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ABSTRACT
This paper studies Byzantine reliable broadcast (BRB) under

asynchronous networks, and improves the state-of-the-art pro-

tocols from the following aspects.Near-optimal communication
cost:We propose two new BRB protocols for 𝑛 nodes and in-

put message𝑀 that has communication cost𝑂(𝑛 |𝑀 |+𝑛2
log𝑛),

which is near-optimal due to the lower bound of Ω(𝑛 |𝑀 |+𝑛2
).

The first RBC protocol assumes threshold signature but is

easy to understand, while the second RBC protocol is error-

free but less intuitive. Improved computation: We propose a

new construction that improves the computation cost of the

state-of-the-art BRB by avoiding the expensive online error

correction on the input message, while achieving the same

communication cost. Balanced communication: We propose

a technique named balanced multicast that can balance the

communication cost for BRB protocols where the broadcaster

needs to multicast the message 𝑀 while other nodes only

needs to multicast coded fragments of size 𝑂(|𝑀 |/𝑛 + log𝑛).

The balanced multicast technique can be applied to many exist-

ing BRB protocols as well as all our new constructions in this

paper, and can make every node incur about the same commu-

nication cost. Finally, we present a lower bound to show the

near optimality of our protocol in terms of communication

cost at each node.
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1 INTRODUCTION
Reliable broadcast is a fundamental primitive in distributed

computing [13], and has many applications such as fault-

tolerant consensus and replication [22–24, 30, 32, 34, 37], se-

cure multiparty computation [35, 47], verifiable secret shar-

ing [19], and distributed key generation [2, 20, 33]. The goal of

reliable broadcast is to have a designated broadcaster send its

input message and to have all nodes output the same message.

In this paper, we assume Byzantine faults that may deviate

arbitrarily from the protocols. The problem is hence referred

to us Byzantine Reliable Broadcast (BRB). We study BRB in

asynchronous networks.

Existingworks onBRB.The first BRB protocol due to Bracha

[13] has a total communication cost of 𝑂(𝑛2 |𝑀 |), where 𝑛 is

the number of protocol nodes and |𝑀 | is the size of the broad-
caster’s message in bits. The BRB protocol of Bracha [13] is

error-free, which means the adversary has unbounded com-

putational power and the protocol always achieves the guar-

antees in every possible execution. Two decades later, it is

improved by Cachin and Tessaro [15] to 𝑂(𝑛 |𝑀 |+^𝑛2
log𝑛),

assuming a computationally bounded adversary that cannot

break a collision resistant hash function of output size 𝑂(^).

Later, Patra [39] proposed an error-free BRB protocol with

improved total communication cost 𝑂(𝑛 |𝑀 |+𝑛4
log𝑛) and has

11 rounds. In all of these BRB protocols, every node, including

the broadcaster, incurs the same asymptotic communication

cost. Here on, we say such a BRB protocol has a balanced
communication cost. Very recently, several efforts [5, 19, 38]

further improve the communication cost of the BRB protocols.

The state-of-the-art cryptographically secure asynchronous
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BRB protocol is due to Das, Xiang, and Ren [19], which has

a total communication cost of 𝑂(𝑛 |𝑀 |+^𝑛2
), incurs 4 rounds

and requires collision resistant hash functions. The state-of-

the-art error-free asynchronous BRB protocol [38] has a total

communication cost of 𝑂(𝑛 |𝑀 |+𝑛3
log𝑛) and incurs 7 rounds.

We provide a detailed comparison in Table 1 and discuss other

related work in detail in §8.

Limitations of the state-of-the-art BRB protocols. How-
ever, despite all the improvements made by the above efforts,

the state-of-the-art BRB protocols still have the several limita-

tions.

Gap on the communication cost. As shown in [38], a straight-
forward communication complexity lower bound for BRB is

Ω(𝑛 |𝑀 |+𝑛2
), since all 𝑂(𝑛) honest nodes eventually need to

receive𝑀 , and even single-bit BRB incurs Ω(𝑛2
) [21]. However,

the BRB protocol of Das, Xiang, and Ren [19] still has cost

𝑂(𝑛 |𝑀 |+^𝑛2
), which has a 𝑂(^) gap from the lower bound.

The state-of-the-art error-free BRB protocol [38] has cost

𝑂(𝑛 |𝑀 |+𝑛3
log𝑛), a gap of 𝑂(𝑛 log𝑛) from the optimal. Hence,

a natural question is, can we further reduce the communica-

tion complexity of the BRB towards its optimality?

Unbalanced communication cost. As mentioned earlier, the

BRB protocols like Bracha [13] and Cachin and Tessaro [15]

have balanced communication cost, meaning every node, in-

cluding the broadcaster, incurs the same asymptotic cost. How-

ever, the the state-of-the-art BRB protocols [19, 38] have un-
balanced communication cost. In both protocols, the communi-

cation cost of the broadcaster is approximately 𝑛 times higher

than that of other nodes, leading to a bottleneck at the broad-

caster. It is because the broadcaster in these protocols needs to

send the input message𝑀 to all nodes, while other node only

needs to exchange the encoded piece of the message which has

size𝑂(|𝑀 |/𝑛+log𝑛). In practice, such unbalanced construction

may introduce performance bottlenecks in the system, given

that BRB serves as a fundamental primitive in many appli-

cations. Therefore, an important question is whether we can

design a BRB protocol that achieves balanced and near-optimal

communication cost for every node?

Inefficiency in the computation. Another limitation of the

BRB protocol due to Das, Xiang, and Ren [19] is the computa-

tion inefficiency caused by the online error correction (OEC)

algorithm [6]. OEC is a decoding algorithm for error correct-

ing codes (ECC) such as Reed-Solomon codes [42], where the

original message can be decoded even if some of the coded

fragments are corrupted. Roughly speaking, the OEC will de-

code up to 𝑡 times where 𝑡 is the threshold of Byzantine faults,

for a set of enough coded fragments each time when the set

grows. Das, Xiang, and Ren [19] cannot avoid such a computa-

tion since in their BRB protocol, there is no proofs attached to

the coded fragments for validity checks. In contrast, the proto-

col of Cachin and Tessaro [15] does not require OEC as their

protocol attaches the Merkle proof for each fragments. As a

result, Cachin and Tessaro [15] can use erasure code and only

need to perform the decoding once, thus incurs a decoding

computation cost at least 𝑂(𝑛) times cheaper than Das, Xiang,

and Ren [19]. Thus, an interesting question is whether we can

improve the computation cost of Das, Xiang, and Ren [19]

while preserving the same communication cost?

Our contributions. We present several BRB protocol con-

structions that resolve the existing limitations and answer the

above questions affirmatively. In summary, this paper has the

following contributions.

Balanced multicast (§3). We first present a technique that

can balance the communication cost of any BRB protocols,

where the broadcaster needs to multicast the message𝑀 result-

ing in unbalanced 𝑂(𝑛 |𝑀 |) communication at the broadcaster.

Our balanced multicast requires two asynchronous rounds,

achieves the same property as the vanilla multicast, but addi-

tionally guarantees that all the nodes incur the same cost of

𝑂(|𝑀 |+𝑛 log𝑛). The main technique to achieve balanced com-

munication cost is to use an additional round of interaction

between nodes to help them reconstruct the input message

of the broadcaster without having the broadcaster to directly

send the input to all nodes. As a result, existing unbalanced

communication BRB protocols [19, 38] can be made balanced

by replacing the multicast of𝑀 with our balanced multicast in

a black-box manner. We also apply the same technique to all

BRB protocols proposed in this paper to make them balanced.

BRB protocol with improved computation (§4). We propose a

computationally efficient BRB protocol that reduces the com-

putation of [19], while keeping the same communication com-

plexity 𝑂(𝑛 |𝑀 |+^𝑛2
). The main idea of the construction is to

replace error correcting codes with erasure codes as much as

possible. We perform erasure coding on the bulk data𝑀 , and

then apply error correction only to the vector of hashes of

those fragments (of length ^𝑛). To agree on the hash vector,

all honest nodes will execute Bracha-style BRB on the hash of

the hash vector, and perform OEC to reconstruct the vector.

Asymptotically, when the size of the message is larger than

𝑂(^𝑛), the above technique reduces the computation cost at

each node for decoding from �̃�(𝑛 |𝑀 |) to �̃�(|𝑀 |+^𝑛2
), where

�̃�(·) hides poly-logarithmic terms. Additionally, erasure cod-

ing is concretely more efficient than error correction because

optimized implementations use a static field size for all 𝑛 [40]

and they operate using only fast xor and shift operations [27].

BRB protocols with near-optimal communication (§5, §6).
We further reduce the communication complexity gap be-

tween the lower and upper bound for BRB, by constructing

two protocols that have near-optimal communication cost.

Our first BRB protocol is called SigBRB, which is inspired

by Das, Xiang, and Ren [19], and further reduces the cost to

𝑂(𝑛 |𝑀 |+^𝑛 + 𝑛2
log𝑛) with threshold signature. Since usually

we can assume 𝑛 = 𝑝𝑜𝑙𝑦(^), the 𝑂(^𝑛) term can be neglected

and thus the cost is only 𝑂(log𝑛) from the lower bound. Sig-

BRB breaks the𝑂 (̂ 𝑛2
) cost barrier of [19] by replacing its (qua-

dratic) Bracha-style reliable broadcast on hash with a (linear)

consistent broadcast on threshold signatures. A novel amplifi-

cation step is also introduced to ensure the correctness after

such modification. Moreover, our SigBRB protocol is intuitive

and easy to understand. Our second BRB protocol is error-free,

and has total communication cost to 𝑂(𝑛 |𝑀 |+𝑛2
log𝑛), com-

pared to 𝑂(𝑛 |𝑀 |+𝑛3
log𝑛) communication of current art [38].



Our error-free BRB protocol builds on top of the recent syn-

chronous error-free Byzantine agreement (BA) protocol of

Chen [18]. We make several subtle and important modifica-

tions to their BA protocol to accommodate asynchrony (see §6).

The error-free protocol has clear advantages in terms of com-

munication cost, cryptographic and setup assumptions, but is

less intuitive and require more rounds than SigBRB, and much

harder to analyze compared to the first protocol SigBRB.

Lower bound. Another contribution of this paper is a lower

bound result (§7). We prove that for any deterministic BRB

protocol, each node incurs a communication cost of Ω(|𝑀 |+𝑛).

Hence, our SigBRB and EFBRB (also BalSigBRB and BalEFBRB)

have near-optimal communication costs – only an factor of

𝑂(log𝑛) gap from the lower bounds.

Paper organization. The rest of the paper is organized as

follows. In §2 we provide the necessary background. In §3 we

discuss our balanced multicast protocol where the multicas-

ter incurs the same bandwidth cost as other nodes. In §4 we

describe our computationally improved BRB protocol. In §5

and §6, we describe our BRB protocols with near-optimal com-

munication complexity, one assuming threshold signature and

one is error-free, respectively. In §7 we show lower bounds

on the communication cost of BRB. We discuss related work

in §8 and conclude in §10.

2 PRELIMINARIES
2.1 System Model
We consider a network of 𝑛 nodes where every pair of nodes is

connected via a pairwise authenticated channel. We consider

the presence of a malicious adversary A that can corrupt

up to 𝑡 nodes in the network. The corrupted (faulty) nodes

can behave arbitrarily, and we call a node honest (correct) if

it remains non-faulty for the entire protocol execution. We

assume the network is asynchronous, i.e., A can arbitrarily

delay any message but must eventually deliver all messages

sent between honest nodes. A protocol is error-free if it is

secure against any computationally unbounded adversary in

all executions.

We use |𝑆 | to denote the size of a set 𝑆 . For any integer 𝑎,

we use [𝑎] to denote the set {1, 2, . . . , 𝑎}. We use ^ to denote

the size of the output of the collision-resistant hash function.

Naturally, we assume that ^ > log𝑛.

Rounds and phases. Under asynchrony, the network delay

is unbounded. Therefore, to measure the latency of asynchro-

nous protocols, we use the standard notion of asynchronous
rounds [16], where a protocol runs in 𝑅 asynchronous rounds

if its running time is at most 𝑅 times the maximum message

delay between honest parties during the execution. We also

use the notion of phases for ease of description, where a phase

consists of a fixed number of rounds. When describing some

of our protocols, we may divide a protocol into several phases,

each of which has several rounds.

Identifying protocol instances.We assume each protocol

instance is associated with a unique tag 𝑖𝑑 . For some of our

simpler protocols, when there is no ambiguity, we may simply

drop the tag 𝑖𝑑 . Moreover, to help readers better understand

some of our protocols, we may provide a unique round name

(e.g., BCB-send, disperse).

2.2 Problem Formulations
Definition 1 (Reliable Broadcast [13]). A protocol for a set

of nodes {1, . . . , 𝑛}, where a designated broadcaster holds an

input𝑀 , is a reliable broadcast protocol, if the following prop-

erties hold

• Agreement: If an honest node outputs a message 𝑀 ′ and
another honest node outputs𝑀 ′′, then𝑀 ′ = 𝑀 ′′.
• Validity: If the broadcaster is honest, all honest nodes even-
tually output the message𝑀 .

• Totality: If an honest node outputs a message, then every

honest node eventually outputs a message.

2.3 Primitives

Erasure Code and Error Correcting Code. State of the art
BRB protocols use erasure codes or error correcting codes.

Both can encode the data block into fragments. Erasure codes

tolerate erasures (unavailable fragments), while error correc-

tion codes tolerate errors (incorrect/corrupt fragments). In

general, error correcting codes have more restricted syntax

and more expensive operations.

An (𝑚,𝑛) erasure coding scheme over an alphabet M is

a pair of algorithms (ECEnc, ECDec), whereM denotes the

alphabet for a single fragment, ECEnc : Mm → Mn
and

ECDec : Mm → Mm
. The ECEnc algorithm takes as in-

put a data block, consisting of𝑚 data fragments, and outputs

𝑛 > 𝑚 coded fragments. The ECDec algorithm takes as in-

put any 𝑚-size subset of coded fragments and outputs the

original data block containing𝑚 data fragments. Namely, if

[𝑑1, . . . , 𝑑𝑛] ← ECEnc(M), then ECDec(di1 , . . . , dim ) = M for

any distinct 𝑖1, . . . , 𝑖𝑚 ∈ [1..𝑛].

An (𝑚,𝑛) error correcting coding scheme is a pair of algo-

rithms (ECCEnc, ECCDec). Let ECCEnc(𝑀,𝑚,𝑘) denote the

encoding scheme. ECCEnc(𝑀,𝑚,𝑘) takes as input a message

𝑀 consisting of 𝑘 symbols, treats it as a polynomial of de-

gree 𝑘 − 1 and outputs 𝑚 evaluations of the corresponding

polynomial. Let ECCDec(𝑘, 𝑟,𝑇 ) denote the decoding scheme.

ECCDec takes as input a set of symbols𝑇 (some of which may

be incorrect), and outputs a degree 𝑘 − 1 polynomial, i.e., 𝑘

symbols, by correcting up to 𝑟 errors (incorrect symbols) in 𝑇 .

It is well-known that ECCDec can correct up to 𝑟 errors in 𝑇

and output the original message provided that |𝑇 |≥ 𝑘 + 2𝑟 [36].

For concreteness, we will use the standard Reed-Solomon

(RS) error correcting codes [42], and zigzag or Cauchy RS

erasure codes [27, 41]. Concrete instantiations of RS codes

include the Berlekamp-Welch algorithm [46] and the Gao al-

gorithm [26]. Both codes can be implemented over a Galois

field 𝐺𝐹 (2
𝑤

), where erasure codes require only linear (xor)

operations and RS codes also require multiplication tables

[40].

Note that for efficiency reasons it is better to work in smaller

fields (where 𝑎 is small). For a message𝑀 with |𝑀 | denoting
the number of bits of 𝑀 , if |𝑀 |> 𝑚𝑎, then 𝑀 is broken into

|𝑀 |/(𝑚𝑎) polynomials, each of which has degree 𝑚 − 1. A



Table 1: Comparison with existing BRB protocols. The computation cost measures the coding and crytographic operations, and �̃�(·)
hides the poly-logarithmic terms (more details in §2.4). The following acronyms are used in the table; q-SDH: q-Strong Diffie-Hellman,
DBDH: Decisional Bilinear Diffie-Hellman. ∗The protocol of [1] is statistically secure with probability 1 − 𝜖 .

