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Abstract—Trust is a cognitive ability that can be dependent
on behavioral consistency. In this paper, a partially observable
Markov Decision Process (POMDP)-based computational
robot-human trust model is proposed for hand-over tasks in
human-robot collaborative contexts. The robot’s trust in its
human partner is evaluated based on the human behavior
estimates and object detection during the hand-over task. The
human-robot hand-over process is parameterized as a partially
observable Markov Decision Process. The proposed approach is
verified in real-world human-robot collaborative tasks. Results
show that our approach can be successfully applied to human-
robot hand-over tasks to achieve high efficiency, reduce
redundant robot movements, and realize predictability and
mutual understanding of the task.

Keywords—robotics, human-robot collaboration, trust, belief
probability, POMDP

1. INTRODUCTION

Human-robot collaboration has been an active area of
research for quite some time [1-5]. The basis of humans
collaborating with robots, in most cases, is purely mechanical
where the robot helps human partners with specific tasks to
complete a process. Examples of tasks that have been exploited
as parts of human-robot collaboration include but are not limited
to manufacturing processes, guided navigation [6], games
playing [7], and co-assembly tasks [8]. It is well recognized
that the trust constitutes an important concern in human-robot
collaboration. “Can humans trust in robots?” is a question that
has been part of the human-robot collaboration research for a
long time. Resulting in a lot of research work being dedicated
to this area [9-11]. But “can robots trust in humans?”” Or “how
can we make robots trust humans?” present new research
questions in human-robot collaboration, occurring with the
increasing applications of robots in a wide range of areas.

Trust is a cognitive ability that is highly subjective due to
its dependence on numerous factors such as knowledge base,
observable and non-observable behavioral parameters, and
cognitive biases. Trust is defined as a firm belief in the
character, strength, or truth of someone or something [12, 13].
Belief can be seen as a measure of the probability of something
being close to the expected truth. For a human being, a high
level of trust in something means that they have a belief that
the probability of it being close to their expectation is high.
According to [14], the belief in humans comes from a
combination of five factors — knowledge, environment, events,
past results, and future vision. Behavioral consistency plays a
major role in developing the trust. The importance of consistent
behavior to build trust in employees and friends has been
highlighted in [15] and [16]. We make use of this concept to
determine the trustworthiness of human partners based on
their intentions and faiths to carry out hand-over tasks with
robots in human-robot collaboration.
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The area of human-robot collaboration still lacks a certain
understanding of trust, which is inherent in human-human
partners. Human-robot collaborative tasks such as hand-over,
which involves the work of humans and robots in close
vicinity, needs trust between both parties. Humans are quite
efficient in hand-over actions, as we can deduce the intention
of our partners efficiently. With our approach, we take a step
forward in the direction of “humanizing’ robots for collaborative
tasks by enabling them to infer human intentions. Calculating
trust levels of robots in humans could enable the robots to
determine situations where hand-over actions of humans are
expected versus in situations where hand-over actions are not
intended due to some interferences or change of mind, etc.

Our proposed approach allows the robot to determine the
trust levels in its human partner during the collaboration
process. The approach consists of human hand-over pose
determination, partially observable Markov Decision Process
(POMDP) based planning component, and real-time trust
determination. The trust is evaluated by judging the human
intentions (to deliver or not deliver the object) during the hand-
over task. A belief probability is used to calculate the
probability of human intention to deliver objects. We take
advantage of the object detection and human hand-over pose
evaluation to estimate the human hand-over intentions. Based
on the intentions, we calculate the robot’s trust levels for its
human partner in real-time. The major contributions of this
work include: (1) We parameterize the human-robot hand-
over process as a POMDP in human-robot collaborative
contexts; (2) A computational robot-human trust model is built
for the robot to evaluate its trust in its human partner in real-
time; (3) The proposed approach is experimentally implemented
in real-world human-robot collaborative tasks with success.

