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Abstract

Conventional machine learning applications typi-
cally assume that data samples are independently
and identically distributed (i.i.d.). However, practi-
cal scenarios often involve a data-generating pro-
cess that produces highly dependent data samples,
which are known to heavily bias the stochastic op-
timization process and slow down the convergence
of learning. In this paper, we conduct a fundamen-
tal study on how different stochastic data sampling
schemes affect the sample complexity of online
stochastic gradient descent (SGD) over highly de-
pendent data. Specifically, with a ¢-mixing process
of data, we show that online SGD with proper peri-
odic data-subsampling achieves an improved sam-
ple complexity over the standard online SGD in the
full spectrum of the data dependence level. Interest-
ingly, even subsampling a subset of data samples
can accelerate the convergence of online SGD over
highly dependent data. Moreover, we show that
online SGD with mini-batch sampling can further
substantially improve the sample complexity over
online SGD with periodic data-subsampling over
highly dependent data. Numerical experiments val-
idate our theoretical results.

1 INTRODUCTION

Stochastic optimization algorithms have attracted great at-
tention in the past decade due to its successful applications
to a broad research areas, including deep learning [Goodfel-
low et al., 2016], reinforcement learning [Sutton and Barto,
2018], online learning [Bottou, 2010, Hazan, 2017], control
[Marti, 2017], etc. In the conventional analysis of stochastic
optimization algorithms, it is usually assumed that all data
samples are independently and identically distributed (i.i.d.)
and queried. For example, data samples in the traditional

empirical risk minimization framework are assumed to be
queried independently from the underlying data distribution,
while data samples in reinforcement learning are assumed to
be queried from the stationary distribution of the underlying
Markov chain.

Although the i.i.d. data assumption leads to a comprehen-
sive understanding of the statistical limit and computation
complexity of SGD, it violates the nature of many prac-
tical data-generating stochastic processes, which generate
highly correlated samples that depend on the history. In
fact, dependent data can be found almost everywhere, e.g.,
daily stock price [Onalan, 2009, Fort and Roberts, 2005],
weather/climate data, state transitions in Markov chains,
etc. To understand the impact of data dependence on the
convergence and complexity of stochastic algorithms, there
is a growing number of recent works that introduce vari-
ous definitions to quantify data dependence. Specifically, to
analyze the finite-time convergence of various stochastic re-
inforcement learning algorithms, recent studies assume that
the dependent samples queried from the Markov decision
process satisfy a geometric mixing property [Dalal et al.,
2018, Zou et al., 2019, Xu and Gu, 2020, Qu and Wierman,
2020], which requires the underlying Markov chain to be
uniformly ergodic or has a finite mixing time [Even-Dar
et al., 2003]. On the other hand, to analyze the convergence
of stochastic optimization algorithms over dependent data,
Karimi et al. [2019] assumed the existence of a solution to
the Poisson equation associated with the underlying Markov
chain, which is a weaker condition than the uniform ergodic
condition [Glynn and Meyn, 1996]. Moreover, Agarwal and
Duchi [2012] introduced a ¢-mixing process that quantifies
how fast the distribution of future data samples (conditioned
on a fixed filtration) converges to the underlying stationary
data distribution. In particular, the ¢-mixing process is more
general than the previous two notions of data dependence
[Douc et al., 2018].

While the aforementioned works leveraged the above no-
tions of data dependence to characterize the sample com-
plexity of various stochastic algorithms over dependent data,
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there still lacks theoretical understanding of how algorithm
structure affects the sample complexity of stochastic algo-
rithms under different levels of data dependence. In particu-
lar, a key algorithm structure is the stochastic data sampling
scheme, which critically affects the bias and variance of
the stochastic learning process. In fact, under i.i.d. data and
convex geometry, it is well known that SGD achieves the
sample complexity lower bound under various stochastic
data sampling schemes [Bottou, 2010], e.g., single-sample
sampling and mini-batch sampling. However, these schemes
may lead to substantially different convergence behaviors
over highly dependent data, as they are no longer unbiased.
Therefore, it is of vital importance to understand the inter-
play among data dependence, stochastic data sampling and
sample complexity of stochastic learning algorithms, and
we want to ask the following fundamental question.

* Q: How does stochastic data sampling affect the
convergence rate and sample complexity of stochastic
learning algorithms over dependent data?

In this paper, we provide comprehensive answers to this fun-
damental question. Specifically, we conduct a comprehen-
sive study of the convergence rate and sample complexity
of the online SGD algorithm over a wide spectrum of data
dependence levels under various stochastic data sampling
schemes, including periodic subsampling and mini-batch
sampling. Our results show that online SGD with both data
sampling schemes achieves a substantially improved sam-
ple complexity over the standard online SGD over highly
dependent data. We summarize our contributions as follows.

1.1 OUR CONTRIBUTIONS
We consider the following stochastic optimization problem.

min f(w) = Eev [Fw; )], (P)
where the objective function f is convex and Lipschitz con-
tinuous, and the expectation is taken over the stationary
distribution p of the underlying data-generating process P.
To perform online learning, we query a stream of dependent
data samples from the underlying data-generating process.
Specifically, we adopt the ¢-mixing process to quantify the
data dependence via a decaying mixing coefficient function
¢¢ (k) (see Definition 2.2) [Agarwal and Duchi, 2012]. We
study the convergence of the online stochastic gradient de-
scent (SGD) algorithm over a ¢-mixing data stream under
various stochastic data sampling schemes, including peri-
odic subsampling and mini-batch sampling. We summarize
and compare the sample complexities of online SGD with
these data sampling schemes under different ¢-mixing data
dependence models in Table 1.

We first study the convergence of online SGD over ¢-mixing
dependent data samples under the data subsampling scheme.

In particular, the data subsampling scheme utilizes only one
data sample per r consecutive data samples by periodically
skipping r — 1 samples. With this data subsampling scheme,
the subsampled data samples are less dependent for a larger
subsampling period r. Also, the improvement is substan-
tial when the data is highly dependent with an algebraic
decaying ¢-mixing coefficient.

Moreover, we study the sample complexity of online SGD
over ¢-mixing dependent data samples under the mini-batch
sampling scheme. Compare to the data subsampling scheme,
mini-batch sampling substantially reduces the mini-batch
data dependence without skipping data samples. Conse-
quently, mini-batch update leverages the sample average
over a mini batch of data samples to reduce both the bias
(caused by the data dependence) and the variance (caused by
stochastic sampling). Specifically, we show that online SGD
with mini-batch sampling achieves an orderwise lower sam-
ple complexity than both the standard online SGD and the
online SGD with data subsampling in the full spectrum of
the convergence rate of the ¢-mixing coefficient. Our study
reveals that the widely used mini-batch sampling scheme
can effectively reduce the bias caused by data dependence
without sacrificing data efficiency.