Scheme

Communication Cost Computation Cost

Rounds

Cryptographic

Setup

Broadcaster Other node Total Per-node Assumption

Bracha [13] 𝑂(𝑛 |𝑀 |) 𝑂(𝑛 |𝑀 |) 𝑂(𝑛2 |𝑀 |) 0 4 None (error-free) None

Patra [39] 𝑂(𝑛 |𝑀 |+𝑛3
log𝑛) 𝑂( |𝑀 |+𝑛3

log𝑛) 𝑂(𝑛 |𝑀 |+𝑛4
log𝑛) �̃�( |𝑀 |) 11 None (error-free) None

Nayak et al. [38] 𝑂(𝑛 |𝑀 |+𝑛2
log𝑛) 𝑂( |𝑀 |+𝑛2

log𝑛) 𝑂(𝑛 |𝑀 |+𝑛3
log𝑛) �̃�( |𝑀 |) 7 None (error-free) None

Abraham-Asharov [1]
∗ 𝑂( |𝑀 |+𝑛 log𝑛) 𝑂( |𝑀 |+𝑛 log(𝑛3/𝜖)) 𝑂(𝑛 |𝑀 |+𝑛2

log(𝑛3/𝜖)) �̃�(𝑛 |𝑀 |) 7 None (statistical) None

EFBRB (§6) 𝑂(𝑛 |𝑀 |+𝑛 log𝑛) 𝑂( |𝑀 |+𝑛 log𝑛) 𝑂(𝑛 |𝑀 |+𝑛2
log𝑛) �̃�(𝑛 |𝑀 |) 9 None (error-free) None

BalEFBRB (§6) 𝑂( |𝑀 |+𝑛 log𝑛) 𝑂( |𝑀 |+𝑛 log𝑛) 𝑂(𝑛 |𝑀 |+𝑛2
log𝑛) �̃�(𝑛 |𝑀 |) 10 None (error-free) None

Cachin-Tessaro [15] 𝑂( |𝑀 |+^𝑛 log𝑛) 𝑂( |𝑀 |+^𝑛 log𝑛) 𝑂(𝑛 |𝑀 |+^𝑛2
log𝑛) �̃�( |𝑀 |+^𝑛) 4 Hash None

Das et al. [19] 𝑂(𝑛 |𝑀 |+^𝑛) 𝑂( |𝑀 |+^𝑛) 𝑂(𝑛 |𝑀 |+^𝑛2
) �̃�(𝑛 |𝑀 |) 4 Hash None

CCBRB (§4) 𝑂( |𝑀 |+^𝑛2
) 𝑂( |𝑀 |+^𝑛) 𝑂(𝑛 |𝑀 |+^𝑛2

) �̃�( |𝑀 |+^𝑛2
) 4 Hash None

BalCCBRB (§4) 𝑂( |𝑀 |+^𝑛) 𝑂( |𝑀 |+^𝑛) 𝑂(𝑛 |𝑀 |+^𝑛2
) �̃�( |𝑀 |+^𝑛2

) 5 Hash None

Nayak et al. [38] 𝑂(𝑛 |𝑀 |+^𝑛) 𝑂( |𝑀 |+^𝑛) 𝑂(𝑛 |𝑀 |+^𝑛2
) �̃�( |𝑀 |) 7 𝑞-SDH+DBDH Trusted

SigBRB (§5) 𝑂(𝑛 |𝑀 |+^𝑛 + 𝑛 log𝑛) 𝑂( |𝑀 |+^ + 𝑛 log𝑛) 𝑂(𝑛 |𝑀 |+^𝑛 + 𝑛2
log𝑛) �̃�(𝑛 |𝑀 |) 7 Threshold Sig Trusted

BalSigBRB (§5) 𝑂( |𝑀 |+^𝑛 + 𝑛 log𝑛) 𝑂( |𝑀 |+^ + 𝑛 log𝑛) 𝑂(𝑛 |𝑀 |+^𝑛 + 𝑛2
log𝑛) �̃�(𝑛 |𝑀 |) 8 Threshold Sig Trusted

Lower bound Ω( |𝑀 |+𝑛) Ω( |𝑀 |+𝑛) Ω(𝑛 |𝑀 |+𝑛2
) — 2 [3] — —

fragment 𝑖 is then the set of all polynomial evaluations at 𝑖 ,

i.e., 𝑑𝑖 = 𝑓1(𝑖) . . . 𝑓 |𝑀 |/𝑚𝑎(𝑖).

Online Error Correction. All of our BRB protocols use the

Online-Error-Correction (OEC) protocol introduced by Ben-Or,

Canetti, and Goldreich [6]. The OEC takes a set𝑇 consisting of

tuples ( 𝑗, 𝑎 𝑗 ) where 𝑗 is an index 𝑗 ∈ [𝑛] and 𝑎 𝑗 is a fragment

of a Reed-Solomon codeword. The OEC algorithm then tries to

decode a message 𝑀 such that Reed-Solomon encoding of𝑀

matches with at least 2𝑡+1 elements in𝑇 . More specifically, the

OEC algorithm performs up to 𝑡 trials of reconstruction, and

during the 𝑟 -th trial, it uses 2𝑡 +𝑟 +1 elements in𝑇 to decode. If

the reconstructed message𝑀 ′ whose encoding matches with

at least 2𝑡 + 1 tuples in 𝑇 , the OEC algorithm successfully

outputs the message; otherwise, it waits for one more frag-

ment and tries again. We summarize the OEC algorithm in

Algorithm 1. The OEC algorithm is error-free and information-

theoretically secure against any adversary that corrupts up to

𝑡 fragments among a total of 𝑛 ≥ 3𝑡 + 1 fragments.

Algorithm 1 Information Theoretic Online Error-correcting

(IT-OEC) protocol

1: Input: 𝑇 // 𝑇 consisting of tuples ( 𝑗, 𝑎 𝑗 ) where 𝑗 ∈ [𝑛]

and 𝑎 𝑗 is a fragment
2: for 0 ≤ 𝑟 ≤ 𝑡 do // online Error Correction
3: Wait till |𝑇 |≥ 2𝑡 + 𝑟 + 1

4: Let𝑀 := ECCDec(𝑡 + 1, 𝑟 ,𝑇 )

5: Let 𝑇 ′ := ECCEnc(𝑀,𝑚, 𝑡 + 1)

6: if 2𝑡 + 1 fragments in 𝑇 ′ match with 𝑇 then
7: return𝑀

Asynchronous data dissemination.Das, Xiang, and Ren [19]
propose asynchronous data dissemination (ADD) which allow

𝑡+1 correct nodes to disseminate a message to all correct nodes

in an asynchronous network, where 𝑡 is the upper bound on

the number of faulty nodes in the system. The ADD construc-

tion introduced by Das, Xiang, and Ren has two rounds. In

the first round, all nodes holding𝑀 send coded fragments to

all nodes; in the second round, upon receiving 𝑡 + 1 matching

fragments𝑑𝑖 , a node 𝑖 fixes its fragment as𝑑𝑖 and broadcasts𝑑𝑖 .

Then nodes wait to receive fragments and use OEC algorithm

to decode the original block𝑀 . The above ADD construction

is information-theoretic and does not use any cryptographic

tools.

We next analyze the communication cost of their ADD

protocol. Let |𝑀 | be the size of the message 𝑀 . Also, Reed-

Solomon code require a field size of at least 𝑛, so each frag-

ment has at least log𝑛 bits. This implies, each data fragment is

𝑂(max{|𝑀 |/𝑛, log𝑛}) bits, so an all-to-all exchange of the frag-
ments results in 𝑂(𝑛2 ·max{|𝑀 |/𝑛, log𝑛}) = 𝑂(𝑛 |𝑀 |+𝑛2

log𝑛)

communication cost. Therefore, the total communication cost

is 𝑂(𝑛 |𝑀 |+𝑛2
log𝑛).

∗

Collision-resistant Hash Function.We use a cryptographic

collision-resistant hash function hash, which guarantees that

a computationally bounded adversary cannot come up with

two inputs that hash to the same value, except for a negligible

probability.

Signatures, threshold signatures, and multi-signatures.
We use a conventional signature scheme consisting of three

algorithms (siggen, sigsign, sigverify). siggen outputs a pair

of public/secret keys (𝑝𝑘, 𝑠𝑘). A signature signing algorithm

sigsign takes as input amessage𝑀 and a private key 𝑠𝑘 and out-

puts a signature 𝜎 . A signature verification algorithm sigverify
takes as input 𝑝𝑘 , a message𝑀 , and a signature 𝜎 , and outputs

a bit. We require the conventional unforgeability property for

signatures.

A (ℓ, 𝑛) threshold signature scheme [7, 44] consists of the fol-

lowing algorithms (tgen, tsign, shareverify, tcombine, tverfiy).
tgen outputs a system public key known to anyone and a vector

of 𝑛 private keys. A partial signature signing algorithm tsign
takes as input a message𝑀 and a private key 𝑠𝑘𝑖 and outputs a

partial signature 𝜎𝑖 . A combining algorithm tcombine takes as

∗
The original ADD paper by Das, Xiang, and Ren [19] overlooked the

Reed-Solomon fragment size and incorrectly claimed the communication cost

as𝑂(𝑛 |𝑀 |+𝑛2
).



input 𝑝𝑘 , a message𝑀 , and a set of ℓ valid partial signatures,

and outputs a signature 𝜎 . A signature verification algorithm

tverify takes as input 𝑝𝑘 , a message𝑀 , and a signature 𝜎 , and

outputs a bit. We require the conventional robustness and

unforgeability properties for threshold signatures.

We simply omit the public keys, private keys, and key gen-

eration algorithms when no ambiguity arises. We may leave

the verification of partial signatures and threshold signatures

implicit when describing algorithms.

Multi-signature scheme [7, 10, 12] allows everyone to ag-

gregate 𝑛 signatures on the same message into one signature

for the message. Given 𝑛 signatures 𝛿𝑖 = 𝑠𝑖𝑔𝑠𝑖𝑔𝑛(𝑠𝑘𝑖 , 𝑀) on

the same message 𝑀 with public keys 𝑝𝑘𝑖 for 𝑖 ∈ [1..𝑛], a

multi-signature scheme can multi-aggregate the 𝑛 signatures

into a single signature 𝛿 , where |𝛿 |= |𝛿𝑖 |. The aggregated sig-

nature 𝛿 can be publicly verified using a verification function

multi-verify(𝑝𝑘1, .., 𝑝𝑘𝑛, 𝛿, 𝑀, 𝐿), where 𝐿 is the list of 𝑛 signers

with public keys 𝑝𝑘𝑖 .

Note, above, we use 𝜎 and 𝛿 for threshold signatures and

multi-signatures, respectively.

Consistent broadcast.We review the definition of Byzantine

consistent broadcast (BCB). Put it simply, consistent broad-

cast is reliable broadcast without the totality requirement. A

protocol for a set of nodes {1, . . . , 𝑛}, where a designated broad-
caster holds an input𝑀 , is a consistent broadcast protocol, if

the following properties hold

• Agreement: If an honest node outputs a message 𝑀 ′ and
another honest node outputs𝑀 ′′, then𝑀 ′ = 𝑀 ′′.
• Validity: If the broadcaster is honest, all honest nodes even-
tually output the message𝑀 .

2.4 Metrics

Measurement of communication. We will measure the

standard communication cost, defined as follows.

Definition 2 (Communication Cost). The (total) communica-

tion cost of a protocol measures the total number of bits sent

by all honest nodes during the execution of the protocol.

In addition to the standard communication cost abovewhich

measures the total cost of a protocol, we also measure the cost

for each honest protocol node, as the per-node communication

cost defined below.

Definition 3 (Per-node Communication Cost). The commu-

nication cost of any honest protocol node 𝑝 running a protocol

measures the number of bits sent by 𝑝 , and the number of bits

𝑝 received from any other honest node, during the execution

of the protocol. We say the protocol has per-node communi-

cation cost of𝐶 , if every honest node has communication cost

at most 𝐶 .

For instance, in the BRB protocol of Das, Xiang and Ren [19],

the broadcaster incurs cost𝑂(𝑛 |𝑀 |) and any other node incurs
cost 𝑂(|𝑀 |+^𝑛), therefore the per-node communication cost

of the protocol is 𝑂(𝑛 |𝑀 |). Note that the total communication

cost of a protocol equals the sum of communication costs of

all honest nodes.

Definition 4 (Balanced Communication). We say a protocol

has balanced communication, if the per-node communication

cost is 𝑂(𝐶/𝑛) where 𝐶 is the total communication cost of the

protocol; otherwise, the protocol is unbalanced.

For instance, in the BRB protocol of Das, Xiang and Ren [19]

has unbalanced communication cost, since the per-node com-

munication cost of the protocol is 𝑂(𝑛 |𝑀 |) and the total com-

munication cost of the protocol is𝑂(𝑛 |𝑀 |+^𝑛2
). In contrast, us-

ing our balancing technique presented in §3, the per-node com-

munication cost of [19] can be made balanced as 𝑂(|𝑀 |+^𝑛).

Measurement of computation. In this paper, we will focus

on the cost of coding operations and cryptographic operations

when measuring the computation cost of our protocols. For

the schemes defined in the previous section, we will list their

costs as follows. We will use �̃�(·) to hide the poly-logarithmic

terms in the complexity.

• For both erasure codes and error correcting codes, encoding

or decoding of a message 𝑀 costs �̃�(|𝑀 |) each time. As

mentioned, erasure codes will be concretely more efficient

than error correcting codes but we do not distinguish them

to keep things simple.

• For crytographic hash function, computing the hash for

message𝑀 costs �̃�(|𝑀 |).
• For signatures, each signing or verification operation for

message𝑀 costs �̃�(|𝑀 |).

3 BALANCING COMMUNICATION
In this section, we discuss a technique named balanced mul-
ticast that can compile an unbalanced BRB protocol where

the broadcaster incurs higher communication cost than rest

of the nodes, into a balanced one where every node incurs

the same asymptotic cost. For instance, in the BRB protocols

of [19, 38, 39], the broadcaster incurs cost of at least 𝑂(𝑛 |𝑀 |)
due to sending the entire input message to all the nodes, and

such cost can be made balanced through our technique. We

first define balanced multicast as follows. Intuitively, it imple-

ments the standard multicast with balanced cost among all

honest nodes.

Definition 5 (Multicast). Aprotocol for a set of nodes {1, . . . , 𝑛},
where a designated broadcaster holds an input𝑀 , is a multicast

protocol, if the following property holds

• Validity: If the broadcaster is honest, all honest nodes even-
tually output the message𝑀 .

The balanced multicast further guarantees balanced com-

munication cost: all honest nodes incur the same worst-case

communication complexity asymptotically.

Challenges and our approaches. The state-of-the-art BRB
protocol of Das, Xiang, and Ren [19] crucially uses the fact

that the broadcaster sends its input message to all nodes at

the start of the protocol. In their protocol, roughly speaking,

nodes run Bracha’s BRB on the hash digest of their message

received from the broadcaster, and only exchange coded frag-

ments of the message to reduce the communication cost to

𝑂(𝑛 |𝑀 |+^𝑛2
). To ensure correctness, a node should BRB the

digest and exchange the coded fragments of the same message.



Algorithm 2 Balanced Multicast (BalMC)

1: // the broadcaster node invokes BalMC(M)
2: input𝑀
3: Let [𝑚1,𝑚2, . . . ,𝑚𝑛] := ECCEnc(𝑀,𝑛, 𝑡 + 1)

4: send ⟨PROPOSE,𝑚 𝑗 ⟩ to node 𝑗 for each 𝑗 ∈ [𝑛]

// each node 𝑖
5: Let𝑀 := ⊥, 𝑇 := {}
6: upon receiving the first ⟨PROPOSE,𝑚𝑖 ⟩ from the broad-

caster do
7: send ⟨SHARE,𝑚𝑖 ⟩ to all nodes

8: upon receiving the first ⟨SHARE,𝑚∗
𝑗
⟩ from any node 𝑗 do

9: 𝑇 := 𝑇 ∪ {( 𝑗,𝑚∗
𝑗
)}

10: Run IT-OEC on the set 𝑇

11: Let𝑀 ′ be the output of IT-OEC(𝑇 )

12: output𝑀 ′ and return

It is straightforward in the protocol of Das, Xiang, and Ren [19]

since nodes directly receive the message from the broadcaster,

which however incurs a cost of 𝑂(𝑛 |𝑀 |) at the broadcaster. To
reduce the cost, a natural idea would be let the broadcaster

only send coded fragments of its message. Then, some kinds

of proofs would be necessary to convince the nodes that the

coded fragments are consistent with each other, otherwise

the nodes can no longer run the erasure decoding protocol to

recover the message. In fact, Cachin and Tessaro [15] obviates

the need for the broadcaster to send its input to all via this

approach. Specifically, the broadcaster encodes its input us-

ing an Erasure Code, computes a Merkle tree on the encoded

fragments, and to each node, sends one encoded fragment

and the corresponding Merkle path. A consequence of using

a Merkle tree is that the resulting protocol has a communi-

cation cost of 𝑂(𝑛 |𝑀 |+^𝑛2
log𝑛), since the size of the Merkle

path is 𝑂(^ log𝑛) and there are all-to-all message exchanges

with Merkle path attached. Similarly, Alhaddad et al. [5] uses

a trusted setup-based constant size polynomial commitment

scheme where the proof has size 𝑂(^) instead of the Merkle

tree, to design a balanced BRB with a total communication

cost of 𝑂(𝑛 |𝑀 |+^𝑛2
). Omitting the Merkle tree or the polyno-

mial commitment in a naive manner introduces the challenge

that we can no longer run the erasure decoding protocol used

by [5, 15] as there does not exist a way to distinguish an in-

correct fragment from a correct one.

