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It is argued that the success of DFT can be understood in terms of a semiclassical expansion around
a very specific limit. This limit was identified long ago by Lieb and Simon for the total electronic energy
of a system. This is a universal limit of all (non-relativistic) electronic structure: atoms, molecules, and
solids. In the simple case of neutral atoms, this limit corresponds to an expansion of the total energy in
powers of Z~1/3. For the total energy, Thomas-Fermi theory becomes relatively exact in the limit. The
limit can also be studied for much simpler model systems, including non-interacting fermions in a one-
dimensional well, where the WKB approximation applies for individual eigenvalues and eigenfunctions.
Summation techniques lead to energies and densities that are functionals of the potential. We consider
several examples in one dimension (fermions in a box, in a harmonic well, in a linear half-well, and in
the Poschl-Teller well. The effects of higher dimension are also illustrated with the three-dimensional
harmonic well and the Bohr atom, non-interacting fermions in a Coulomb well. Modern density functional
calculations use the Kohn-Sham scheme almost exclusively. The same semiclassical limit can be studied
for the Kohn-Sham kinetic energy, for the exchange energy, and for the correlation energy. For all
three, the local density approximation appears to become relatively exact in this limit. Recent work,
both analytic and numerical, explores how this limit is approached, in an effort to deduce the leading
corrections to the local approximation. A simple scheme, using the Euler-Maclaurin summation formula,
is the result of many different attempts at this problem. In very simple cases, the correction formulas are
much more accurate than standard density functionals. Several functionals are already in widespread use
in both chemistry and materials that incorporate these limits, and prospects for the future are discussed.

CONTENTS 1. INTRODUCTION
. Introduction 1 We begin with a very basic question: Why does DFT work
_ at all? After all, the electronic structure problem requires
Basics 4 solving a fermionic quantum many-body problem. There are
" . dozens if not hundreds of physics books in many fields ex-
ustrations 4 plaining just how difficult this is [1, 2]. Yet modern approxi-
Scali - mations to the exchange-correlation (XC) energy, which can
caling often be written as simple formulas on the back of an enve-
: lope, yield usefully accurate results in an astonishing variety
Box bound 9 N o Lo
ox boundaries of situations [3]. It is likely that at least 50,000 scientific
Real turning points 11 papers will appear next year reporting results of such calcu-
lations. How can this even be the case?
Potential functionals 12 This book chapter describes a 15-year search for the un-
derlying cause of such success, assuming it is not acciden-
Gradient expansions 13 tal. A key piece of evidence was provided much earlier,
_ _ when Lieb and Simon rigorously proved a result that had
Three dimensions 14 been intuited since at least the late 1940s [4]: the precur-
sor of Kohn-Sham (KS) DFT, Thomas-Fermi (TF) theory,
Atoms 15 hecomes relatively exact for the total electronic energy of
a system in a very specific limit [5, 6]. We call this the
Exchange 17 LS theorem. This limit involves simultaneously scaling both
Correlation 18 ti.'lg potential ?"fj the n!meer qf ellectrons, N,in a very spe-
cific way. This is a universal limit of all electronic matter:
lonization energies 20 Atoms, molecules, and solids.
In some ways, the simplest interacting 3D many-electron
Practical functionals 21 problem is that of atoms and ions. There is a long and
interesting history of physics and mathematical exploration
Summing up 22 [7-10] of the expansion of the energy of neutral atoms as a
function of Z, the nuclear charge:
Conclusions 24
1 5
References 26 E(Z)=-cZ"+ QZQ —eaZ (1)
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Error

Atom | Z Exact HF TF 15t corr. [ 27 corr.
H 1 —0.500 | 0.000 —0.269 0.231| -—0.039
He 2 —2.904 | 0.042 —-0.970 1.030 0.173
Ne |10 —128.937 | 0.390 —36.684| 13.316 0.788
Ar |18 —b27.539|0.722| —125.218| 36.782 3.415
Kr |36 —2753.94 |[1.89 —b35.75 112.25 6.32
Xe |b4| —7235.23 |[3.09 |—1237.72 | 220.28 12.06
Rn |86|—21872.5 5.8 —3223.9 474.1 21.8

TABLE 1. Accurate energies and errors for noble gas atoms
and hydrogen where the TF results and the first and second
corrections refer to Eq. (1).

where ¢ =~ 0.768745 and ¢, =~ 0.269900 are fundamental
constants that can be easily calculated to arbitrary accu-
racy [7-12], as we discuss in Sec. 2. A simple calcula-
tion using TF theory (the local density approximation for
the kinetic energy and the Hartree approximation for the
electron-electron repulsion) yields

ETF(Z) = —¢p ZT/S, (2)

consistent with the LS theorem. The leading correction is
called the Scott correction [13], and can be deduced by
considering electron orbitals near the nucleus. Schwinger
and Englert showed that c; is given exactly by evaluating
the local density approximation (LDA) for exchange plus
the second-order gradient expansion for the kinetic energy
on the TF density [8, 14]. All discussion in this chapter is
for the pure non-relativistic limit.
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FIG. 1. Accurate radial density of Xe (blue) and its TF ap-
proximation (red), in atomic units.

Moreover, in a weak sense, as the limit is approached, the
density approaches that of TF theory, and the error in any
smooth integral over the density vanishes in the LS limit.
Fig. 1 shows an accurate radial density of Xe and its TF
approximation. Despite behaving very differently for both
small and large r, and missing shell structure, integrals over
the TF density become relatively exact as Z — oo.

The LS limit is a jumping-off point for understanding ap-
proximations in DFT [5, 6]. Most modern approximations
to the exchange-correlation (XC) energy of KS-DFT begin

with a generalized gradient approximation (GGA), a func-
tional whose energy density depends on both the density
and its gradient. This idea was first suggested by Ma and
Brueckner [15] for the correlation energy of atoms. They
showed that a naive gradient expansion approximation (i.e.,
just using the gradient expansion for a slowly varying gas)
fails miserably, but can be made much better by considering
a more general functional of the gradient (hence the name
GGA). In various ways, many modern GGAs can be traced
back to this initial work.

The reason the LS limit is the organizing principle behind
the success of DFT is that it explains why local density ap-
proximations work as well (or as poorly) as they do: They
use that form of the functional that is relatively exact in that
limit, ensuring their relative error vanishes in that limit, and
producing a reasonable approximation even when the sys-
tem is highly inhomogeneous. We will see that, in the simple
case of non-interacting fermions in one dimension, this local
approximation is directly derivable from WKB theory, whose
semiclassical eigenvalues are often very accurate. Because
this limit applies to all matter, such approximations 'work'
for all systems, including both molecules and materials. One
can then ask the question: If the local approximation is the
dominant term as the limit is approached, can we derive
the leading correction to this limit? And if so, how ac-
curate would an approximation be that incorporates such
corrections? Do modern GGA's accurately account for such
corrections? We will see that the answers are tantalizing.
In some extremely simple cases, the inclusion of just one or
two more terms yields accuracy beyond the wildest dreams
of any modern DFT calculation [16, 17]. Again, for simple
cases, we can sometimes deduce many terms and achieve
ridiculous levels of accuracy. On the other hand, the diffi-
culties in deriving such corrections for realistic systems are
daunting. But with guidance from simple systems, they can
possibly be teased out numerically. In any event, under-
standing this little-explored connection should put the art
of DFT approximation on a surer footing.

To better appreciate the power of such expressions, Ta-
ble | gives a list of total energies and the errors in several
approximations to them for noble gas atoms, while Fig. 2
plots these energies, choosing variables consistent with the
nature of the known asymptotic expansion. There are many
interesting points. First, although very crude, the relative
error of TF decreases as Z becomes large, consistent with
the LS theorem. Next, we note that the expansion is in
inverse powers of Z'/3 so that the small parameter never
even reaches below 0.2, even for Rn (Z = 86). This makes
numerical extrapolation quite difficult and imprecise. We
see that addition of each order of the expansion yields ever
more accurate results. The first three terms alone yield ac-
curacies comparable to (but worse than) those of Hartree-
Fock (HF) or a KS-DFT calculation using LDA. One also
sees that one could very crudely determine the coefficients
in the expansion from such curves by fitting. Here, the LS
theorem is very important, as it is infinitely easier to per-
form a highly precise TF calculation than to perform the
extrapolation from numerical results for individual atoms.
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We are lucky to have all three terms to arbitrary accuracy,
from solving the TF equation for atoms.
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FIG. 2. The exact noble gas energies (black circles) compared
with the expansion in Eq. (1): TF (blue), with first order
correction (red), second order (orange).

This book chapter describes an odyssey through various
fields of theoretical physics, trying to find answers to these
questions. It is naturally divided into two sections. The
first describes studies of the non-interacting kinetic energy,
mostly in 1D. In 1D, the semiclassical expansions of eigen-
values which form the starting point of these studies are
particularly simple, and many powerful tricks have been de-
veloped over the years, such as the WKB expansion [18-
23]. Thus explicit derivations yield explicit answers, albeit
with considerable work and ingenuity in some cases. On
the other hand, very few chemical and materials problems
can be solved just by knowing the 1D kinetic energy. Thus
the second half attempts to take insight from the first half,
and apply it to make progress on the exchange-correlation
energy for realistic systems.

Many of these questions were already asked more than 50
years ago. In the sixties, before the advent of widespread
and economical computing, there were many attempts to
perform electronic structure calculations using semiclassi-
cal methods [24-26]. Ironically, early in 1965, Kohn and
Sham showed how to calculate accurate approximate den-
sities semiclassically, by performing contour integrals of the
WKB Green's function, and showing how both shell struc-
ture and evanescence could be accurately found this way
[27]. Of course, later that year, they also published the
rather more famous Kohn-Sham equations [28], pointing
out their exactness in a legendary note added in proof, and
simultaneously inventing the modern LDA approximation.
Their scheme proved successful beyond their wildest dreams
[29], and Walter Kohn shared the Nobel prize in chemistry
some 30 years later.

The aim of this chapter is to convince the reader that ex-
actness in the LS limit is the least understood and possibly
most fundamental reason why KS-DFT has been so suc-
cessful. Most modern functionals reduce to the uniform gas
results in the limit of constant density, and so can recover
the exact result in this limit. Most GGAs appear to capture
the leading corrections, at least for molecular systems, either

by imposing relevant exact conditions or fitting to Coulomb-
interacting systems. Many of the successes and failures of
standard DFT functionals can be understood from this view-
point, as discussed throughout this chapter and in the key
references.

But, more tantalizing than this, the most recent work
shows that the leading corrections are sensitive to global
boundary conditions [30] that distinguish molecules from
solids, and bulk from surfaces. In simple model problems
in 1D, when the right corrections accounting for these dif-
ferences are included, tremendous improvements in accu-
racy are possible, suggesting that even KS-DFT calcula-
tions might attain much higher accuracy than is presently
achieved.

We use atomic units throughout, so that all energies are
in Hartrees and all distances in Bohr radii. We treat only
the non-relativistic limit in the Born-Oppenheimer approx-
imation. We do not consider external magnetic fields [31]
and give most results in terms of pure density functionals
instead of spin-density functionals. No statements should
be considered mathematically rigorous.

This review is organized as follows. In Sec. 2 we review
Thomas-Fermi theory for atoms, which is the starting point
of our semiclassical expansion for the energy. In Sec. 3, we
illustrate semiclassical limits on four simple model systems
in 1D, while in Sec. 4, we make the meaning of "semi-
classical” precise by introducing a scaling that produces an
expansion around the semiclassical limit. Secs. 5 and 6
describe semiclassical corrections to the TF density for 1D
systems. The former with box boundary conditions while
the latter has open boundaries. As all the expressions given
so far are functionals of the potential, in Sec. 7 we briefly
explain potential functional theory as an alternative to den-
sity functional theory. In Sec. 8 we define the gradient
expansion for slowly-varying gases.

In the rest of the review, we work away from simple mod-
els, all the way to practically useful XC approximations for
use in modern KS-DFT codes. To see some effects of de-
generacy, in Sec. 9, we apply the semiclassical formalism to
two non-interacting systems in 3D: The Bohr atom and the
3D harmonic oscillator. In Secs. 11 and 12 we describe the
relevance of these ideas to exchange and correlation func-
tionals respectively. Most importantly we argue that both
exchange and correlation become local, like the kinetic en-
ergy, in the semiclassical limit. In Sec. 13 we show that
TF theory becomes exact not just for energies, but also for
ionization energies in the semiclassical limit, for our model
systems. We review work showing that the periodicity of
the periodic table remains significant, even as Z — oc.
However, averaging over rows, numerical evidence suggests
that (extended)-TF theory yields the correct average in the
large-Z limit, at least for exchange. In Sec. 14 we describe
the relevance of this work to constructing useful functionals.
In Sec. 15 we discuss a different approach to the semiclas-
sical limit. Instead of focusing on finding corrections to the
density (which may not improve the energy) as in Secs. 5
and 6, we focus on directly finding approximations to the
sums of eigenvalues (occupied energy levels). Finally, in Sec.
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16, we wrap everything up, connecting the results from the
different sections.