1.2 RELATED WORK

Stochastic Algorithms over Dependent Data Steinwart
and Christmann [2009] and Modha and Masry [1996] es-
tablished the convergence analysis of online stochastic algo-
rithms for streaming data with geometric ergodicity. Duchi
et al. [2011] proved that the stochastic subgradient method
has strong convergence guarantee if the mixing time is uni-
formly bounded. Agarwal and Duchi [2012] studied the con-
vex/strongly convex stochastic optimization problem and
proved high-probability convergence bounds for general
stochastic algorithms under general stationary mixing pro-
cesses. Godichon-Baggioni et al. [2021] provided the non-
asymptotic analysis of stochastic algorithms with strongly
convex objective function over streaming mini-batch data.
In a more general setting, the stochastic approximation (SA)
problem was studied in [Karimi et al., 2019] by assuming
the existence of solution to a Poisson equation. Recently,
Debavelaere et al. [2021] developed the asymptotic conver-
gence analysis of SA problem for sub-geometric Markov
dynamic noises.

Finite-time convergence of reinforcement learning Re-
cently, a series of work studied the finite-time conver-
gence of many stochastic reinforcement learning algorithms
over Markovian dependent samples, including TD learning
[Dalal et al., 2018, Xu et al., 2019, Kaledin et al., 2020],
Q-learning [Qu and Wierman, 2020, Li et al., 2021, Melo
et al., 2008, Chen et al., 2019, Xu and Gu, 2020], fitted
Q-iteration [Mnih et al., 2013, 2015, Agarwal et al., 2021],



Table 1: Comparison of sample complexities of SGD, SGD with subsampling and mini-batch sampling under different data
dependence models for achieving f(w)— f(w*) <e. Note that f parameterizes convergence rate of the ¢-mixing coefficient.
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actor-critic algorithms [Wang et al., 2019, Yang et al., 2019,
Kumar et al., 2019, Qiu et al., 2019, Wu et al., 2020, Xu
et al., 2020], etc. In these studies, the dependent Marko-
vian samples are assumed to be generated from a geometric
¢-mixing process, which is satisfied when the underlying
Markov chain is uniformly ergodic or time-homogeneous
with finite-states.

Regret of Stochastic Convex Optimization There have
been many known regret bounds for online convex optimiza-
tion problem. Hazan [2017] has built the standard O(v/T)
regret bound for online SGD algorithm with assuming the
bounded gradient. Xiao [2009] introduces the regret bound
of online dual averaging method. To our best knowledge,
there is no high-probability guaranteed regret bound for
mini-batch SGD with considering the data dependence.

2 FORMULATION AND ASSUMPTIONS

In this section, we introduce the problem formulation and
some basic assumptions. Consider a model with parameters
w. For any data sample &, denote F'(w; §) € R as the sample
loss of this data sample under the model w. In this paper,
we consider the following standard stochastic optimization
problem that has broad applications in machine learning.

géiyv f(w) :=Eeny [F(w;§)]. P

Here, the expectation is taken over the randomness of the
data sample &, which is drawn from an underlying distribu-
tion p. We make the following standard assumptions regard-
ing the problem (P) [Agarwal and Duchi, 2012].

Assumption 2.1. The optimization problem (P) satisfies
1. Forevery &, function F(+; &) is G-Lipschitz continuous
over the domain V.

2. Function f(-) is convex and bounded below, i.e.,
f(w*) :=infy,ew f(w) > —oc.
3. W is convex and compact with bounded diameter R.

To solve this stochastic optimization problem, one often
needs to query a stream of data samples from the distribu-

tion p to perform optimization. Unlike traditional stochastic
optimization that usually assumes that the data samples are
i.i.d. we consider a more general and practical dependent
data-generating process as we elaborate below.

Dependent data-generating process: We consider a
stochastic process P that generates a stream of data sam-
ples {&1, &, ..., }, which are not necessarily independent.
In particular, the stochastic process P has an underlying
stationary distribution p. To quantify the dependence of the
data generation process, we introduce the following stan-
dard ¢-mixing process [Agarwal and Duchi, 2012], where
we denote {F; }; as the filtration generated by {&; }+.

Definition 2.2 (¢-mixing process). Consider a stochastic
process {&; }+ with a stationary distribution p. Let P15 €
-| F¢) be the distribution of the (¢ + k)-th sample conditioned
on F;, and denote drvy as the total variation distance. Then,
the process {&; }, is called ¢-mixing if the following mixing
coefficient ¢¢(-) converges to 0 as k tends to infinity.

¢e(k) == sup 2dry (]P(&Jrk € ~|A),u).

teN,AeF,

Intuitively, the ¢-mixing coefficient describes how fast the
distribution of sample & converges to the stationary dis-
tribution p+ when conditioned on the filtration F;, as the
time gap kK — oo. The ¢-mixing process can be found in
many applications, which involve mixing coefficients that
converge to zero at different convergence rates. Below we
mention some representative examples.

* Geometric ¢-mixing process. Such a type of process
has a geometrically diminishing mixing coefficient,
ie., ¢e(k) < ¢oexp(—ck?) for some ¢g,c,0 > 0.
Examples include finite-state ergodic Markov chains
and some aperiodic Harris-recurrent Markov processes
[Modha and Masry, 1996, Agarwal and Duchi, 2012,
Meyn and Tweedie, 2012];

 Algebraic ¢-mixing process. Such a type of process
has a polynomially diminishing mixing coefficient, i.e.,
pe(k) < ¢ok=Y for some ¢g,6 > 0. Examples in-
clude a large class of Metropolis-Hastings samplers
[Jarner and Roberts, 2002] and some queuing systems
[Agarwal and Duchi, 2012].



3 COMPLEXITY OF ONLINE SGD OVER
DEPENDENT DATA

In this section, we recap the convergence results of on-
line SGD over dependent data established in [Agarwal and
Duchi, 2012]. Throughout, we define the sample complexity
as the total number of samples required for the algorithm to
output a model w that achieves an € convergence error with
a certain probability, i.e., f(w) — f(w*) < e with proba-
bility 1 — §. Also, the standard regret of an online learning
algorithm is defined as

(Regret): R, = ZF(w(t);gt) — F(w*; &),
t=1

where the models {w;,ws,...,w,} are generated using
the data samples {&1,&a, ..., &, }, respectively, and w* is
the minimizer of f(w). For this sequence of models
{wy, wa, ..., w, }, we make the following mild assumption,
which is satisfied by many SGD-type algorithms.

