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Abstract
This paper discusses opportunities for develop-
ments in spatial clustering methods to help lever-
age broad scale community science data for build-
ing species distribution models (SDMs). SDMs
are tools that inform the science and policy needed
to mitigate the impacts of climate change on bio-
diversity. Community science data span spatial
and temporal scales unachievable by expert sur-
veys alone, but they lack the structure imposed in
smaller scale studies to allow adjustments for ob-
servational biases. Spatial clustering approaches
can construct the necessary structure after surveys
have occurred, but more work is needed to ensure
that they are effective for this purpose. In this
proposal, we describe the role of spatial cluster-
ing for realizing the potential of large biodiver-
sity datasets, how existing methods approach this
problem, and ideas for future work.

1. Introduction
Species distribution models (SDMs) are critical tools for
mitigating the impact of climate change on biodiversity.
SDMs link environmental variables to species observations
to infer key characteristics of habitat requirements and to
predict where species can persist. As ecosystems change,
scientists and natural resource managers rely on SDMs to
inform conservation policy decisions like designing reserves
for threatened species and to predict how species will react
to global change. Our ability to effectively protect species
against extinction relies on high-quality SDMs. This tool
can be built from a variety of biodiversity datasets, but
community science programs like eBird and iNaturalist are
growing in size, quality, and importance. A strength of these
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programs is that they welcome contributions from a diverse
population of wildlife observers with varying experience.
These crowdsourced datasets present exciting opportunities
to understand the Earth’s changing ecosystems at scales
previously unattainable, but further methodological research
is needed to fully leverage their potential. In this proposal,
we outline the role that spatial clustering algorithms can play
in improving SDMs built with community science data.

Community science data are impacted by imperfect detec-
tion: the common phenomenon in which observers do not
detect all individuals and/or species present during a survey.
Even expert observers encounter this issue—sometimes,
birds are silent and hidden, for example—but community
scientists with less training are even more impacted. Im-
perfect detection functions as class conditional noise in the
view of SDMs as a classification problem, where positive
examples have little to no noise and negative examples may
reflect substantial corruption (Hutchinson et al., 2017). To
account for imperfect detection, studies conducted by ex-
perts use a careful sampling design that allows them to
simultaneously estimate the probability that a species occu-
pies a location and the probability that the observer detects
the species given that it is present. This methodology is
referred to as occupancy modeling, and it has become the
dominant approach in statistical ecology for correcting the
effects of imperfect detection (MacKenzie et al., 2002; Bai-
ley et al., 2014). Ignoring imperfect detection can lead to
biased estimates of species distributions, so occupancy mod-
els are a necessary tool for drawing accurate conclusions
from biodiversity data (Guillera-Arroita et al., 2014; Lahoz-
Monfort et al., 2014). Our focal problem in this paper is the
fact that community science data are not collected accord-
ing to the sampling design prescribed by occupancy models.
Instead, contributors report observations at the times and
places of their choosing.

We present the first attempt to frame the challenge of cre-
ating sites for occupancy models from unstructured com-
munity science data as a spatial clustering problem, which
we introduce as the Site Clustering Problem. Below, we
examine existing methods that at least partially address the
problem and explore some spatial clustering approaches to
solve it in a case study. We illustrate where this research
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Figure 1. The proposed Site Clustering Problem (in red) lies on
the critical path to informing action on biodiversity conservation.

lies on the critical path that begins at data collection and
ends with climate change mitigation (Figure 1). Improved
solutions to this problem will produce more accurate mod-
els and have direct impacts to biodiversity conservation and
natural resource planning.