Our observation is that there is a simple way to balance the

cost without attaching proofs with the coded fragments. The

idea is to add one more communication round for the nodes to

exchange their fragments received from the broadcaster and

try Information-Theoretic Online Error Correction (IT-OEC)

to reconstruct the broadcaster’s message. If the broadcaster

is honest, then IT-OEC can always recover the broadcaster’s

message. In the case of a malicious broadcaster, an honest node

may not recover the message from IT-OEC. However, this is

okay as the rest of our protocol guarantees that if any honest

node output for the BRB, then there are enough honest nodes

holding correct fragments that will send the fragments to all

nodes for reconstruction. This simple idea turns out to be very

useful, as we can abstract it as the balanced multicast primitive

and apply it to many existing unbalanced BRB protocols [38,

39] and all protocols in this paper for balancing their cost.

Protocol description. In order to reduce the cost of the broad-
caster node, our protocol BalMC first lets the broadcaster en-
code its message 𝑀 into 𝑛 fragments using a (𝑛, 𝑡 + 1) Reed-

Solomon code (line 3) and only send the 𝑖-th fragment to node

𝑖 . In particular, let [𝑚1,𝑚2, . . . ,𝑚𝑛] = ECCEnc(𝑀,𝑛, 𝑡 ) be the

RS encoding of𝑀 . Then, to node 𝑖 , the broadcaster sends the

message ⟨PROPOSE,𝑚𝑖 ⟩ (line 4). Note that due to properties RS
code, each fragment has size |𝑀 |/(𝑡 + 1), and therefore the cost

of the broadcaster is reduced to 𝑂(𝑛 · (|𝑀 |/(𝑡 + 1))) = 𝑂(|𝑀 |).
Next, each node 𝑖 upon receiving the ⟨PROPOSE,𝑚𝑖 ⟩ mes-

sage from the broadcaster sends the ⟨SHARE,𝑚𝑖 ⟩ to all nodes

(line 6-7). When a node receives a SHARE message from other

nodes, it adds the corresponding fragment to the set 𝑇 . Once

enough fragments are collected, nodes use the Online Error

Correcting (OEC) algorithm (line 10) to decode the message.

As described in 2, intuitively, the OEC algorithm performs

up to 𝑡 trials of reconstruction, and during the 𝑟 -th trial, a

node uses 2𝑡 + 𝑟 + 1 fragments to decode. If the reconstructed

message 𝑀 ′ has the matches with at least 2𝑡 + 1 tuples in 𝑇 ,

a node successfully reconstructs the message; otherwise, it

waits for one more fragment and tries again.

Applications. We can directly apply balanced multicast to

existing unbalanced BRB protocols, such as [19, 38, 39]. As a

concrete example, we will explain BalBRB, which is the BRB

protocol of [19] after applying BalMC. In the first step of [19],

the broadcaster sends 𝑀 to all nodes, which is replaced by

all nodes invoke BalMC(𝑀) with the broadcaster inputting𝑀 .

Then, when a node outputs 𝑀 from BalMC, it invokes the
steps as receiving𝑀 from the broadcaster in [19]. In this way,

we balance the communication of [19] while keeping all its

properties. It is also possible to apply balanced multicast to

other fault-tolerant distributed protocols, for balancing the

communication at the cost of adding one extra round of com-

munication.

3.1 Analysis
Theorem 1 (Validity). If the broadcaster node is honest, then
all honest nodes eventually output the message𝑀 .

Proof. When the broadcaster is honest and has input 𝑀 ,

it sends the correct fragments to all nodes. Then, all honest

nodes send the SHARE messages with the correct fragments.

Thus, after receiving all SHARE message from honest nodes,

any honest node can reconstruct𝑀 due to OEC. □

Theorem 2 (Performance). Algorithm 2 solves balanced mul-
ticast with per-node communication cost of 𝑂(|𝑀 |+𝑛 log𝑛), and
per-node computation cost of �̃�(𝑛 |𝑀 |).

Proof. In algorithm 2 the broadcaster sends a single PROPOSE
to all other nodes. Moreover, each honest node sends a sin-

gle SHARE message. Each message is 𝑂(max(|𝑀 |/𝑛, log𝑛)) bits

long, since |𝑚𝑖 |= max(|𝑀 |/(𝑡 + 1), log𝑛). Hence, each node in-

curs a per-node communication cost of 𝑂(|𝑀 |+𝑛 log𝑛). Since

each node invokes online error correction which will decode



up to 𝑡 times in the worst case, each node incurs a computation

cost of �̃�(𝑛 |𝑀 |). □

4 CROSS-CHECKSUM BRB: REDUCING
THE COST OF ERROR CORRECTION

In this section, we introduce a new reliable broadcast con-

struction that improves computation for large messages of size

|𝑀 |≥ 𝑂 (̂ 𝑛), while maintaining its near-optimal communica-

tion complexity. This new construction, CCBRB, is compatible

with our balancing technique from §3 at the cost of one extra

round of communication. Also, here on we will refer to the

BRB construction from Das, Xiang and Ren [19] as DXR BRB.

4.1 Improving computation vs. DXR BRB
An open problem left by Das, Xiang, and Ren in DXR BRB

is related to the computational inefficiency problem of Reed-

Solomon (RS) error-correcting codes (ECC) and the online

error correction (OEC) algorithm. Specifically, in DXR BRB,

each node needs to repeatedly run the OEC algorithm on the

entire message. As we illustrate below, this results in large

computation overhead when the messages are large.

Although not specified in [19], a natural way to implement

ECC for a large message 𝑀 , i.e., |𝑀 |> 𝑎(𝑡 + 1) bits, while

ensuring that the field size 𝑎 is independent of |𝑀 |, is to split

𝑀 into
|𝑀 |

𝑎(𝑡+1)
polynomials. Then, each fragment 𝑖 would then

be the concatenation of the evaluation of those polynomials at

the same point 𝑖 . However, such an approach is expensive for

ECC. For a single polynomial of degree 𝑛, the standard error-

correcting decoding algorithm has a run time complexity of

�̃�(𝑎𝑛) [26] for each one of the
|𝑀 |

𝑎(𝑡+1)
polynomials. The run time

becomes even more expensive when running OEC because

then the ECC needs to repeated up to 𝑡 times. This would bring

the total run time complexity to �̃�(
𝑎𝑛2 |𝑀 |
𝑎(𝑡+1)

) = �̃�(𝑛 |𝑀 |). Note
that OEC for a vector of small-sized messages outputs a result

only if OEC is successful for each small-sized message.

In contrast, applying OEC only to the hash of the vector

of messages brings down the OEC run time complexity from

�̃�(𝑛 |𝑀 |) to �̃�(^𝑛2
). Also, using erasure coding on𝑀 incurs a

cost of O(M) [27, 40]; it is faster than ECC as described in §1.

4.2 Cross-Checksum BRB
The idea of Cross-Checksum BRB is to limit the online error

correcting to the cross checksum and not the message itself.

The message itself would be encoded using erasure code rather

than error correcting code. The BRB construction requires

only 3 steps. It shares the structure of Bracha’s broadcast and

"combines" both approaches of DXR BRB [19] and Cachin-

Tessaro BRB [15]. At a high level, the protocol uses the cross

checksum of Cachin-Tessaro BRB [15] to send fragments of

a message𝑚 (SEND phase and ECHO phase) but use the DXR

BRB [19] approach to send fragments of the cross checksum

itself (in the ECHO and READY phases). This approach will:

• avoid running ECC or OEC on the whole message𝑀 (like

what DXR BRB [19] does), and

• avoid sending the whole cross checksum in the ECHO phase

(like what Cachin-Tessaro BRB [15] does), otherwise we

would obtain higher than ^𝑛2
communication.

We use erasure coding to deal with bulk data, and use ineffi-

cient OEC only for 𝑛 hashes. The minimized use of OEC and

ECC makes DXR BRB practical for large-size messages.

We describe the pseudocode of CCBRB in Algorithm 4.3.

Our BRB protocol, CCBRB, uses both standard erasure coding

(ECEnc, ECDec) and Reed-Solomon ECC (ECCEnc, ECCDec).
We also define a hash function: 𝐻 : {0, 1}∗ → {0, 1}^ .

We initialize CCBRB by creating two empty dictionaries

called 𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠𝑑𝑎𝑡𝑎 and 𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠ℎ𝑎𝑠ℎ𝑒𝑠 for each node 𝑖 .

Here, 𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠𝑑𝑎𝑡𝑎 maps each 𝑖𝑑 tag and 𝑐 to possible data

fragments for somemessage𝑀 . Additionally, 𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠ℎ𝑎𝑠ℎ𝑒𝑠
maps each 𝑖𝑑 tag message of a message 𝑀 and 𝑐 to possible

fragments of the list of hashes of all𝑛 fragment of that message

𝑀 . Then, CCBRB proceeds as follows.

• SEND phase: The sender 𝑠 encodes the messages 𝑀 into 𝑛

fragments using an erasure code (𝑡 + 1, 𝑛). Each fragment

is of size
|𝑀 |
𝑡+1

. The dealer then hashes each fragment and

create 𝐷 , a list of 𝑛 hashes each of size 𝑘 . The dealer then

sends each node 𝑗 a SEND message containing the fragment

𝑑 𝑗 and the list of hashes 𝐷 .

• ECHO phase: Upon receiving a SEND message, each node 𝑖

verifies the fragment 𝑑𝑖 by checking that 𝐻 (𝑑𝑖 ) is equal to

the 𝑖𝑡ℎ hash in the cross checksum 𝐷 . If the check succeeds

then: node 𝑖 uses ECC to encode 𝐷 into 𝑛 fragments (each

of size 𝑘) and stores them in the list 𝝅 . Then 𝑖 sends an ECHO
message containing the data fragment 𝑑𝑖 , fragment 𝜋 𝑗 (the

𝑗𝑡ℎ fragment of 𝝅 ), and 𝑐 = 𝐻 (𝐷) to every node 𝑗 .

• READY phase: Each node stores the fragments it received in

the ECHO messages. A node 𝑖 broadcasts a READY message

containing 𝑐 and 𝜋𝑖 in two cases:

(1) Node 𝑖 receives 2𝑡 + 1 ECHO messages with the same 𝑐 and

𝜋𝑖 .

(2) Node 𝑖 receives 𝑡 + 1 READY messages with the same 𝑐

and has not sent a READY message. In this case, 𝑖 waits for

𝑡 + 1 ECHO with the same 𝑐 and 𝜋𝑖 and then sends a READY
message.

Upon receiving 𝑛 − 𝑡 READY messages with the same 𝑐 , each

node starts decoding. In particular, 𝑖 first decodes the coded

fragments of hashes using the ECCDecfunction and outputs

𝐷 ′. It then compares 𝐻 (𝐷 ′) with 𝑐 , the value it receives from
2𝑡 + 1 READY messages. If 𝐻 (𝐷 ′) = 𝑐 , 𝑖 waits for at least 𝑡 + 1

ECHO messages such that for each coded fragment 𝑑 𝑗 included

in an ECHOmessage,𝐻 (𝑑 𝑗 ) ∈ 𝐷 ′. Then 𝑖 decodes the fragments

and outputs𝑀 . Finally, 𝑖 further encodes𝑀 and calculates the

list of hashes for the coded fragments. If the list of hashes are

consistent with the hashes of the coded fragments, 𝑖 outputs

𝑀 . Otherwise, 𝑖 outputs ⊥.

Theorem 3. CCBRB (Algorithm 4.3) is a secure BRB protocol.

Proof. Validity. If a correct sender 𝑠 runs broadcast for
id 𝑖𝑑 and a message 𝑀 then all correct nodes will pass the

check 𝐻 (𝑑 𝑗 ) = 𝐷 𝑗 and have a valid data fragment of𝑀 (𝑑 𝑗 =



Algorithm 3 CCBRB using hash functions with identifier 𝑖𝑑 and sender 𝑠 . Code shown for node 𝑖 .

1: Initialization
2: 𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠𝑑𝑎𝑡𝑎 ← ⊥ //dictionary (𝑖𝑑, 𝑐) ↦→ list of fragments 𝑑 𝑗
3: 𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠ℎ𝑎𝑠ℎ𝑒𝑠 ← ⊥ //dictionary (𝑖𝑑, 𝑐) ↦→ list of fragments 𝜋 𝑗
4: 𝑒 ← 0 //number of errors to be corrected by the online error code

5: input𝑀 //SEND round
6: 𝒅 ← ECEnc (M), 𝐷 ← [𝐻 (𝑑1), . . . , 𝐻 (𝑑𝑛)]

7: for 1 ≤ 𝑗 ≤ 𝑛, send ⟨𝑖𝑑, SEND, 𝑑 𝑗 , 𝐷⟩ to 𝑗

8: upon receiving ⟨𝑖𝑑, SEND, 𝐷, 𝑑𝑖 ⟩ from 𝑠 for first time do //ECHO round
9: if 𝐻 (𝑑𝑖 ) = 𝐷𝑖 then
10: 𝑐 ← 𝐻 (𝐷), 𝝅 ← ECCEnc (𝐷)

11: send ⟨𝑖𝑑, ECHO, (𝑑𝑖 , 𝜋 𝑗 , 𝑐)⟩ to node 𝑗

12: upon receiving ⟨𝑖𝑑, ECHO, (𝑑 𝑗 , 𝜋𝑖 , 𝑐)⟩ from node 𝑗 for first time do // READY round
13: 𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠𝑑𝑎𝑡𝑎[(𝑖𝑑, 𝑐)]← 𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠[(𝑖𝑑, 𝑐)] ∪ [𝑑 𝑗 ]

14: if (not yet sent a READY message and received 2𝑡 + 1 ⟨ECHO⟩ messages with the same id, 𝑐 and same 𝜋𝑖 )

15: send ⟨𝑖𝑑, READY, 𝑐, 𝜋𝑖 ⟩ to all nodes

16: upon receiving ⟨𝑖𝑑, READY, 𝑐, 𝜋 𝑗 ⟩ from node 𝑗 for the first time do //verification

17: 𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠ℎ𝑎𝑠ℎ𝑒𝑠 [(𝑖𝑑, 𝑐)]← 𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠ℎ𝑎𝑠ℎ𝑒𝑠 [(𝑖𝑑, 𝑐)] ∪ [𝜋 𝑗 ]

18: if (not yet sent ⟨𝑖𝑑, READY, 𝑐⟩ and received 𝑡 + 1 ⟨READY⟩ messages with the same 𝑐) then
19: wait for 𝑡 + 1 ⟨ECHO⟩ messages with the same 𝑐 and 𝜋𝑖
20: send ⟨𝑖𝑑, READY, 𝑐, 𝜋𝑖 ⟩ to all nodes

21: if 𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠ℎ𝑎𝑠ℎ𝑒𝑠 [(𝑖𝑑, 𝑐)] ≥ 2𝑡 + 1 then //online error correcting code to reconstruct 𝐷

22: 𝐷 ′ ← ECCDec(𝑡 + 1, 𝑒, 𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡ℎ𝑎𝑠ℎ𝑒𝑠 [𝑖𝑑, 𝑐])

23: if 𝐻 (𝐷 ′) = 𝑐 then
24: wait for t+1 ⟨ECHO⟩ message where 𝐻 (𝑑 𝑗 ) ∈ 𝐷 ′ and filter 𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠𝑑𝑎𝑡𝑎[(𝑖𝑑, 𝑐)] accordingly

25: 𝑀 ← ECDec(fragmentsdata[(id, c)]) //reconstruct𝑀 from the fragments that are contained in 𝐷 ′

26: 𝒅 ′ ← ECEnc(M)

27: if 𝐷 ′ = 𝐻 (𝑑 ′
1
), . . . , 𝐻 (𝑑 ′𝑛) then

28: output𝑀 and return
29: else output ⊥
30: else 𝑒 → 𝑒 + 1 //increase the number of errors to align with the online error correcting code procedure

ECEnc(M)[j]) because of the correctness property of the hash

function and the encoding algorithm. Hence, every correct

node 𝑖 will echo to node 𝑗 a valid data fragment𝑑𝑖 of𝑀 , its own

cross checksum fragment 𝜋 𝑗 of 𝐷 , 𝑐 = 𝐻 (𝐷), and 𝑖𝑑 . Therefore,

all correct nodes will receive at least 2𝑡 + 1 ECHO messages

with a data fragment and the same 𝑐 , 𝑖𝑑 and consistent cross

checksum fragments. Thus, every correct node 𝑖 will receive

at least 𝑡 + 1 valid data fragments of 𝑀 whose hashes are

contained in 𝐷 . After that, every correct node 𝑖 will send a

READY message with 𝑐 , 𝑖𝑑 and 𝜋𝑖 . Accordingly, every correct

node will eventually receive collectively at least 2𝑡 + 1 READY
messages with the same 𝑐 , 𝑖𝑑 but 2𝑡 +1 distinct cross checksum

fragments of 𝐷 , and decodes the fragments to 𝐷 . Even if some

READY messages with invalid cross checksum fragments of

𝐷 were received, the node can detect this by virtue of the

correctness of the online error correcting code algorithm𝑂𝐸𝐶

(since the maximum number of faulty READY messages is 𝑡 ).