Assumption 3.1. There is a non-increasing sequence
{k(t)}+ such that |w(t 4+ 1) — w(t)|| < &(t).

Online SGD is a popular and standard algorithm for solving
the problem (P). In every iteration ¢, online SGD queries a
sample &; from the data-generating process and performs
the following SGD update.

(SGD): w(t+1) =w(t) —nVF(w(t);&), (1)
where 7, is the learning rate. In Theorem 2 of [Agarwal
and Duchi, 2012], the authors established a high probability
convergence error bound for a generic class of stochastic
algorithms. Specifically, under the Assumptions 2.1 and 3.1,
they showed that for any 7 € N with probability at least
1 — 4, the averaged predictor @, := L 31" | w(t) satisfies

f(wyn) — f(w")
T @

2(r—1 2
+ w +2GR\/%log% + ¢e(T)GR.

Here, R, is the regret of the algorithm of interest, G is the
Lipschitz constant of the loss function F'(+;§), and R is the
diameter of the parameter domain, and 7 € N is an auxiliary
parameter that is introduced to decouple the dependence of
the data samples. From the above bound, one can see that the
optimal choice of 7 depends on the convergence rate of the
mixing coefficient ¢¢ (7). Specifically, consider the online
SGD algorithm in (1). It can be shown that it achieves the
regret R, = O(y/n) and satisfies x(t) = O(1/+/t) under a
proper diminishing learning rate. Consequently, the above
high-probability convergence bound for online SGD reduces

to

f(@n) = f(w”)

<oz (T +yfTies o))

Such a bound further implies the following sample complex-
ity results of online SGD under different ¢-mixing models.

Corollary 3.2. The sample complexity of online SGD for
achieving an € convergence error over ¢-mixing data is

e [fthe data is geometric ¢-mixing with parameter 6 > 0,
then we set T = O((log %)é) The resulting sample

2
6

complexity is in the order of n = (9(6_2(10g %) )

 [fthe data is algebraic ¢-mixing with parameter 6 >
0, then we set T = O(e#). The resulting sample
complexity is in the order of n = 0(672’%).

It can be seen that if the data-generating process has a fast
geometrically diminishing mixing coefficient, i.e., the data
samples are close to being independent from each other,
then the resulting sample complexity is almost the same as
that of SGD with i.i.d. samples. On the other hand, if the
data-generating process mixes slowly with an algebraically
diminishing mixing coefficient, i.e., the data samples are
highly dependent, then the data dependence increases the
sample complexity by a non-negligible factor of e 7. In
particular, such a factor is substantially large if the mixing
rate parameter 6 is close to zero.

4 COMPLEXITY OF ONLINE SGD WITH
DATA SUBSAMPLING

When apply online SGD to solve stochastic optimization
problems over dependent data, the key challenge is that
the data dependence introduces non-negligible bias that
slows down the convergence of the algorithm. Hence, a
straightforward solution is to reduce data dependence before
performing stochastic optimization, and data subsampling is
such a simple and effective approach [Nagaraj et al., 2020,
Kotsalis et al., 2020].

Specifically, consider a stream of ¢-mixing data samples
{&1,&2,&3, ... }. Instead of utilizing the entire stream of
data, we subsample a subset of this data stream with period
r € N and obtain the following subsampled data stream

{517 §T+17 §2W'+1, .o }

In particular, let {F, }; be the canonical filtration generated
by {&r+1}+. Since the consecutive subsampled samples are
r time steps away from each other, it is easy to verify that the
subsampled data stream {&;,1 }¢ is also a ¢-mixing process
with mixing coefficient given by ¢;(t) = ¢¢(rt), where
¢¢ denotes the mixing coefficient of the subsampled data



stream {&;,+1}+. Therefore, by periodically subsampling
the data stream, the resulting subsampled process has a
faster-converging mixing coefficient. Then, we can apply
online SGD to such subsampled data, i.e.,

(SGD with subsampling):
wt+1)=w(t) = VE(w(t); &) (3)

In particular, the convergence error bound in eq. (2) still
holds by replacing ¢¢(7) with ¢¢(r7), and we obtain the
following bound for online SGD with subsampling.

f(@n) = f(w®) 4

<o( g+ {0 o s ).

Such a bound implies the following sample complexity re-
sults of online SGD with subsampling under different con-
vergence rates of the mixing coefficient ¢¢.

Corollary 4.1. The sample complexity of online SGD with
subsampling for achieving an € convergence error over ¢-
mixing data process is.

e [fthe data is geometric p-mixing with parameter 6 > 0,
then we choose r = O((log %)5) and T = O(1). The
resulting sample complexity is in the order of rmn =
O (e 2(log %)%)

e Ifthe data is algebraic ¢-mixing with parameter 6 > 0,
then we choose r = (’)(e_%) and 7 = O(1). The
resulting sample complexity is in the order of rm =

0(6727%).

Compare the above sample complexity results with those of
the standard online SGD in Corollary 3.2, we conclude that
data-subsampling can improve the sample complexity by a
factor of (log %)% and e~ 0 for geometric ¢-mixing and alge-
braic ¢-mixing data process, respectively. Intuitively, this is
because with data subsampling, we can choose a sufficiently
large subsampling period r to decouple the data dependence
in the term ¢¢(r7), as opposed to choosing a large 7 in
Corollary 3.2. In this way, the order of the dominant term
/= log % is reduced. Therefore, when the data is highly
dependent, it is beneficial to subsample the dependent data
before performing SGD. We also note another advantage of
using data-subsampling, i.e., it only requires computing the
stochastic gradients of the subsampled data, and therefore
can substantially reduce the computation complexity.

S COMPLEXITY OF ONLINE SGD WITH
MINI-BATCH SAMPLING

Although the data-subsampling scheme studied in the previ-
ous section helps improve the sample complexity of online
SGD, it does not leverage the full information of all the

queried data. In particular, when the data is highly depen-
dent, we need to choose a large period r to reduce data
dependence, and this will throw away a huge amount of
valuable samples. In this section, we study online SGD with
another popular data sampling scheme that leverages the
full information of all the sampled data, i.e., the mini-batch
sampling scheme. We show that this simple and widely
used scheme can effectively reduce data dependence with-
out skipping data samples, and can achieve an improved
sample complexity over online SGD with subsampling.

Specifically, consider a data stream {&}; with ¢-
mixing dependent samples. We rearrange the data
samples into a stream of mini-batches {z;};, where
each mini-batch x; contains B samples, i.e., z; =

{f(tfl)BJrla §(t-1)B+2s- - - ;&5 }- Then, we perform mini-
batch SGD update as follows.