2. BASICS

Thomas-Fermi theory was created around 1927 [32, 33]
and Thomas does not mention the Schrodinger equation,
perhaps because he had not yet heard of it. In modern
terms, he approximates the universal part of the energy
functional [34, 35] as

F™¥[n] =T"[n] + Ulnl, (3)

where TTF[n] is the local density approximation for the
(spin-unpolarized) kinetic energy of non-interacting elec-
trons:

TTF[n] — %(3?1,2)2/3/(33,‘.735/3(1.)’ (4)

and Uln] is the classical electrostatic self-repulsion of the
electronic density, now called the Hartree energy:

Ukl = ; / dr / &’ % (5)

For any F[n], we can minimize the energy with respect to
the density while holding the number of particles constant
[34] yielding the Euler-Lagrange equation for the density:

52% +o(r) = p. (6)

For TF theory, i is the TF chemical potential, and for an
atom or ion the external potential is —Z/r. Because the
functional derivative of U is the Hartree potential, satis-
fying Poisson's equation, a second-order radial differential
equation for the dimensionless potential results:
@3 1/2
®"(z) = [ﬁ} ) (7)
N

where z is a dimensionless coordinate, z = Z'/3r/b, and
b= (1/2)(37/4)%/® ~ 0.885341. Here, we have used Lieb's
notation [36], where the subscript + indicates that the func-
tion is set to zero unless its argument is positive. For neutral

atoms (N = Z), the unique solution has g = 0 and [7]
o(0)=1,

®'(0) = —B, B=~1.5880710226. (8)

The density is then

n¥ () = 2o (%)/ )

While Eq. (7) can only be solved numerically, which is where
the value of B comes from, all its properties are perfectly
well-defined. Unlike the exact density, nT¥(r) diverges as
1/r3/% as r — 0 and decays as 1/7% for r — oo [37].

Nonetheless, exact neutral densities weakly converge to this
simple form as Z grows, as seen in Fig. 20.

Inserting the TF density into the known contributions to
the Z-expansion yields [7, 8]:

3B 44b
o= cy = @Mﬁa (10)
where [37]
M, = / dz ®?(z) ~ 0.615434679. (11)
0

Thus the coefficients in Eq. (1) can be found by entirely
elementary means, and yield errors only about 4 times larger
than Hartree-Fock, but without any orbital calculation. If
we could achieve higher accuracy, and calculate them for
molecules and solids, we might not need DFT at all. A
simpler version of our original question is: How do we find
HF-like accuracy without doing an electronic structure cal-
culation?

3. ILLUSTRATIONS

One of the simplest versions of this question can be de-
duced from the opening chapter of the ABC of DFT [34].
It considers same-spin non-interacting fermions in a one-
dimensional infinite well of width L, occupying the lowest
N levels. This is a DFT analog of everyone's first quan-
tum problem. The individual eigenvalues are m252/(2L?),
with § =1, 2, ... We find the total energy by summing over
occupied eigenvalues:

w2 N3 3 1

The TF approximation, for same-spin fermions in a 1D po-
tential v(z), is (analogous to Eq. (4))
. w2 [
T = T / dz n¥(z). (13)

Here the one dimensional analog of Eq. (6) yields

¥ () = P2, (14)
where
pe(z) = (2[u — v(2)])"/?, (15)

is the classical momentum at energy g, which is found by
normalizing the density:

/_ao dzn(xz) = N. (16)

oo

In general

ETF(N) = / CANU(NY), p= (17)
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since ET¥(0) = 0. For our flat box problem, v = 0, the
results are trivial:

Po="572 ™ (z) = A (18)
and
w2 N3
EI(N) = T (19)

consistent with the semiclassical limit, i.e., the relative error
of TF vanishes as N — oc. Nor is this an artifact of the
potential being constant inside the box. The TF statement
is true for essentially any reasonable v(z) for which the limit
exists. For these 1D non-interacting fermions, the local
density approximation to the kinetic energy is a universal
approximation, in the sense that it is a universal limit for
all such problems, and relative errors must always vanish
as the limit is approached. Moreover, even for cases not
close to this limit, the use of the functional form can yield
surprisingly accurate results.

n(x)
-QQ—kI\JOJJ\(ﬂm"*«I

FIG. 3. Exact (solid) and TF (dashed) densities for the flat
box, from N =1 (red) to N =5 (gray).

In Fig. 3, we plot the exact and TF densities for up
to 5 particles in a flat box. The inadequacies of our 1D
TF approximation mimic those of the TF approximation for
real atoms, Fig. 1. The TF density fails to satisfy the
boundary conditions and misses the quantum oscillations.
On the other hand, as N grows, the TF density errors in
the interior are of order 1, while at the edge they are of
order N, but the edge region shrinks to within O(1/N) of
the walls. The semiclassical limit requires that any integrals
over smoothly varying functions of the density, such as f'n?,
will also become relatively exact in TF theory as N — oo.

To illustrate how local approximations can be more accu-
rate than they have a right to be, consider instead applying
the TF approximation to the exact density, which can be
found analytically with some effort:

N sin(2N7z/L) _
n.(z) = L 2Lsin(rz/L)’ N=N+

4.5
4.0
2, 35
E‘ 3.0/
25!
2.0/
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FIG. 4. Flat box energy with L = 1: exact (black circles), TF
(red), 1st (blue) and 2nd (black) corrections from Eq. (12),
and TF on exact density from Eq. (21) (magenta, dashed).

This yields:

27013
= TN 9,3
T[] = %0 (1+8N+8N2)' (21)

In Fig. 4 we compare the above expression to the TF en-
ergy in Eq. (19) and the exact result in Eq. (12). Fig. 4
shows that, when evaluated on the exact density instead of
the self-consistent one, the TF approximation is much more
accurate. Eq. (21) contains all three terms, and each is a
good approximation to its exact counterpart. [In modern
DFT language, this illustrates that the TF approximation is
dominated by density-driven errors [38], and qualitatively in-
accurate results, such as Teller's non-binding theorem [39],
might not occur with better densities]. Note, however, from
the Figure that simply including the leading correction to
TF theory is everywhere more accurate than using the TF
functional on the exact density.

1.0
0.8

< 0.6

<
0.4
0.2

0.0

FIG. 5. Same as Fig. 3 but for the harmonic oscillator. The
blue curve is v(z)/10.

To make clear that there is nothing special about the
flat box, we repeat this exercise for a harmonic oscillator
with potential v(z) = w?z?/2. Here, the eigenvalues are
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w(j+ %), where j =0,1,2..., so

2

B(N)=w', (22)
In this case, instead of solving the TF equations, we could
invoke the semiclassical limit, to deduce that TF must yield
the exact answer for all IV for this problem, because there is
only one term in the energy expression. To see this explicitly,
the TF density is

24 — (wz)?)Y?

ni¥(z) =

w y Hy =W N. (23)
Insert this density into Eq. (13) to find the exact answer
of Eq. (22). We plot both exact and approximate densities
in Fig. 5. The overall behavior and deficiencies of the TF
density are similar to those of the flat box. The semiclas-
sical limit still guarantees vanishing relative error for both
energies and expectation values. Some details are slightly
different from the flat box case. Here the TF density has
finite measure, whereas the exact density does not. In the
bulk region, the exact density oscillates around the TF den-
sity, whereas in the box, the exact density is almost every-
where above the TF density in the interior. For future use,
we also define Fermi turning points, £z, as the positions
at which the TF density vanishes i.e. v(z,.) = u. Beyond
that, one sees the exact density decaying as a Gaussian. We
note the overall similarities to Fig. 1, which shows the same
comparison for the Xe atom (5 filled shells).

We also note a slightly perplexing question. For the HO
the TF functional acting on the TF density yields the exact
answer. But the TF functional applied to the exact density
yields a different (and therefore worse) answer, unlike the
box example. From a DFT perspective, surely this is a case
of the right answer for the wrong reasons. Or one might
say this is the most extreme cancellation of errors ever. Yet,
almost all semiclassical approaches, such as WKB eigenval-
ues, yield the exact answer for the harmonic oscillator, so
there is no surprise here for the semiclassics community [40-
42]. We discuss this further in Sec. 6.

So far, so simple. But the crucial question is this: If
TF theory becomes exact in the semiclassical limit, do we
have a procedure for calculating the next correction for the
same set of reasonable v(z), and can we design a density
functional that will capture this correction? The answer to
the first question is yes, the second, no, so far. In answering
the first question, we will see (Sec. 15) that the correction
is sensitive to the details of the boundary conditions. Such
a correction must yield exactly the Z2/2 term in Eq. (1).

Our next example is the Poschl-Teller (PT) well [43, 44]
with potential,

vp(z) = Dtanh’z. (24)

Because v — D as |z| — oo, this well (unlike the box
or harmonic oscillator) binds only a finite number of states.
Even so, as the semiclassical limit is approached, the spacing
between energy levels decreases and the number of states

20—
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FIG. 6. Same as Fig. 5 but for the PT well with D = 20.
The blue curve is v(z)/10.

grows. The eigenvalues are

1 . . .
€p,j =D- Q(A_J)2= J=0,1,..., Jmax, (25)

B 1 1 A1)
A=y\2D+3 -5, D=5 (%)

and jmax = |A], the highest integer < A. The exact so-
lution is given in Ref. [45]. The semiclassical expansion is
an expansion around large D, keeping j proportional to A,
yielding

where

€ = €0(2;) + Ae@(2;) + AW (2) +...,  (27)
where z; = j +1/2 and

€9 (2) = V2Dz — 2%/2,

1 2z
(2)(,) — = _
AW (p) =%
€7 2561/2D3/2

Unlike our previous examples, this expansion does not end
at any finite order. However, it is convergent unless D is
very small. The exact energy of N < A+1 occupied orbitals
is

EU(N):[6NA—(2N—1)(N—1)]%. (29)
The TF density is

. 2(u,, — Dtanh?z))}/?
npre) = Pee= el (vip- ),

T

and the TF energy is

ETF(N) = (\/g — %) N?, (31)
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FIG. 7. Same as Fig. 3 but for the LHW with F = 1.

and the LS limit is N — oo, with N/v/D fixed.

Our last model system is the most prototypical, because
the semiclassical expansion is purely asymptotic, i.e., it
never converges. We will discuss this system in detail in
Sec. 15. The flat box has two hard walls (where the slope
of the potential is infinite), while the harmonic oscillator has
two real turning points where the slope is finite. Now we
consider the linear half well (LHW), defined only for z > 0,
with potential

v(z) = Fz, (32)

which has one hard wall (at 2 = 0) and one real turning
point. The exact LHW solution is written in terms of the
Airy function (Sec. 9 of Ref. [46]). The unnormalized
orbitals are

on(z) = Ai[(2F)32 —a,), n=0,1,2,3,... (33)
where the a, are the negative of the zeroes of the Airy
function: Ai(—a,) = 0. The eigenvalues are

2y 1/3
€pn = (%) Gy (34)

There is no closed form expression, but the zeroes have a
well-known asymptotic expansion (Sec. 9.9 of [46]) which
corresponds to the semiclassical expansion:

oo
€pn = FQ/S Z dmz§/3—2m1 (35)

m=0
where 2, = 3m(n+ 3/4) and

1 5! 10
dﬂ_is dl _ﬂ! d2—_3 (36)

The exact density and energy are given by sums over Egs.
(33) and (34). The TF density is

Ay — Fz)]M? 3rFN)/3
an(x) — [ (,U: )+ , Py = ( )

E e, @)

The asymptotic expansion of the energy for large N is

_ (BWF)Q/B 5/3 3 1 g1 g3
E.(N)= 5 N 5 + IN N2 + AN3 +..],
(38)

where g; = 36 1[1/4 + 5(jn2) !] and the leading term is
the TF energy.

4. SCALING

In this section, we discuss the LS limit about which we are
interested in expanding. The most physical definition is to
change the external potential while simultaneously scaling
the particle number:

ve(r) = ¢4 w(¢H %),

where d is the dimension, and { varies continuously from 1
to oo. We call this {-scaling. For molecules with nuclear po-
sitions R, and charges Z,, under this scaling, Z, — (Z,
and R, — (/3R [36]. Thus, for an atom, ¢ simply
scales both Z and N. Thus our Eq. (1) is simply an expan-
sion in ¢, made explicit by replacing Z with (Z everywhere.
The Lieb-Simon statement was proven only for Coulomb
repelling electrons in Coulomb attracting potentials for 3D.
But this is in many ways the most difficult case and likely
the result applies to any 'reasonable’ one-body potential.
We apply our (-scaling to any reasonable one-body poten-
tial and interaction, and generally expect TF to become
relatively exact in the limit of large (. We use this scaling
even in non-interacting cases, where other choices satisfy
the same criteria, in order to provide a unified treatment of
both interacting and non-interacting cases.