Hence, every correct node will be able to reconstruct 𝐷 and by

consequence𝑀 .𝑀 can be decoded because every correct node

has at least 𝑡 + 1 data fragments whose hashes are contained in

𝐷 and because of the collision resistance of the hash function.

Agreement and Totality. Agreement and totality follow im-

mediately from Lemmas 1-3 below. □

Lemma 1. If a correct node 𝑖 outputs 𝑀 with 𝑖𝑑 associated
with a cross checksum 𝐷 and a hash 𝑐 such that 𝑐 = 𝐻 (𝐷), then
every correct node 𝑖 will eventually receive at least 𝑡 + 1 ECHO
messages with the same 𝑖𝑑 , 𝑐 and 𝜋𝑖 . Additionally, each of these
𝑡 + 1 ECHO messages will contain a distinct data fragment 𝑑 𝑗
whose hash is in the cross checksum (𝐻 (𝑑 𝑗 ) ∈ 𝐷). Finally, 𝜋𝑖 is
a valid fragment of 𝐷 ; that is, 𝜋𝑖 = ECCEnc(𝐷)[𝑖].

Proof. If a correct node outputs 𝑀 with 𝑖𝑑 , then it must

have received 2𝑡 + 1 READY messages with the same 𝑖𝑑 and 𝑐 .

Therefore, 𝑡 + 1 of those READY messages must have been sent

by correct nodes. Hence, there is at least one correct node 𝑖 that

received 2𝑡 +1 ECHOmessages with the same 𝑖𝑑 , 𝑐 and 𝜋𝑖 . Since

𝑡 is the total number of faulty nodes then at least 𝑡 + 1 nodes

received a SEND message from the sender with 𝑖𝑑 containing a

fragment such that the hash is contained in the cross checksum.

Therefore, every correct node 𝑗 will eventually receive at least

𝑡 +1 ECHOmessages with the same 𝑖𝑑 , 𝑐 and 𝜋 𝑗 each containing

a data fragment whose hash is in the cross checksum. Finally,

correct nodes who generate the hash 𝑐 for their ECHOmessages

must have received𝐷 in their SENDmessage (unless the sender

𝑠 has broken collision resistance of the hash function), and

therefore they will generate 𝜋𝑖 consistent with 𝐷 . □



Lemma 2. If a correct node 𝑖 outputs𝑀 with 𝑖𝑑 associated with
a cross checksum 𝐷 and a hash 𝑐 such that 𝑐 = 𝐻 (𝐷), then every
correct node will eventually be able to reconstruct 𝐷 .

Proof. As stated above, if node 𝑖 outputs 𝑀 then with 𝑖𝑑 ,

then it must have received at least 𝑡 + 1 READY messages with

the same 𝑐 and 𝑖𝑑 from correct nodes (possibly including node

𝑖 itself). Therefore, all other 𝑡 correct nodes will receive at least

𝑡+1 READYmessages with the same 𝑐 and 𝑖𝑑 . By Lemma 1, every

correct node 𝑗 will eventually receive 𝑡 +1 ECHOmessages with

the same 𝑐 and 𝑖𝑑 and valid 𝜋 𝑗 . Thus, they will be able to send

their own READY messages with valid 𝜋 𝑗 . As a result, at least

2𝑡 + 1 correct nodes will send READY messages with the same

𝑐 and 𝑖𝑑 as well as coded fragments that are consistent with

the encoding of 𝐷 . By the correctness of the 𝑂𝐸𝐶 algorithm,

it follows that every correct node will eventually reconstruct

𝐷 . □

Lemma 3. If a correct node 𝑖 outputs𝑀 with 𝑖𝑑 associated with
a cross checksum 𝐷 and a hash 𝑐 such that 𝑐 = 𝐻 (𝐷), then every
correct node eventually outputs𝑀 associated with the same 𝑖𝑑
and 𝐷 .

Proof. By Lemma 2, every correct node will receive the

same cross checksum 𝐷 . Hence, every correct node can de-

termine the validity of 𝐷 deterministically and reconstruct

𝑀 accordingly. Then, either node 𝑖 will detect that the cross

checksum 𝐷 is a valid cross checksum consistent with some

message𝑀 ̸= ⊥, or will detect that 𝐷 is an invalid cross check-

sum and will r-deliver 𝑀 = ⊥. Either way, all other correct
nodes will also detect 𝐷 to be valid or invalid in the same way,

due to the collision resistance of the hash function and the cor-

rectness of the encode and decode algorithm and Lemma 1. □

Communication complexity. In the following analysis we

will assume optimal resilience with 𝑛 = 3𝑡 + 1. The protocol

consists of three steps:

(1) SEND: 𝑝𝑠 sends one SEND message to all 𝑛 replicas. Each

SEND message consists of the cross-checksum 𝐷 and

the fragment 𝑑𝑖 each of size 𝑛^ and
|𝑀 |
𝑡+1

respectively.

Thus, the total communication complexity for the SEND
is 3|𝑀 |+^𝑛2

.

(2) ECHO: Every correct replica 𝑝𝑖 sends one ECHO message

to all 𝑛 replicas. Each ECHO message consists of the

cross checksum fragment 𝜋 𝑗 , the data fragment 𝑑 𝑗 and

a hash 𝑐 where the size of the terms costs
𝑛^
𝑡+1

,
|𝑀 |
𝑡+1

and^

respectively. Thus the total communication complexity

for the ECHO is 3𝑛 |𝑀 |+4^𝑛2
.

(3) READY: Every correct replica 𝑝𝑖 sends one READY mes-

sage to all𝑛 replicas. Each READYmessage consists of the

cross-checksum fragment 𝜋𝑖 and the hash 𝑐 respectively.

Thus the total communication complexity is 4𝑘𝑛2
.

Hence the total communication complexity is: 3𝑛 |𝑀 |+9𝑛^2
+

3|𝑀 | or 𝑂(𝑛 |𝑀 |+𝑛^2
)

4.3 Balanced Cross-Checksum BRB
The Cross-Checksum BRB discussed in algorithm is not bal-

anced. The dealer has to send the whole cross-checksum 𝐷 to

Figure 1: A half-baked idea to reduce communication.

all nodes. However, we can easily make the protocol balanced

at the expense of adding one extra step of communication.

To do this, just like the BalMC algorithm introduced in algo-

rithm 2, the dealer disperses the cross-checksum 𝐷 instead

of sending it in full as part of the ⟨𝑖𝑑, SEND, 𝑑 𝑗 , 𝐷⟩ message.

This would effectively translate to the dealer sending to node

𝑗 the ECC fragment 𝐷 𝑗 instead of 𝐷 along side each erasure

fragment 𝑑 𝑗 . Following on with the BalMC algorithm, an extra

step has to be added here, where every node 𝑗 would send it’s

own ECC fragment 𝐷 𝑗 to every other node. Each node would

then run the IT-OEC algorithm to reconstruct the vector 𝐷 .

Once the vector 𝐷 is reconstructed, the protocol continues in

the same way as depicted in Algorithm 4.3.

5 REDUCING COMMUNICATION USING
THRESHOLD SIGNATURES

This section first describes SigBRB, a BRB protocol that uses

threshold signatures to reduce communication. Thenwe present

BalSigBRB that uses the technique in §3 and achieves bal-

anced communication. Both protocols work in the trusted

setup model, as threshold signatures require trusted setup. In

applications where trusted setup is permitted (for instance, all

known asynchronous BFT protocols implemented using BRB),

one can directly use SigBRB. In applications where trusted

setup is not allowed, one may run a distributed key genera-

tion (DKG) algorithm to generate the needed public parame-

ters [2, 20, 33].

5.1 Overview of SigBRB
A half-baked idea: breaking the symmetry for BRB de-
sign. Our first idea is to break the symmetry in designing

BRB protocols. Indeed, when designing efficient BRB proto-

cols, one typically follows a symmetric design approach: in

the first round, the broadcaster sends some data (either the

whole input message𝑀 or a coded fragment) to every node;

in the following rounds, nodes broadcast fragments and/or

short cryptographic proofs to each other in order to achieve

agreement.

In our new design, we break BRB constructions into a linear

communication phase and a broadcast phase. We use cryptog-

raphy (e.g., hashes) in the first linear communication phase,

while the broadcast phase explicitly rules out using any cryp-

tographic tools (e.g., hashes, signatures).



Our starting protocol works as follows. In the first linear

communication phase, the goal is to disperse the input to en-

sure that 𝑡 +1 correct nodes to have consistent data, a goal that

consistent broadcast (BCB) [14, 43] or its information dispersal

version may achieve; in the second broadcast phase, the idea is

to “amplify" consistent data from 𝑡+1 correct nodes to all nodes,

a goal that asynchronous data dissemination (ADD) [19] may

achieve. Such a construction is depicted in Figure 1. We use

BCB and ADD in a black-box manner.

For the above construction, the first phase has 𝑂(𝑛 |𝑀 |+^𝑛)

communication, while the second phase has 𝑂(𝑛 |𝑀 |+𝑛2
log𝑛)

communication. Adding them together, we have a construction

with 𝑂(𝑛 |𝑀 |+^𝑛 + 𝑛2
log𝑛). Unfortunately, the construction

only achieves validity but not agreement. Indeed, it is easy to

show that some correct nodes output message𝑀 , while some

other nodes do not output any message, violating agreement.

Note that in this case not all correct nodes start ADD.

As an example, a faulty sender may make only one correct

node deliver the message in the BCB phase and enter the sec-

ond phase. All 𝑡 faulty nodes collude and disseminate correct

fragments to 𝑡 + 1 correct nodes. Together with the fragment

from the correct node, each of the 𝑡 + 1 correct nodes receive

𝑡 + 1 matching fragments, share their fragments, complete

ADD, and deliver the corresponding message. The rest 𝑡 cor-

rect nodes, however, cannot deliver the message, since they

fail to start ADD.

Below, we outline how we solve the agreement problem, by

providing an approach to handling the issue retroactively.
As shown in Figure 2), our main idea is to let the agreement

issue occur and then fix it retroactively. We add one more

READY round after the ADD phase and ask nodes to output a

message𝑀 only if it receives enough ⟨READY⟩ messages. The

most interesting part is that an amplification round is now

introduced, going back to the very first round of the broadcast
phase, instead of the beginning of the same round. To our

knowledge, our novel amplification technique is in contrast

to all other known amplification rounds ever used in BRB

and even fault-tolerant distributed computing. Strikingly, the

READY round and the "unconventional" amplification round

are all we need for a secure BRB construction.

5.2 The SigBRB Protocol
We show the workflow of SigBRB in Figure 2 and pseudocode

in Algorithm 4. SigBRB consists of two phases: a linear BCB

phase and a broadcast phase.

BCB phase (Algorithm 4: line 5-17). This phase runs a standard
BCB. In particular, the broadcaster node 𝑠 broadcasts amessage

⟨𝑖𝑑, BCB-SEND, 𝑀⟩. Upon receiving ⟨𝑖𝑑, BCB-SEND, 𝑀⟩, each
node generates a partial signature 𝜎𝑖 and sends a message

⟨𝑖𝑑, BCB-REP, 𝑀, 𝜎𝑖 ⟩ to node 𝑠 . If 𝑠 receives 𝑛 − 𝑡 partial signa-
tures, it combines them into a threshold signature 𝜎 and broad-

casts an ⟨𝑖𝑑, BCB-FINAL, 𝑀, 𝜎⟩ message to all nodes. Upon re-

ceiving an ⟨𝑖𝑑, BCB-FINAL, 𝑀, 𝜎⟩ message, each node sets𝑚𝑠𝑔

as𝑀 and 𝑝𝑟𝑜𝑜 𝑓1 as 𝜎 and completes BCB.

Broadcast phase (Algorithm 4: line 18-39). The broadcast phase
consists of three rounds: DISPERSE, RECONSTRUCT, and READY.
Upon the completion of BCB, each node 𝑖 encodes its 𝑚𝑠𝑔

Figure 2: SigBRB workflow.

into coded fragments 𝒅. For each node 𝑗 , node 𝑖 sends it an

⟨𝑖𝑑, DISPERSE, 𝑑 𝑗 ⟩ message. Upon receiving 𝑡 + 1 matching

⟨𝑖𝑑, DISPERSE, 𝑑∗
𝑖
⟩ messages, node 𝑖 fixes 𝑑∗

𝑖
and then broad-

casts a ⟨𝑖𝑑, RECONSTRUCT, 𝑑∗
𝑖
⟩ message. Upon receiving at least

𝑛 − 𝑡 ⟨RECONSTRUCT⟩ messages, each node starts to decode the

message using OEC. This process may continue until OEC

outputs a message𝑀 . A local parameter 𝑣𝑎𝑙 is then set as𝑀 .

But this is not the last round of the SigBRB. When OEC

outputs𝑀 , each node broadcasts an ⟨𝑖𝑑, READY⟩ message. Fur-

thermore, if node 𝑖 previously has not sent a ⟨DISPERSE⟩ mes-

sage, it disperses the coded fragments, i.e, 𝑖 encodes 𝑀 and

sends node 𝑗 (for any 𝑗 ∈ {1, · · ·𝑛}) an ⟨𝑖𝑑, DISPERSE, 𝑑 𝑗 ⟩ mes-

sage. Each node waits for 𝑛 − 𝑡 ⟨𝑖𝑑, READY⟩ messages and then

delivers message 𝑣𝑎𝑙 (message output by OEC).

Discussion and communication complexity. The crucial
round for SigBRB to achieve agreement is the amplification

round after message 𝑀 is output by OEC. In particular, if

the OEC outputs 𝑀 and a node has not previously sent a

⟨DISPERSE⟩ message, the node encodes𝑀 and sends the coded

fragments via a ⟨DISPERSE⟩ message to the nodes. If a node

outputs𝑀 , it has received 𝑛 − 𝑡 ⟨𝑖𝑑, READY⟩ messages and at

least 𝑡+1 correct nodes have completed the OEC. These correct

nodes will send their coded fragments via the ⟨DISPERSE⟩
message. Accordingly, it is guaranteed that all correct nodes

eventually decode 𝑀 , broadcast the ⟨READY⟩ messages, and

output𝑀 .

The consistency property of BCB guarantees that no correct

nodes will broadcast inconsistent coded fragments, as each

node only disperses the coded fragments upon the completion

of BCB. An adversary cannot force any correct nodes to receive

𝑡 + 1 matching but incorrect fragments in the DISPERSE round.
Therefore, OEC can correct the errors and ensure that all

correct nodes output the same message𝑀 .

Let us analyze the communication complexity of SigBRB.

First, the first linear BCB phase has 𝑂(𝑛 |𝑀 |+^𝑛) communi-

cation. The DISPERSE and RECONSTRUCT rounds both have

𝑂(|𝑀 |𝑛 + 𝑛2
log𝑛) communication. The READY phase does not

carry bulk data and has𝑂(𝑛2
) communication only. Therefore,

the communication complexity for SigBRB is 𝑂(𝑛 |𝑀 |+^𝑛 +

𝑛2
log𝑛).