(SGD with mini-batch sampling):
w(t+1) = w(t) = = 3" VE(®):g). ()

€y

Performing online learning with mini-batch sampling has
several advantages. First, it substantially reduce the opti-
mization variance and allows to use a large learning rate to
facilitate the convergence of the algorithm. As a comparison,
SGD with subsampling suffers from a large optimization
variance. Second, unlike subsampling, mini-batch sampling
utilizes the information of all the queried data samples to im-
prove the performance of the model. Moreover, as we show
in the following lemma, mini-batch sampling substantially
reduces the stochastic bias caused by the data dependence.
In the sequel, we denote F(w;z) = & Yoees F(w;§) as
the average loss on a mini-batch of samples. With a bit abuse
of notation, we also define {F;}+ as the canonical filtration
generated by the mini-batch samples {x;};.

Lemma 5.1. Let Assumption 2.1 hold and consider the
mini-batch data stream {x}:. Then, for any w,v € W
measureable with regard to F; and any T € N, it holds that

E[F(w; Tipr) — F(v; mt+r)|}—t] - (f(w) - f(v))

GR < .
< F;(ﬁg(TB—FZ). (6)

With dependent data, the above lemma shows that we can
approximate the population risk f(w) by the conditional ex-
pectation E[F(w; Z¢4)|F:], which involves the mini-batch
T4, that is 7 steps ahead of the filtration F;. Intuitively,
by the definition of ¢-mixing process, as 7 gets larger, the
distribution of x4, conditional on F; gets closer to the
stationary distribution p. In general, the estimation bias
Gr S22 | ¢¢(7B + i) depends on both the batch size and
the accumulated mixing coefficient over the corresponding
batch of samples. To provide a concrete understanding, be-
low we calculate the estimation bias in eq. (6) for various
¢-mixing processes.



* Geometric ¢-mixing: In this case, Zf: L Qe(TB +
i) < 32, de(i) = O(1). Hence, the estimation bias
is in the order of O(S2).

. Fast algebraic ¢-mixing (¢ > 1): In this case,
iy de(tB +1i) < 372, de(i) = O(1). Hence,
the estimation bias is in the order of (9(%), where O
hides all logarithm factors.

¢ Slow algebraic ¢-mixing (0 < 6 < 1): In this case,
Zf L %e(TB +1) < O((rB)'~?). Hence, the estima-

1—-6
tion bias is in the order of O( GRT ).

It can be seen that if the mixing coefficient converges fast,
i.e., either geometrically or fast algebraically, then the data
dependence has a negligible impact on the estimation error.
On the other hand, when the mixing coefficient converges
slow algebraically, it substantially increases the estimation
bias, but it is still beneficial to use a large batch size.

We obtain the following convergence error bound for online
SGD with mini-batch sampling over dependent data.

Theorem 5.2. Let Assumption 2.1 and 3.1 hold. Apply SGD
with mini-batch sampling to solve the stochastic optimiza-
tion problem (P) over ¢-mixing dependent data process and
assume that it achieves regret R,,. Then, for any T € N
and any minimizer w* with probability at least 1 — §, the
averaged predictor W, := L 31" | w(t) satisfies

n—7+1
S&_1_63(7'—1) w(t) 2GR(t — 1)
n n p n
| B
+O(nBi_Zl¢(TB+Z)
SNUNE
+/ = log 5log6(34+{;¢(z)} )) %)

To further understand the order of the above bound, a stan-
dard regret analysis shows that mini-batch SGD achieves

(\/@) and k(1) = O(\/g) (see

Theorem C.3 for the proof). Consequently, the above con-
vergence error bound reduces to the following bound.

f(Wn) = f(w")
< 6( ZJ213¢(]) + GR(:L— 1)

+ %iqs(wm + \/HTB(Bi + [iw)]i))-

Such a bound further implies the following sample complex-
ity results of online SGD with mini-batch sampling under
different convergence rates of the mixing coefficient ¢..

the regret =~ Rn =

Corollary 5.3. The sample complexity of online SGD with
mini-batch sampling for achieving an € convergence error
over ¢-mixing dependent data is

e [fthe data is geometric ¢-mixing with parameter 6 > 0,
then we chooser =1, B = O(e~ 1), n = O(e™ ). The
overall sample complexity is nB = O(e2).

* [f the data is fast algebraic ¢-mixing with parameter
0 > 1, then we choose T = 1,B = O(e 1),n =
O(e™Y). The overall sample complexity is nB =
6(672).

o If the data is slow algebraic ¢-mixing with param-
eter 0 < 0 < 1, then we choose T = 1,B =
O(e=#),n = O(e~'). The overall sample complex-
ityisnB = O(e 17 9).

Remark. This corollary provides a potential way to set the
optimal batch size B with respect to the mixing rate 6.
Specifically, we can leverage Lemma 5.1 to estimate the
dependence parameter 6. Choosing batch size B = 1, the
upper bound of Lemma 5.1 becomes GR¢¢ (T + 1), which
is proportional to the mixing coefficient ¢¢ (7 + 1). There-
fore, the left-hand side E[F(w; 44 ,) — F(v; 244-)|F] —
(f(w) — f(v)) of Lemma 5.1 serves as an estimator, which
can be estimated by (conditional) sample average queried at
any fixed points w, v. Once we estimate this quantity with
various values of 7, we can use regression to find out the
type of convergence for ¢¢(7) and estimate the parameter
0. With the estimated 6, we then follow this corollary to
choose the batch size.

It can be seen that online SGD with mini-batch sampling
improves the sample complexity of online SGD with sub-
sampling by a factor of O((log 1)7), O(e~7) and O(e~1)
for geometric ¢-mixing, fast algebraic ¢-mixing and slow al-
gebraic ¢-mixing data samples, respectively. This shows that
mini-batch sampling can effectively reduce the bias caused
by data dependence and leverage the full information of all
the data samples to improve the learning performance.

To provide an intuitive explanation, this is because with
mini-batch sampling, we can choose a sufficiently large
batch size B to reduce the bias caused by the data depen-
dence and then choose a small auxiliary parameter 7 = 1.
As a comparison, to control the bias caused by data depen-
dence, the standard online SGD needs to choose a very large
7 and the online SGD with subsampling needs to choose
a large subsampling period 7 that skips a huge amount of
valuable data samples, especially when the mixing coeffi-
cient converges slowly. Therefore, our result proves that it
is beneficial to use mini-batch data sampling when the data
samples are highly dependent.