II. RELATED WORK

For human-robot interactions, a lot of research has been
conducted on whether humans can trust machines or robots.
Most of the past work in this field has been focusing on
determining the trust levels of humans in robots. The work in
[17] investigated trust towards robots, while [18] delved into
discussions on designing trustworthy Al and how trust is
manifested and warranted. Little research has delved into
exploring how robots can trust humans and if such trust
models can be developed for robots to evaluate trust levels
with humans. Azevedo-Sa et al. presented a trust model for
human-robot interactions. They developed a trust model that
could be used by human agents as well as robot agents. They
named the trust as human trust and artificial trust based on
who the trustor and the trustee were [19]. Another trust model
was proposed by Dorbala et al., which used reinforcement
learning for a robot to navigate in an office environment using
vocal commands [20]. They proposed a robot trust metric
derived from human trust metric. The researchers used



‘affects’ (expressed emotions or feelings) to extract human
behavior features. They determined human trustworthiness
based on the human speech cues. The model proposed in [20]
is based only on human verbal cues and language used. These
cues, although, are extensive, but still demonstrate to be
insufficient. Humans can make false statements fluently even
when not confident or sometimes, even on purpose. Trust is a
concept that cannot be determined solely based on language.
Factors such as voice issues, stuttering, inefficient
mechanisms to capture the voice, etc. could disrupt the
captured data. Hence, using only language commands to
determine trust could be ineffective and introduces error rates.

Amiri et al. presented the LCORPP algorithm for human
intention prediction and sequential decision making [21]. The
algorithm predicted human intentions based on the human
motion trajectory and reasoning derived from contextual
knowledge. The estimates were confirmed through interaction
with the human. The algorithm made use of the Long short-
term memory (LSTM) based supervised learning along with
reasoning and POMDP based planning. Studies on human
pose estimation for objects were also explored in order to
detect and handle objects in 3D scenarios. In [22], Desingh et
al. proposed a pull message passing belief propagation
algorithm for the pose estimation of articulated objects. Their
approach relied on scene grammar representation where the
problem was formulated as a graph inference problem for a
Markov Random Field (MRF).

In this study, our proposed trust model relies on intention
estimates to determine the trust levels of robots in humans,
rather than task capabilities as used in [19]. Task capabilities
are highly conditional and could change due to unforeseen
circumstances as opposed to human intention. The trust model
proposed by [20] relies on verbal cues and is highly prone to
noise. Our proposed model avoids noisy data by making use
of only non-verbal cues to generate robot trust. The non-verbal
cues are more reliable as voice data is more prone to noise as
opposed to pictures. Furthermore, human verbal cues can vary
along with many subjective factors such as work conditions,
comfort levels, temperatures, physical conditions, stress levels,
and health conditions. Our noise resistant approach makes use
of vision-based object detection and wearable sensing-based
hand pose evaluation to determine human intention. The
approach in [21] suffers from limited scope due to the use of
domain knowledge. To make the model extendable, we infer
the input information directly without relying on preconceived
notions that are subject to variation. As an advantage over
[21], we are also able to provide a trust model built upon these
estimates during calculations.

Our contributions lie in the scalability and transferability
of the algorithm, containing differentiable components that
can be used even individually for similar experiments, hence
providing high usability and extensibility. Also, our work
proposes a trust model for robots to determine the trust levels
in human partners based on human intention estimates. The
developed trust model can be extended for other human-robot
interaction tasks.

[II. MODELING METHODOLOGIES

A. Hand-Object Pose Estimation

We make use of the concept of hand-object pose, including
human hand pose estimate and object detection, during the
hand-over process. When handing over an object, the human
is typically seen holding the object at one end, with their palms

facing downward and their arm extended or, in some cases,
not extended towards the receiver. As shown in Table I, we
will determine these parameters for the human holding the
object in human-robot hand-over tasks. The first parameter
determines if the human is actually holding any object, the
second parameter tells if the human arm is extended or not, the
third parameter is if the human palm is facing downward, and
the last one tells if the object is held at one end, aligning with
the certainty that the human wants to deliver the object.

Table 1. The proposed four parameters which will generate the initial
observation for our POMDP-based hand-over problem.