We can also apply (-scaling to our 1D non-interacting
problems, where the results are trivially related to changing
N. For the box,

N = ¢N, (39)

2.5
T (N) =T, /c(CN) == x (1+i+;),

6L2 2(N ~ 2((N)?
(40)
while for the oscillator,
gSwN2
E,¢(N)=Esu((N) = — (41)

The density is slightly more complicated, as the position
coordinate must also be scaled. But for our simple particle
in a box, v =0, we have:

n.[vel(z) = nuyeen(@) = % Ne - % ’

(42)
with NC = (N + 1/2. This density integrates to (N elec-
trons and has width L/{. Note that this makes no sense
unless IV is also an integer, to ensure the density still van-
ishes at & = L /(. For practical and aesthetic reasons, we
will often plot a renormalized version of the exact density
on the scaled potential,

fig(r) = ¢ Pnfoc](r/¢M), (43)
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so that it spans the original space and integrates to N, the
number of particles in the original density, for all values of
¢. Then 7. (z) converges (weakly) to a fixed limit as ¢ —
oo, namely the TF density with N particles. For example,
for the flat box, the TF density of the (-scaled problem is
¢2N/L, and fic(z) = N/L, for any (. The TF density of
any system is invariant under the scaling of Eq. (43).

For real electronic systems, in what sense is this a semi-
classical limit? For large ¢, even in the scaled coordinate
system, the particle number is growing, and the local Fermi
wavelength is shrinking as ¢/4. Hence any finite smooth
potential varies ever more slowly. In Coulombic systems,
there will always be a region around the nucleus where this
assumption fails [13]. In general, slow variation in the po-
tential is equivalent to a semiclassical approximation. Thus,
each orbital in a KS calculation approaches its semiclas-
sical approximation, and the contribution from any given
orbital becomes vanishingly small. However, the kinetic
energy contains two derivatives and the sum over N or-
bitals becomes large, so that the entire term scales as (/3.
Likewise, the contribution from any pair of orbitals to the
electron-electron repulsion becomes very small, but in such
a way that the double sum over pairs remains significant
and scales the same way as the kinetic energy, and the to-
tal tends to the Hartree energy. Thus this is also a (very
specific) mean-field limit.

The very fact that the three distinct energy contributions
scale the same way under {-scaling to yield a non-trivial TF
problem (i.e. the electrons do not become non-interacting,
the system does not become unbound, etc.) is what defines
the choices behind (-scaling, and ensures that local density
approximations yield useful results in precisely this limit.
It also links the importance of local approximations to the
fact that both potential operators V' and V. are diagonal
in coordinate space. But it is a very difficult limit to treat
carefully, as it involves many subtleties, many of which are
not yet understood. For example, naively one would expect
that since orbital pairs interact ever more weakly as the
limit is approached, one could use perturbation theory, and
weak interaction expressions. But even when the density in
most of an atom is large, the valence region remains finite
and even contains regions of low density. Since the valence
region is vital to ionization and chemical reactions, a weak-
interaction treatment will never be accurate in this limit.

We can see this effect in Fig. 8. As ¢ grows, the sepa-
ration between adjacent peaks in the exact density, propor-
tional to the Fermi wavelength, shrinks as does the ampli-
tude of the oscillations. In Fig. 9, we show the renormalized
potential-scaled density approaching the TF limit for a box
(0 < z < 1), with potential v(z) = D cos?(rz). Now the
distance between peaks in this scaled density is shrinking as

1/N, and their amplitude is shrinking in the same manner.
The TF density is

N  —
0.5
__ 04
%
< 0.3
t
0.2
0.1
0.0

X

FIG. 8. Exact and TF harmonic oscillator (w = 1) densities,
¢-scaled according to Eq. (43) with v(z) = 2%/2 and N = 1:
TF (black), ¢ = 1 (cyan), 2 (magenta), 4 (brown), 8 (blue),
and 16 (red).

yielding

2 7

v ZlVEg (9) , (45)

where

w2
£-(z) = /D db (1 —zsin?$)F1/2,  (46)

are the complete elliptic integrals of the first and second
kind (Sec. 19.2(ii) of Ref. [46]). The TF energy for this
potential is

ETF = 23/2‘/25 {(w + p)Ey (%) +2(u— D)E- (3)] :

(37)
(47)
We plot 7} },(z), with N =1 and D = 12, in Fig. 9.

25 f ' ' ' F J—

Density
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0 0.2 0.4 % 0.6 0.8 1

FIG. 9. TF and ¢-scaled densities for v(z) = 12 cos?(wz), box
boundary conditions, and { = 1,4, 16. Reproduced from Ref.
[47].

An alternative approach to this limit, and a more useful
one in some circumstances, is to use the chemical potential
[48]. For the exact case for non-interacting fermions, we
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define the energy and particle number as a function of u:

N(p) = Ze(u— &),
G(p) =) (e —mO(n—¢;), (48)

E(s) = G(u) + pN(p).

This is just the zero-temperature limit of the Fermi distri-
bution. Then simply scale

B¢ (r) = ¢Y49(¢ ), (49)

where #(z) = v(z) — p. This approaches the semiclassical
limit also, but along a slightly different path, so the leading
corrections can be different.

For the purpose of density functional theory, it is often
useful to define the conjugate scaling for the density:

n¢(r) = ¢n(¢Mr). (50)

Note that this combines the usual coordinate scaling of DFT
[49] with scaling the particle number, i.e., No =(N. So it
is not the same as either coordinate scaling, or scaling the
potential with a fixed particle number. For the flat box,

¢2 |- sin(2N¢n(z/L)
nec(®) =T N~ Sgntmeainy |0 Y
where N; = N( + 1/2. Of course, just as in coordinate
scaling, scaling the potential and the density are two differ-
ent operations, and the density of the ground-state wave-
function for the scaled potential does not match the scaled
density. This means that in general

nfv¢](z) # ne(), (52)

despite both integrating to (N, both being legitimate densi-
ties for the (-scaled problem, and being the same for { = 1.
Careful examination (or plotting) of the densities from Egs.
(42) and (51) shows their important difference, even for a
particle in a box. However, it is a simple exercise to show
that these scalings are equivalent within TF theory, where,
for our box problem,

W) =n™@) =Y, 0<z<L/. (53)

We now discuss the Fourier transform of the density for
the harmonic oscillator:

n(k) = /OG dz n(z) cos(kz). (54)

o

For w =1 Eq. (54) yields

~ V2J1(V2K)
= T,

7"F (k) (55)

where J,,,(z) is the Bessel function of the first kind (Sec.
10.2(ii) of Ref. [46]). We plot this and the Fourier trans-
forms of the exact (-scaled densities of Eq. (43) in Fig.

10. At k = 0 all the densities have the same values of 7i(k)
(normalization) and 7" (k) (kinetic energy). Fig. 10 clearly
shows the increasing accuracy of TF theory as N grows. For
a given value of |k|, the exact and TF densities approach
each other as N increases. Such an exercise is reminiscent
of how imposing cut-offs in momentum space for XC holes
produced the prototype of modern GGAs [50, 51].
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FIG. 10. Fourier transforms of scaled harmonic oscillator den-
sities: TF (black), N =1 (brown), N = 2 (magenta), N = 4
(red).

5. BOX BOUNDARIES

In order to improve upon the TF approximation, we first
show its relation to the famous WKB [18, 19] approximation
for eigenstates. Consider a box from z = 0 to x = 1 with
p > v(z) everywhere inside the box. Things are relatively
simple since the only turning points at the Fermi level are
hard wall turning points. The (leading order) WKB approx-
imation to the wavefunction is

_ sinf(e, x)

D Velea)”

where p(e, ) is the classical momentum at energy € and

(56)

(e, z) = /: dz' p(e,z'), (57)

is the phase accumulated from the left wall. We denote
f(e) = B(e, L) as the phase across the entire well. The
eigenvalues are determined by the requirement that the
wavefunction vanish at the right wall, yielding the WKB
eigenvalue condition for this problem:
9(6) =jm, j=1,23,.. (58)
The trick is now to find the semiclassical approxima-
tion to the sum of the squares of the eigenstates, i.e.,
the density, which is not a simple sum of the WKB eigen-
functions squared, but the semiclassical approximation to
this sum [11, 47]. As N grows, ¢? from Eq. (56) con-
tains a term which oscillates ever more rapidly (with 26,
where F denotes evaluation at the TF Fermi energy u, i.e
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pe(z) = p(u, z)) which must exactly cancel the TF density
at the boundaries.

While there is a long history of derivations of this kind
of formula (see next section), a key condition of a correct
solution is that it be a uniform approximation in all space,
i.e., it must capture the leading correction to the TF density
everywhere in space. In Ref. [11], the first paper in which
such a formula was found (because the problem is simpli-
fied by the box boundary conditions), this was achieved by
clever contour tricks using the semiclassical Green's func-
tion. Later [47], it was simplified using the Euler-Maclaurin
summation formula. Either derivation yields a beautifully
simple formula for the density, purely in terms of classical
quantities. Write

e, z) = %9[6,2:) . /:

as the classical time required for a particle with energy e
to reach z, starting from the left wall. Then 7(e, L) is the
time to reach the opposite wall at that energy. Here we
use the subscript F' as shorthand for evaluation at u, the
TF chemical potential, but for N 4 1/2 particles [11]. This
semiclassical density is then simply

dz’
p(e,z’)

; (59)

wy sin [20,.(z)]

sC _ pl‘(x) _
(=) = 27 pe(z) sin ()’

T

(60)

where a,.(z) = w71 (z) /7. (L) and w, = w/7.(L). An anal-
ogous formula, using the same ingredients, can be derived
for the kinetic energy density, and so yields corrections to
the TF approximation for the kinetic energy.

There are many remarkable features of these formulas. It
turns out that many researchers had sought such formulas
over decades in several different fields [10, 11, 27, 52-59].
It was only by using box boundaries to avoid turning points
that it was possible to perform the derivation with elemen-
tary techniques. Perhaps the most remarkable feature is
that the approximation to the fully quantum density con-
tains only classical quantities. No differential equation need
be solved to evaluate it. Moreover, these quantities are eval-
uated at only one energy, the TF chemical potential. Thus,
all properties are determined by the (semiclassical) highest
occupied orbital. This is reminiscent of Fermi liquid theory
[60]. Only knowledge in the vicinity of the Fermi energy is
relevant to the result.

We also note that these are approximate densities in terms
of the potential, which is not the way DFT usually operates.
In DFT, one usually starts from an energy functional and
uses the Euler equation, Eq. (6), to find the density as a
functional of the potential. (Recently there has been inter-
est and progress in finding XC potentials as direct function-
als of the density [61], the reverse of what is accomplished
here). In the next section, we will discuss what that means
at a formal level.

Analyzing Eq. (60) as a functional of the potential, we
see that the TF term (the first one) is a local functional
of the potential, but using the (globally determined) TF
chemical potential. The leading correction is also a local
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functional of the accumulated phases, which themselves are
highly non-local functionals of the potential (their spatial
derivatives are local). Thus, the correction is not a higher-
order correction in the sense of the gradient expansion (no
derivatives of v(z) occur), but is a phase-accumulated term
arising from the boundary. It would be absent if we had
used periodic boundary conditions. If the derivation were
continued to one more order, one would expect to find the
leading gradient correction to TF, plus a phase-dependent
term that depends on gradients of the potential.

Naively, there is no such thing as a semiclassical expansion
of the density, because the form of the expansion itself varies
with z. If we expand semiclassically (equivalent to powers of
1/N), the TF term is order N everywhere, whereas the cor-
rection has precisely those features mentioned above needed
to achieve correct boundary conditions, and to smoothly
vary from fully canceling the TF term at the boundaries to
becoming a relatively small correction in the interior. In
this sense, it is a uniform approximation to the density: Its
relative error vanishes for all z, despite the different nature
of the different regions.

25| ' N

0 0.2 0.4 0.6

FIG. 11. Density of one particle in the single-dip potential
of Fig. 9: exact, TF, Eq. (60), and its WKB approximation
(square of the WKB orbital in Eq. (56)). Reproduced from
Ref. [47].

Lastly, we note that, for v(z) = 0, all phases become
linear in =, and the semiclassical formula is exact. In Fig.
3, Eq. (60) has no error. Moreover, it has been tested for
many different non-constant potentials [11, 47]. By con-
struction, Eq. (60) becomes very accurate as N increases,
so almost all tests are done for N = 1, the most difficult
case. For any N > 1, the difference between the exact den-
sity and Eq. (60) are indistinguishable to the eye. In Fig.
11, we plot results for a single particle in a potential with
one dip that is infinitely differentiable. Clearly, the semi-
classical approximation is a huge improvement over both
the TF and WKB approximations.