Our proof of the high-probability bound in Theorem 5.2
for SGD with mini-batch sampling involves substantial new
developments compared with the proof of [Agarwal and
Duchi, 2012]. Next, we elaborate on our technical novelty.



* In [Agarwal and Duchi, 2012], they defined the follow-
ing random variable

X! ::f(w((t -7+ 2)) — f(w")

+ F(w((t =174 19);&r1) — F(w0"5600-1).

As this random variable involves only one sample
&;1+_1, they bound the bias term X} — E[X}|F;_,] as
a universal constant. As a comparison, the random vari-
able X, would involve a mini-batch of samples x4 1
in our analysis. With the mini-batch structure, the bias
X} — E[X]|F_,] can be written as an average of B
zero-mean dependent random variables, which is close
to zero with high probability due to the concentration
phenomenon. Consequently, we are able to apply a
Bernstein-type inequality developed in [Delyon et al.,
2009] for dependent stochastic process to obtain an
improved bias bound from O(1) to O(1/+/B). This is
critical for obtaining the improved bound.

Second, with the improved high-probability bias bound
mentioned above, the remaining proof of [Agarwal and
Duchi, 2012] no longer holds. Specifically, we can no
longer apply the Azuma’s inequality to bound the ac-
cumulated bias ,(X; — E[X]|F/_,]), as each bias
term is no longer bounded with probability one. To ad-
dress this issue, we developed a generalized Azuma’s
inequality for martingale differences in Lemma B.3
based on Proposition 34 of [Tao et al., 2015] for inde-
pendent zero-mean random variables.

Third, we develop a high-probability regret bound for
online SGD with mini-batch sampling over depen-
dent data so that it can be integrated with the high-
probability convergence bound in Theorem 5.2. To our
best knowledge, the regret of SGD over dependent data
has not been studied before.

6 EXPERIMENTS

In this section, we examine our SGD theory via two ex-
periments on stochastic quadratic programming and neural
network training with dependent data.

6.1 STOCHASTIC QUADRATIC PROGRAMMING

We consider the following stochastic convex quadratic opti-
mization problem.

J,Iéi]R{ld f(w) = E&NM [(w - g)TA(w - 5)}’
where A > 0 is a fixed positive semi-definite matrix and p
is the uniform distribution on [0, 1]¢. Then, following the
construction in [Jarner and Roberts, 2002], we generate an
algebraic ¢-mixing Markov chain that has the stationary
distribution 4. In particular, its mixing coefficient ¢¢ (k)

converges at a sublinear convergence rate k~ 7, where r > 0
is a parameter that controls the speed of convergence. Please
refer to Appendix D for more details of the experiment
setup.

We first estimate the following stochastic bias at the fixed
origin point w = 0g4.

(Bias): ‘E[F(w; 27 )|zo = 04] — f(w)’7

where the expectation is taken over the randomness of the
mini-batch of samples queried at time 7 € N. Such a bias
is affected by several factors, including the time gap 7, the
batch size B and the convergence rate parameter r of the
mixing coefficient.

In Figure 1, we investigate the impact of these factors on
the stochastic bias, and we use 10k Monte Carlo samples
to estimate the stochastic bias. The top two figures fix the
batch size, and it can be seen that the bias decreases as
T increases, which matches the definition of the ¢-mixing
process. Also, a faster-mixing Markov chain (i.e., smaller r)
leads to a smaller bias. In particular, with batch size B = 1
and a slow-mixing chain r = 2, it takes an unacceptably
large 7 to achieve a relatively small bias. This provides an
empirical justification to Corollary 3.2 and explains why
the standard SGD suffers from a high sample complexity
over highly dependent data. Moreover, as the batch size gets
larger, one can achieve a numerically smaller bias, which
matches our Lemma 5.1. The bottom two figures fix the
convergence rate parameter of the mixing coefficient, and
it can be seen that increasing the batch size significantly
reduces the bias. Consequently, instead of choosing a large
T to reduce the bias, one can simply choose a large batch
size B = 100 and set 7 = 1. This observation matches and
justifies our theoretical results in Corollary 5.3.

Batch Size = 1 Batch Size = 100

0.75 r=0.25 0.75 r=0.25
— r=0.5 — r=05
0.50 0.50
"] —r=1 "] — =1
k] ) k] )
—_— = _— =
20.25 <0.25
0.00 et sitilil 000 @ \m——
i 50 100 150 200 i 2 3 a 5
T T
r=0.5
0.75 Bo1 0.75
0.50 B=10 0.50
8 i B=100 8
20.25 <0.25
T i — , - - 0.00{ "\ ‘ : :
i 25 50 75 100 i 25 50 75 100
T T

Figure 1: Impact of 7, batch size B and convergence rate of
mixing coefficient on the bias in quadratic programming.

We further compare the convergence of SGD, SGD with
subsampling and mini-batch SGD. Here, we set r = 2 to
generate highly dependent data samples. We set learning



0.25

= SGD with subsampling
== mini-batch SGD

0.20

0.15

Loss

0.10

0.05

0.00

0  2x10* 4x10* 6x10° 8x10* 10x10*
Number of Observations
Figure 2: Comparison of sample complexity of different
SGD algorithms in quadratic programming.

rate 7 = 0.01 for both SGD and SGD with subsampling, and

: _ B _ 1/4
set learning rate 7 = 0.01 X /Z?:1 o) 0.01 x 100

for mini-batch SGD with batch size B = 100, as suggested
by Theorem C.3 in the appendix. The results are plotted
in Figure 2, where each curve corresponds to the mean
of 100 independent trails. It can be seen that SGD with
subsampling achieves a lower loss than the standard SGD
asymptotically, due to the use of less dependent data. More-
over, mini-batch SGD achieves the smallest asymptotic loss.
All these observations are consistent with our theoretical
results.

6.2 NEURAL NETWORK TRAINING

We further apply these online SGD algorithms to train a
convolutional neural network with the MNIST dataset [Le-
cun et al., 1998]. The network consists of two convolution
blocks followed by two fully connected layers. Specifically,
each convolution block contains a convolution layer, a max-
pooling layer with stride step 2, and a ReL U activation layer.
The convolution layers in the two blocks have input channel
1, 10 and output channel 10, 20, respectively, and both of
them have kernel size 5, stride step 1 and with no padding.
The two fully connected layers have input dimensions 320,
50 and output dimensions 50, 10, respectively.