Parameter Description

Co paptiig e If the human is holding an object or not

Carm_extended Is the human arm extended or not

Crsttp Bz Is the human palm facing downward

Cheld at_end Is the object held at one end

B. Object Hand-Over Planning as a Partially Observable
Markov Decision Process

A partially observable Markov decision process (POMDP)
is a combination of a Markov Decision Process (MDP) to
model system dynamics with a hidden Markov model that
connects unobservant system states to observations [23-25]. In
the POMDP, the agent (e.g., the robot or the human) can
perform actions which may cause the system (e.g., human-
robot collaboration) state to change with the goal of
maximizing a reward that relies on the agent’s actions and the
sequence of system state. The agent uses the observations,
which are made depending on the state, to form a belief
(described as a probability distribution) of the state the system
is currently in [26]. The process of the human-robot object
hand-over task can be defined as a POMDP, of which the
parameters are defined as below:

STATES S = [sp—No one is holding object, s;/—Human
holding object with no intention to deliver, s>—Human
holding object with intention to deliver, s3—Robot holding
object, s,—Robot not holding object, ss—Terminal state].

ACTIONS A = [ap—Grab, a,—Recede].

OBSERVATION SET Z = [Force value on the object when
it is held by the human].

TRANSITION FUNCTION T(s, a, s’) = P(s’
accounts for the action outcomes where @ € 4 and s ¢ S.

OBSERVATION FUNCTION O(s’, a, z) = P(z | a, s'),
wherez e Z,a € A and s € S, is used for modeling human hand’s
force feedback to the robot.

REWARD FUNCTION R (s, a) corresponds to the reward
received when action « is taken to transition to state s, where a
¢ A and 5 ¢ S. A correct estimation yields a bonus, while a
wrong estimation yields a penalty.

s, a)

All the possible states can be enumerated into a state
diagram that defines the POMDP states as shown in Fig. 1.

During the hand-over process, the human hand pose
estimate and object detection are performed by a wearable
sensory system and a vision system. The parameters as
described in Table II are generated in real-time. These
parameters are Ci.siholdingiobject, Carmiextended, Cpalmidownward, and
Cheld at end- As shown in Table II, all these parameters can be
characterized as either True or False. Let 59 € S be the initial
state of the system at this stage.



No one is
holding
object Sy

& A

Robot holding i
. v the object = Human holding object
g \ > 3 ~
Human hflld\ng‘obJELt with intention to
with no intention to deliver S;
deliver $; \ )
v
Terminal
state S5
4 »

Robot not
holding the
object 54

Fig. 1. The human-robot hand-over process is defined as a POMDP with
states in the problem as described in the state diagram. The POMDP is
defined by a number of possible states with each state S; having a belief
probability b;.

Table II. Parameters and their possible values determined during hand-over
tasks to generate initial intention estimates.
Possible Values

[True, False]

[True, False]

[True, False]

[True, False]

Parameter
Cis_hotding_object
Com e
Cratm_downward

Cretrr ez

The next step is to determine the current state belief
probability. Given k parameters of the system, the belief
probability distribution b(s) for the state s can be calculated as

b(s) =3+ 24 G (1)

The value of b(s) is significant, as it shows the belief
probability of being in state s ¢ S at this time step. From state
s € S, the agent will take an action a € 4 to go to the next state
s’. Now, we need to determine the belief probability
distribution B(s’) for the next state s . We use the Bayes update

rule for belief probability distribution

0(s',a,z) LsesT(s,as") b(s)

B(s') = pr(ziab)

2

To calculate this value, we need to determine each of the
terms individually. Here, 7(s, a, s’) = P(s’|s, a), so

YsesT(s,a,5") b(s) = b(s) * Lses P(s'ls, @) 3)

where Y5 P(s'|s,a) = P(sy|s,a) + P(s,|s,a) which is
equal to 1 as s’ can only either be s; or s>.