An even more dramatic example is that of Fig. 12. In
this case, the lowest two levels have negative energies and
are almost degenerate, as the well has two dips. By one
measure, the reduction in error of the semiclassical density
relative to TF is by a factor of 40 [11]. The one case where
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FIG. 12. Here v(z)
from Ref. [11].

—80sin?(27z) and N = 4. Reproduced

errors can be clearly seen is the one designed to make it
fail: a potential whose TF chemical potential is only barely
above the maximum of v(z). Even then, when almost all
the density is decaying, the approximate density is not too
bad (see Figs. 10 and 11 of Ref. [47]).

Thus, even from these simple beginnings, there was the
suggestion that, if post-TF corrections could be derived,
they might transform the entire nature of DFT development.
It holds out the possibility of DFT becoming a much higher
accuracy theory, by involving ingredients that come out of
such derivations, and look nothing like those in common use
in DFT today.

6. REAL TURNING POINTS

The work described in Sec. 5 provided a definitive deriva-
tion of the leading correction to the local approximation to
the kinetic energy, but only for the very special case of one
dimension with box boundary conditions, and with the semi-
classical chemical potential above v(x) everywhere, thereby
avoiding complications of real turning points (i.e., where
the slope of the potential is finite when the classical mo-
mentum vanishes). This was very important in showing, at
least in one very simple case, that such formulas are possi-
ble to derive, contain only classical ingredients evaluated at
the Fermi energy, and are more accurate than simple sums
over WKB orbitals.

But atoms, molecules, and solids do not have box bound-
ary conditions, so the next important step was to general-
ize to real turning points. By real turning points, we mean
those where the potential is finite at the turning point. This
is tricky. In elementary discussions of WKB, such turning
points are often treated by inelegant stitching formulas, us-
ing distinct generic WKB solutions in the traveling and tun-
neling regions, and approximating the potential linearly in
the region of the turning point. The domains of validity
of these three regions overlap, so that this produces a spa-
tially uniform approximation, i.e., its error vanishes in the

11

limit no matter the value of z. Langer found a more ele-
gant solution to the turning point problem by showing [62]
that an Airy function of an appropriate classical argument
yields a uniform approximation [63, 64] in all three regions,
no stitching required. Thus uniform approximations to in-
dividual eigenstates can be found this way.

However, the trick is to find the density, by analyzing
the sum of the squares of the orbitals. One performs an
asymptotic analysis of this form, yielding the TF result as
the dominant contribution, and finding the leading correc-
tion that still is a uniform approximation. This is a subtle
problem in mathematical physics, and had been attempted
over the decades in different disciplines (notably electronic
structure and chemical and nuclear physics) as we discussed
in Sec. 5. Previous attempts had often yielded partial re-
sults, but none produced the general uniform approximation
that was needed. This was achieved in Ref. [65], for both
the density and a specific choice of kinetic energy density.
Despite being derived in the large-N limit, these formulas
are remarkably accurate for almost any system they can be
applied to.

To write the semiclassical density, we first generalize the
phase formula given in Eq. (57) to

9(5,3:):/ .

where z(€) is the classical turning point at energy € and, for
simplicity we assume v(z) = v(—z). If z < z(€), the phase
becomes complex and we choose that branch on which the
accompanying semiclassical wavefunction decays in space.
The box formula Eq. (57) is just a special case of this, where
the boundaries occur before true turning points appear. The
WKB energy condition becomes

dz p(e, z). (61)

8(e) = O, 2(€)] = (j + %) m o j=0,1,2.. (62)

The 3 is called the Maslov index [66] (and becomes 1 for
two box boundaries, as in Eq. (58)). When this condition
is satisfied, the right evanescent region is given by choos-
ing the other branch. Then 7(e,z) etc. can be defined
analogously to Eq. (59). The density formula is [65]

n*(z) = p (2) Blb: ()] + ¢. (2)C[0: ()],

where B and C are specific combinations of Airy functions.
Here F denotes TF quantities evaluated at j = N — 1/2
in Eq. (62), and g.(z) contains the quantum oscillations,

(63)

analogous to those of the second term in Eq. (60). In
particular
Ai?(—z)
B(#) = VzAi*(— —
0)=Vaarn+ =2
C(6) = Ai(—=2)Ai' (—2),
where z = (36/2)2/3, and
_ We _ pe() ”
%@ = Gl @)p@ e )
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and a;(z) is given after Eq. (60). These formulas yield
uniform approximations to the density. As the semiclassical
limit is approached, the fractional error vanishes everywhere,
i.e., in the classically allowed region, the evanescent region,
and the vicinity of the turning points. For more details see
Refs. [65, 67]. In Fig. 13 we show the remarkable accuracy
of this approximation. Note that even with N = 2, the post-
TF density in Eq. (63) is indistinguishable from the exact
density. And semiclassical approximations only improve as
N increases!

0.8}

FIG. 13. Densities in a Morse potential with N = 2: exact
(black solid), TF (blue dashed), and semiclassical from Eq.
(63) (red dots). Reproduced from Fig. 1 of Ref. [65].

These results first appeared briefly in Ref. [65], while
the full derivation appeared several years later [67]. Their
derivation involves rather exquisite manipulations of prod-
ucts of Airy functions and their integrals [68]. The fi-
nal result, Eq. (63), reproduces all previous attempts
[10, 11, 27, 52-59] under the specific circumstances in which
they were derived. The previous methods of Euler summa-
tion appeared too difficult to apply to this more complex
situation, and instead the Poisson summation formula was
used [65, 67].

Next, the results were applied to about half a dozen spe-
cial cases for which analytic formulas were available, and
in which the leading correction could be explicitly checked
[69]. Moreover, they were also applied numerically to sev-
eral cases where no analytic example was available, showing
great accuracy under almost all conditions.

Consider a potential that rises very rapidly outside a well-
defined region, such as 0 < = < 1. As the limit of infinite
rise is approached, the density will tend to 0 at the edges,
and be dominated by its behavior in the traveling region.
Very likely, Eq. (63) then reduces to Eq. (60), as suggested
by Eq. (A.3) of Ref. [67].

But, in a surprise turn, the integrated energy from such
approximations (which are very accurate pointwise), would
sometimes be Jess accurate than the TF result [69]. This
was finally traced to a very simple source. The expansion
of the density (and kinetic energy density) is in powers of
¢'/3 (here due to this being 1D), but the expansion of the
energy is in powers of . So the crucial question is what
happens to integrated values in the semiclassical limit? For
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example, exactly (ﬁf.rr\/ﬁ)_l =2 (.03 of a particle leaks into
the evanescent region beyond a turning point. This can be
seen in Figs. 5-7 for larger N. So while, pointwise, the
corrections to the kinetic energy are highly accurate, their
integrated effect over the entire system, becomes identically
zero in the semiclassical limit, and likewise for the contribu-
tions to the potential energy due to the density expansion
[69]. To find the leading correction to the energy from this
expansion, one would need the leading three corrections, not
just one! This is very different from the box case, where the
leading corrections in the density and kinetic energy density,
when integrated, directly yielded the leading correction to
the energy, being of the same order.

Moreover, in one dimension, TF theory for the harmonic
oscillator, applied self-consistently, yields the exact energy,
as we saw in Sec. 3. Since most smooth potential wells can
be approximated harmonically, this means TF theory is exact
at the harmonic level, and only anharmonic contributions
lead to corrections. Thus the TF energy in 1D is typically
highly accurate already.

7. POTENTIAL FUNCTIONALS

The astute reader will have noticed that Eqs. (60) and
(63) (and their analogs for the kinetic energy density) are
functionals of the potential. Moreover, unlike the circum-
stances of the gradient expansion (Sec. 8), there is no
obvious path to turn them into density functionals. An al-
ternative is to take them at face value, as functionals of the
potential. This is the potential functional theory (PFT) ap-
proach. But then one can ask, in analogy to DFT, is there
a corresponding variational principle, using the potential as
the basic variable, and could it be applied to these formulas?
If so, would it yield even more accurate answers?

The answer is yes. Yang, Ayers, and Wu [70] had in fact
already explored such a theory for the KS scheme, demon-
strating the duality between potentials and densities, with
specific application to the optimized effective potential pro-
cedure [71], used in the XC problem. But we discuss it here
at the more general level of Hohenberg-Kohn theory [35].
For simplicity, we present formulas for the non-interacting
case, but they all apply to fully interacting arbitrary elec-
tronic systems [72].

Define the kinetic energy as a functional of the potential:

T[’t)] = (‘DU|T|LI'(1:}= (66)

where U, is the ground-state wavefunction of potential
v(z). Similarly, define n[v](z) as the density of that wave-
function. We do not use a mark to distinguish potential
functionals from density functionals, but the argument dic-
tates which functional it is. They are simply related:

Tl] =Tn[]], T[n]=T[n]], (67)

where v[n] is the inverse of the n[v] map. Then clearly we
may write
oo

Elv] = T|[v] +/ dz n[v](z) v(z).

—o0

(68)
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For any pair of potential functional approximations to 7" and
n(z), we get an approximation to E for any potential. We
call this direct application of the potential functionals. But
what about a variational principle? From the Ritz principle,
clearly

Ev] = min {T[ﬂ’] + /Z dz nv'](z) 'u(.r)} ,  (69)

for the exact pair of functionals. For any pair of approxima-
tions, one could perform this search and (possibly) improve
an energy estimate. But a drawback of PFT is the need for
two different functionals. |s there some consistency condi-
tion that these two functionals should satisfy?

The answer is yes, the stationary condition at the mini-
mum, i.e., the Euler equation in PFT, relates the functional
derivatives with respect to the potential. If this relation
is not satisfied, the solution to the minimization problem
makes no sense, and so this should be a required condition.
Moreover, one can functionally integrate the Euler equation
to derive a potential functional for T'[v] via a coupling con-
stant integral over n[v](z). (This constant mutiplies the
one-body potential, whereas usually such constants multi-
ply the interaction potential.) This is important, because
then any approximation for n[v](z) uniquely determines an
approximation for T'[v], and hence the energy. The con-
structed kinetic energy functional is a functional of a func-
tional, which we call an ffunctional [73]. Moreover, varia-
tional compatibility of these two functionals is only guaran-
teed if the density-density response function derived from
n[v](z) is symmetric under interchange of its arguments.
This general condition is compatible with an earlier result
of Gross and Proetto [74], which showed variational com-
patibility if both the energy and density approximations had
been derived from the same approximation to the Green's
function.

The box semiclassical approximations (Eq. (60) for
the density and its kinetic energy density analog) and the
coupling-constant kinetic energy derived from Eq. (60)
alone, via the procedure described above, were compared
for simple cases. The coupling-constant formula was found
to be much more accurate than the original formulas, and
to capture more terms exactly in the asymptotic expansion.
It was found that neither combination minimizes at the ex-
act potential, as neither satisfies the symmetry condition.
Both are more accurate in direct evaluation than at their
minima. The failure of the symmetry condition was traced
to the small normalization error in Eq. (60), which is only
guaranteed to yield N as ( — oo. In Fig. 14 we show how
well PFT approximates the kinetic energy density.

The potential functionals described here are not the same
as the Lieb potential functional [76] or the more general bi-
functional of Englert [77], which is simultaneously a func-
tional of both the density and a potential, and was used to
extract several quantum corrections to TF theory [78, 79].
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FIG. 14. Kinetic energy densities for one particle in a box with
v(z) = —bsin®(wz), and their errors (lower panel). Repro-
duced from Ref. [72], to which the equations and references
refer. Ref. 16 in Ref. [72] is Ref. [47] and the approximation
in green comes from Eq. (60). How can there be two exact
kinetic energy densities? Because only the integrated kinetic
energy is physically meaningful, so as long as both exact den-
sities integrate to the exact value, they are correct. This is
the ambiguity of any energy density [75].

8. GRADIENT EXPANSIONS

If one considers a slowly-varying potential, periodic
throughout space, in which the chemical potential is above
v(z) everywhere, then the traditional gradient expansion of
density functional theory corresponds to our (-expansion.
Essentially, powers of % correspond to gradients of the den-
sity. We illustrate this here in one dimension.

Begin with the density as a potential functional [80]:

o

where p[t](z) = [—2'5(m)]1r/2 and p is determined by nor-
malization and contains corrections to its TF value. Simi-
larly, the kinetic energy density is

+J.

_FilE 1, 7@
27 3 4pio](=)

Many higher orders can be easily generated [80]. Applying

¢-scaling by simultaneously scaling v(z) and 4, as in Eq.

