
A POMDP-based Robot-Human Trust Model for 
Human-Robot Collaboration  

Abstract—Trust is a cognitive ability that can be dependent 
on behavioral consistency. In this paper, a partially observable 
Markov Decision Process (POMDP)-based computational 
robot-human trust model is proposed for hand-over tasks in 
human-robot collaborative contexts. The robot’s trust in its 
human partner is evaluated based on the human behavior 
estimates and object detection during the hand-over task. The 
human-robot hand-over process is parameterized as a partially 
observable Markov Decision Process. The proposed approach is 
verified in real-world human-robot collaborative tasks. Results 
show that our approach can be successfully applied to human-
robot hand-over tasks to achieve high efficiency, reduce 
redundant robot movements, and realize predictability and 
mutual understanding of the task. 

Keywords—robotics, human-robot collaboration, trust, belief 
probability, POMDP 

I. INTRODUCTION 
Human-robot collaboration has been an active area of 

research for quite some time [1-5]. The basis of humans 
collaborating with robots, in most cases, is purely mechanical 
where the robot helps human partners with specific tasks to 
complete a process. Examples of tasks that have been exploited 
as parts of human-robot collaboration include but are not limited 
to manufacturing processes, guided navigation [6], games 
playing [7], and co-assembly tasks [8]. It is well recognized 
that the trust constitutes an important concern in human-robot 
collaboration. “Can humans trust in robots?” is a question that 
has been part of the human-robot collaboration research for a 
long time. Resulting in a lot of research work being dedicated 
to this area [9-11]. But “can robots trust in humans?” Or “how 
can we make robots trust humans?” present new research 
questions in human-robot collaboration, occurring with the 
increasing applications of robots in a wide range of areas. 

Trust is a cognitive ability that is highly subjective due to 
its dependence on numerous factors such as knowledge base, 
observable and non-observable behavioral parameters, and 
cognitive biases. Trust is defined as a firm belief in the 
character, strength, or truth of someone or something [12, 13]. 
Belief can be seen as a measure of the probability of something 
being close to the expected truth. For a human being, a high 
level of trust in something means that they have a belief that 
the probability of it being close to their expectation is high. 
According to [14], the belief in humans comes from a 
combination of five factors – knowledge, environment, events, 
past results, and future vision. Behavioral consistency plays a 
major role in developing the trust. The importance of consistent 
behavior to build trust in employees and friends has been 
highlighted in [15] and [16]. We make use of this concept to 
determine the trustworthiness of human partners based on 
their intentions and faiths to carry out hand-over tasks with 
robots in human-robot collaboration. 

The area of human-robot collaboration still lacks a certain 
understanding of trust, which is inherent in human-human 
partners. Human-robot collaborative tasks such as hand-over, 
which involves the work of humans and robots in close 
vicinity, needs trust between both parties. Humans are quite 
efficient in hand-over actions, as we can deduce the intention 
of our partners efficiently. With our approach, we take a step 
forward in the direction of ‘humanizing’ robots for collaborative 
tasks by enabling them to infer human intentions. Calculating 
trust levels of robots in humans could enable the robots to 
determine situations where hand-over actions of humans are 
expected versus in situations where hand-over actions are not 
intended due to some interferences or change of mind, etc. 

Our proposed approach allows the robot to determine the 
trust levels in its human partner during the collaboration 
process. The approach consists of human hand-over pose 
determination, partially observable Markov Decision Process 
(POMDP) based planning component, and real-time trust 
determination. The trust is evaluated by judging the human 
intentions (to deliver or not deliver the object) during the hand-
over task. A belief probability is used to calculate the 
probability of human intention to deliver objects. We take 
advantage of the object detection and human hand-over pose 
evaluation to estimate the human hand-over intentions. Based 
on the intentions, we calculate the robot’s trust levels for its 
human partner in real-time. The major contributions of this 
work include: (1) We parameterize the human-robot hand-
over process as a POMDP in human-robot collaborative 
contexts; (2) A computational robot-human trust model is built 
for the robot to evaluate its trust in its human partner in real-
time; (3) The proposed approach is experimentally implemented 
in real-world human-robot collaborative tasks with success.  