It is also easy to replace threshold signatures using aggre-

gate signatures, so the resulting protocol maintains the same

complexity while working in the PKI model.



Algorithm 4 SigBRB with identifier 𝑖𝑑 and sender 𝑠 . Code for

node 𝑖 , 𝑖 ∈ [𝑛]

1: Initialization
2: (𝑝𝑘, 𝑠𝑘)← tgen (1

𝑘
) //threshold signature

key generation; 𝑝𝑘 is the public key and 𝑠𝑘 is a vector of

𝑛 private keys

3: 𝑝𝑟𝑜𝑜 𝑓1 ← ⊥,𝑚𝑠𝑔← ⊥ //initialize the parameters

4: 𝑣𝑎𝑙 ← ⊥, 𝑝𝑠𝑒𝑡1 ← ∅,𝑇 ← ∅
5: input𝑀 //BCB-SEND round
6: 𝑚𝑠𝑔← 𝑀

7: broadcast ⟨𝑖𝑑, BCB-SEND, 𝑀⟩
8: upon receiving ⟨𝑖𝑑, BCB-SEND, 𝑀⟩ from 𝑠 do
9: 𝑚𝑠𝑔← 𝑀 , 𝜎𝑖 ← tsign (𝑖𝑑, 𝑀) //BCB-REP round
10: send ⟨𝑖𝑑, BCB-REP, 𝑀, 𝜎𝑖 ⟩ to 𝑠
11: upon receiving ⟨𝑖𝑑, BCB-REP, 𝑀, 𝜎 𝑗 ⟩ from 𝑗 and 𝑖 = 𝑠 do
12: if shareverify ((𝑖𝑑, 𝑀), 𝜎 𝑗 ) and𝑀 = 𝑚𝑠𝑔 then
13: add 𝜎 𝑗 to 𝑝𝑠𝑒𝑡1
14: if |𝑝𝑠𝑒𝑡1 |≥ 𝑛 − 𝑡 then //BCB-FINAL round
15: 𝜎 ← tcombine ((𝑖𝑑, 𝑀), 𝑝𝑠𝑒𝑡1)

16: broadcast ⟨𝑖𝑑, BCB-FINAL, 𝑀, 𝜎⟩
17: upon receiving ⟨𝑖𝑑, BCB-FINAL, 𝑀, 𝜎⟩ from 𝑠 do
18: if tverify ((𝑖𝑑, 𝑀), 𝜎) and𝑀 = 𝑚𝑠𝑔 then
19: 𝑝𝑟𝑜𝑜 𝑓1 ← 𝜎 //DISPERSE round
20: 𝒅 ← ECCEnc (𝑡 + 1, 𝑛,𝑚𝑠𝑔)

21: for 𝑗 ∈ {1, · · ·𝑛}
22: send ⟨𝑖𝑑, DISPERSE, 𝑑 𝑗 ⟩ to 𝑗

23: upon receiving 𝑡 + 1 matching ⟨𝑖𝑑, DISPERSE, 𝑑∗
𝑖
⟩ do

24: fix 𝑑∗
𝑖

25: broadcast ⟨𝑖𝑑, RECONSTRUCT, 𝑑∗
𝑖
⟩ //RECONSTRUCT round

26: upon receiving ⟨𝑖𝑑, RECONSTRUCT, 𝑑 𝑗 ⟩ from 𝑗 do
27: add 𝑑 𝑗 to 𝑇

28: for 0 ≤ 𝑟 ≤ 𝑡 do
29: wait until |𝑇 |≥ 2𝑡 + 𝑟 + 1

30: if ECCDec (𝑡 + 1,𝑇 , 𝑟 ) = 𝑀 then
31: 𝑣𝑎𝑙 ← 𝑀

32: broadcast ⟨𝑖𝑑, READY⟩ //send ⟨READY⟩
33: if ⟨DISPERSE⟩ has not been sent

34: 𝒅 ← ECCEnc (𝑡 + 1, 𝑛, 𝑀) then
35: for 𝑗 ∈ {1, · · ·𝑛} //amplification

36: send ⟨𝑖𝑑, DISPERSE, 𝑑 𝑗 ⟩ to 𝑗

37: upon receiving 𝑛 − 𝑡 ⟨𝑖𝑑, READY⟩ do //READY round

38: if 𝑣𝑎𝑙 ̸= ⊥ then
39: output 𝑣𝑎𝑙 and return

5.3 Analysis
Theorem 4. Assuming a secure threshold signature and au-
thenticated channels, SigBRB satisfies validity, agreement, and
integrity.

Proof. We first provide the following three lemmas.

Lemma 4. If a correct node sends a ⟨DISPERSE⟩ message with
fragments encoded from message 𝑀 , at least one correct node
has completed BCB and received𝑀 from the sender.

Proof. Each correct node sends a ⟨DISPERSE⟩ message

with fragments encoded from 𝑀 for two cases: 1) It com-

pletes BCB and receives 𝑀 from the sender; 2) It completes

the RECONSTRUCT round and obtains𝑀 . We show that in both

cases, at least one correct node has completed BCB and re-

ceives 𝑀 from the sender. For the first case, trivial. For the

second case, if a correct node completes the RECONSTRUCT
round, it must have received at least 𝑛 − 𝑡 RECONSTRUCT mes-

sages, among which at least 𝑡 + 1 are sent by correct nodes.

For any of the correct nodes, it must have also received 𝑡 + 1

matching ⟨DISPERSE⟩ messages. As there are at most 𝑡 faulty

nodes, there must exist at least one correct node that sends

the ⟨DISPERSE⟩ message after it completes BCB and receives

𝑀 . □

Lemma 5. If a correct node 𝑖 sends an ⟨𝑖𝑑, RECONSTRUCT, 𝑑∗
𝑖
⟩

message and a correct node 𝑗 sends an ⟨𝑖𝑑, RECONSTRUCT, 𝑑∗
𝑗
⟩

message, 𝑑∗
𝑖
and 𝑑∗

𝑗
are both encoded from the same message𝑀 .

Proof. Let 𝑑∗
𝑖
be a coded fragment encoded from message

𝑀 . If a correct node 𝑖 sends an ⟨𝑖𝑑, RECONSTRUCT, 𝑑∗
𝑖
⟩ message,

it must have received 𝑡 + 1 matching ⟨𝑖𝑑, DISPERSE, 𝑑∗
𝑖
⟩ mes-

sages, among which at least one is sent by a correct node.

Among them, at least one correct node has sent a ⟨DISPERSE⟩
message. According to Lemma 4, at least one correct node

completes BCB and receives message𝑀 from the sender.

Let 𝑑∗
𝑗
be a coded fragment encoded from message𝑀 . If 𝑗

sends an ⟨𝑖𝑑, RECONSTRUCT, 𝑑∗
𝑗
⟩message, according to Lemma 4,

at least one correct node completes BCB and receives message

𝑀 . This violates the consistency property of BCB. Thus, it

holds𝑀 = 𝑀 . □

Lemma 6. If a correct node outputs𝑀 , the sender 𝑠 has previ-
ously broadcast𝑀 and at least one correct node has received a
valid threshold signature 𝑝𝑟𝑜𝑜 𝑓1 = 𝜎 .

Proof. If a correct node 𝑖 outputs 𝑀 , it receives 𝑛 − 𝑡

⟨𝑖𝑑, READY⟩messages. Furthermore, in the RECONSTRUCT round,
the OEC outputs a decoded message𝑀 . Accordingly, 𝑖 must

have received at least 2𝑡 + 1 ⟨𝑖𝑑, RECONSTRUCT, 𝑑 𝑗 ⟩ messages,

among which at least 𝑡 + 1 are sent by correct nodes.

According to Lemma 5, the 𝑡 + 1 correct nodes only send

coded fragments encoded from the same message𝑀 ′. There-
fore, the reconstructed 𝑡-degree polynomial for𝑀 must agree

with 𝑡 + 1 fragments from correct nodes. It must hold that

𝑀 = 𝑀 ′.
If 𝑖 outputs𝑀 , it has received at least 2𝑡+1 ⟨READY⟩messages

and also 2𝑡 +1 ⟨RECONSTRUCT⟩ messages, among which at least

𝑡 + 1 are sent by correct nodes. According to Lemma 4, at least

one correct node has completed BCB and received a valid

threshold signature 𝑝𝑟𝑜𝑜 𝑓1 for𝑀 , and meanwhile the sender

𝑠 has sent𝑀 . □

In the following, we prove that SigBRB satisfies validity,

agreement, and totality.

Validity. If a correct node 𝑠 inputs𝑀 , all correct nodes com-

plete BCB, according to the validity property of BCB. There-

fore, all correct nodes will send the ⟨DISPERSE⟩ messages for

the same𝑀 , receive 𝑡 + 1 matching ⟨DISPERSE⟩ messages, and



broadcast the ⟨RECONSTRUCT⟩ messages. No correct node can

receive 𝑡 + 1 matching ⟨𝑖𝑑, DISPERSE, 𝑑𝑖 ⟩ for 𝑀 ′ ̸= 𝑀 . Each

correct node will then send a ⟨𝑖𝑑, RECONSTRUCT, 𝑑𝑖 ⟩ messages

such that 𝑑𝑖 is encoded from 𝑀 . Thus, all correct nodes will

receive 2𝑡 + 1 ⟨RECONSTRUCT⟩ messages from all correct nodes,

output some value and then send the ⟨𝑖𝑑, READY⟩ messages.

All correct nodes, including the sender, will then receive 𝑛 − 𝑡
⟨𝑖𝑑, READY⟩ messages and output some message. Furthermore,

as shown in Lemma 6, if any correct node outputs𝑀 ′ ̸= 𝑀 , 𝑠

has previously sent𝑀 ′, contradicting the fact that 𝑠 is a correct
node and inputs 𝑀 . Therefore, all correct nodes will output

the original message𝑀 .

Agreement. If a correct node 𝑖 outputs𝑀 , according to Lemma 6,

at least one correct node has completed BCB and possessed a

valid threshold signature for𝑀 . Furthermore, If 𝑗 outputs𝑀 ′,
at least one correct node has completed BCB and possessed a

valid threshold signature for𝑀 ′. This violates the consistency
property of BCB. Thus,𝑀 = 𝑀 ′.

Totality. If a correct node 𝑖 outputs a message, it has received

𝑛 − 𝑡 ⟨READY⟩ messages, among which at least 𝑡 + 1 are sent by

correct nodes. The 𝑡+1 correct nodesmust all output𝑀 byOEC,

as proved in the first part. Furthermore, for each of the 𝑡 + 1

correct nodes, if it has not previously sent a ⟨DISPERSE⟩ mes-

sage, it will encode message𝑀 and broadcast the ⟨DISPERSE⟩
messages according to our protocol. Therefore, each correct

node eventually receives at least 𝑡 + 1 matching ⟨DISPERSE⟩
messages. Eventually, all correct nodes will receive at least𝑛−𝑡
⟨RECONSTRUCT⟩ messages. According to Lemma 5, each cor-

rect node sends a fragment ⟨𝑖𝑑, RECONSTRUCT, 𝑑𝑖 ⟩ such that 𝑑𝑖
is encoded from the same message𝑀 . Therefore, each correct

node eventually outputs some message. Finally, each correct

node will eventually send an ⟨𝑖𝑑, READY⟩ message, receive 𝑛−𝑡
⟨𝑖𝑑, READY⟩ messages, and output the value. □

5.4 BalSigBRB
It is easy to transform the SigBRB protocol to BalSigBRB

achieving balanced communication by using the technique

used in §3. Doing so incurs an additional round of communi-

cation.

6 BALANCED ERROR-FREE BRB
In this section, we will introduce our BalEFBRB protocol,

which is error-free, balanced and achieves near-optimal com-

munication cost. Our protocol is heavily inspired by the re-

cent error-free synchronous Byzantine agreement protocol

named COOL [18]. We extend the COOL protocol [18] to ob-

tain an error-free asynchronous BRB protocol with per-node

communication cost 𝑂(|𝑀 |+𝑛 log𝑛). We will first intuitively

explain the modifications on top of COOL, and then describe

our BalEFBRB protocol in more detail. We make the following

three major changes to obtain our BalEFBRB protocol.

(1) Triggering the next message upon receiving sufficient mes-
sages asynchronously, instead of receiving all messages from
the previous synchronous round. The COOL protocol is a

synchronous protocol that proceeds in lock-step rounds, so

it contains several steps where nodes wait for all messages

from the previous round before taking their next step. For

instance, a node will send an indicator message for 1 if it

receives 𝑛−𝑡 1-indicators in the previous round; otherwise

it sends an indicator for 0. However, under asynchrony,

the node cannot expect to receive all messages, since a

slow honest node is indistinguishable from a Byzantine

node. Therefore, we need to change the triggering event to

receiving enough messages asynchronously. For instance,

the above example is changed to the following: a node

sends 1-indicator upon receiving 𝑛 − 𝑡 1-indicators and
sends 0-indicator upon receiving 𝑡 + 1 0-indicators. Since

there are 𝑛 nodes in total and each node can send one

indicator, the above two conditions will not hold simulta-

neously. Moreover, if the original synchronous protocol

relies on the fact that a node receives enough indicators,

then the new asynchronous protocol preserves the same

property since the node only triggers the message event

after receiving enough indicators.

(2) Replacing the 1-bit asynchronous BA with 1-bit Bracha’s
BRB. The COOL protocol uses a synchronous binary BA

protocol for all the nodes to agree on whether there are

enough honest nodes holding the correct coded message

fragments in order to recover the message. Our BalEFBRB

also requires a similar step under asynchrony. However,

we cannot use an asynchronous binary BA to construct

an error-free BRB, because any asynchronous BA has to

be randomized due to the FLP impossibility result [25].

Instead, we use the 1-bit Bracha’s BRB [13], which is error-

free, as follows. When a node inputs 1 (or 0) to the syn-

chronous BA in the COOL protocol, we let the node send

an ECHO message for 1 (or 0) in the 1-bit Bracha’s BRB.

As a result, the 1-bit Bracha’s BRB guarantees agreement

among the nodes on whether they should reconstruct the

message or simply output a default message ⊥. Moreover,

as we will explain in Lemma 7, if one honest node outputs

1 in the 1-bit Bracha’s BRB, then every honest node will

be able to reconstruct and output the same message.

(3) Balancing the broadcaster’s cost by the technique of §3. The
BRB protocol obtained after the above two changes is still

not balanced, since the straightforward transformation

from agreement to broadcast asks the broadcaster to send

the entire message in the first step of the protocol, leading

to a cost of at least Ω(𝑛 |𝑀 |) at the broadcaster. Therefore,
we apply the technique of §3, which ensures that broad-

caster incurs a communication cost of 𝑂(|𝑀 |+𝑛 log𝑛).

For brevity, we will only present the balanced version of

our error-free BRB protocol BalEFBRB in the next section.

The unbalanced protocol EFBRB can be easily obtained by

broadcaster using multicast instead of the balanced multicast

for sending its input message. The unbalanced protocol EFBRB

has one less round, but the broadcaster incurs communication

cost𝑂(𝑛 |𝑀 |+𝑛 log𝑛) instead of𝑂(|𝑀 |+𝑛 log𝑛), compared with

the balanced one.

6.1 Design of BalEFBRB
Our error-free BRB has five phases: phase 0 to 4.We summarize

our protocol in Algorithm 5 and describe each phase in detail.



Algorithm 5 BalEFBRB protocol, code for node 𝑖 , 𝑖 ∈ [𝑛]

PHASE 0:

1: // only broadcaster node
2: input𝑀
3: Let [𝑚1,𝑚2, . . . ,𝑚𝑛] := ECCEnc(𝑀,𝑛, 𝑡 + 1)

4: send ⟨PROPOSE,𝑚 𝑗 ⟩ to node 𝑗 for each 𝑗 ∈ [𝑛]

// each node 𝑖
5: Let𝑀 := ⊥
6: Initialize S1

0
, S1

1
, S2

0
, S2

1
, S3

0
, S3

1
, S4

0
, S4

1
to be ∅

7: upon receiving the first ⟨PROPOSE,𝑚𝑖 ⟩ from the broadcaster do
8: send ⟨SHARE,𝑚𝑖 ⟩ to all nodes

9: For the first ⟨SHARE,𝑚∗
𝑗
⟩ received from node 𝑗 , add (𝑗,𝑚∗

𝑗
) to𝑇

//𝑇 initialized as ∅
10: Perform IT-OEC for set𝑇 (Algorithm 1)

11: Let𝑀𝑖 be the returned value of IT-OEC

PHASE 1:

12: Let [𝑦
(𝑖)

1
, 𝑦

(𝑖)

2
, . . . , 𝑦

(𝑖)
𝑛 ] := ECCEnc(𝑀𝑖 , 𝑛, 𝑘)

13: send ⟨SYMBOLS, (𝑦(𝑖)

𝑗
, 𝑦

(𝑖)

𝑖
)⟩ to node 𝑗 , ∀𝑗 ∈ [𝑛]. // Exchange

fragments

14: upon receiving ⟨SYMBOLS, (𝑦(𝑗 )

𝑖
, 𝑦

(𝑗 )

𝑗
)⟩ from node 𝑗 for the first

time do
15: if (𝑦

(𝑗 )

𝑖
, 𝑦

(𝑗 )

𝑗
) = (𝑦

(𝑖)

𝑖
, 𝑦

(𝑖)

𝑗
) then

16: Let S1

1
:= S1

1
∪ { 𝑗 }.