(49), we find
O*mﬁﬂm@)

and similarly for t[v;](z). Integrating up, and accounting
for the scaling of the coordinate yields

,l"jH (:L.)
12p*[3](z)

n[d] 1+ (70)

(-2 |

t[9](x) (71)

0"(¢x)

@) — 2 PIlCe)

ﬂ[‘ﬁc -

+ ) . (72)

Tloc) = ¢* T o] + ¢ AT® ] + CATD o] + ..., (73)

where AT is the jth-order gradient correction [80]. Thus
orders in the gradient expansion correspond to orders in ¢2.
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To make the corresponding density functionals, we invert
Eq. (70), power by power, yielding the potential in gradients
of the density, and insert, to find:

Tlng = ¢*T™ [n] + ¢ AT [n] + ¢ ATO[n] + ..., (74)

where (in 1D) AT® [n] = —TW[n]/3, and TV is the well-
known von Weisacker functional [81],

W] = %/ do

We note that the leading gradient correction in 1D is nega-
tive, which implies that it is not useful to find the densities
of finite systems self-consistently with the GEA in 1D. The
three dimensional analog [82-86] is

nr2 (33)

n(z)

(75)

Tlne] = BT 0] + 2 AT [n] + ¢ ATD ] + ...,

(76)
and the individual contributions differ, e.g., AT(?)[n] =
TW[n]/9. In this section we have described the GEA in
1D and 3D. The GEA in 2D is more subtle, and we refer
interested readers to Ref. [87].

For any infinitely differentiable periodic v(z), the gradi-
ent expansion is likely an asymptotic expansion, just as the
WKB expansion is. We will show later that modern meth-
ods of dealing with asymptotic expansions [88] can produce
tremendously accurate approximations. For now, our point
is simply that (-scaling can be applied to all electronic sys-
tems, but in the special case of a slowly varying gas, an
expansion in ¢ coincides with the long known gradient ex-
pansion. For every system, the leading order term is the
local approximation, but the corrections, for finite systems,
depend on the boundaries, and do not appear in the tradi-
tional gradient expansion.

9. THREE DIMENSIONS

A fun and instructive exercise that introduces the com-
plications of degeneracy in 3D without the complications of
interactions is to consider truly non-interacting electrons in
an attractive Coulomb well. All the orbitals are hydrogenic,
as are their energies. This looks very different from real
atoms, as there is no screening of the nuclear charge. Al-
most all physical properties are very different, even the shell
structure. However, several analytic results are derivable,
making it quite instructive. Moreover, the (single-particle)
potential does not change, so it is truly an example of po-
tential scaling. This is called a Bohr atom [10, 89].

In this section, because of the analogy to real systems,
we switch to doubly occupying the orbitals, so the lowest
non-trivial case is N = 2.

First we give the expansion for the energy in powers of
N. We can find the kinetic energy from the virial theorem:
E(N) = —T(N). The first shell holds 2 electrons with
orbital energy 1/2, the next holds 8 with 1/8, the third
holds 18 with 1/18, and so forth. By elementary means,
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FIG. 15. The exact closed shell Bohr atom energies (black
circles, Eq. (77)) and their approximation in Eq. (79), to
zeroth order (TF, Blue), first order (red), and second order

(magenta) in N~1/3,
Error
Shells| N [Exact| TF [1% corr. (mH)[2"? corr. (uH)
1 2 -1 |—-0.44 58 —29.68
2 10 | -2 |—-047 34 —2.09
3 | 28| -3 |-048 24 —0.38
4 | 60| —4 |—048 19 -0.11
5 [110| -5 |-—0.48 15 —-0.03
6 [182] -6 |-049 13 —0.02

TABLE II. Bohr atom energies with Z = 1 and the errors of
the asymptotic expansion in Eq. (79).

the exact expression, for closed shells only, is

Z2 1
4 (A_Hﬁ),

Ez(N) = -~ (77)

where A3 = 6N[1 — /1 — (972N2)-1]. Unlike for real

atoms, we have an analytic exact expression for the energy.
The number of particles in the s-th closed shell is

N = %s(s +1)(2s + 1), (78)

which is quite different from the usual Madelung rule [90]
for filling shells in the periodic table. The large-N expansion

of Eq. (77) is
AN SRR S
2 2 6(12N)1/3 T

(79)
[91]. For Z =1 and N = 2, this yields 1.0000297, i.e., an
error of only 30 microHartrees! We show how well Eq. (79)
approximates the exact result in Eq. (77) in Table Il. Eq.
(79) is the analog of Eq. (1) in the introduction, with the
electron-repulsion turned off. The exact and approximate
curves are shown in Fig. 15, which is the analog of Fig. 2.
Clearly, the first three terms are sufficient to yield extremely
accurate energies for N > 2.

Ez(N) = —22




Semiclassics: The hidden theory behind the success of DFT

0.9 :
LN e Exact (k=1)
K T s Exact (k=3)
I... AN = Exact (k=10)
[}

FIG. 16. Exact and TF radial scaled densities of closed shell
Bohr atoms, where k is the number of filled shells and g = 7i.

Compare with Fig. 1. For details about the scaling, see Egs.
(82) and (83). Reproduced from Ref. [92].

The TF density is [91],

3/2
w272 (11
nz (T)_ 3,”2 r o N ) (80)
where
B (18N2)1/3 _ é
To="g o Ma= (81)

This is the solution of Eq. (7) without interaction (so that
®"(z) = 0). Inserting Eq. (80) in TT¥[n] of Eq. (4) yields
the leading-order in Eq. (79). The approach of the exact
density to the TF density is shown in Fig. 16, where we
choose Z = 1 and scale the densities by

f(z) = Nn(z), z=N 23, (82)
yielding
. 23/2 (1 1 \*?
VR I N
) =3 (3: 181/3)+ (83)

This is trivially related to the (-scaling in Sec. 4.

Another instructive example is the 3D harmonic oscillator,
with v(r) = w?r?/2. Here, there is no Coulomb singularity
and the potential is infinitely differentiable. The number of
particles in the s-th closed shell is now

Ny = Ss(s+1)(s+2).

3 (84)

For closed shells the exact energy is

()" s (3)].

where & = 1— /1 — 4(243N2)~1. Here, T(N) = E(N)/2

according to the virial theorem. We expand Eq. (85) for

w

2

E,(N)
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FIG. 17. Comparing the exact 3D harmonic oscillator closed
shell energies (Eq. (85), black circles) with their asymptotic
approximation (Eq. (86)): lowest order (TF, blue), first order
(red), and second order (magenta). We set w = 1.

Error
Filled Shells| N [Exact | TF [1*" corr. (mH)[2" corr.(uH)
1 2 3 |03 0.84 —93.2
2 8 18 | =0.7 0.36 —14.8
3 20 | 60 |—-1.3 0.20 —4.4
4 40 | 150 |-2.0 0.13 L7
] 70 | 315 |—2.9 0.09 -0.8
6 112 588 |—4.0 0.06 —0.5

TABLE III. Same as Table II but for the 3D harmonic oscil-
lator with w = 1.

large N:

(3N)4/3 1 1

E,(N) R R TE T YA TET )

2 T
(86)
where the leading term is given by TF theory. We show
how well Eq. (86) approximates the exact result in Eq.
(85) in Table Il and Fig. 17, where the last term makes an
indistinguishable change. The TF density is

2w, — wr)?)Y?
- 372 !

We plot the exact and TF densities for several filled shells
in Fig. 18. In Fig. 19 we take w = 1 and use the scaling

- 6 r
fi(z) = 2\/;”@): T = V3(BN)E

so that the exact scaled densities approach the TF density,

8
2

RTF ('."‘)

W

o = w(BN)Y3, (87)

(88)

A" () = (1222, (89)

as N — cc.

10. ATOMS

We now turn to the more difficult problems of interact-
ing electrons. This section provides a demonstration of how
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FIG. 18. The 3D harmonic oscillator radial densities (dashed)
and their TF approximations (solid) for k full shells with k& =
1 (N =2, black), k =3 (N = 20, red), k = 5 (N = 70, blue),
and k =6 (N = 112, magenta). We choose w = 1.
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FIG. 19. Same as Fig. 18, but scaled (Egs. (88) and (89))
so that the TF density (black) is invariant with respect to N
with 1 (orange), 2 (N = 8, blue), and 6 (red) filled shells.

one can use insight from simple analytic formulas in more
realistic situations. The basic idea is to assume behaviors of
density functionals inspired by the simpler cases, and then
use extremely accurate numerical calculations to extract co-
efficients in those formulas. This is most easily done for
atoms and their ions, because of their spherical symmetry.
In the atomic case, the virial theorem implies that 7" =
—E. The exact kinetic energy is written as T, the KS ki-
netic energy, plus T, a correlation contribution of the same
order as E,, the total correlation energy. Since T, is smaller
than Z5/3 [91], the asymptotic expansion for T is the neg-
ative of that of Eq. (1),
T. = ZT/S _ lz2 5/3
s =Cg 5 +c 277 4. (90)
In Ref. [37], accurate KS calculations were performed for
atoms up to Z = 92, and the values for T} extracted. These
are essentially those of a HF calculation. From these, nu-
merical estimates were made of the constants in the asymp-
totic expansion, and were found to agree with the known
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theoretical values to within about 1%.

Next the gradient expansion for the KS kinetic energy
(in 3D) was applied, term by term, to the highly accurate
densities, and the asymptotic expansion was extracted. Re-
markably, the TF approximation, applied to the accurate
densities (this is the analog of putting the exact density into
the TF functional, Eq. (21)), yields a leading correction of
—0.6622, only a 25% overestimate of the Scott correction.
This was reduced to -0.54 and then -0.52 with the addition
of the 2nd- and 4th-order terms. Moreover, when the coef-
ficients in the gradient expansion were scaled to ensure the
exact asymptotic expansion was recovered, percentage er-
rors for large atoms (beyond Ca) were of order 0.1%, about
5 times smaller than the 2nd order gradient expansion and
much better than fourth-order for small atoms [37]. Un-
fortunately, the improvement for molecular energies was far
more modest. Tests were also run on jellium surface en-
ergies, showing the modifications could worsen the results
of the regular gradient expansion. On the other hand, the
modifications appeared to improve the curvature energies of
jellium clusters.

A new and improved parameterization for the neutral
atom TF density was also given, guaranteeing certain ex-
act conditions, and ensuring various measures of error were
extremely small (often of order 10 #). Formulas for various
measures of the local gradient and higher-order gradients
were also given. This parameterization is much more faith-
ful to the numerical solution of the TF equation than the
older ones of Latter [93] and Gross and Dreizler [94]. It
would be useful to construct a parameterization as a func-
tion of the N/Z < 1 ratio. The energies as a function of
N/Z were given by Tal and Levy [95], but no parameter-
ization of the corresponding densities has been performed.
In the limit N/Z — 0, we recover the Bohr atom results of
Sec. 9.

477 1% n(r)iz*®
e oo 0 0o
— » B OO

o
(=)

o
—_

Z1;’3r

FIG. 20. Accurate (-scaled radial noble gas densities: TF
(black), He (blue), Ne (red), Ar (purple), Kr (gray), Xe (ma-
genta), and Rn (cyan).

The densities used in Ref. [37] are plotted in Fig. 20,
scaled appropriately via Eq. (43) so that all tend to a sin-
gle TF curve, Eq. (9) with Z = 1. Fig. 20 shows the
weak approach of the density to its TF counterpart, as al-
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FIG. 21. Region near nucleus of Fig. 20.

ready seen in models (see Figs. 16 and 19). In Fig. 21, we
show how, while the TF density misbehaves at the nucleus
(it diverges), the region of misbehavior shrinks as Z grows.
To appreciate the subtleties of the density behavior in this
limit, the reader is referred to Fig. 2 of Ref. [36], which
identifies 7 distinct regions, to be contrasted with the rela-
tively simple 3 regions of the Bohr atom (Fig. 16) which are
r < 1/Z (core), 1/Z <r < Z /3 (bulk), and r > Z 1/3
(evanescent). The study of the non-interacting kinetic en-
ergy functional has a long and diverse history (see e.g. Ref.
[96]), and Refs. [97-99] make some recent contributions.

11. EXCHANGE

In this section, we attempt to leap-frog from studies of
the KS kinetic energy (often in 1D) to the more practical
issue of the exchange-correlation energy in KS calculations.
The primary purpose of the earlier studies is to build under-
standing of the local density approximation and the semi-
classical expansion for which it is the dominant term. The
overarching hypothesis is that the success of modern DFT
is precisely because of the accuracy of this expansion. Most
modern approximations start from the generalized gradient
approximation, often combined with a fraction of HF ex-
change [100-102]. Many of the successes and failures of
semilocal DFT can be understood in terms of this hypoth-
esis, including the differences between weakly and strongly
correlated [103] systems, and most failures of such approx-
imations.

The first attempt at such an analysis appears in Ref.
[104]. An important finding is the density scaling conju-
gate to the potential scaling of the Lieb-Simon work, as
discussed in Sec. 4. Regular coordinate scaling has led to
many of the most fundamental exact conditions in DFT,
and can often easily be applied to suggested approxima-
tions. Simultaneous scaling of the particle number is much
more difficult to analyze, but is crucial to our work.