II. RELATED WORK 
For human-robot interactions, a lot of research has been 

conducted on whether humans can trust machines or robots. 
Most of the past work in this field has been focusing on 
determining the trust levels of humans in robots. The work in 
[17] investigated trust towards robots, while [18] delved into 
discussions on designing trustworthy AI and how trust is 
manifested and warranted. Little research has delved into 
exploring how robots can trust humans and if such trust 
models can be developed for robots to evaluate trust levels 
with humans. Azevedo-Sa et al. presented a trust model for 
human-robot interactions. They developed a trust model that 
could be used by human agents as well as robot agents. They 
named the trust as human trust and artificial trust based on 
who the trustor and the trustee were [19]. Another trust model 
was proposed by Dorbala et al., which used reinforcement 
learning for a robot to navigate in an office environment using 
vocal commands [20]. They proposed a robot trust metric 
derived from human trust metric. The researchers used 
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‘affects’ (expressed emotions or feelings) to extract human 
behavior features. They determined human trustworthiness 
based on the human speech cues. The model proposed in [20] 
is based only on human verbal cues and language used. These 
cues, although, are extensive, but still demonstrate to be 
insufficient. Humans can make false statements fluently even 
when not confident or sometimes, even on purpose. Trust is a 
concept that cannot be determined solely based on language. 
Factors such as voice issues, stuttering, inefficient 
mechanisms to capture the voice, etc. could disrupt the 
captured data. Hence, using only language commands to 
determine trust could be ineffective and introduces error rates. 

Amiri et al. presented the LCORPP algorithm for human 
intention prediction and sequential decision making [21]. The 
algorithm predicted human intentions based on the human 
motion trajectory and reasoning derived from contextual 
knowledge. The estimates were confirmed through interaction 
with the human. The algorithm made use of the Long short-
term memory (LSTM) based supervised learning along with 
reasoning and POMDP based planning. Studies on human 
pose estimation for objects were also explored in order to 
detect and handle objects in 3D scenarios. In [22], Desingh et 
al. proposed a pull message passing belief propagation 
algorithm for the pose estimation of articulated objects. Their 
approach relied on scene grammar representation where the 
problem was formulated as a graph inference problem for a 
Markov Random Field (MRF). 

In this study, our proposed trust model relies on intention 
estimates to determine the trust levels of robots in humans, 
rather than task capabilities as used in [19]. Task capabilities 
are highly conditional and could change due to unforeseen 
circumstances as opposed to human intention. The trust model 
proposed by [20] relies on verbal cues and is highly prone to 
noise. Our proposed model avoids noisy data by making use 
of only non-verbal cues to generate robot trust. The non-verbal 
cues are more reliable as voice data is more prone to noise as 
opposed to pictures. Furthermore, human verbal cues can vary 
along with many subjective factors such as work conditions, 
comfort levels, temperatures, physical conditions, stress levels, 
and health conditions. Our noise resistant approach makes use 
of vision-based object detection and wearable sensing-based 
hand pose evaluation to determine human intention. The 
approach in [21] suffers from limited scope due to the use of 
domain knowledge. To make the model extendable, we infer 
the input information directly without relying on preconceived 
notions that are subject to variation. As an advantage over 
[21], we are also able to provide a trust model built upon these 
estimates during calculations.  

Our contributions lie in the scalability and transferability 
of the algorithm, containing differentiable components that 
can be used even individually for similar experiments, hence 
providing high usability and extensibility. Also, our work 
proposes a trust model for robots to determine the trust levels 
in human partners based on human intention estimates. The 
developed trust model can be extended for other human-robot 
interaction tasks.   

III. MODELING METHODOLOGIES 

A. Hand-Object Pose Estimation  
We make use of the concept of hand-object pose, including 

human hand pose estimate and object detection, during the 
hand-over process. When handing over an object, the human 
is typically seen holding the object at one end, with their palms 

facing downward and their arm extended or, in some cases, 
not extended towards the receiver. As shown in Table I, we 
will determine these parameters for the human holding the 
object in human-robot hand-over tasks. The first parameter 
determines if the human is actually holding any object, the 
second parameter tells if the human arm is extended or not, the 
third parameter is if the human palm is facing downward, and 
the last one tells if the object is held at one end, aligning with 
the certainty that the human wants to deliver the object.  
Table I. The proposed four parameters which will generate the initial 
observation for our POMDP-based hand-over problem. 

