocks storage engine hosted on DMP [2]. The MyRocks
storage engine leverages an log-structured merge (LSM) tree for managing data, as shown
in Figure 2. We tailor this engine to make use of the RocksDB-Cloud library [8]. A strongly
consistent image of the database is maintained across the distributed shared log and the
distributed object store.
Distributed Object Store: DMP continuously backs up data and meta-data to a distributed
object store (e.g., MinIO [7]) to provide high availability. We tailor the MyRocks engine so
that it persists the immutable, lower-level tiers of the LSM tree in the object store. Each sorted
string table (SSTable) is persisted as a separate object in a MinIO bucket. Since these objects
are immutable, they can be effectively cached in the locally-attached PM device. Each object
is encoded as an erasure-coded stripe consisting of 8 data and 4 parity blocks. To ensure
crash-consistency, we extend RocksDB’s transactional log (i.e., local manifest) to include a
cloud manifest that is maintained in the bucket. This log tracks all the LSM tree mutations
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for the duration of the operations of this DBMS instance. This ensures that the cloud object
store has a record of all the modifications applied to the database, thereby enabling support
for point-in-time recovery.
Distributed Shared Log: In a traditional DBMS, the write-ahead log (WAL) is the source of
truth while recovering from a failure. In a cloud-native DBMS, we generalize this idea to a
distributed shared log (i.e., an event stream) [12]. We could configure the WAL to use such a
cloud event stream. However, the latency of immediately persisting entries to the distributed
log is too expensive. So, as a stop-gap solution, the WAL is locally stored on PM. A replicated
logging module that is tailored for PM would increase the write throughput achievable by the
cloud-native DBMS.
PM-centric Optimizations: DMP enables the MyRocks storage engine to exploit the byte-
addressability of PM devices by eschewing the page-centric optimizations inherent in other
cloud-native DBMSs with minimal code modifications [9]. The MyRocks engine maintains its
local state across the combination of DRAM and PM (XFS on a fsdax device [6]). Since the
PM device exhibits memory-like performance, the page cache pages would be unnecessary
copies of the data stored on that device. DAX eliminates the these extra copies by directly
performing reads and writes to the PM device (configured in App Direct Mode). The MyRocks
engine maps the PM device directly into userspace. It accesses 256 B chunks of an SSTable
mapped into PM as opposed to loading the entire 4 KB page. The engine stores the tail of the
WAL and caches the top-level tiers of the LSM tree on local PM. It stores the mutable memory
tables and a few SSTables on DRAM.
We tune the RocksDB parameters to minimize the impact of flushing MemTables to new

SSTable files and SSTable compaction operations. We disable the RocksDB block cache. Thus,
the engine directly fetches the blocks from the appropriate SSTable file cached in the locally-
attached PM volume (i.e., Storage-over-AppDirect). We plan to leverage persistent skiplists in
the future to guide the read operations through the LSM tree.
The MySQL cloud-native DBMS supports two key capabilities: (1) intra- and inter-cluster

replication, and (2) point-in-time recovery (PiTR). It currently provides these capabilities by
leveraging two logs: (1) the unmodified MySQL binary log (binlog), and (2) the MyRocks
WAL. The unmodified binlog does not adhere to the principles of a cloud-native DBMSs. The
I/O overhead associated with the binlog and the MySQL group commit effectively throttles
achievable write throughput. We plan to address this issue in the future by developing a
PM-aware, replicated tail-of-the-log module.

4 OPEN PROBLEMS
Several open problems arise with the advent of cloud-native DBMSs:

• How can we best leverage the compute-local, byte-addressable PM devices?
• How should data be migrated across nodes?
• How should the core DBMS protocols be tailored for the shared-disk model?
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• How does NVMe-oF performance affect system throughput and latency metrics?
• How does the shared-disk model compare against the canonical shared-nothing model
on performance metrics?

5 SUMMARY
Cloud-native DBMSs are moving away from the monolithic architecture of their traditional
counterparts by decoupling storage and compute resources. The performance of these systems
is, thus, constrained by I/Os written over the network. Locally-attached persistent memory
and remote PM-based SSD devices accessible via an NVMe-over-Fabric interface help alleviate
this bottleneck, as we illustrated through our case study of MyRocks storage engine on Intel’s
Data Management Platform. The advent of cloud-native DBMSs has given rise to several open
problems that should be of interest to both researchers and practitioners in storage systems.
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