A crucial question is whether our reasoning also applies
to the XC energy used in KS calculations. Does the lo-
cal density approximation (LDA) become relatively exact
in the limit of large ¢? If so, and it appears to be so,
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then LDA is a universal limit of all electronic structure, not
just some approximation with some reference model, as it
is often described. More importantly, what are the next
corrections? One of the greatest improvements in the ac-
curacy of KS-DFT calculations occurred going from LDA
to generalized gradient approximations (GGA's) within the
KS scheme. These (at least in their early forms) began
from the gradient expansion for slowly-varying gases. But
as we have already seen in our kinetic energy calculations in
1D, the gradient expansion does not apply for matter with
evanescent regions (i.e., all atoms and molecules). We shall
see later that it may apply to more solids than expected.

Exchange typically dominates over correlation, at least
for total energies. For neutral atoms Ref. [104] conjec-
tured that the atomic exchange energy has the asymptotic
expansion [105]

Ex(Z)=—cx 2 +ax Z + ..., (91)

where ¢ = 9¢3/11 a2 0.220827 and cg is given in Eq. (10).
As shown originally by Schwinger for atoms [8], the LDA
for exchange [14] (compare with the TF approximation for
Ts in Eq. (4)):

M) = -2 (g)m / SrotlPr),  (92)

produces the dominant term exactly. This has been proven
by Conlon [106] for any system, but not in the strictest
mathematical sense, as the Coulomb singularity is rounded
off. Estimates of a, were made numerically, from tables of
exchange energies of atoms [105, 107].

We define the non-local (NL) contribution to a func-
tional by subtracting the LDA approximation from it. Thus
EN = E, — ELPA and ENY/Ex — 0 as Z — oo. If Eq.
(91) is correct ENY — AaxZ (Aax = ax — akP?) in the
semiclassical limit. It was found that the gradient expansion
underestimates Aay by just about a factor of 2.

Refs. [91, 105] found that the two most commonly used
GGA's for exchange, the Becke 88 GGA [108] and the ex-
change contribution to PBE [109], both recover Aay in Eq.
(91) very accurately. This makes sense from a pragmatic
viewpoint. Their most significant improvement over LDA
is in atomization energies, the difference in energy between
a molecule and its constituent atoms (a.k.a the cohesive
energy of a solid). Thus, if these approximations were not
highly accurate for atoms, they would be unlikely to yield
accurate atomization energies.

Another insight from these results is a reverse-engineering
derivation of the single empirical parameter in B88 [105].
Assume the asymptotic correction for the exchange energy
of atoms is precisely a factor of 2 larger than it's value
in the gradient expansion, and then solve for the value of
that parameter that reproduces this result. This value is
within about 10% of the value chosen by Becke, based on
fitting to the exchange energies of noble gas atoms [108]
(and Becke even considered earlier fitting the large-Z limit,
before doing this [110]). This work showed that Becke's
insight was correct in two important ways: (a) he recovered
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the appropriate coefficient with his procedure and (b) he
did not wait 18 years for a more detailed derivation before
publishing. The B88 functional played a crucial role at a
crucial time in the adoption of DFT within chemistry [111].
The B3LYP functional, a global hybrid of GGA (B88) and
Hartree-Fock exchange, is still the most used functional in
chemistry today [112].
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FIG. 22. Exact noble gas non-local exchange energies (not
including He) and their linear extrapolation.

Fig. 22 shows an extrapolation of EX* as a function
of Z, to deduce the value of Aay, while Fig. 23 shows
the percentage error of various GGA approximations to the
exchange energy with increasing Z. All of these reduce to
LDA when the density is uniform. Excogitated B88 is B88
with the asymptotically correct parameter [105].
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FIG. 23. Percentage error in various GGAs for exchange en-
ergies of atoms. The details of the MGEA functional can be
found in Ref. [105], from which this figure is reproduced.

We briefly return to 1D problems, where WKB-style ap-
proximations are straightforward. A key question is: if we
have good approximations for densities as functionals of the
potential, can we generalize these to make approximations
to the density matrix of non-interacting particles:

N
n(z,z’) =Y (93)
§=0

¢;(2")o; (),
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FIG. 24. Errors in a model 1D exchange calculation as a
function of particle number. Reproduced from Fig. 1 of Ref.
[113].

as Ex can be extracted from this object? (The density is
just the diagonal of the density matrix). In fact, this is pos-
sible for the 1D box problem of Sec. 5, where we found that
the leading corrections to local potential approximations for
the kinetic energy density led to the leading corrections to
the kinetic energy. Thus for 1D box problems spectacu-
lar improvements in the accuracy of E, are possible. Fig.
24 shows total energy errors in an X-only calculation, for a
model box problem, while keeping the potential fixed, in-
creasing the particle number, and doubly occupying the or-
bitals. Because this is 1D, the electron-electron repulsion is
chosen to be non-Coulombic. For LDAX, the error increases
with IV, but Ey increases much faster, so the fractional er-
ror is vanishing for large N, consistent with F becoming
local in that limit. The blue line shows results when a KS
calculation is performed and the semiclassical correction be-
yond LDA is applied. The errors are undetectable by eye for
N > 2. Moreover, even if we treat the entire energy semi-
classically, using the kinetic energy approximations of Sec.
5, we still achieve extremely high accuracy, far beyond that
of any existing 3D approximations. These results suggest
that much more accurate approximations to E are possible,
but require derivations (or at least insight) beyond 1D.

12. CORRELATION

In Secs. 10 and 11 respectively we have shown that lo-
cal approximations for both the KS kinetic and exchange
energies become relatively exact in the semiclassical limit,
at least for atoms. As correlation is negligible relative to
exchange in this limit, this guarantees that LDA becomes
relatively exact for XC in the limit.

But does correlation alone become relatively exact? This
would provide a much stricter condition. The answer is that
in fact it does for atoms. This follows from a very detailed
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analysis by Kunz and Rueedi [114]. To see this, start with

ELPAp) = ] a7 n(r) e [n(r)), (94)

where €27(n) is the correlation energy per electron of a uni-

form electron gas with density n. This is now well-known
to within about 1% from quantum Monte Carlo calculations
[115] and exact constraints [116], including resummed per-
turbation theory for the high density limit. As the density
is ¢-scaled to large (, it becomes large. In this high density
limit, Gell-Mann and Brueckner [117] showed that

unif

e =qlrs+n+..., re—0, (95)

where r, = (3/47n)'/3 is the Wigner-Seitz radius, a mea-
sure of density, and

_1—1In2
’Y_ 71'2

~ 0.03109069, (96)

and n ~ 0.04692032 [117-119] is written in Eq. (21) of
Ref. [119] (up to a factor of -2) as

3¢(3)+10 5
42 12

+ %[(47 +1)72 +4In(372) — 5—6Q)],

(97)
where ((z) is the Riemann zeta function (Sec. 25 of Ref.
[46]) and

J 7o dug® (w)Ing(u)
[T dug?(u)

where g(u) =1 — uwarctan(1/u) (Egs. (10) & (12) of Ref.
[119]). To 40 digits, Q is

Q= (98)

—0.56506550741801572697652243519352338115111,

which appears not to have been precisely calculated before.
Combining Eqs. (94) and (95) yields (independent of the
details of the density):

Eo=—(AcnZ —Bo)Z + ..., (99)

where A, = 2v/3 ~ 0.0207271 and [91]

BLDA — g[ln(SbB) — I)] - ~ —0.00479524,  (100)

where b = (37/4)%/3/2 and I, ~ —3.331462 [91] is an
integral over the TF density:
e ®(z)]%?
b= [Taef@nf@, =22 a0
0

where ®(z) is defined in Sec. 2. The derivation of Kunz and
Rueedi produces the first term as the leading contribution
to atomic correlation in this limit. Thus it implies that LDA
correlation becomes relatively exact here. However the LDA
value for B, is highly inaccurate for atoms (about ten times
too small and of the wrong sign). Refs. [91, 104] used an
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older estimate for n (0.04664) yielding a different value for
BLPA (L0.00451).

A striking feature of Eq. (99) is how slowly the large Z
limit is approached. For Ty and E, the leading corrections
differ from the leading terms by factors of Z~1/% and Z~2/3
respectively, and even this is annoyingly slow (only reaching
0.2 at the end of the usual periodic table). But correlation is
far far slower, because the dominant term grows only loga-
rithmically. Thus if A. = B, then Z must be greater than
20,000 before the second term is reduced to 10% of the first,
and 10%3 before it is 1%. This has important consequences
for the role of LDA in functional construction for correla-
tion. At any earthly value of Z, LDA correlation is not close
to true correlation, because of its error in B,. The most
popular correlation functional in chemistry, LYP, does not
reduce to LDA in the uniform limit for this reason, i.e., that
limit is irrelevant, especially for the lighter elements that are
crucial to many applications, such as organic chemistry.

On the other hand, the correlation of PBE was designed
to respect certain exact conditions, such as recovering the
uniform gas correlation energy when the density is constant,
but also producing a finite result when coordinate scaling a
finite system to its high density limit [109]. Because of
those conditions, its high-density expansion matches that
of Eq. (99), with a value of B, within a few percent of the
numerically extracted value for atoms.
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FIG. 25. The non-local correlation energy per electron within
PBE, LYP, and accurate QC calculations as a function of
inverse highest occupied shell for noble gases (points). PBE-
asy is Eq. (95) evaluated on the exact density. Reproduced
from Ref. [120].

Fig. 25 shows the asymptotic behaviors of various ap-
proximate functionals. The figure does not include LDA,
as LDA is too inaccurate to appear on this scale. We see
that even PBE correlation is not quite asymptotically cor-
rect, which led to the development of acGGA, where ac
denotes 'asymptotically corrected' [120]. The acGGA yields
the most accurate correlation energies for large-Z atoms
of any GGA in existence, precisely because it recovers the
asymptotic expansion.

Very recently, it was shown that [121], for both exchange
and correlation, one can also approach these limits from an-



Semiclassics: The hidden theory behind the success of DFT

other direction, by studying the large-Z behavior at fixed N
(where N = 1 corresponds to the Bohr atom of Sec. 9) and
then considering N — oc. This might allow the extraction
of even the neutral asymptotic coefficients more easily, as
large-N interacting calculations may not be necessary. For
more information on correlation, we refer the reader to Refs.
[91, 120].

13. IONIZATION ENERGIES

While total energies can be useful as tests of approxi-
mations, all practical calculations are of energy differences,
such as atomization energies or ionization potentials. It is
entirely conceivable that the semiclassical limit for the total
energy is irrelevant to such calculations. In this section, we
explore the simplest possible energy difference, the differ-
ence between the N and N —1 particle systems, to see how
accurate our approximations are for this quantity.

Because our individual eigenvalues are positive in some
cases and negative in others, we define the ionization po-
tential of any system as

I(N)

|[E(N)—E(N —1)|. (102)
For non-interacting fermions, this is the magnitude of the

N-th eigenvalue. For TF, as N — oo, I™F(N) — |pu|. For

the flat box
1 1
(1 N W) :

to be compared with the exact answer of 72N?2/2L2. Thus,
once again, the fractional error in the TF estimate vanishes
for large N. For the harmonic oscillator, this difference is
exact, as TF yields exact energies. The exact PT ionization
energy is

) 7T2N2
IEF(N) = 2L2

(103)

2
I,(N) = (1+ ) (N — %) - N? (104)
Its TF approximation is
1 1 1 N?
I3¥(N)=v2D (N - 5) +3 (N - g) - - (105)

Thus for the PT well the exact ionization energy and its
TF approximation agree as N — oo with N « /D, each
matching |z| of Eq. (30).

The LHW does not have a closed form exact expression
for I(N), but its TF and next order corrections are

3 1 4 |4
= S BTE)AINS — (N = 1)),

ALD(N) = S(3F)NYS — (N =12/,

I™(N
) (106)

For large N, I'F(N) — (3rFN)?/3/2 agreeing both with
|| from Eq. (37), and the leading order WKB approxima-
tion, Eq. (35). Since we do not have an exact analytic
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Error
N| I TF |[1°' corr. (mH)
2 |3.24461 | —0.33 —5.9
3 |4.38167 | —0.28 -3.6
4 |5.38661 | —0.25 —-2.5
5 [6.30526 | —0.23 -1.9
6 |7.16128 | —0.21 -1.5
7 | 7.96889 | —0.20 —1.2

TABLE IV. The exact, TF, and leading correction to the
LHW ionization energy with F' = 1.

(I —1)/I
~0.0279
~0.0139
—0.0083
—0.0056
—0.0040
—0.0030

=1 O O = L B

TABLE V. The relative error of the TF shell ionization energy
for the 3D harmonic oscillator.

expression to compare with Eq. (106), we show that Eq.
(106) becomes relatively exact as N — oo in Table IV.