Parameter Description 

Cis_holding_object If the human is holding an object or not 

Carm_extended Is the human arm extended or not 

Cpalm_downward Is the human palm facing downward 

Cheld_at_end Is the object held at one end 

B. Object Hand-Over Planning as a Partially Observable 
Markov Decision Process 
A partially observable Markov decision process (POMDP) 

is a combination of a Markov Decision Process (MDP) to 
model system dynamics with a hidden Markov model that 
connects unobservant system states to observations [23-25]. In 
the POMDP, the agent (e.g., the robot or the human) can 
perform actions which may cause the system (e.g., human-
robot collaboration) state to change with the goal of 
maximizing a reward that relies on the agent’s actions and the 
sequence of system state. The agent uses the observations, 
which are made depending on the state, to form a belief 
(described as a probability distribution) of the state the system 
is currently in [26]. The process of the human-robot object 
hand-over task can be defined as a POMDP, of which the 
parameters are defined as below: 

STATES S = [s0—No one is holding object, s1—Human 
holding object with no intention to deliver, s2—Human 
holding object with intention to deliver, s3—Robot holding 
object, s4—Robot not holding object, s5—Terminal state]. 

ACTIONS A = [a0—Grab, a1—Recede]. 

OBSERVATION SET Z = [Force value on the object when 
it is held by the human]. 

TRANSITION FUNCTION T(s, a, s’) = P(s’ | s, a) 
accounts for the action outcomes where a ϵ A and s ϵ S. 

OBSERVATION FUNCTION O(s’, a, z) = P(z | a, s’), 
where z ϵ Z, a ϵ A and s ϵ S, is used for modeling human hand’s 
force feedback to the robot. 

REWARD FUNCTION R (s, a) corresponds to the reward 
received when action a is taken to transition to state s, where a 
ϵ A and s ϵ S. A correct estimation yields a bonus, while a 
wrong estimation yields a penalty. 

All the possible states can be enumerated into a state 
diagram that defines the POMDP states as shown in Fig. 1.  

During the hand-over process, the human hand pose 
estimate and object detection are performed by a wearable 
sensory system and a vision system. The parameters as 
described in Table II are generated in real-time. These 
parameters are Cis_holding_object, Carm_extended, Cpalm_downward, and 
Cheld_at_end. As shown in Table II, all these parameters can be 
characterized as either True or False. Let s0 ϵ S be the initial 
state of the system at this stage.  



 
Fig. 1. The human-robot hand-over process is defined as a POMDP with 
states in the problem as described in the state diagram. The POMDP is 
defined by a number of possible states with each state Si having a belief 
probability bi.   

Table II. Parameters and their possible values determined during hand-over 
tasks to generate initial intention estimates. 

Parameter Possible Values 

Cis_holding_object [True, False] 

Carm_extended [True, False] 

Cpalm_downward [True, False] 

Cheld_at_end [True, False] 

The next step is to determine the current state belief 
probability. Given k parameters of the system, the belief 
probability distribution b(s) for the state s can be calculated as 

                              (1) 
 

The value of b(s) is significant, as it shows the belief 
probability of being in state s ϵ S at this time step. From state 
s ϵ S, the agent will take an action a ϵ A to go to the next state 
s’. Now, we need to determine the belief probability 
distribution B(s’) for the next state s’. We use the Bayes update 
rule for belief probability distribution 

 
                     (2) 

 
To calculate this value, we need to determine each of the 

terms individually. Here, T(s, a, s’) = P(s’|s, a), so 

 
          (3) 

 
where  which is 
equal to 1 as s’ can only either be s1 or s2. 

In addition, O(s’,a, z) = P(z|a, s’), where z ϵ Z is observed 
by the force value on the object when it is held by the human. 
A sensory system worn on the human forearm will be used to 
evaluate the physical force that is being applied from the 
human hand on the object.  is the normalizer, this 
value will be set as the maximum force value that can be read 
on the sensory system. It will normalize the force values 
observed in z ϵ Z. Using these values, we can simplify the 
belief probability distribution for the state s’ as 

                           (4) 

 
where k is the number of parameters sensed, and Ci is the value 
for each hand-object pose estimation. 