To generate a stream of dependent data, we first generate an
algebraic ¢-mixing Markov chain { X} }; with the construc-
tion provided in [Jarner and Roberts, 2002]. Then, we map
each X; to a label of the MNIST dataset {0,1,2,...,9},
and uniformly sample an image at random from the corre-
sponding image class. This data-generating process gener-
ates a dependent data stream with a ¢¢-mixing coefficient
approximately &k~ v

We first test the performance of SGD with a fixed batch
size and different correlation coefficients. Specifically, we
choose batch size B = 1000 and consider different cor-
relation coefficients r € {1.0,1.25,1.5,1.75,2.0}. Here, a
larger r implies higher data dependency. Figure 3 (left) plots
the experiment results. It can be seen that with an increasing
correlation coefficient, the convergence of SGD is slower.
We further fix the correlation coefficient » = 2.0 and vary

the batch size B € {8, 16, 32,64, 128}. Figure 3 (right)
plots the experiment results. It can be seen that SGD with
the largest batch size B = 128 achieves the smallest asymp-
totic loss among all choices of batch sizes. In particular,
SGD with a larger batch size tends to converge faster over
such dependent data. This also matches our theoretical anal-
ysis and it implies that mini-batch SGD with a large batch
size can benefit neural network training over dependent data.

—— Batch Size = 8

—— Batch Size = 16
Batch Size = 32
Batch Size = 64

—— Batch Size = 128

-,

Loss

100 200 300 400 500 o
Num. of iterations

250k 500k 750k 1000k
Num. of gradient computation

Figure 3: Comparison of sample complexity of SGD over
dependent data with different mixing coefficients and batch
sizes.

7 CONCLUSION

In this study, we investigate the convergence property of
SGD under various popular stochastic update schemes over
highly dependent data. Unlike the conventional i.i.d. data
setting in which the stochastic update schemes do not affect
the sample complexity of SGD, the convergence of SGD in
the data-dependent setting critically depends on the structure
of the stochastic update scheme. In particular, we show that
both data subsampling and mini-batch sampling can substan-
tially improve the sample complexity of SGD over highly
dependent data. Our study takes one step forward toward
understanding the theoretical limits of stochastic optimiza-
tion over dependent data, and it opens many directions for
future study. For example, it is interesting to further explore
the impact of algorithm structure on the sample complexity
of stochastic reinforcement learning algorithms. Also, it is
important to develop advanced algorithm update schemes
that can facilitate the convergence of learning over highly
dependent data.
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Notation: To simplify the notation, throughout the appendix, we denote 5,5“ := £(¢+—1) B+i> Which corresponds to the i-th
data sample of the ¢-th mini-batch data x;. With this notation, we have x; = {él) t(2), s §t(B) }.

A  PROOF OF COROLLARY 4.1

In this section, we analyze the convergence error bound of the SGD with data-subsampling in (3).

Given a ¢¢-mixing data stream {1, &2, &3, . .. }, we consider the following subsampled data stream

{517 §r+1, §2r+1, e }

Let F be the canonical filtration generated by {z:}. Then the subsampled data stream {{;,+1 } is ¢} -mixing with the mixing
coefficient given by

P(t) = ¢e(rt).

With this mixing coefficient, we can apply Theorem 2 of [Agarwal and Duchi, 2012] and obtain the following convergence
error bound for any 7 € N.

@)= ) < 0T+ o Y vt + 2+ mwam).
t=1

Consider the standard SGD with a diminishing learning rate, we have x(t) = O(%) and R,, = O(y/n). Then, the
convergence error bound becomes

) - 1) <0( <=+ T+ Tt [0 T 4 ).

Note that when 7 is sufficiently large and 7 = O(1), the term T is dominated by the term % So we can omit this term in

the above equation. Also note that only the right-hand side depends on 7, thus the inequality still holds by taking infimum of
the right-hand side with respect to 7, and the following desired bound follows.

)0y < 0+t {7y [Ton e}

The above result further implies the following sample complexity results for different convergence rates of the mixing
coefficient.

~

* Geometric ¢-mixing: In this case, ¢¢(k) < O(exp(—k?)) for some 6 > 0. Set the last term ¢¢(r7) = O(c). We

obtain that r7 = O((log %)%) Further set the second term T—\/}Ll = O(€). We obtain that n7—2 = O(e2). By choosing

7 = O(1), the sample complexity is in the order of
: ING 5 o -2 S1\7
e-complexity =r-n = (’)((logf) T€ ) = (’)(e (loge ) )
€

« Algebraic ¢-mixing: In this case, ¢¢(k) < O(k~?) for some 6 > 0. Set the last term ¢¢(r7) = O(€). We obtain that
7r = O(e~ 7). Set the second term % = O(¢). We obtain that n7=2 = O(e~?). By setting 7 = O(1), the sample
complexity is in the order of

e-complexity = r-n = 0(6—5726—2) _ 0(6_2_%).
B PROOF OF THEOREM 5.2

Define N := {1,2,3,...}. Also, recall that we are considering a data stream divided into small mini-batches. For
convenience, we re-label the data stream {1, &2, €3, . . . } as follows to explicitly indicate its mini-batch index.

1) 2 B) (1) (2 B
(M @ B D D flB Y (8)



The canonical filtration generated by the re-labeled data stream is denoted by F. Also, when the batch size is clear in
the context, we denote the data in the specified mini-batch as x. For example, we use x; to represent the ¢-th mini-batch

{ft(l) ) Et@), e ,ft(B)}. Then we can re-writhe the above data stream as

{z1,29,23.... }.

We denote the canonical filtration generated by the above sequence as F. Note that we have the following relation:
.F t — f t( B) .

In summary, when we analyze the mini-batch SGD dynamics, we use the filtration F, and when we need to consider
intra-batch samples, we use the filtration F.

B.1 PROOF SKETCH

Here listed the proof structure of Theorem 5.2 and the difference between our results and Agarwal and Duchi [2012].

* Following Proposition B.2 (or Proposition 2 of Agarwal and Duchi [2012]), we obtain the convergence bound
Simalf(w() = F)] < Zn + R+ G(r = 1) T 6(t) + GR(r = 1),
where Z, = 377 22 cq) [X{ — EXTIF ]+ 35010 X scz) EIX{[F{_]. In the next three bullets, we bound the
two terms involved in Z,, separately and bound the regret R,,.

* To bound the first term of Z,,, Agarwal and Duchi [2012] choose to upper bound its summand as a constant, i.e.,
X} — E[X}|F{_;] < 2GR almost surely, which further enables them to apply Azuma’s inequality to bound the
summation }°, 7, [X{ — E[X}|F{_,]] with high probability. However, when X involves a mini-batch of samples,
bounding the summand X; — E[X}|F;_,] by constant will lead to a lose probabilistic bound (and hence a lose
convergence rate & sample complexity).