For our 3D model systems, we have given answers only
for closed shells, so here we define

I(s)

as the energy of the last shell, where s is the number of
closed shells. For the Bohr atom I(s) = Z2, and its TF
approximation is

|E(Ns) _E(Ns—1)|! (107)

IEF(3)=2231/3((15—(1 s)! a.g:(s—}-l) (3+%)

(108)
Taking the large s limit yields
. 1

IT¥(s) ~ 22 (1 + @) , 8 — 0. (109)

Thus the TF results become exact as s becomes large. The
exact ionization energy of the 3D harmonic oscillator can be
calculated from Egs. (84) and (85), although the expression
is cumbersome. The TF approximation to the ionization
energy is

I37(s) = Zls(s + 1]¥°[(s + 2)** = (s = )*/*], (110)
and I'F(s) — ws® as s — co. In Table V we show that the
relative error of the TF approximation to the 3D harmonic
oscillator ionization energy again goes to zero, i.e., the TF
result becomes exact as the number of electrons becomes
large.

So, in all our non-interacting examples, TF vyields the
exact ionization energy as N — oo. This begs the question:
Does TF theory yield I correctly in the large Z limit of real
atoms? Mathematical physicists [122] have long pondered
this question.
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A complication arises due to the periodic table. Each row
corresponds to the filling of a shell, and ionization potentials
vary across rows, as well as down columns. We use the
Madelung rule [90] to populate the shells, and consider large
Z in the non-relativistic limit. Then, one can ask if the shell
structure survives and if so, is there a well-defined limit?

The answer appears to be yes, as shown in Fig. 26. By
performing Hartree-Fock calculations for up to 3000 non-
relativistic electrons, it was possible [123] to extrapolate
down each column to the infinite-Z limit and find a weaker,
but still quite distinct, variation across rows. Moreover,
both LDA exchange and PBEX reproduce this curve, within
numerical error of the extrapolation. Thus local approxi-
mations yield the correct answer in this limit. It was also
found that, even with correlation turned on, LDA and PBE
almost coincided, suggesting that LDA may become exact
for the exact ionization potential, even if Z is still very far
from the limit where the total energy is accurately given by
LDA.

(ev)

I (2 -> »)

0 L L
1 2 3 4 5 6 7 8

groups of the periodic table (from alkali metals to noble atoms)

FIG. 26. Ionization energies extrapolated to infinite Z, ex-
actly and with two XC approximations. The green horizontal
line is from extended TF theory. Exact results are HF cal-
culations, extrapolated to the infiniteth row, and agreeing to
within numerical accuracy with the exchange contribution to
both functionals. Accurate results for XC are still beyond the
capabilities of current quantum chemistry. Reproduced from
Ref. [123].

Incredibly, if one averages HF over rows, the resulting
single number (3.02 eV) matches almost exactly the result
of an extended-TF calculation on TF densities, a number
predicted more than 30 years earlier by Englert [10, 124],
I = 3.15 eV from simple integrals over the TF density,
without needing to perform any modern electronic structure
calculation.

14. PRACTICAL FUNCTIONALS

Atomic studies [91, 105, 107, 120] have estimated the er-
ror of the gradient expansion for exchange to the true lead-

ing correction to LDA in the semiclassical limit. Roughly
speaking, the gradient expansion was found to underesti-
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mate this correction by close to exactly a factor of two.
Because the asymptotic expansion works remarkably well,
even down to Z = 1, this error produces unacceptably inac-
curate GEA exchange energies of atoms. On the other hand,
the two most popular GGA's, B88 and PBEX, and a popular
meta-GGA at that time, TPSS, recover this coefficient fairly
accurately (and very accurately in the case of B88). This
somewhat explains their successes in chemistry and mate-
rials, and demonstrates their asymptotic correctness to this
order, at least for neutral atoms. One could hope that this
remains true for the energy differences between molecules
and atoms, i.e., atomization energies, so that this explana-
tion partially explains their success for bonding, i.e., if they
failed to satisfy this condition, they would not be usefully
accurate for bond energies.

On the other hand, this leads also to a kind of reverse
engineering as far as materials applications are concerned.
For bulk metals, there are no classical turning points at
the Fermi surface, so the gradient expansion approximation
should be more appropriate, and B88 and PBEX less so.
Combined with a condition from the surface energy of a
uniform gas for correlation, this led to the construction of
PBEsol [107], a revision of PBE targeted at solids, which
restores the correct gradient expansion. PBEsol proved to
yield more accurate lattice parameters and bulk moduli for
solids, but sacrifices accurate cohesive energies to attain
this. (It may be impossible to find a single GGA that does
both.) This has since proven very useful in many solid-state
applications [107]. On the other hand, it further highlights
the difficulty of capturing accurate geometries and energet-
ics for both molecules and metals with any GGA. Since the
appearance of PBEsol, the numerically-found leading cor-
rections to LDA energetics of neutral atoms have also been
built into several popular functionals, including the popular
SCAN meta-GGA and its variants [125], as well as several
from Constantin et al. [126], and the acGGA discussed in
Sec. 12.

Just recently [127], the question of whether or not turn-
ing surfaces exist in solids has been explored using state-
of-the-art KS-DFT calculations. It was found that even for
semiconductors with moderate gaps, there are no turning
points at the energy of the highest occupied KS eigenvalue,
and so no classically forbidden regions in space. However,
usually a moderate expansion of the lattice parameter for
the semiconductors does lead to forbidden regions, just as
a defect does in a metal. For insulators, there are typically
forbidden regions, even at equilibrium. Thus, the appear-
ance of such regions can be roughly correlated with con-
duction properties. This is very different from molecular
calculations, where almost all space is classically forbidden
and only a region around the molecule is classically allowed.
The lack of classically forbidden regions in semiconductors
and metals explains improved geometries with PBEsol rela-
tive to PBE [107].
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15. SUMMING UP

In Sec. 5, we saw that, by creating a uniform approxi-
mation for the kinetic energy density in a box problem, we
automatically found the leading correction to the local ap-
proximation for the kinetic energy. However, as we discussed
above, the uniform approximations described in Sec. 6 for
open boundaries yield highly accurate densities and kinetic
energy densities, but this improved pointwise accuracy over
TF does not translate into better energies. To find correc-
tions to the energy from uniform densities we would have to
calculate our approximate density to two more orders, which
appears to be an exhausting task [48]. Moreover, the TF
approximation is exact for a harmonic oscillator. Thus any
corrections only show up in the difference between the ki-
netic energy of a well and its harmonic approximation. This
seems likely to explain the extraordinary accuracy of kinetic
energy densities in 3D yielding little improvement in overall
energies [128].

This would seem to signify the end of the road for this ap-
proach to finding leading corrections, and indeed, we need to
make a diversion. That entire approach was based on find-
ing expressions for the density as functionals of the poten-
tial, deriving approximations that are uniform in real space.
But the true issue of interest is not the density, but the total
energy of occupied orbitals. So, the heart of the matter is:
Can we find the asymptotic expansion for the energy under
semiclassical scaling, regardless of the density? If we cannot
do this, we cannot solve this problem.

Looking back on the results of Ref. [69], we see that in
many specific cases with analytic solutions, the semiclassi-
cal expansion was extracted for both the eigenvalues and
their sums, because in these model cases, exact analytic
formulas were available. Thus the question becomes: Can
one (for a general 1D problem) directly sum the energies of
N orbitals, and find the semiclassical expansion to arbitrary
order for that quantity? In general, one would expect this
to be an asymptotic expansion, with coefficients that are
finite only if the potential is infinitely differentiable. In non-
trivial cases, this means modern tricks of asymptotics, in-
cluding superasymptotics and hyperasymptotics [129-131],
are needed, to be certain that one has indeed found the
correct general terms in such an expansion. This will be the
subject of this section.

These corrections can be found by taking the semiclas-
sical limit of eigenvalue sums, to which we now turn our
attention. In this section, we summarize relatively recent
work employing techniques of asymptotic analysis to find
expressions directly for the expansion of sums of eigenval-
ues from the expansion of the individual eigenvalues (WKB
expansion), without explicit construction of densities, as in
Secs. 5 and 6 (or subsequent inversion to make density
functionals, as in the gradient expansion of Sec. 8).

Here, we will go beyond the leading terms in the semi-
classical expansion. We generalize Eqs. (57) and (58) to
include the next correction in the WKB expansion, applied
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to any problem (box boundaries or not) [19, 132]:

0 (e) + AP (€) + ... = 2. (111)

Now the superscript 0 denotes the original WKB contribu-
tion, and 2 denotes the leading (second-order) correction,
which depends on derivatives of the potential. Here we
have generalized the index in Eq. (111) to a continuous
real number z. The value of z is an integer for box bound-
aries, half-integer for two real turning points, and j + 3/4,
j =0,1,2... for a half-space. Inversion of the above, power
by power, yields €% (2) + Ae(® (2) + ... etc. Eqgs. (27) and
(35) are examples of this expansion.

The zero-order case is elementary, as the sum over such
levels becomes an integral in the limit:

ETF(N) = In[e®] = / Y 4202, (112)

0
i.e., the semiclassical limit of the sum of WKB levels is the
TF solution [47]. One can consider TF as the natural gen-
eralization of WKB to three dimensions, and even deduce
individual eigenvalues from derivatives of TF energies with
respect to N, i.e., the TF chemical potential. In the specific
case of a smooth potential with a parabolic minimum, the
energy to next order is [133]

1 de©@ |V

E(N) = Iy[e®] - 21 dz |’ (113)

where €2 = ¢(© 4+ Ae(® is the WKB solution to 2nd or-
der. The first term on the right hand side of Eq. (113) is
the universal leading order TF term I[¢(?)] and the analog
(In[A€?)]) of the term that is kept in the gradient expan-
sion approximation—-Eq. (70), i.e., the leading correction for
a slowly varying gas, where the eigenvalues are continuous.
The second term is the crucial missing contribution for a
finite system, where the spectrum is discrete and discrete
sums yield corrections depending on the end-points, just as
in Secs. 5 and 6. The significance of Eq. (113) is that it is
a functional of v(z), unlike all specific cases in Sec. 3.

We illustrate the importance of the correction on the PT
well (described in Sec. 3). In this case, the expansion yields
an infinite series but, unlike more general cases, one that
is absolutely convergent, unless D is very small. Table VI
reports results for a well that binds 6 states. The TF re-
sults become relatively exact in line with the LS theorem
as ( — oo. We refer to ignoring the end-point contribu-
tion to the integral in Eq. (113) as the GEA, not because
this is exactly the same as using the gradient expansion
approximation in the density, but because the same terms
have been included (here as a functional of the potential).
We see that, without the end-point contributions, the GEA
over-corrects TF, yielding results that are sometimes better,
and sometimes substantially worse. When we include the
end-point correction, we find errors are never larger than a
milliHartree, i.e., below the threshold for chemical accuracy.

But it is entirely possible that we are being misled by
potentials for which we have analytic formulas for their en-
ergies (box, harmonic oscillator, PT, and Morse). Because
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Error
N| E(N) | TF [L.[e€?]] 1% corr.
1] 2.9221(0.07] —0.04[1.5x10°°
2 |11.1886(0.13| —0.08 (6.2 x 107°
323.7993(0.16| —0.12[1.4x 10~*
4 139.7543(0.18| —0.17 (2.5 x 10~*
5 |58.0536(0.17| —0.21(3.8x 10~*
6 |77.6972(0.14| —0.25|5.5 x 10~*

TABLE VI. The exact, TF, TF + In[e(z}], and true leading
TF correction (TF + I.[e®)] + boundary term) for the PT
well of depth D = 20.

Error
il ¢ [WKB| TF [L.[e®]] 1% corr.
0| 2.92214] 0.12] 0.07] —0.04|1.5x10°°
1| 8.26643| 0.10| 0.05| —0.04 (4.6 x 107°
2/12.61072| 0.08| 0.03| —0.04|7.7x107°
3/15.95501| 0.06| 0.01| —0.04|1.1 x10™*
418.29930| 0.04|-0.01| —0.04|1.4 x 107*
5/19.64359 | 0.02|—0.03| —0.04|1.7 x 10~*

TABLE VII. Same as Table VI but for eigenvalues calculated
from WKB and €¢; = E(j + 1) — E(j). The first correction to

TF is identical to the leading correction to WKB, @ from
Eq. (113).

of this simplicity, the semiclassical expansion is finite or at
least convergent in these cases. But we expect that in gen-
eral this expansion is asymptotic and we need to know if
these methods work as well in such cases.