If the human is not holding the object, meaning that 
Cis_holding_object = False, we do not calculate the state belief b(s), 
as this means that the observed human intention is “not to 
deliver”. If the human is holding the object, we determine the 
hand pose values Carm_extended, Cpalm_downward, and Cheld_at_end. The 
belief probability b(s) and b(s’) are part of the  
POMDP planning component. The robot agent determines the 
human intention based on the state b(s’). The belief probability 
equations are also used to calculate trust levels for human 
partners based on their intention. 

C. Robot-Human Trust Model 
The trust of the robot in humans will be modeled as a 

function of probability of their intention to deliver the object. 
This will be calculated for every task execution in real-time by 
using the values for initial belief probability and observed 
value of intention. The initial belief probability is determined 
as part of the POMDP planning component. We calculate the 
belief probability for the next state s’ only for cases when the 
human is holding the object. Otherwise, the trust levels are 
defined to be ‘too low’ (since there is no object held, the 
intention is to not deliver). Also, the observed force 
measurements need to be in the optimum range for the robot 
to be able to carry out the hand-over. Hence, any negative 
force values and very high force values also generate trust 
levels of ‘too low’. The trust value is calculated as the product 
of the initial belief probability and the observed intent. 
Observed intent is the measure of the normalized force values. 
Hence, instead of relying solely on the force applied on the 
object to determine the trust level, our model introduces the 
probability factor to vary it according to the human intention. 
The trust  of the robot in its human partner is defined as  

                          (5) 

Applying Eq. (4) to Eq. (5), the trust can be evaluated as 

            (6) 

This model is used to determine the trust values in real-
time during the object hand-over. The calculations effectively 
provide the level of trust of the robot in its human partner.  

Table III shows some sample values for b(s’), z 
observation, and the corresponding trust level for a particular 
state. The trust levels are generated in real-time based on the 
next state probability and observation. The probability of the 
system being in a state B(s’) calculated using Bayes update 
rule forms the first parameter. The observation z is a factor of 
the parameters that are used to observe hand-object pose 
estimation. The observed force measurements and the 
estimated intention (belief probability) form the basis of our 
trust calculation. 

To explain the significance of the values and trust level 
determination, let us take for instance, the first row in Table 
III. The probability of the system being in the state s2 (B(s’)) 
is 1.0. This means that (as defined earlier s2—Human holding 
object with intention to deliver) the system estimates the 
probability that the human wants to deliver is 1.0. This forms 
our initial intention estimates and we can say that the human 



wants to deliver the object and our estimated probability for 
this estimation is 1.0. 
Table III. Sample values for belief probability, observation z and trust values. 

STATE B(s’) z z*B(s’) Trust Level 

s2 1.0 0.8 0.8 Very high 

s2 0.67 0.8 0.536 High 

s2 0.67 0.25 0.168 Very low 

s1 0 1.0 0 Very low 

s1 0.67 0.5 0.335 Very low 

s2 0.67 0.95 0.637 High 

Now for the final intention estimate, we look into the 
observed parameter derived from the force sensors. For the 
same row, the observation parameter z is 0.8. This is a 
normalized value of the force as measured by the sensory 
system. The belief probability multiplied with the value in 
observation z, gives us the trust level for the hand-over task. 
In this case, it comes to 0.8 indicating a ‘very high’ trust level. 
The estimation here makes use of the concept where, we 
calculate the probability of whether the human partner can be 
trusted for the hand-over task based on the human’s actions 
along with the non-verbal cues (hand pose) demonstrated 
unintentionally by humans.  

Taking another example, where B(s’) is 0 as shown in the 
fifth row. This is for state s1, when the human does not want 
to deliver. As per observation, z = 1.0 (high force applied on 
an object which is otherwise not intended to be delivered), 
which means that the observed intention shows that the human 
intends to deliver. Calculating trust considering only the 
measured force would have resulted in a high trust level, but 
the initial belief probability B(s’) gives a trust level as ‘very 
low’. Hence, our calculated trust levels in robots for human 
partners is dependent on the human intention to deliver along 
with the action taken to deliver the object. As seen in row 4, 
even a high probability of intention to deliver the object, if not 
supplied with enough force, will lead to a ‘very low’ trust level.  