2. Background
Occupancy models rely on a few key assumptions to cor-
rect for imperfect detection. They expect that data consist
of multiple observations collected at each of a set of sites.
The closure assumption states that the occupancy status of
the species remains constant across the observations at a
site. For example, a site could be a section of a state park
surveyed along three different transects, and the occupancy
model would assume that the entire section (site) was either
occupied or unoccupied, even if the observations from the
transects vary. Classic occupancy models also assume no
false positives; that is, observers may miss the species, but
positive reports are reliable. These assumptions in tandem
allow the probability of detection to be estimated. In our
example, if the three observations were [0, 1, 0], it is implied
that this site is occupied, and the detection probability is 1

3 .
This is just the intuition—in the statistical model, many sites
and repeated observations are aggregated and the probabili-
ties are linked to covariates (habitat features for occupancy
probabilities and survey features for detection probabilities).
Scientists planning to use occupancy models design surveys
with repeated observations over which closure can reason-
ably be assumed, but community scientists do not have this
structure imposed upon their contributions in advance.

As a case study, we focus on the eBird community science
program. eBird, which has over one billion birding obser-

vations across the globe, provides researchers with the data
necessary to construct avian species models at vast spatial
and temporal scales (Sullivan et al., 2014). eBirders report
checklists of how many of each species they observed, and
they indicate whether they are reporting everything they saw,
in which case absences can be inferred for all other species.

3. Problem Statement and Related Work
We introduce the Site Clustering Problem for grouping a
set of geospatial wildlife surveys into sites for occupancy
modeling. Our objective is to create sites that satisfy the clo-
sure assumption for occupancy modeling. This is challeng-
ing because closure does not have a mathematical definition
amenable to direct optimization, and because it will vary
across species and regions. We expect that successful solu-
tions to this problem will: 1) discover the optimal number
of clusters automatically, 2) respect geospatial constraints
imposed by species behavior 3) consider similarity in en-
vironmental feature space, and 4) run efficiently on large
datasets.

The initial state of our case study begins with each eBird
checklist as an independent birding observation that has as-
sociated spatial coordinates and environmental features. In
existing literature, there are two main approaches to prepar-
ing community science data for occupancy modeling. John-
ston et al. (2019) suggested best practices for analyzing
eBird data, including defining a site as a set of two to ten
checklists submitted by the same observer at the same ex-
act latitude-longitude coordinates. While this definition is
conducive to assuming closure, it reduces the number of
visits per site, which occupancy models need for identifying
occupancy and detection parameters. Consider the scenario
in which an observer conducts consecutive birding surveys
at two adjacent, nearby locations in the same habitat. Since
the coordinates are not identical, these two checklists would
be considered independent observations of two distinct sites
instead of leveraging them as replicate observations. Fur-
thermore, this method discards all sites with only a single
visit, which can reliably estimate site occupancy (Lele et al.,
2012). In our preliminary study, this definition of a site
retains less than 25% of available checklists. A second
approach places a grid over the study region. All surveys
within the same grid are considered repeated observations
of the same site. A common choice of resolution is 1 km2

(Dennis et al., 2017; vanStrien et al., 2013). Because this
approach ignores the spatial and environmental information,
checklists in two different habitats can be grouped into the
same site, which is likely to violate the closure assumption.

A variety of existing spatial clustering algorithms (reviewed
further by Liu et al. (2012)) might be applied to the Site
Clustering Problem, but none clearly meet all the success
criteria laid out above. Partitioning methods, such as spatial
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ARI AMI NID occ MSE
ground truth 1.0 1.0 0 .0389 ± .015

eBird-BP - - - .1177 ± .041
1-kmSq .9948 .9401 .0599 .1065 ± .027
lat-long .9992 .9825 .0175 .0422 ± .017

rounded-4 .9992 .9826 .0174 .0424 ± .017
density-based .9806 .9566 .0434 .1193 ± .031

clustGeo .9994 .9909 .0091 .0460 ± .019
CC-agglom .9992 .9835 .0166 .0421 ± .017

CC-balls .9992 .9834 .0165 .0422 ± .017

Table 1. Several off-the-shelf algorithms and simple heuristics outperform existing practices (red) in terms of similarity (ARI, AMI, NID)
and parameter estimation (occ MSE). Higher values of ARI and AMI and lower values of NID and occ MSE indicate better performance.

k-means, and CLARANS (Ng & Han, 2002), require a
user-defined number of clusters. Density-based approaches,
such as DBSCAN (Ester et al., 1996), and regionalization
algorithms, such as SKATER (Assunção et al., 2006) and
REDCAP (Guo, 2008), are guided by the density of points,
but closure is independent of density (i.e., clusters may be
very close in space).