As a comparison, we leverage the mini-batch structure of the summand X; — E[X/|F;_,] and bound it using

Bernstein’s inequality for dependent process (Lemma B.4) to obtain that | X} — E[X}|F}_,]| < (9(\/ %)
with high probability, which is tighter than the constant bound 2GR for a large batch size. However, with this high
probability bound of the summand, we can no longer apply the standard Azuma’s inequality to bound the summation (it
requires almost sure boundedness). Therefore, we develop a generalized Azuma’s inequality (Lemma B.3) that relaxes

the almost sure boundedness requirement. The resulting bound of this first term involves an additional probabilistic
term 37y P(3 ez 1 X7 — E[X{|F{_1]| > ) compared to (14) of Agarwal and Duchi [2012].

« To bound the second term of Z,,. Agarwal and Duchi [2012] bound its summand by a constant, i.e., E[X}|F}_;] <
GR¢e(T). As a comparison, in the mini-batch setting, we leverage the mini-batch structure of X/ to bound the
summand as E[X}|F;_,] < €& Zle ¢¢ (7B + 1), which is much smaller under a sufficiently large batch size B. This
result is proved in our Lemma 5.1 as an improved version of Lemma 1 of Agarwal and Duchi [2012].

* Lastly, we derive a high-probability regret bound R,, for mini-batch SGD over dependent data, which is new to the
existing literature. Here, the major challenge is to bound the mini-batch stochastic gradient variance over dependent
data samples. In the conventional i.i.d. data case, the mini-batch stochastic gradient variance is typically bounded as

B 2
Ellg Yis; VE(w; &) = Vf(w)|* < 25
However, the above bound has two limitations: 1) it only bounds the expectation (not with high-probability), therefore it
cannot be combined with our previous high-probability bounds; 2) it does not consider the influence of data dependence.
To address these issues, we propose the following decomposition:
IVE(w(t);ze) — V(w®)? < 2[VF(w(t)iz) — E[VF(w(t);z)|Faalll® + 2E[VF(w(t);z)|Fi] —
Vf(w(®))]?.
The first term on the right hand side involves the conditional bias of the mini-batch stochastic gradient, and we

~ B .

bound it in the order of O(M), by using Bernstein’s inequality for dependent data. The second term is the

B .
variance of E[V F(w(t); 2¢)|Ft—1], and we bound it using the ¢-mixing property as O((MF)

we obtain the mini-batch stochastic gradient variance bound || 4 Zf;l VE(w;&) — Viw)|? < O(%) with
high probability.

. In summary,



B.2 KEY LEMMAS

In this subsection, we present several useful preliminary results for proving Theorem 5.2.Throughout this subsection, we
assume that Assumption 2.1 holds. The following lemma is a generalization of the Lemma 1 in [Agarwal and Duchi, 2012]
by utilizing the batch structure.

Lemma B.1. Let w,v be measurable with respect to F;. Then for any T € N,
GR &
E[F(w;zt1r) = F(v;2000) | Fi] < B Z¢§(TB +1) + f(w) — f(v).
i=1
Proof. For any 7 € N, we consider the following decomposition.
E[F(w; zt4r) — F (03 2147) | Fe]
*E[F(w Teyr) = f(w) + f(v) = F(v; 2e40)[F] + f(w) = f(v)

Z [ Flneloarl < 17 - P - [5 Y [ Foeaeetd, < 170~ [ Pl

i=1

(4)

+ flw) = f(v).

We can further bound the term (A) using the mixing property of the dependent data stream.
1 & -
“[33 [ Pluseoape, e 47 - [ Fusodu] - Z / B, € 470~ [ Flosaan]
. Z [ (R0 - s pa(piel, < agiF) - )
= Z / GRA[P(EL), € A€l F) — p(de)|

GR .
S? ;(]bg(TB + Z),

where in the first inequality we use the facts that F'(-; ) is G-Lipschitz and the domain is bounded by R, and the second
inequality is implied by the ¢-mixing property. Substituting the above upper bound of (A) into the previous equation yields
that

S}

GR
E[F(w; @t4r) — F(v; 240 ) | F2] < ?

¢(TB+1i) + f(w) — f(v).

This completes the proof. O

The following proposition is directly adapted from Proposition 2 in Section 3, Agarwal and Duchi [2012]. We include its
proof here for completeness.

Proposition B.2. Let {w(t)}ien be the model parameter sequence generated by (5). Also suppose that Assumption 3.1
holds. Then for any 7 € N, we have

> _[fw(t) = f(w")]
n n—71+1
< D I (w(t) = Fw(t);zier—1) + F(w* @) = f(w)] + R + G(r — 1) K(t) + GR(T —1).

t=1

-
Il
-



Proof. For any T € N, we consider the following decomposition,

=Y [fw(t) = Fw(t); zrr—1) + F(w s @r4r1) = f(w") + F(w(t); @rir1) = F(w;24471)]
=Y [f(w(t) = Fw(t); xpr—1) + F(w* s @r4r 1) — f(w")] ©
t=1

We will keep the first term and bound the term (B).

I
M=

(B) =3 Flw(t)sesr 1) — F(w'20sr 1)
n n—7+1
= SIP((t) ) - Ftsa]+ 3 [F@(®)aeir1) — Flu(t+7 - 1); 2040 1)
(B1) (B2)
n T—1 T—1 n+7—1
+ Z Fw(t); Tpyr—1) — Z F(w(t);z¢) + Z F(w*;x¢) — Z F(w*;x¢) .
t=n—71+2 t=1 t=1 t=n-+1

(Bs)
Recall that the term (B ) is the regret JR,,. We can bound the term (B5) by noting that

Fw);zesr—1) = F(w(t +7 = 1);@4r-1) < Gllw(t +7 = 1) —w(t)||
<G lw(t+i+1) —w(t+i)|
=0

T—2
<G k(t+i)
=0

< G(r — 1)k(t).

For the term (Bs), we can bound it using the G-Lipschitzness of F'(-;£) and the R-bounded domain.

" -1 T—1 nt7r—1
S F@):gise) = 3 F@t)ie) + 3 Fw'iz) = 3 Fw'ia, )
t=n—7+2 t=1 t=1 t=n-+1
n n+7—1 T—1 T—1
_ [ S Pw)iz) - Y Fw' xw,l)] - [Z Flw(t);z) - Y F(w*;xt)}
t=n—71+2 t=n-+1 t=1 t=1
<ol 3w —wl] + 63 ) -]
t=n—7+2 t=1

<2GR(r —1).