17: else
18: Let S1

0
:= S1

0
∪ { 𝑗 }.

19: upon |S1

1
|>= 𝑛 − 𝑡 do

20: set 𝑠1

𝑖
= 1, send ⟨𝑃1, 𝑠1

𝑖
⟩ to all.

21: upon |S1

0
|>= 𝑡 + 1 do

22: set 𝑠1

𝑖
= 0, send ⟨𝑃1, 𝑠1

𝑖
⟩ to all.

23: upon receiving ⟨𝑃1, 𝑠1

𝑗
⟩ from node 𝑗 for the first time do

24: if 𝑠1

𝑗
= 1 then

25: Wait till 𝑗 ∈ S1

0
∪ S1

1

26: if 𝑗 ∈ S1

1
then

27: Let S2

1
:= S2

1
∪ { 𝑗 }.

28: else
29: Let S2

0
= S2

0
∪ { 𝑗 }.

PHASE 2:

30: if 𝑠1

𝑖
= 1 then

31: upon |S2

1
|>= 𝑛 − 𝑡 do

32: set 𝑠2

𝑖
= 1, send ⟨𝑃2, 𝑠2

𝑖
⟩ to all.

33: upon |S2

0
|>= 𝑡 + 1 do

34: set 𝑠2

𝑖
= 0, send ⟨𝑃2, 𝑠2

𝑖
⟩ to all.

35: else
36: set 𝑠2

𝑖
= 0, send ⟨𝑃2, 𝑠2

𝑖
⟩ to all

37: upon receiving ⟨𝑃2, 𝑠2

𝑗
⟩ from node 𝑗 for the first time do

38: if 𝑠2

𝑗
= 1 then

39: Wait till 𝑗 ∈ S1

0
∪ S1

1

40: if 𝑗 ∈ S1

1
then

41: Let S3

1
:= S3

1
∪ { 𝑗 }.

42: else
43: Let S3

0
:= S3

0
∪ { 𝑗 }.

PHASE 3:

44: if 𝑠2

𝑖
= 1 then

45: upon |S3

1
|>= 𝑛 − 𝑡 do

46: set 𝑠3

𝑖
= 1, send ⟨𝑃3, 𝑠3

𝑖
⟩ to all.

47: upon |S3

0
|>= 𝑡 + 1 do

48: set 𝑠3

𝑖
= 0, send ⟨𝑃3, 𝑠3

𝑖
⟩ to all.

49: else
50: set 𝑠3

𝑖
= 0, send ⟨𝑃3, 𝑠3

𝑖
⟩ to all.

51: upon receiving ⟨𝑃3, 𝑠3

𝑗
⟩ from node 𝑗 for the first time do

52: if 𝑠3

𝑗
= 1 then

53: Let S4

1
:= S4

1
∪ { 𝑗 }.

54: else
55: Let S4

0
= S4

0
∪ { 𝑗 }.

56: upon |S4

1
|>= 𝑛 − 𝑡 do

57: send ⟨ECHO, 𝑠4

𝑖
= 1⟩ to all.

58: upon |S4

0
|>= 𝑡 + 1 do

59: send ⟨ECHO, 𝑠4

𝑖
= 0⟩ to all.

60: upon receiving 2𝑡 + 1 ⟨ECHO, 𝑠 ⟩ for matching 𝑠 and not having

sent a READY message do
61: send ⟨READY, 𝑠 ⟩ to all

62: upon receiving 𝑡 + 1 ⟨READY, 𝑠 ⟩ for matching 𝑠 and not having

sent a READY message do
63: send ⟨READY, 𝑠 ⟩ to all

64: upon receiving 2𝑡 + 1 ⟨READY, 𝑠 ⟩ for matching 𝑠 do
65: if 𝑠 = 0 then
66: output𝑀 = ⊥ and return
67: start PHASE 4

PHASE 4:

68: // only after executing line 67
69: Wait till receiving 𝑡 + 1 ⟨SYMBOLS, (𝑦(𝑗 )

𝑖
, ∗)⟩, ∀𝑗 ∈ S4

1
// SYMBOLS

messages from PHASE 1, and set S4

1
from PHASE 3

70: Let𝑚𝑖 := 𝑦
(𝑗 )

𝑖

71: send ⟨RECONSTRUCT,𝑚𝑖 ⟩ to all

72: For the first ⟨RECONSTRUCT,𝑚∗
𝑗
⟩ received from node 𝑗 , add (𝑗,𝑚∗

𝑗
)

to𝑇 //𝑇 initialized as ∅
73: Perform IT-OEC for set𝑇 (Algorithm 1)

74: Let𝑀𝑖 be the returned value of IT-OEC

75: output𝑀𝑖 and return.

Phase 0: The purpose of phase 0 is to let the broadcaster to send
its proposal,𝑀 , to all nodes. As discussed in §3, if the broad-

caster sends its proposal directly to each node, the broadcaster

would incur a communication cost of 𝑂(𝑛 |𝑀 |). We adopt the

approachwe design in §3.More specifically, during phase 0, the

broadcaster encodes𝑀 using a (𝑛, 𝑡+1) Reed-Solomon code. Let

[𝑚1,𝑚2, . . . ,𝑚𝑛] be the encoded fragments. The broadcaster

then sends the 𝑖-th fragment 𝑚𝑖 to node 𝑖 as ⟨PROPOSE,𝑚𝑖 ⟩
message. Each node 𝑖 , upon receiving ⟨PROPOSE,𝑚𝑖 ⟩ message

from the broadcaster, sends ⟨SHARE,𝑚𝑖 ⟩ to all other nodes.

Every node then performs information theoretic online error

correction using the SHARE messages to recover the potential



proposal. Let𝑀𝑖 be the proposal node 𝑖 recovers at the end of

phase 0.

Phase 1: During phase 1, each node first encode the proposal it

recovered during phase 0 using a (𝑛, 𝑘) Reed-Solomon code for

𝑘 = ⌊ 𝑡
5
⌋ + 1. Let [𝑦

(𝑖)

1
, 𝑦

(𝑖)

2
, . . . , 𝑦

(𝑖)
𝑛 ] := ECCEnc(𝑀𝑖 , 𝑛, 𝑘) be the

output of the encoding procedure at node 𝑖 (line 11). Node 𝑖

then sends the ⟨SYMBOLS, 𝑦(𝑖)

𝑖
, 𝑦

(𝑖)

𝑗
⟩ to node 𝑗 for every 𝑗 ∈ [𝑛]

(line 12). Also, node 𝑖 upon receiving ⟨SYMBOLS, 𝑦(𝑗 )

𝑖
, 𝑦

(𝑗 )

𝑗
⟩ from

node 𝑗 adds node 𝑗 to the set S1

1
if (𝑦

(𝑖)

𝑖
, 𝑦

(𝑖)

𝑗
) = (𝑦

(𝑗 )

𝑖
, 𝑦

(𝑗 )

𝑗
) (line

15-16). Otherwise, node 𝑖 adds 𝑗 to the set S1

0
(line 18). Node 𝑖

then waits until either |S1

1
| is greater than or equal to 𝑛 − 𝑡 ,

or |S1

0
| is greater than or equal to 𝑡 + 1. The event |S1

1
|≥ 𝑛 − 𝑡

implies that node 𝑖 received matching fragments from at least

𝑛 − 𝑡 nodes. Alternatively, the event |S1

0
|≥ 𝑡 + 1 implies that

node 𝑖 received non-matching fragment from at least 𝑡 + 1

nodes.

Upon |S1

1
|≥ 𝑛 − 𝑡 , node 𝑖 sends the message ⟨𝑃1, 𝑠1

𝑖
= 1⟩

to all nodes (line 19-20). Alternatively, if |S1

0
|≥ 𝑡 + 1, node 𝑖

sends the message ⟨𝑃1, 𝑠1

𝑖
= 0⟩ to all nodes (line 21-22). Finally,

for every ⟨𝑃1, 𝑠1

𝑗
= 1⟩ message received from any node 𝑗 , node

𝑖 adds node 𝑗 to the set S2

1
once it received 𝑗 ’s fragments in

phase 1 and the fragments match (line 24-27). Otherwise, node

𝑖 adds the senders of ⟨𝑃1, 0⟩message to the setS2

0
(line 29). The

reason for waiting to receive node 𝑗 ’s fragments in line 25 is

that we do not want to add nodes with mismatched fragments

in S2

1
, which is crucial for Lemma 7 to hold. Note that it is still

possible that an honest node 𝑗 whose fragments do not match

node 𝑖 , i.e., 𝑗 ∈ S1

0
at node 𝑖 , sends 𝑠2

𝑗
= 1. In our protocol node

𝑖 ignores all such messages (line 24-27).

Phase 2: During phase 2, if 𝑠1

𝑖
as calculated in phase 1 (line

19-22) is equal to 0, node 𝑖 sends the ⟨𝑃2, 𝑠2

𝑖
= 0⟩ to every node.

Otherwise, if 𝑠1

𝑖
is 1, then depending upon the size of S2

1
or

S2

0
, node 𝑖 sends the following message. Upon |S2

1
|≥ 𝑛 − 𝑡 ,

node 𝑖 sends ⟨𝑃2, 𝑠2

𝑖
= 1⟩ to all nodes (line 31-32). Otherwise,

upon |S2

0
|≥ 𝑡 + 1, node 𝑖 sends ⟨𝑃2, 𝑠2

𝑖
= 0⟩ to every node (line

33-34). Also, similar to phase 1, for every ⟨𝑃2, 𝑠2

𝑗
= 1⟩ message

received from any node 𝑗 , node 𝑖 adds node 𝑗 to the set S3

1

once it received 𝑗 ’s fragments in phase 1 and the fragments

match (Line 38-41). Otherwise, node 𝑖 adds the senders of

⟨𝑃2, 0⟩ message to the set S3

0
(line 43).

Phase 3: The first part of phase 3 (line 44-55) is similar to phase

2 (line 30-43), except that any node 𝑗 that sends ⟨𝑃3, 𝑠3

𝑖
= 1⟩ is

included in set S4

1
without the additional checks as in phase 1

and 2.

The remaining steps of phase 3 is analogous to running

the 1-bit BRB protocol due to Bracha [13]. Specifically, upon

|S4

1
|≥ 𝑛−𝑡 , node 𝑖 sends ⟨ECHO, 𝑠4

𝑖
= 1⟩ to all nodes (line 56-57).

Otherwise, if |S4

0
|≥ 𝑡 + 1, node 𝑖 sends ⟨ECHO, 𝑠4

𝑖
= 0⟩ to every

node (line 58-59). Intuitively, the content of the ECHO message

(1 or 0) from node 𝑖 denotes the opinion of node 𝑖 on whether

every node should output𝑀 ′ ̸= ⊥ or𝑀 ′ = ⊥. Each node upon

receiving 2𝑡 + 1 ⟨ECHO, 𝑠⟩ messages for a matching 𝑠 , sends the

⟨READY, 𝑠⟩ message, if it have not sent it already (line 60-61).

A node also sends the ⟨READY, 𝑠⟩ message upon receiving 𝑡 + 1

matching ⟨READY, 𝑠⟩ messages, if have not sent it already (line

62-63). Finally, upon receiving 2𝑡 + 1 matching ⟨READY, 𝑠⟩, if
𝑠 = 0, node 𝑖 outputs ⊥ and returns (line 65-66). Otherwise,

node 𝑖 proceeds to phase 4 (line 67).

Phase 4: A node starts phase 4 only after receiving 2𝑡 + 1

⟨READY, 1⟩ messages. During phase 4, each node waits for 𝑡 + 1

matching ⟨SYMBOLS, 𝑦(𝑗 )

𝑖
, ∗⟩ from nodes in S4

1
(line 69). Recall

that ⟨SYMBOLS, 𝑦(𝑗 )

𝑖
, ∗⟩ are sent during phase 1. Let𝑚𝑖 := 𝑦

(

𝑖
𝑗 )

be the fragment received in 𝑡 + 1 SYMBOLS messages with

matching 𝑦
(

𝑖
𝑗 ) (line 70). Then, each node sends the message

⟨RECONSTRUCT,𝑚𝑖 ⟩ to all nodes (line 71). Finally, each node

uses the received RECONSTRUCTmessages to perform OEC and

outputs the output of the OEC algorithm (line 72-75).

6.2 Analysis
In this section we will analyze algorithm 5 and show that it

implements an error-free BRB protocol for large messages

with communication cost of 𝑂(𝑛 |𝑀 |+𝑛2
log𝑛) and tolerates

up to 1/3-rd Byzantine nodes. Our proof directly uses several

Lemmas from [17] and we only provide the lemma statement

for those lemmas. Some of the lemmas and their proofs are

deferred to Appendix A for brevity.

Lemma7 (Key Lemma). When any honest node 𝑖 sends ⟨ECHO, 1⟩
at phase 3, all honest nodes in node 𝑖’s set S4

1
recovers the same

message at the end of phase 0.

Proof. The proof of this lemma follows directly from the

proof of [17, Lemma 3] where we use our proof of Lemma 10

and 11. □

Theorem 5 (Totality and Agreement). Algorithm 5 guarantees
the Totality and Agreement property.

Proof. Suppose an honest node outputs 𝑀 ′, then it has

received 2𝑡 + 1 ⟨READY, 𝑠⟩ messages for matching 𝑠 . Then since

at least 𝑡 + 1 messages above are from honest nodes, every

honest node will eventually receive 𝑡 + 1 ⟨READY, 𝑠⟩ messages.

Note that no honest node can send READY for any 𝑠 ′ ̸= 𝑠 , due

to the quorum intersection of ECHO messages. Thus all honest

nodes will send ⟨READY, 𝑠⟩ and thus receive 2𝑡 + 1 ⟨READY, 𝑠⟩.
If 𝑠 = 0, this implies that every honest will output the default

message 𝑀 ′ = ⊥ and return. Otherwise, if 𝑠 = 1, each node

will start phase 4. What remains to show is that, during phase

4, each honest node will send a reconstruct message with a

correct fragment of the encoding of a unique message𝑀 ′ (line
71) after receiving 𝑡 +1 matching SYMBOLS (line 69), and decode
and output𝑀 ′ (line 72-75).

An honest node receiving 2𝑡 + 1 ⟨READY, 1⟩ implies that at

least one honest node sent a ⟨ECHO, 1⟩message.Without loss of

generality, let 𝑖 be the first node that sent an ⟨ECHO, 1⟩ message.

Observe that node 𝑖 sends ⟨ECHO, 1⟩ only when |S4

1
|≥ 𝑛 − 𝑡 at

node 𝑖 . This means at least 𝑛 − 2𝑡 ≥ 𝑡 + 1 nodes in |S4

1
| are

honest and each such node 𝑗 sent 𝑠3

𝑗
= 1 to all nodes. Also, due

to Lemma 7, for every pair of honest nodes, they have the same

initial message at the end of phase 0, i.e., 𝑗, ℓ ∈ S4

1
, 𝑀𝑗 = 𝑀ℓ .

Hence, every honest node 𝑖 will eventually will receive at least

𝑡 +1 matching ⟨SYMBOLS, (𝑦(𝑗 )

𝑖
, ∗)⟩ messages from honest nodes



in S4

1
. This implies, every honest node will send RECONSTRUCT

message with correct fragment, and due to properties of OEC,

each honest will output the same message𝑀 ′. □

Theorem 6 (Validity). Algorithm 5 guarantees the Validity
property.