In addition, O(s’,a, z) = P(z|a, s’), where z € Z is observed
by the force value on the object when it is held by the human.
A sensory system worn on the human forearm will be used to
evaluate the physical force that is being applied from the
human hand on the object. pr(z|a, b) is the normalizer, this
value will be set as the maximum force value that can be read
on the sensory system. It will normalize the force values
observed in z ¢ Z. Using these values, we can simplify the
belief probability distribution for the state s’ as

0(s,a2) 3K, ¢;
k pr(Z|a, b)

B(s') = )

where £ is the number of parameters sensed, and C; is the value
for each hand-object pose estimation.

If the human is not holding the object, meaning that
Cis_holding object = False, we do not calculate the state belief b(s),
as this means that the observed human intention is “not to
deliver”. If the human is holding the object, we determine the
hand pose values Carmiextended, Cpalmﬁdownward, and Cheldiafiend~ The
belief probability b(s) and b(s’) are part of the
POMDP planning component. The robot agent determines the
human intention based on the state b(s’). The belief probability
equations are also used to calculate trust levels for human
partners based on their intention.

C. Robot-Human Trust Model

The trust of the robot in humans will be modeled as a
function of probability of their intention to deliver the object.
This will be calculated for every task execution in real-time by
using the values for initial belief probability and observed
value of intention. The initial belief probability is determined
as part of the POMDP planning component. We calculate the
belief probability for the next state s’ only for cases when the
human is holding the object. Otherwise, the trust levels are
defined to be ‘too low’ (since there is no object held, the
intention is to not deliver). Also, the observed force
measurements need to be in the optimum range for the robot
to be able to carry out the hand-over. Hence, any negative
force values and very high force values also generate trust
levels of ‘foo low’. The trust value is calculated as the product
of the initial belief probability and the observed intent.
Observed intent is the measure of the normalized force values.
Hence, instead of relying solely on the force applied on the
object to determine the trust level, our model introduces the
probability factor to vary it according to the human intention.
The trust T of the robot in its human partner is defined as

Trustg_y, T = z*B(s") 5
Applying Eq. (4) to Eq. (5), the trust can be evaluated as
_ 0(s’,a,z) 1 k )
Trustp_y,T = Z * B * < (lel Cl) (6)

This model is used to determine the trust values in real-
time during the object hand-over. The calculations effectively
provide the level of trust of the robot in its human partner.

Table III shows some sample values for b(s’), z
observation, and the corresponding trust level for a particular
state. The trust levels are generated in real-time based on the
next state probability and observation. The probability of the
system being in a state B(s’) calculated using Bayes update
rule forms the first parameter. The observation z is a factor of
the parameters that are used to observe hand-object pose
estimation. The observed force measurements and the
estimated intention (belief probability) form the basis of our
trust calculation.

To explain the significance of the values and trust level
determination, let us take for instance, the first row in Table
III. The probability of the system being in the state s> (B(s’))
is 1.0. This means that (as defined earlier s;—Human holding
object with intention to deliver) the system estimates the
probability that the human wants to deliver is 1.0. This forms
our initial intention estimates and we can say that the human



wants to deliver the object and our estimated probability for
this estimation is 1.0.

Table III. Sample values for belief probability, observation z and trust values.

STATE B(s’) z Z*B(s’) Trust Level
82 1.0 0.8 0.8 Very high
S 0.67 0.8 0.536 High
82 0.67 0.25 0.168 Very low
S7 0 1.0 0 Very low
S; 0.67 0.5 0.335 Very low
S 0.67 0.95 0.637 High

Now for the final intention estimate, we look into the
observed parameter derived from the force sensors. For the
same row, the observation parameter z is 0.8. This is a
normalized value of the force as measured by the sensory
system. The belief probability multiplied with the value in
observation z, gives us the trust level for the hand-over task.
In this case, it comes to 0.8 indicating a ‘very high’ trust level.
The estimation here makes use of the concept where, we
calculate the probability of whether the human partner can be
trusted for the hand-over task based on the human’s actions
along with the non-verbal cues (hand pose) demonstrated
unintentionally by humans.