4. Preliminary Experiments
We simulated a case study inspired by 2,146 eBird check-
lists from the southwestern quadrant of Oregon, USA col-
lected between May and July 2017. Since occupancy is
a latent variable at each site, we used simulated data in
order to examine the impact of different site clusterings
with access to ground truth. To create it, we constructed
ecologically defensible sites by manually examining the en-
vironmental and spatial proximity of eBird checklists. Then
we simulated species data at these sites from an occupancy
model, which produced present/absent values for each site
and detection/non-detection values for every checklist.

We examined a range of spatial clustering algorithms and
baselines and compared the following approaches:
• eBird-BP: groups checklists with identical coordinates
and observers; 2-10 visits per site (Johnston et al., 2019)
• 1-kmSq: groups checklists falling within the same cell of
a grid of 1 km2 squares
• lat-long: groups checklists with identical coordinates,
any number of visits per site are allowed
• rounded-4: groups checklists with the same coordinates,
rounded to the 4th decimal place
• density-based: (i.e., Density Based Spatial Clustering)
groups checklists by considering each checklist’s spatial
neighbors and the similarity in environmental feature space
(Liu et al., 2012)
• clustGeo: a hierarchical agglomerative clustering method
(Chavent et al., 2018)

In addition, we implemented two consensus cluster-
ing solutions, CC-balls and CC-agglom (Gionis et al.,
2007). Consensus clustering (or ensemble clustering)
combines the clusters of multiple clustering algorithms
into a single result (Vega-Pons & Ruiz-Shulcloper, 2011).
This is a promising method for our domain because a
combination of algorithms with different spatial constraints
may better approximate a spatial requirement that is not
well-defined (closure). In both CC-balls and CC-agglom,
the inputs were lat-long, rounded-4, and density-based.

We considered two strategies for evaluating these algorithms.
First, we asked whether the sites returned by the clustering
algorithms accurately reflected the ground truth assignments.
We measured Adjusted Rand Index (ARI), Adjusted Mutual
Information (AMI), and Normalized Information Distance
(NID) to assess this (Vinh et al., 2010). These metrics
serve as a proxy for a measurement of closure because we
can assume closure holds for our ground-truth clustering.
Second, we asked whether the site assignments produced
differences in the ability of the occupancy model to estimate
the ground truth parameters. To this end, we measured
the average mean squared error of the predicted and true
occupancy probabilities across all checklists.

5. Results and Discussion
For all evaluation metrics, the new methods we applied out-
performed the eBird best practice and the common practice
of imposing a grid (Table 1). The improvements exceed two
standard deviations, with the exception of density-based.
Simple solutions (i.e., rounded-4 and lat-long) and the
off-the-shelf spatial clustering algorithms substantially im-
proved upon existing practices, even though they had impre-
cise definitions of closure. The similar performance among
these methods suggests room for improvement.

Future work on this project may focus on designing a novel
spatial clustering algorithm to improve on the methods
presented here. A successful algorithm will integrate do-
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main knowledge and we have begun to develop an ecology-
informed distance metric that can be inserted into existing
clustering algorithms. Our novel solution will also take pa-
rameters that allow the user to tune the clustering algorithm
based on constraints imposed by a particular species.

Eventually, we plan to expand this work to spatial-temporal
considerations because the definition of closure depends on
the distance between observations in both space and time.
In our study, we fixed the temporal period of closure. We
studied observations collected during the breeding season
(between May and July), which is a common time frame
to assume closure. An adept clustering algorithm would
run on observations occurring throughout the entire year
and would construct sites that respect both dimensions of
closure.

Our preliminary work suggests that better solutions to the
Site Clustering Problem for community science datasets
may produce significant improvements in SDMs. With
more accurate SDMs, conservationists and land managers
can identify regions of concern with greater precision and
dedicate limited resources to remedy population declines
more effectively.
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