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experimental Setup 
As shown in Fig. 2, the experimental platform consists of 

a collaborative robot, a web camera, a wearable sensory 
system, a workstation, and a shared workspace. In our 
experiments, the human (wearing a white glove) delivers a 
blue car model to the robot. The robot employed is Franka 
Emika Panda, which is a 7-DoF collaborative robot with a 
robotic arm, a two-finger parallel gripper, a pilot user 
interface, and a Franka Control Interface (FCI) controller [27]. 
This robot can work with humans safely like human-to-
human cooperation in collaborative tasks. A wearable sensory 
system Myo, which can be worn on the human forearm, is 
utilized to estimate human hand poses during the object 
delivery process based on our previous work [28]. The scene 
is captured through the web camera, and Python-OpenCV is 
used for the robot to detect the human hand (white) and the 
car (blue) delivered by the human via color identification 
approaches [29, 30]. The Robot Operating System (ROS) is 
adopted in the robot system control [31, 32]. ROS is an open-
source framework for cross-platform maneuvering and 
communication. In addition, the MoveIt! running in the ROS 
framework is also utilized [33]. To plan the robot movement 
in human-robot hand-over tasks, the control commands are 
sent to the libfranka interface, which is a ROS package for 

Panda to communicate with the FCI controller. The FCI will 
provide the current robot states and enable the robot to be 
directly controlled by the commands derived based on the 
real-time trust levels of the robot in its human partner.   

 
Fig. 2. Experimental setup for real-world human-robot hand-over tasks. 

B. Human-Robot Collaboration Results and Analysis 

1. Trust level comparison of human holding object and not 
holding object 

As shown in Fig. 3(a), the human is holding an object in 
front of the robot. The robot detects the object and human hand 
using visual information from its camera and EMG signals 
acquired by the wearable sensory system. Based on our 
proposed trust model, the robot predicts the intention of the 
human to deliver the object and plans its action accordingly by 
calculating the next state belief probabilities. Fig. 3(b)-(c) 
shows the scenario where the robot predicts a high level of 
trust for the human and hence moves its arm towards the object 
for the hand-over task. The camera and the sensor data form 
the basis for the trust calculations. Since the human is seen 
holding the object, the robot then checks the human hand pose 
while holding the object. In this case, the human hand pose 
satisfies the conditions of high trust levels for the robot to 
participate in the hand-over process. 

 
Fig. 3. Object hand-over from the human to the robot when the human is 
holding the object and the robot trusts in the human. 

 
Fig. 4. When the human is not holding any object and the robot does not trust 
the human. The robot moves away from the human showing a low trust level. 

Fig. 4 shows the scenario where the human is not holding 
an object. In this case, the object is placed on the workspace 
table, but the human hand is not seen holding the object. The 
trust framework generates a very low trust level in this case, 
due to which, the robot does not participate in the hand-over 
process. For the human not holding an object, the robot does 
not show any movement towards the human. The human hand 
pose, though, is similar to when the human is holding the 
object. Since there is no object in the human’s hand, the trust 



level does not satisfy the condition for the robot to participate 
in the hand-over. When the human is not holding any object, 
rather the object is only kept in front of the human, the robot 
predicts a very low trust level estimate and does not move 
towards the human. On the contrary, it moves away from the 
human showing a low trust level.  

2. Trust level comparison of human arm extending and not 
extending while holding an object 

Our second set of experiments consist of scenarios where 
the human has extended his arm towards the robot. As seen in 
Fig. 5, the human is holding an object and has extended his 
arm towards the robot. Based on the information about the 
human holding the object and human hand pose while holding 
the object, the robot generates a very high level of trust that 
the human intends to deliver the object. With the very high 
level of trust, the robot participates in the hand-over process 
and extends its own end effector towards the object to carry 
out the hand-over task. This results in a successful hand-over 
of the object from the human to the robot. 

 
Fig. 5. Object hand-over when the human extends his arm towards the robot. 
The robot shows high trust in the human and participates in the hand-over task. 