Taking another example, where B(s’) is 0 as shown in the
fifth row. This is for state s;, when the human does not want
to deliver. As per observation, z = 1.0 (high force applied on
an object which is otherwise not intended to be delivered),
which means that the observed intention shows that the human
intends to deliver. Calculating trust considering only the
measured force would have resulted in a high trust level, but
the initial belief probability B(s’) gives a trust level as ‘very
low’. Hence, our calculated trust levels in robots for human
partners is dependent on the human intention to deliver along
with the action taken to deliver the object. As seen in row 4,
even a high probability of intention to deliver the object, if not
supplied with enough force, will lead to a “very low’ trust level.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

As shown in Fig. 2, the experimental platform consists of
a collaborative robot, a web camera, a wearable sensory
system, a workstation, and a shared workspace. In our
experiments, the human (wearing a white glove) delivers a
blue car model to the robot. The robot employed is Franka
Emika Panda, which is a 7-DoF collaborative robot with a
robotic arm, a two-finger parallel gripper, a pilot user

interface, and a Franka Control Interface (FCI) controller [27].

This robot can work with humans safely like human-to-
human cooperation in collaborative tasks. A wearable sensory
system Myo, which can be worn on the human forearm, is
utilized to estimate human hand poses during the object
delivery process based on our previous work [28]. The scene
is captured through the web camera, and Python-OpenCV is
used for the robot to detect the human hand (white) and the
car (blue) delivered by the human via color identification
approaches [29, 30]. The Robot Operating System (ROS) is
adopted in the robot system control [31, 32]. ROS is an open-
source framework for cross-platform maneuvering and
communication. In addition, the Movelt! running in the ROS
framework is also utilized [33]. To plan the robot movement
in human-robot hand-over tasks, the control commands are
sent to the libfranka interface, which is a ROS package for

Panda to communicate with the FCI controller. The FCI will
provide the current robot states and enable the robot to be
directly controlled by the commands derived based on the
real-time trust levels of the robot in its human partner.

sensory system

~

Cnilnhorlt-i;r:
robot

Fig. 2. Experimental setup for real-world human-robot hand-over tasks.
B. Human-Robot Collaboration Results and Analysis

1. Trust level comparison of human holding object and not
holding object

As shown in Fig. 3(a), the human is holding an object in
front of the robot. The robot detects the object and human hand
using visual information from its camera and EMG signals
acquired by the wearable sensory system. Based on our
proposed trust model, the robot predicts the intention of the
human to deliver the object and plans its action accordingly by
calculating the next state belief probabilities. Fig. 3(b)-(c)
shows the scenario where the robot predicts a high level of
trust for the human and hence moves its arm towards the object
for the hand-over task. The camera and the sensor data form
the basis for the trust calculations. Since the human is seen
holding the object, the robot then checks the human hand pose
while holding the object. In this case, the human hand pose
satisfies the conditions of high trust levels for the robot to
participate in the hand-over process.

aay K

Fig. 3. Object hand-over from the human to the robot when the human is
holding the object and the robot trusts in the human.

(b)

Fig. 4. When the human is not holding any object and the robot does not trust
the human. The robot moves away from the human showing a low trust level.

Fig. 4 shows the scenario where the human is not holding
an object. In this case, the object is placed on the workspace
table, but the human hand is not seen holding the object. The
trust framework generates a very low trust level in this case,
due to which, the robot does not participate in the hand-over
process. For the human not holding an object, the robot does
not show any movement towards the human. The human hand
pose, though, is similar to when the human is holding the
object. Since there is no object in the human’s hand, the trust



level does not satisfy the condition for the robot to participate
in the hand-over. When the human is not holding any object,
rather the object is only kept in front of the human, the robot
predicts a very low trust level estimate and does not move
towards the human. On the contrary, it moves away from the
human showing a low trust level.

2. Trust level comparison of human arm extending and not
extending while holding an object

Our second set of experiments consist of scenarios where
the human has extended his arm towards the robot. As seen in
Fig. 5, the human is holding an object and has extended his
arm towards the robot. Based on the information about the
human holding the object and human hand pose while holding
the object, the robot generates a very high level of trust that
the human intends to deliver the object. With the very high
level of trust, the robot participates in the hand-over process
and extends its own end effector towards the object to carry
out the hand-over task. This results in a successful hand-over
of the object from the human to the robot.