To study this, the simplest case is the linear half-well of
Sec. 3. The eigenvalues are given by zeroes of the Airy
function, and their expansion is indeed asymptotic. To deal
with such expansions, we introduce technology that may
be unfamiliar to the typical reader [88, 129-131]. If we
fix the order in the expansion, just as in the PT case (two
terms), errors decrease as the level increases, implying that
the worst case is the ground-state. Because the expansion
is asymptotic, at some (not very high) order, adding terms
increases the error. But one can look at the magnitude of
the contribution to each order, and identify at which order
the magnitude of the addition is smallest. For any given
level, truncation at the smallest addition is called optimal
truncation, yielding the optimal choice for that level. Thus

Error
N| E(N) TF |1 corr. (mH) |2 corr. (mH)
1| 1.8558|—0.5172 40.5 —6.4
2 | 5.1004 | —0.8507 34.6 —2.6
3 | 9.4820|—-1.1291 31.0 —-1.5
4 |114.8686 | —1.3769 28.5 —-1.0
5 |121.1739 | —1.6042 26.7 —0.8
6 |28.3352 | —1.8164 25.2 —0.6

TABLE VIII Same as Table VI but for the LHW with F' = 1.
Boundary corrections to E(N) do not appear until the second
order.
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optimal truncation at each level yields overall results that
are typically better than those of truncation at any fixed
order, and so are called superasymptotic.

But one can go considerably further. By finding the lead-
ing behavior of the coefficients in the expansion as the order
grows large (usually an asymptotic expansion, this time in
the order), one can re-sum the series to all orders, pick-
ing up even more of the subdominant terms, achieving still
higher accuracy. One can also analyze optimal truncation,
and derive a better choice of how much of the next term
should be included. Incredibly tiny errors can be achieved
with such methods, but they require knowing the expansion
to many orders [129-131].

---------------------- present KS-DFT

Logqo|Error|
I I
NS d&d Ao

6 8
Order

10 12 14

FIG. 27. The summation approximation for the linear half
well with N = 2 (squares) and N = 3 (circles), with the regu-
lar asymptotic approximation (red) and the hyperasymptotic
approximation (blue).

So we apply our summation procedures to the asymptotic
expansion of the eigenvalues, at least in some specific cases.
If the problem is one with an infinite discrete spectrum, we
can find an extremely cool result, using the Euler-Maclaurin
summation formula [134]:

EM(N) = Eoo — f dj é(j) ~

M
+ ) bm €D,

4 m=1
(114)
where €(j) is a smooth monotonic interpolation of ¢€; for
non-integer values of j, M is the order of the asymptotic ex-
pansion, and b,, = By,,,/(2m)! where the B,,, are Bernoulli
numbers [135]. Here E, is the (very carefully) regularized
infinite sum over eigenvalues [136]. In the right hand sides
of Egs. (114)- (119) f(®)(x) always denotes the n-th deriva-
tive, not the n-th order of f(z). In Fig. 27, we show just
how small the errors can get with asymptotics by show-
ing the asymptotic and hyperasymptotic approximation to
the sum of the first two and three linear half-well levels.
By performing the expansion up to 12 orders, we can opti-
mally truncate, yielding the red curve. The error is about
0.1 nanoHartrees! Moreover, we can reduce that error by

almost two orders of magnitude, using hyperasymptotics.

Why is this so important? This shows that, in an ex-
tremely simple case, in principle it is possible to achieve this
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ridiculous level of accuracy, once the asymptotic expansion
can be calculated to many orders. Since we have shown that
the gradient expansion of DFT is simply the semiclassical
expansion in the specific case of a slowly-varying gas, this
strongly suggests that similar accuracy is in principle pos-
sible, which would increase the accuracy of DFT by many
orders of magnitude, moving it from moderate accuracy to
far beyond chemical accuracy.

Is getting errors of order picoHartrees not something of
overkill? No. In this simplest of all possible cases, the point
is to show how far one can go with these summation formu-
las. Moreover, for the individual eigenvalues the generation
of arbitrarily high orders and the asymptotic behavior of the
coefficients in the asymptotic expansion is essentially the
equivalent of finding the exact answer. The same applies to
the sum over eigenvalues. By achieving such accuracy, and
more importantly by understanding it, we can have complete
confidence in such expansions.

Why can't this be done immediately for DFT, at least for
the KS kinetic energy? The answer is that we have only
done this for a few simple potentials, not as a general func-
tional of the potential. In one dimension, we do know the
semiclassical expansion of the individual eigenvalues as func-
tionals, as well as the gradient expansion. Thus we should
be able to derive the correction terms, as functionals of the
potential. A small step needed toward this goal is to better
understand the role of the boundaries. These show up in
the Maslov index [66] in the semiclassical quantization con-
dition. If these are explicitly included, one can find a general
result that explicitly accounts for the boundary conditions
(hard walls, true turning points, or periodic) [48].

To understand this general expression, begin from the
Euler-Maclaurin formula given by Hua [137], and integrate
by parts p times:

P k +1
. -1 —1)? =
> 10 =Y 5o SR, )
a<i<b k=0
where the end-point contributions are
b
Dy = [P(2)f* ()] (116)
and the remainder is
b
R, = / dz Py(z) fP (). (117)

Eq. (115) is true for any p > 1, so long as the p-th derivative
of f(z) is continuous. Here, the term f(~1)(z) is simply the
anti-derivative, so the integral is Dy. The Py are periodized
Bernouilli polynomials (Sec. 24 of Ref. [46]), and Px(1) =
By. This leads to the following exact formula for the sum
of eigenvalues

b lp/2]
E(N):/ dze(z) = 3 k€ D) +4,, (118)
@ k=1
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where b=N +1/2 —v, a =1 —v, v is the Maslov index,
2

(1-%):

and A, is of order é?P)(N) and is given exactly by

_ By

% = (2k)!

P Bk

k!
k=1

_1)p+1

A, =— éFD(a) + ( o R,. (119)

(Since the integration interval is no longer an integer, R,
does not vanish beyond a maximum p for simple powers.)
This is an exact formula for all potentials that are sufficiently
smooth (the p-th derivative must be continuous), and can
be applied with any p > 1, and to any boundary conditions.
It recovers the exact result for the box (v = 1), the har-
monic oscillator and PT wells with two real turning points
(v = 1/2), and the asymptotic expansion for the linear half
well (v = 3/4) with one real turning point and one hard
wall. Moreover, when the WKB expansion is asymptotic,
Eq. (118) recovers the asymptotic expansion of the sum of
the eigenvalues, Eq (114).

All the applications to model systems described here use
potentials that are smooth, and that can be differentiated
to all orders. An interesting question is to consider less
smooth potentials, such as a truncated linear well or har-
monic oscillator. Ref. [138] shows the regular asymptotic
expansion misses the contributions due to truncation in ev-
ery order, but also how to use asymptotics to recover these
exponentially small contributions.

There is also the question of dimensionality [139]. The
WKB formulas apply only in one dimension. These sum-
mation procedures can be applied in any dimension, and
the particle in a two-dimensional incommensurate box was
examined in Ref. [134], showing that the summation for-
mulas did not yield worse results than standard semiclassical
methods.

We are also studying the general quartic oscillator, v(z) =
az? + bz*, with an emphasis on the double-well potential,
in order to better understand these asymptotic expansions.
Toward this goal, we recently published benchmark results
for these systems [140], which should prove useful in various
contexts in chemical physics and beyond. Unlike the other
potentials we have discussed, the general quartic oscillator
has no simple analytic solutions and its potential is not scale
invariant.

16. CONCLUSIONS

So, what has been learned in this romp through the con-
nection between semiclassics and DFT? Probably the single
most important thing is that functionals become local in
the semiclassical limit discussed here. Thus local density
approximations are a universal limit of all electronic sys-
tems, be they atoms, molecules, or solids. One can then
use a uniform gas calculation to deduce the exact form of
a local approximation, or even fit it with an inhomogeneous
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Error

Atom | Z Exact LSD | PBE |3 corr.
H [1 —0.500| 0.021]—0.008] —0.097
He |2 —2.904| 0.069 | —0.072 0.027
Ne [10| —128.937| 0.704| 0.036| —0.461
Ar |18| -—527.539| 1.593| 0.144| 0.679
Kr [36| —2753.94 | 3.79 | 0.45 | —0.58
Xe |b4| —7235.23 | 6.37 | 0.91 0.22
Rn |86|—218725 |[11.2 1.8 —0.2

TABLE IX. Same as Table I but comparing LDA, PBE, and
a third order correction extracted numerically.

system by scaling to the semiclassical limit. We claim that
this is the key to understanding approximations in DFT, and
the success of semilocal approximations.

We have followed a thread from the land of TF theory
for atoms all the way to modern XC approximations for
use in KS-DFT. Along the way, we have considered mostly
the kinetic energy of non-interacting electrons in 1D, where
we can derive many results from the WKB approximation,
either for the eigenfunctions (to approximate densities) or
eigenvalues. We can bootstrap the functional forms that
can be derived in 1D to their 3D counterparts for XC.

To illustrate these connections, we apply some of the
methods from the middle of this article to connect our start-
ing point (TF theory in Sec. 2) to our end point (asymp-
totics in Sec. 15). We began with TF theory, and showed it
yields the leading term in the asymptotic expansion of the
energies of atoms. We also showed how the next two correc-
tions are given by simple integrals over the TF density, and
we found results that were typically within a factor of 4 of
HF results. But we can also make a naive guess at the next
term. We guess it is proportional to Z4/3, and fit the con-
stant to the numerical data, crudely, to find ¢3 ~ —0.058.
Addition of this term yields the last column of Table IX,
which now has extraordinarily small errors (which alternate
in sign, due to the fitting). With our guessed correction, our
four simple terms yield energies competitive with a modern
GGA, as we show in Table IX. Naturally, it beats these cal-
culations for the largest Z values, which are most dominated
by the asymptotic expansion. If we only knew how to calcu-
late this series for molecules and solids, we would not need
the KS scheme at all!

To make the connection between the expansion we began
from (Eq. (1)) and the asymptotic expansions of Sec. 15,
in Fig. 28 we plot the fractional errors for the energy of suc-
cessively heavier neutrals (different colors) as a function of
the number of terms included. We see many trends similar
to those of Fig. 27, although little sign of increasing error
(and the magnitude of successive terms always decreases,
even for Z =1).

Thus 1D examples can give insight into the 3D world.
The end-point corrections to the integral forms, arising from
the boundaries of finite systems, such as Eq. (113), mean
that the gradient expansion does not yield all contributions
to the semiclassical expansion for such systems. We saw in
Sec. 15 that it is possible to derive corrections for simple

| | |
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FIG. 28. The errors of successive orders of the large Z asymp-
totic expansion of neutral atomic energy from zeroth (TF) to
third order, for H (black), He (blue), Ne (gray), Ar (magenta),
Kr (orange), Xe (brown), Ra (red). Here the 3rd order is the

assumed form with fitted coefficient —0.0582%/%,

systems as functionals of the potential. We do not yet know
how to turn these expressions into density functionals. The
null result of Sec. 6, showing how improvements in kinetic
energy densities pointwise can produce little or no improve-
ment in the kinetic energy, appears very relevant to studies
of the kinetic energy density in DFT [99, 141]. Moreover,
the different cases studied in Ref. [99] can be classified
by their Maslov index. Radial problems have a Maslov in-
dex of 3/4 just like the LHW, because the origin acts as
a hard wall, at least if the TF density has finite measure.
Possibly one should classify Coulomb potentials differently
from those lacking a cusp at the nucleus. The same anal-
ysis can also be applied to the older literature on surface
energies [142], jellium spheres [143, 144], and defects in
solids [145], as well as yielding a connection between the
traditional gradient expansion and the Airy gas [146] and
subsystem functionals [147-149].

In the meantime, we can use insight from these studies
to improve understanding of the behavior of the XC energy
used in KS-DFT calculations. We want to understand the
leading corrections to local density approximations for any
component of the energy functional. We see that while
exchange rapidly approaches its local limit with increasing
Z, this is not true for correlation, where the LDA contri-
bution scales only as ZInZ, and thus requires unphysically
large values of Z to dominate. This explains why popu-
lar molecular approximations for exchange usually respect
the uniform limit, but those for correlation do not. If they
did not do so, they would be highly inaccurate for large Z
atoms.

Moreover, standard GGA's for exchange are highly accu-
rate for the leading correction to LDA in this limit, so they
have very small relative errors for any Z. On the other
hand, they cannot then recover the usual gradient expan-
sion, which is the correct expansion if the HOMO is every-
where above the KS potential, as it is in bulk metals and
many small and moderate gap insulators. Finally, when a
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bond is stretched, eventually a single classically allowed re-
gion must bifurcate into two distinct such regions, Fig. 1
of Ref. [11]. The asymptotic expansions at equilibrium and
stretched bond lengths must be distinct, because the topol-
ogy of their turning surfaces differs. At the bond length at
which that occurs, the semilocal approximations that most
functionals use must fail, and in fact they do. The KS equa-
tions then yield a broken-symmetry solution which has lower
energy [127, 150, 151].

There are dozens if not hundreds of further questions
to be explored, each of which should shed further light on
the connection between semiclassics and density function-
als. The landscape stretches from mathematical proofs to
semiclassical approximations to density functional construc-
tion; from simple one dimensional potentials, to atoms and

ions, molecules, clusters, surfaces, and bulk solids; from
non-interacting to weakly correlated and strongly correlated
systems; and from mathematical physics to computational
chemistry and materials science and beyond.
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