The human holding an object with his or her arm extended 
towards the robot generates a very high level of trust for the 
robot in the collaborative task. This aligns with the idea that a 
successful hand-over should ensure that both parties have an 
understanding and judgment of scenarios where a hand-over 
is expected versus when it is not. Another scenario is where 
the human is holding an object, but his arm is not extended as 
shown in Fig. 6. Based on the information captured from its 
camera and sensors, the hand pose of the human conveys a 
high level of trust to the robot. This generates a high trust level 
for the robot in its human partner and consequently, the robot 
again participates in the hand-over process. This scenario 
shows the case where the human hand pose is taken into 
consideration to determine trust levels for the robot in its 
human partner during hand-over task. In this case, the human 
is holding the object, but the arm is not extended towards the 
robot. This conveys a scenario when the human might just be 
holding an object in front of the robot and his hand pose (palm 
down) indicates an intention to deliver the object. The robot 
perceives this and moves towards the human to complete the 
object hand-over.  

 
Fig. 6. The human is holding the object with his arm not extended towards 
the robot, but his hand pose indicates an intention to deliver. The robot 
generates a high level of trust in this case and participates in the hand-over. 

3. Trust level comparison of human hand blocking the object 
and not blocking the object 

As presented in Fig. 7, the human is holding the object. 
Also, his hand pose shows intention to deliver the object, 
possibly generating high values of trust. But the object being 

held is not completely visible to the robot. The human hand is 
holding the object in a way that blocks the object’s visibility 
to the robot. This generates a very low trust level for the robot 
in the human. The object’s visibility information is obtained 
by the camera and the robot differentiates the object from the 
human hand to figure out the object boundaries and overall 
surface. This is useful to include cases even when the human 
intention is high but the hand-over might not be successful due 
to bad hand poses. Hence, the robot shows a low level of trust 
by moving away from the human and does not participate in 
the hand-over in this case. The object, when held by the human 
and is clearly visible to the robot, results in a successful hand-
over as shown in Fig. 8. 

In Fig. 8, the human is holding the object, with his arm 
towards the robot and the object is clearly visible to the robot. 
In this case, the robot shows a high level of trust in the human. 
Based on these parameters, the robot participates in the hand-
over by moving towards the object and successfully grasping 
it. Fig. 7 and Fig. 8 show the experiments where the robot 
generates trust levels based on its ability to view the object 
completely and clearly. This is helpful in collaborative 
processes where the human might be holding an object but due 
to low clarity, the robot is unable to judge its arm movement 
and object grasping. Such a scenario could prove harmful to 
the human as well as the robot arm, and hence, a high level of 
trust ensures that the task is only carried out when the robot 
highly trusts its partner.   

 
Fig. 7. The human is holding the object, but his hand blocks the object and 
hinders its visible surface to the robot. The robot predicts a very low trust 
level and moves away from the human, resulting in no hand-over. 

 
Fig. 8. The human is holding the object with the object clearly visible to the 
robot. The robot predicts a high level of trust for the human and participates 
in the hand-over. 

V. CONCLUSIONS 
Trust is a cognitive ability that is based on factors such as 

historical data, task performance, and intent recognition. In 
this study, we have made use of the human hand pose estimate 
and object detection for robots to define if and how much the 
robot trusts in the human for collaborative tasks. A POMDP-
based computational robot-human trust model is proposed. All 
factors considered for trust generation are based on real-world 
scenarios that may occur in manufacturing industries and other 
fields. With our experiments, we are able to successfully conclude 
that the proposed approach can be applied to real-world 
human-robot collaborative tasks to achieve high efficiency, 
reduce redundant robot movements, and realize predictability 
and mutual understanding between robots and humans. The 
proposed trust model yields high trust levels when the human 
holds the object in a way that is suitable for the robot to grasp. 
Very low trust levels are seen in cases when the human is 
either not holding the object at all or is holding the object in a 



way that blocks the object’s visibility and clarity and is not 
suitable for the robot to grasp. Estimating the trust of robots in 
humans is an emerging area of research and this work 
proposes a new approach towards conceptualizing the robot-
human trust and enabling efficient human-robot collaboration. 
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