Fig. 5. Object hand-over when the human extends his arm towards the robot.
The robot shows high trust in the human and participates in the hand-over task.

The human holding an object with his or her arm extended
towards the robot generates a very high level of trust for the
robot in the collaborative task. This aligns with the idea that a
successful hand-over should ensure that both parties have an
understanding and judgment of scenarios where a hand-over
is expected versus when it is not. Another scenario is where
the human is holding an object, but his arm is not extended as
shown in Fig. 6. Based on the information captured from its
camera and sensors, the hand pose of the human conveys a
high level of trust to the robot. This generates a high trust level
for the robot in its human partner and consequently, the robot
again participates in the hand-over process. This scenario
shows the case where the human hand pose is taken into
consideration to determine trust levels for the robot in its
human partner during hand-over task. In this case, the human
is holding the object, but the arm is not extended towards the
robot. This conveys a scenario when the human might just be
holding an object in front of the robot and his hand pose (palm
down) indicates an intention to deliver the object. The robot
perceives this and moves towards the human to complete the
object hand-over.

["—

()

Fig. 6. The human is holding the object with his arm not extended towards
the robot, but his hand pose indicates an intention to deliver. The robot
generates a high level of trust in this case and participates in the hand-over.

3. Trust level comparison of human hand blocking the object
and not blocking the object
As presented in Fig. 7, the human is holding the object.

Also, his hand pose shows intention to deliver the object,
possibly generating high values of trust. But the object being

held is not completely visible to the robot. The human hand is
holding the object in a way that blocks the object’s visibility
to the robot. This generates a very low trust level for the robot
in the human. The object’s visibility information is obtained
by the camera and the robot differentiates the object from the
human hand to figure out the object boundaries and overall
surface. This is useful to include cases even when the human
intention is high but the hand-over might not be successful due
to bad hand poses. Hence, the robot shows a low level of trust
by moving away from the human and does not participate in
the hand-over in this case. The object, when held by the human
and is clearly visible to the robot, results in a successful hand-
over as shown in Fig. 8.

In Fig. 8, the human is holding the object, with his arm
towards the robot and the object is clearly visible to the robot.
In this case, the robot shows a high level of trust in the human.
Based on these parameters, the robot participates in the hand-
over by moving towards the object and successfully grasping
it. Fig. 7 and Fig. 8 show the experiments where the robot
generates trust levels based on its ability to view the object
completely and clearly. This is helpful in collaborative
processes where the human might be holding an object but due
to low clarity, the robot is unable to judge its arm movement
and object grasping. Such a scenario could prove harmful to
the human as well as the robot arm, and hence, a high level of
trust ensures that the task is only carried out when the robot
highly trusts its partner.

Fig. 7. The human is holding the object, but his hand blocks the object and
hinders its visible surface to the robot. The robot predicts a very low trust
level and moves away from the human, resulting in no hand-over.

Fig. 8. The human is holding the object with the object clearly visible to the
robot. The robot predicts a high level of trust for the human and participates
in the hand-over.

V. CONCLUSIONS

Trust is a cognitive ability that is based on factors such as
historical data, task performance, and intent recognition. In
this study, we have made use of the human hand pose estimate
and object detection for robots to define if and how much the
robot trusts in the human for collaborative tasks. A POMDP-
based computational robot-human trust model is proposed. All
factors considered for trust generation are based on real-world
scenarios that may occur in manufacturing industries and other
fields. With our experiments, we are able to successfully conclude
that the proposed approach can be applied to real-world
human-robot collaborative tasks to achieve high efficiency,
reduce redundant robot movements, and realize predictability
and mutual understanding between robots and humans. The
proposed trust model yields high trust levels when the human
holds the object in a way that is suitable for the robot to grasp.
Very low trust levels are seen in cases when the human is
either not holding the object at all or is holding the object in a



way that blocks the object’s visibility and clarity and is not
suitable for the robot to grasp. Estimating the trust of robots in
humans is an emerging area of research and this work
proposes a new approach towards conceptualizing the robot-
human trust and enabling efficient human-robot collaboration.
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