Proof. When the broadcaster is honest and has input 𝑀 ,

due to guarantees of OEC, during phase 0, every honest node

will eventually receive 𝑀 , i.e., 𝑀𝑖 = 𝑀𝑗 = 𝑀 for all honest

nodes 𝑖 and 𝑗 . Since, ECCEnc is a deterministic function, for

every pair of honest nodes 𝑖 and 𝑗 , the tuple of fragments

will match, i.e., (𝑦
(𝑗 )

𝑖
, 𝑦

(𝑗 )

𝑗
) = (𝑦

(𝑖)

𝑖
, 𝑦

(𝑖)

𝑗
). Since there are at least

𝑛 − 𝑡 honest nodes, eventually |S1

1
| will be greater than or

equal to 𝑛 − 𝑡 at all honest nodes and every honest node 𝑖

will send ⟨𝑃1, 𝑠2

𝑖
= 1⟩ to others. No honest node will send

⟨𝑃1, 𝑠2

𝑖
= 0⟩ since there are at most 𝑡 Byzantine nodes who

may send inconsistent fragments. A similar argument also

implies that during phase 2 and 3, each honest node 𝑖 will send

⟨𝑃2, 𝑠3

𝑖
= 1⟩ and ⟨𝑃3, 𝑠3

𝑖
= 1⟩, respectively, to all other nodes.

Hence, every honest node will eventually send ⟨ECHO, 1⟩ and
⟨READY, 1⟩ to others and all honest node will start to phase 4.

Finally, during phase 4, every honest node sends a valid coded

fragment of 𝑀 in RECONSTRUCT message. Thus, again due to

guarantees of OEC, every honest node will reconstruct the

message𝑀 . □

Theorem 7 (Performance). For any message 𝑀 of size |𝑀 |,
the total communication cost of Algorithm 5 is𝑂(𝑛 |𝑀 |+𝑛2

log𝑛)

bits. Furthermore each node incurs a communication cost of
𝑂(|𝑀 |+𝑛 log𝑛).

Proof. During phase 0, the broadcaster sends a fragment to

each node, and each node gossips the fragment to every other

node. Note that in Reed-Solomon code, each fragment is of size

max{|𝑀 |/𝑛, log𝑛} bits. Hence, the communication cost of each

node during phase 0 is at most𝑂(|𝑀 |+𝑛 log𝑛). Hence, the total

communication during phase 0 is at most 𝑂(𝑛 |𝑀 |+𝑛2
log𝑛).

During phase 1, each node sends two fragments (line 12) and

a single bit (line 19 and 22) to every other node. Hence, by

the same argument as above, the total communication cost

of phase 1 is at most 𝑂(𝑛 |𝑀 |+𝑛2
log𝑛). A node only sends a

single bit to other nodes during phase 2. Similarly, during

phase 3, each node only sends 1-bit to others and runs a 1-

bit Bracha’s BRB protocol. Hence, the communication cost

of phase 2 and phase 3 is 𝑂(𝑛2
). Finally, during phase 4, each

node sends a fragment to all other nodes, hence the per node

and the total communication cost of phase 4 is 𝑂(|𝑀 |+𝑛 log𝑛)

and 𝑂(𝑛 |𝑀 |+𝑛2
log𝑛), respectively.

Combining the above, the per node and the total communi-

cation cost of Algorithm 5 is𝑂(|𝑀 |+𝑛 log𝑛) and𝑂(𝑛 |𝑀 |+𝑛2
log𝑛),

respectively. □

7 LOWER BOUNDS
In this section, we prove a communication complexity lower

bound for deterministic protocols that solve BRB, which have

been mentioned in Table 1. To strengthen the result, the lower

bound is proven under synchrony. The lower bound proof is

inspired by [21].

For any deterministic BRB protocol with input𝑀 that toler-

ates up to Θ(𝑛) Byzantine nodes, it is straightforward to show

a lower bound of Ω(𝑛 |𝑀 |+𝑛2
) [38] on the communication cost

even under synchrony. The Ω(𝑛 |𝑀 |) part is because 𝑂(𝑛) hon-

est nodes need to receive the message when the protocol termi-

nates, and the Ω(𝑛2
) part is due to the classic Dolev-Reischuk

lower bound [21]. Therefore, all our protocols SigBRB, BalSig-

BRB, EFBRB and BalEFBRB have near-optimal communication

cost.

Next, for any deterministic protocol that solves BRB under

synchrony, we will show that Ω(|𝑀 |+𝑛) is a lower bound on

the communication cost of any protocol node including the

broadcaster, which implies our BalSigBRB and BalEFBRB has

near-optimal per-node cost as well.

Theorem 8. In any deterministic protocol that solves BRB, for
any honest node 𝑝 , there exists an execution in which 𝑝 incurs a
communication cost of Ω(|𝑀 |+𝑛).

Proof. We will prove that for any deterministic BRB pro-

tocol, all honest nodes incur at least Ω(|𝑀 |+𝑛) communication

cost in at least one execution.

The argument for broadcaster is straightforward. First, the

broadcaster needs to send at least Ω(|𝑀 |) bits for its input
message𝑀 . Moreover, the broadcaster has to send messages

to at least 𝑡 + 1 nodes, otherwise it is possible that no honest

node receives any information from the broadcaster, and the

Validity property of BRB can be violated. Since 𝑡 = Θ(𝑛), we

conclude that the broadcaster has to send Ω(|𝑀 |+𝑛) bits.

Consider any non-broadcaster honest node during any

failure-free execution where the broadcaster has input𝑀 . This

honest node needs to output𝑀 due to the Validity requirement,

so at least Ω(|𝑀 |) bits need to be received.

Let 𝐶𝑝,𝐸 denote the number of messages an honest node 𝑝

sends to any node and receives from any honest node during

an execution 𝐸. We show that 𝐶𝑝,𝐸 ≥ 𝑡/2 + 1 for any honest

node 𝑝 in at least one execution 𝐸. Otherwise, suppose there

exists a BRB protocol where an honest node 𝑞 has 𝐶𝑞,𝐸 ≤ 𝑡/2

for any execution 𝐸. If 𝑞 receives no message during the en-

tire execution but other honest nodes output for BRB, due to

Totality 𝑞 eventually outputs as well. Without loss of gener-

ality, suppose 𝑞 outputs 0 in this case. Consider a failure-free

execution 𝐸1 where the honest broadcaster has input 1. By

assumption, 𝐶𝑞,𝐸1 ≤ 𝑡/2. Let 𝑆 denote the set of nodes that

𝑞 receives messages from in 𝐸1. We have |𝑆 |≤ 𝑡/2. Consider

execution 𝐸2 where the honest broadcaster has input 1, and

𝑞 is Byzantine and remains silent. Since the broadcaster is

honest and has input 1, by Validity, all honest nodes output

1 in 𝐸2. Then, we construct another execution 𝐸3 same as 𝐸2

except that the nodes in 𝑆 are Byzantine and 𝑞 is now honest.

The nodes in 𝑆 behave identically as in 𝐸2, except that they

send no message to 𝑞. By assumption, 𝐶𝑞,𝐸3 ≤ 𝑡/2. The adver-

sary also corrupts the set of nodes 𝑅 that 𝑞 sends messages to

in 𝐸3. This is within the adversary’s corruption budget since

|𝑆 ∪ 𝑅 |≤ |𝑆 |+|𝑅 |≤ 𝑡 . The Byzantine nodes in 𝑅 behave identi-

cally as in 𝐸2. Since 𝑞 receives no message in 𝐸3, 𝑞 will output

0 in 𝐸3 by assumption. Other honest nodes will output 1 in 𝐸3

since they cannot distinguish 𝐸2, 𝐸3. However, the Agreement

property of BRB is then violated. Therefore, we prove that



𝐶𝑝,𝐸 ≥ 𝑡/2 + 1 for any honest node 𝑝 in at least one execution

𝐸, which implies the communication cost at any honest node

for any BRB protocol is Ω(𝑛).

Therefore, in any deterministic protocol that solves BRB, for

any honest node 𝑝 , there exists an execution in which 𝑝 incurs

a communication cost of Ω(max{|𝑀 |, 𝑛}) = Ω(|𝑀 |+𝑛). □

8 RELATEDWORK
The problem of reliable broadcast (BRB) was introduced by

Bracha [13]. In the same paper, Bracha provided an error-free

BRB protocol for a single bit with a communication cost of

𝑂(𝑛2
), thus 𝑂(𝑛2 |𝑀 |) for |𝑀 | bits using a naïve approach. Al-

most two decades later, Cachin and Tessaro [15] improved the

cost to 𝑂(𝑛 |𝑀 |+^𝑛2
log𝑛) assuming a collision-resistant hash

function with ^ being the output size of the hash. Hendricks

et al. in [31] propose an alternate BRB protocol with a commu-

nication cost of 𝑂(𝑛 |𝑀 |+^𝑛3
) using a erasure coding scheme

where each element of a codeword can be verified for correct-

ness. Assuming a trusted setup phase, hardness of 𝑞-SDH [8, 9]

and Decisional Bilinear Diffie-Hellman (DBDH) [11], Nayak

et al. [38] reduced the communication cost to 𝑂(𝑛 |𝑀 |+^𝑛2
).

Recently, Das et al. [19] presents a BRB protocol that has a

communication cost to 𝑂(𝑛 |𝑀 |+^𝑛2
) assuming only collision-

resistant hash function. However, their BRB protocol has two

limitations: 1) For sufficiently large messages, the protocol

suffers from computational inefficiencies. 2) The broadcaster

incurs a higher communication cost than the non-broadcaster

nodes. We address both of these concerns while still maintain-

ing the same total communication cost by introducing our two

protocols CCBRB and BalCCBRB in §4. CCBRB is not balanced

but offers better computational cost for large messages, while

BalCCBRB is balanced, but at the cost of one extra step of

communication.

The original BRB protocol due to Bracha [13] is error-free,

i.e., it does not require any cryptographic assumptions and is

secure against any computationally unbounded adversary in

all executions. The error-free BRB protocol due to Patra [39]

achieves a total communication cost of 𝑂(𝑛 |𝑀 |+𝑛4
log𝑛), and

it is later improved to 𝑂(𝑛 |𝑀 |+𝑛3
log𝑛) by Nayak et al. [38].

The two protocols above are not balanced; the broadcaster has

a cost roughly 𝑂(𝑛) higher than other nodes.

Our error-free BRB builds upon the recent result on syn-

chronous error-free Byzantine agreement due to Chen [18]. In

particular, our observation is that, with appropriate changes,

we can use Chen’s protocol to establish the initial condition of

the Asynchronous Data Dissemination (ADD) problem intro-

duced by [19]. ADD is a protocol that efficiently disseminates

the message from a subset of honest node to all honest nodes

in an asynchronous network. Note that, Chen’s approach do

not rely on any cryptographic assumption and incurs a com-

munication cost of 𝑂(𝑛 |𝑀 |+𝑛2
log𝑛). Thus, by combining the

modified Chen’s protocol along with our balancing technique

from §3 and information theoretic Asynchronous Data Dissem-

ination protocol of [19], we get an information-theoretically

secure BRB protocol with near-optimal communication cost

of 𝑂(𝑛 |𝑀 |+𝑛2
log𝑛).

For SigBRB, we use Byzantine consistent broadcast (CBC)

which may be viewed as BRB without the totality property.

The notion has been implicitly discussed in [13, 45] and more

formally by Reiter [43] and Cachin, Kursawe, Petzold, and

Shoup (CKPS) [14]. The CBC construction is due to Cachin,

Kursawe, Petzold, and Shoup [14].

BRB has also been explored in some extended settings, e.g.,

probabilistic BRB [29], BRB with dynamic membership [28].

Concurrent work. A concurrent and independent work of

Abraham and Asharov [1] obtains asynchronous Byzantine

reliable broadcast with near-optimal communication cost of

𝑂(𝑛 |𝑀 |+𝑛2
log(𝑛3/𝜖)). Their protocol tolerates optimal resilience

𝑡 < 𝑛/3 and is statistically secure with probability 1 − 𝜖 . The
computational cost of their protocol is �̃�(𝑛 |𝑀 |) since they need
online error correction on the input message. Their protocol

has 7 round if made balanced using our technique of §3, or 6

round without the balancing. Abraham and Asharov [1] also

obtain similar results for synchronous gradecast.

9 BRB VS. AVID
Asynchronous verifiable information dispersal (AVID), intro-

duced by Cachin and Tessaro [15], is a primitive closely related

to BRB. The difference between these two primitives is that

BRB requires that replicas store a full copy of message, but

AVID may only ask replicas to store erasure-coded fragments

in a consistent manner. It is straightforward to obtain a BRB

protocol from an AVID, by all nodes invoking retrieval after

the dispersal phase of AVID terminates.

The new techniques introduced in this paper apply to the

problem of AVID as well. More specifically, the balanced multi-

cast from §3 and cross-checksum from §4 inspired us to design

a new AVID protocol with near-optimal communication cost.

More details can be found in our PODC 2022 brief announce-

ment [4].

10 CONCLUSION AND OPEN PROBLEMS
This paper investigates asynchronous Byzantine reliable broad-

cast, and make improvements over existing results in terms

of computation cost, and communication cost in total and

per-node. An intriguing open problem is that, can we simulta-

neously achieve improved computation cost and near-optimal

communication cost? All our solutions with near-optimal com-

munication have expensive online error correction on the in-

put message, and our computation efficient protocol still has

an𝑂 (̂ ) gap from the communication complexity lower bound.

Another interesting open problem is that, can we achieve op-

timal communication cost for Byzantine reliable broadcast?

Our near-optimal solutions still have an𝑂(log𝑛) gap from the

lower bound.
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A RE-PROVING LEMMAS
In this section we will re-prove some lemmas from [17] for our

Key Lemma (Lemma 7). Our proofs basically follow the original

proof of [17], adapted to our asynchronous BRB protocol.

We will first restate the definitions introduced by Chen [17]

in our protocol language.

Notation for groups of nodes.Wedivide the𝑛-node network

into group of nodes. The group definition is based on the values

of the messages recovered by nodes at the end of phase 0 and

values of the success indicators {𝑠 𝑗
𝑖
}𝑛
𝑖=1

for 𝑗 = 1, 2, 3, 4. Let F
be the group consisting of the indices of all of the dishonest

nodes. Note that |F |≤ 𝑡 . We define the following groups of

honest nodes.

A𝑙 ≜{𝑖 : 𝑀𝑖 = �̄�𝑙 , 𝑖 /∈ F , 𝑖 ∈ [𝑛]}, 𝑙 ∈ [[] (1)

A[1]

𝑙
≜{𝑖 : 𝑠1

𝑖 = 1, 𝑀𝑖 = �̄�𝑙 , 𝑖 /∈ F , 𝑖 ∈ [𝑛]}, 𝑙 ∈ [[[1]
] (2)

A[2]

𝑙
≜{𝑖 : 𝑠2

𝑖 = 1, 𝑀𝑖 = �̄�𝑙 , 𝑖 /∈ F , 𝑖 ∈ [𝑛]}, 𝑙 ∈ [[[2]
] (3)

A[3]

𝑙
≜{𝑖 : 𝑠3

𝑖 = 1, 𝑀𝑖 = �̄�𝑙 , 𝑖 /∈ F , 𝑖 ∈ [𝑛]}, 𝑙 ∈ [[[3]
] (4)

for some different non-empty values �̄�1, �̄�2, · · · , �̄�[ and some

non-negative integers [, [[1], [[2], [[3]
such that [[3] ≤ [[2] ≤

[[1] ≤ [. The above definition implies that Group A𝑙 is a

subset of honest nodes who recovered the same message at the

end of phase 0.A[1]

𝑙
is a subset ofA𝑙 who have the same non-

empty value of updated messages at the end of phase 1. Note

that at the end of phase 1, if the updated message of honest

node 𝑖 is non-empty, then it implies that its updated message

remains the same as its message after phase 0. Moreover, 𝑠1

𝑖
= 1.

Similarly, A[2]

𝑙
is a subset of A[1]

𝑙
who have the same non-

empty value of updated messages at the end of Phase 2 for

𝑙 ∈ [[[2]
], while A[3]

𝑙
is a subset of A[2]

𝑙
who have the same

non-empty value of updated messages at the end of Phase 3 for

𝑙 ∈ [[[3]
]. In our setting, when 1 ≤ [[3] ≤ [[2] ≤ [[1] ≤ [, the

setsA𝑙 ,A
[1]

𝑙1
,A[2]

𝑙2
,A[3]

𝑙3
are all non-empty for any 𝑙 ∈ [[], 𝑙1 ∈

[[[1]
], 𝑙2 ∈ [[[2]

], 𝑙3 ∈ [[[3]
]. Note that

∑[

𝑙=1
|A𝑙 |+|F |= 𝑛.

Let B[𝑝]
defined as

B[𝑝] ≜{𝑖 : 𝑠
𝑝

𝑖
= 0, 𝑖 /∈ F , 𝑖 ∈ [𝑛]}, 𝑝 ∈ {1, 2, 3}. (5)

Based on our definitions, it holds true that

[[𝑝]∑︁
𝑙=1

|A[𝑝]

𝑙
|+|B[𝑝] |+|F |= 𝑛, 𝑝 ∈ {1, 2, 3}. (6)

Throughout our analysis, for any message𝑀 , we use𝑀(·) =

ECCEnc(𝑀,𝑛, 𝑘) to denote the Reed-Solomon encoding of the

message𝑀 . Moreover, we use𝑀(𝑖) to denote the 𝑖-th fragment

of𝑀(·). For some 𝑖 ∈ A𝑙 , the equality of �̄�𝑙 (𝑖) = �̄�𝑗 (𝑖) might

be satisfied for some 𝑗 and 𝑙 . Thus, we further sub-divide the

group A𝑙 the following (possibly overlapping) sub-groups

A𝑙, 𝑗 ≜{𝑖 : 𝑖 ∈ A𝑙 , �̄�𝑙 (𝑖) = �̄�𝑗 (𝑖)}, 𝑗 ̸= 𝑙, 𝑗, 𝑙 ∈ [[] (7)

A𝑙,𝑙 ≜A𝑙 \ {∪
[

𝑗=1, 𝑗 ̸=𝑙A𝑙, 𝑗 }, 𝑙 ∈ [[]. (8)

Similarly, Group A[𝑝]

𝑙
can be further divided into some sub-

groups defined as

A[𝑝]

𝑙, 𝑗
≜{𝑖 : 𝑖 ∈ A[𝑝]

𝑙
, �̄�𝑙 (𝑖) = �̄�𝑗 (𝑖)}, 𝑗 ̸= 𝑙, 𝑗, 𝑙 ∈ [[[𝑝]

] (9)

A[𝑝]

𝑙,𝑙
≜A[𝑝]

𝑙
\ {∪[

[𝑝]

𝑗=1, 𝑗 ̸=𝑙A
[𝑝]

𝑙, 𝑗
}, 𝑙 ∈ [[[𝑝]

]. (10)

for 𝑝 ∈ {1, 2, 3}.
Notation for graphs. Chen [17] defines a graph 𝐺 = (P, E),

where P consists of 𝑛 − 𝑡 vertices, i.e., P = [𝑛 − 𝑡], and E
is the set of edges. Let 𝑖∗ ∈ P, and let C ⊆ P \ {𝑖∗} be a of
vertices with |C|≥ 𝑛 − 2𝑡 − 1, such that each vertex in C is

connected with at least 𝑛 − 2𝑡 edges and one of the edges is

connected to vertex 𝑖∗. We count an edge connecting to itself

as an edge as well. For any pair of vertices 𝑖, 𝑗 ∈ P, we use
𝐸𝑖, 𝑗 = 1 (resp. 𝐸𝑖, 𝑗 = 0) to indicate that there is an edge (resp.

no edge) between vertex 𝑖 and vertex 𝑗 . In summary, in 𝐺 , for

a given 𝑖∗ ∈ P = [𝑛 − 𝑡], the following properties regarding

the set 𝐶 holds.

𝐸𝑖,𝑖∗ = 1 ∀𝑖 ∈ C (11)∑︁
𝑗 ∈P

𝐸𝑖, 𝑗 ≥ 𝑛 − 2𝑡 ∀𝑖 ∈ C (12)

|C| ≥ 𝑛 − 2𝑡 − 1 (13)

For the graph 𝐺 , let D ⊆ P denote the set of vertices such

that each vertex in D is connected with at least 𝑘 vertices in

C, that is,

D ≜
{
𝑖 :

∑︁
𝑗 ∈C

𝐸𝑖, 𝑗 ≥ 𝑘, 𝑖 ∈ P \ {𝑖∗}
}

(14)

where 𝑘 is the Reed-Solomon encoding parameter. Then, the

following lemma provides a result on bounding the size of D.

Lemmas from [17]. Next we will provide Lemmas from [17]

that we will directly use later for re-proving Lemmas for our

Algorithm 5.

Lemma 8. For A𝑙, 𝑗 and A
[1]

𝑙, 𝑗
defined in (7) and (9), and for

[ ≥ [[1] ≥ 2, the following inequalities hold true

|A𝑙, 𝑗 |+|A 𝑗,𝑙 |<𝑘, ∀𝑗 ̸= 𝑙, 𝑗, 𝑙 ∈ [[] (15)

|A[1]

𝑙, 𝑗
|+|A[1]

𝑗,𝑙
|<𝑘, ∀𝑗 ̸= 𝑙, 𝑗, 𝑙 ∈ [[[1]

] (16)

where 𝑘 is the Reed-Solomon encoding parameter.

Proof. Refer to [17, Lemma 7] for proof. □

Lemma 9. For any graph𝐺 = (P, E) specified by (11)-(13) and
for the setD ⊆ P defined by (14), and given 𝑛 ≥ 3𝑡 + 1, it holds
true that

|D| ≥ 𝑛 − 9𝑡/4 − 1. (17)

Proof. We refer the reader to [17, Lemma 8] for proof. □



Re-proving Lemmas from [17].We next argue that at the

end of phase 2, if there exists 1 or more group of honest nodes

with different messages, then it must hold true that the initial

size of each group must be at least 𝑛 − 9𝑡/4. More formally,

Lemma 10. When [[2] ≥ 1, it holds true that |A𝑙 |≥ 𝑛 − 9𝑡/4,
for any 𝑙 ∈ [[[2]

].

Proof. The proof consists of the following steps, which

mostly follows the proof of [17, Lemma 9]:

• Step (a): Transform the network into a graph that is within

the family of graphs satisfying (11)-(13) for a fixed 𝑖∗ inA[2]

𝑙∗

and 𝑙∗ ∈ [[[2]
].

• Step (b): Bound the size of a group of honest nodes, denoted

by D ′ (with the same form as in (14)), using the result of

Lemma 9, i.e., |D ′ |≥ 𝑛 − 9𝑡/4 − 1.

• Step (c): Argue that every node in D ′ has the same initial

message as node 𝑖∗.
• Step (d): Conclude from Step (c) that D ′ is a subset of A𝑙∗ ,

i.e., D ′ ∪ {𝑖∗} ⊆ A𝑙∗ and conclude that the size of A𝑙∗ is

bounded by the number determined in Step (b), i.e., |A𝑙∗ |≥
|D ′ |+1 ≥ 𝑛 − 9𝑡/4 − 1 + 1, for 𝑙∗ ∈ [[[2]

].

Step (a): The first step of the proof is to transform the network

into a graph that is within the family of graphs defined above.

We will consider the case of [[2] ≥ 1. Recall that, when [[2] ≥
1, we have |A[2]

𝑙
|≥ 1 for any 𝑙 ∈ [[[2]

]. Let us consider a fixed

𝑖∗ for 𝑖∗ ∈ A[2]

𝑙∗
and 𝑙∗ ∈ [[[2]

]. Note that,

𝑠2

𝑖∗ = 1⇒At node 𝑖∗, |S2

1
|≥ 𝑛 − 𝑡 (18)

⇒At node 𝑖∗, |S2

1
∩ {∪[

[1]

𝑝=1
A[1]

𝑝 }|≥ 𝑛 − 2𝑡 (19)

⇒At node 𝑖∗, |S1

1
∩ {∪[

[1]

𝑝=1
A[1]

𝑝 }|≥ 𝑛 − 2𝑡 (20)

the last implication follows from the fact that 𝑗 ∈ S2

1
⇒ 𝑗 ∈

S1

1
, ∀𝑗 ∈ ∪[

[1]

𝑝=1
A[1]

𝑝 , which holds due to the check in line 25-26

in Algorithm 5.

Let C′ be defined as follows;

C′ ≜{S1

1
at node 𝑖∗ ∩ {∪[

[1]

𝑝=1
A[1]

𝑝 }} \ {𝑖∗} ⇒ |C′ |≥ 𝑛 − 2𝑡 − 1

(21)

Moreover, since C′ is a subset of ∪[
[1]

𝑝=1
A[1]

𝑝 , it implies

𝑠1

𝑗 = 1,∀𝑗 ∈ C′ ⇒At every node 𝑗 ∈ C′, |S1

1
|≥ 𝑛 − 𝑡 (22)

⇒At every node 𝑗 ∈ C′, |S1

1
∩ {∪[

𝑙=1
A𝑙 }|≥ 𝑛 − 2𝑡

(23)

(24)

In other words, for any 𝑗 ∈ C′, node 𝑗 receives at least 𝑛−2𝑡

number of matched observations from honest nodes during

phase 1. Let us define a subset of {∪[
𝑙=1
A𝑙 } \ {𝑖∗} of honest

nodes as

D ′ ≜{𝑝 : 𝑝 received matching SYMBOLS message from (25)

at least 𝑘 nodes in C′ and 𝑝 ∈ {∪[
𝑙=1
A𝑙 } \ {𝑖∗}} (26)

where 𝑘 is the Reed-Solomon encoding parameter.

Now we map the network into a graph by considering the

honest nodes as the vertices and considering the link indicators

as edges. Let P ≜ ∪[
𝑙=1
A𝑙 . Let E consists of 𝐸𝑖, 𝑗 for all 𝑖, 𝑗 ∈ P

such that 𝐸𝑖, 𝑗 = 1 if 𝑖 ∈ S1

1
at node 𝑗 . Note that 𝑖 ∈ S1

1
at

node 𝑗 implies eventually 𝑗 ∈ S1

1
at node 𝑖 . Let 𝐺 = (P, E) be

a graph, then C′ ⊆ P ′ \ {𝑖∗} be as defined equation (21). It

is easy to see that the graph 𝐺 falls into a family of graphs

satisfying (11)-(13).

The step (b), (c), and (d) of our proof is identical to the proof

of steps (b), (c), and (d) of [17, Lemma 9]. Thus we omit them

for brevity. □

Next we provide a lemma that will be used later for the

analysis of the proposed protocol.

Lemma 11. In algorithm 5 with 𝑛 ≥ 3𝑡 + 1, if [[1]
= 2 then it

holds true that [[3] ≤ 1.

Proof. The proof mostly follows the proof of [17, Lemma

10]. Given [[1]
= 2, the definitions in (1)-(10) imply that

A[1]

1
={𝑖 : 𝑠1

𝑖 = 1, 𝑀𝑖 = �̄�1, 𝑖 /∈ F , 𝑖 ∈ [𝑛]} (27)

A[1]

2
={𝑖 : 𝑠1

𝑖 = 1, 𝑀𝑖 = �̄�2, 𝑖 /∈ F , 𝑖 ∈ [𝑛]} (28)

A[1]

1,2
={𝑖 : 𝑖 ∈ A[1]

1
, �̄�1(𝑖) = �̄�2(𝑖)} (29)

A[1]

1,1
=A[1]

1
\ A[1]

1,2
= {𝑖 : 𝑖 ∈ A[1]

1
, �̄�1(𝑖) ̸= �̄�2(𝑖)} (30)

A[1]

2,1
={𝑖 : 𝑖 ∈ A[1]

2
, �̄�2(𝑖) = �̄�1(𝑖)} (31)

A[1]

2,2
=A[1]

2
\ A[1]

2,1
= {𝑖 : 𝑖 ∈ A[1]

2
, �̄�2(𝑖) ̸= �̄�1(𝑖)} (32)

B[1]
={𝑖 : 𝑠1

𝑖 = 0, 𝑖 /∈ F , 𝑖 ∈ [𝑛]}

={𝑖 : 𝑖 ∈ [𝑛], 𝑖 /∈ F ∪ A[1]

1
∪ A[1]

2
}. (33)

In the following we will complete the proof by focusing on

the following three cases

Case 1: |A[1]

1
|+|B[1] |≥𝑡 + 1 (34)

|A[1]

2
|+|B[1] |<𝑡 + 1 (35)

Case 2: |A[1]

1
|+|B[1] |<𝑡 + 1 (36)

|A[1]

2
|+|B[1] |≥𝑡 + 1 (37)

Case 3: |A[1]

1
|+|B[1] |≥𝑡 + 1 (38)

|A[1]

2
|+|B[1] |≥𝑡 + 1. (39)

Note that the following case

Case 4: |A[1]

1
|+|B[1] |<𝑡 + 1 (40)

|A[1]

2
|+|B[1] |<𝑡 + 1 (41)

does not exist. See [17] for its proof.

Case 1: Recall that in the first step of Phase 2, due to the check

of line 25-26 in Algorithm 5, each node 𝑖 ∈ A2,2 with 𝑠1

𝑖
= 1

eventually adds a node 𝑗 to S2

0
for every 𝑗 ∈ S1

0
. Moreover, by

definition eventually every node in B[1] ∪ A1 will be added

to S1

0
at each node 𝑖 ∈ A2,2 because 𝑠1

𝑖
= 0, ∀𝑖 ∈ B[1]

and nodes A1 and A2,2 have mismatched fragments. Since



we assume in (34), that |A[1]

1
|+|B[1] |≥ 𝑡 + 1, it implies that

eventually during Phase 2, every node 𝑖 ∈ A2,2 sets

𝑠2

𝑖 = 0, ∀𝑖 ∈ A[1]

2,2
(42)

With the outcome in (42) and after exchanging the success

indicators, eventually, the set of A[1]

2,2
, as well as B[1]

, will be

in the list of S0 at each honest node. Note that a subset of

A[1]

2,1
, i.e., A[1]

2,1
∩ {𝑝 : 𝑠2

𝑝 = 1}) may still be in list of S2

1
. Below

we will argue that the complete set of A[1]

2,1
will be in the list

of S3

0
.

During Phase 3, a node 𝑖 ∈ A2,1 and with 𝑠
3

𝑖
= 1, eventually

adds node 𝑗 to S3

0
for each 𝑗 ∈ A[1]

2,2
∪ B[1]

. This holds due to

the check in line 39-40 of Algorithm 5. It is also true that

�̄�𝑖 ( 𝑗 ) ̸= �̄�𝑗 ( 𝑗 ), ∀𝑗 ∈ A[1]

1,1
, 𝑖 ∈ A[1]

2,1
(43)

Note that, the size of A[1]

1,1
∪ A[1]

2,2
∪ B[1]

can be bounded by

|A[1]

1,1
∪ A[1]

2,2
∪ B[1] |=|A[1]

1,1
|+|A[1]

2,2
|+|B[1] | (44)

=𝑛 − |F |−|A[1]

1,2
|−|A[1]

2,1
| (45)

≥𝑛 − |F |−(𝑘 − 1) (46)

≥2𝑡 + 1 − (𝑘 − 1) (47)

≥𝑡 + 1 (48)

where (44) uses the disjoint property between A[1]

1,1
, A[1]

2,2
and

B[1]
; (45) is from (6) and the disjoint property between A[1]

1,1
,

A[1]

1,2
, A[1]

2,1
, A[1]

2,2
and B[1]

; (46) follows from Lemma 8, which

implies that |A[1]

1,2
|+|A[1]

2,1
|< 𝑘 (or equivalently |A[1]

1,2
|+|A[1]

2,1
|≤

𝑘 − 1); (47) uses the condition that 𝑛 ≥ 3𝑡 + 1 and |F |= 𝑡 ; (48)

results from the fact that 𝑡 ≥ 𝑘 − 1 based on our design of 𝑘 .

Hence, for every node 𝑖 ∈ A2,1, during phase 3, eventually

|S3

0
|≥ 𝑡 + 1. Therefore, during phase 3, the node 𝑖 updates its

success indicator 𝑠3

𝑖
= 0. Since, A[1]

2,1
∩ {𝑝 : 𝑠2

𝑝 = 0} ⊆ S0,

this implies that eventually A[1]

2
⊆ S3

0
. Stating differently, at

the end of Phase 3 of there exists at most 1 group of honest

nodes, where the honest nodes within this group have the

same non-empty updated message (with success indicators as

ones), and the honest nodes outside this group have the same

empty updated message (with success indicators as zeros), that

is, [[3] ≤ 1, for Case 1.

Case 2: Due to the symmetry between Case 1 and Case 2, one

can follow from the proof steps for Case 1 and interchange the

roles of GroupsA1 andA2 (as well as the roles of GroupsA[𝑝]

1

andA[𝑝]

2
accordingly for 𝑝 ∈ {1, 2, 3}), to show for Case 2 that

at the end of Phase 3 it is that A[1]

1
⊆ S0.

Case 3: Follows from the analysis of case 1 and the argument

presented in [17]. □
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