Combining the above bounds of (By), (Bz), and (B3), we obtain the upper bound of (B) as follows.

NE

F(w(t); zer—1) — F(w"; 2440-1)

il
S =

n—7+1

[F(w(t);z,) = Fw el + Y [Fw(t);zier—1) = Flw(t + 7 = 1);@esr—1)]
1 t=1

(B1) (B2)

-
Il

n T—1 T n+r7—1
+ Z Fw(t); vegr—1) — ZF(w(t);xt) + Z (w*;xy) Z F(w*;x)
t=n—7+2 t=1 t=1 t=n-+1
(Bs)

n—7+1

<R, +G(r—1) Y k(t)+2GR(r —1).
t=1

Then the proof is completed by substituting the upper bound of (B) into (9). O

The following generalized Azuma’s inequality generalizes the Proposition 34 of [Tao et al., 2015]. The inequality can be
used to bound sum of martingale difference random variables.

Lemma B.3 (Generalized Azuma’s Inequality). Ler {X;} be a martingale difference sequence with respect to its canonical
filtration F. Define Y = ZiTzl X, and assume E|Y'| < oo. Then for any {ou}+ > 0,

T

)\2
Py —EY|[>\]|> o <2exp( ) ZIP\Xt|>at)

t=1

Proof. Let 7 := min{t : | X;| > a;}. Then the sets B, := {w : .7 (w) = t} are disjoint. Construct

. T ¢
V() = Y (w) ifwe (U, Bt)
E[Y|B,] ifwe B, forallte {1,2,...,T}.

By the above construction, the associated Doob martingale of Y’ with respect to F is {Z; := Z*Ay X, }. It satisfies the
conditions of Azuma’s inequality, i.e.,

» {Z;} forms a martingale with respect to F (because the stopped martingale is still a martingale).
* |Zy — Zyq| < oy

Then we can apply Azuma’s inequality to Y.

T

2
PY —EY'| >\ ][> o §2€Xp<—/\2>.
t=1



Now we can bound P (|Y —-EY| > )\\/Zthl a?) as follows.

T
P|IY -EY| >\ | o
t=1

T T
=P [V —EY|> XA | o, Y=Y | +P ||V —EY| > |) o?, Y #Y’
t=1

t=1

T
<SP (Y —BY'| =AY o? | +P(Y #Y7)
t=1
A
<2exp (2) + ;P(|Xt‘ > ayg).
Then the proof is completed. Here we notice the fact that EY’ = EY by our construction. O

The following lemma is taken from (22), Theorem 4 of [Delyon et al., 2009].

Lemma B.4 (Bernstein’s Inequality for Dependent Process). Let {Z;} be a centered adaptive process with respect to F.
Define the following quantities.

n k—1

0= > 1 Zillo - IE[Zk| Fillloo,

k=1 i1=1
v="> |E[Z}|Zk-r...., Z1] ]
k

m= sup ||Z;]lco-
1<i<n

Then, it holds that

P(ZZZ‘ = t) S exp <_2(v T 2q§ n 2tm/3> '

i=1

Application of Lemma B.4 to our proof. Here we make some comments about how to apply this inequality in our main
proof. We define the following random variable in our proof. Throughout, we use the batch-level filtration  and the
intra-batch level filtration F. The formal definition is given in Section B.3.

X; = f(w((t =171 +1)) = f(w) + Fw*; 27 151) = F(w((t = )7 +1); Zeryi1)-
We also define the filtration ]-'Z := Fir44—1 for simplicity. Then, we have
E[X{|F o] = f(w((t = 1)+ 1)) = f(w) + E[F (W 2erii-1) = F(w((t = D7 + 1) 2eri-1) [F1]-
Then, the bias can be rewritten as

Xi — E[X{|F ]
:F(w*;xtr-&-i—l) — F(’UJ((t — 1)7’ + 1), $t7'+i—1) — E[F(’UJ*, th+i—1) — F(w((t — 1)7’ + 1);xt7+i—1)|‘/—:tl—1}

1 i
=5 2. Y

€Ttr+i—1
where Y} is defined as

V) = F(w'5) — Flul(t— D+ 1)56) ~E[F('5) = F(u((t ~ Dy + 5 1F].



More specifically, we have

B
i = 1 i 1 i(e(d
Xi-EX(F == > Yi©)=5Y YiED, ).
B B~

E€ETLr4i—1

Recall that F is the canonical filtration generated from the data stream (8). Moreover, {Y;'(gt(iﬁr i—1)}j=12,..B is centered
and adaptive with respect to this filtration. Then we can evaluate the quantities ¢, v, and m in Lemma B.4 as follows.

* Bounding m is simple. By Assumption 2.1 we have ||V}’ (§fi)ﬂ71)|| < 2GR.
+ The above bound of m leads to a simple bound for v, i.e., v < 2nG?R2.

* The quantity ¢ can be bounded as follows.

n k—1
i j ik T
0= 3 S IV D, DB R DIED il
k=1 j=1
n k—1
ig(k ]
<2GRY N RNV EE,_IFD 1l
k=1 j=1
n k-1
o .
=26RY Y BV (6 )P — Benn Y (6700
k=1j=1
n k—1

SAGPR®Y O (k- i)

k=11=1

<AGPR*nY e (i)

i=1

Then, by applying Lemma B.4, we obtain the following high-probability bound.

‘ - ‘ BZt2
i [y > < —
P (|X; - E[X;|F ]| > t) < 2exp ( 2(v + 2q) + 23tm/3)

B*?
<2exp| —
= ( 2(2G2R2B + 8G2RB YD, ¢ (i) + 4GRBt/3>

2
=2exp | — BtB .
2(2G2R? +8G?R? ) ;" | ¢¢(i)) + 4GRt/3

Simplifying yields that

i i| i Bt?
P (|Xt —EX{[F ]l =2 t) <2exp | — 1 B R
C+3GRE+16G2R? 30,7, ¢e(i)

where C := 4G?R2.



B.3 PROOF OF THE MAIN RESULT

Theorem B.5. Let {w(t)}+cn be the model parameter sequence generated by (5). Suppose Assumptions 2.1 and 3.1 hold.
Then, for any T € N, with probability at least 1 — §, we have

> _[fw(t) = f(w")]

B
gGR% 3 6e(rB + 1)

=1

B

B
4an 4t

27 og & log 2™\2 4 (4G2R2 + 162 R2 Mo =Y oo - log =2

9B(og5)+(GR+6GR§¢§(z))og5> og —log —

2mn (2 GR 4n 4 G?R? 4n 4n
3 B 5 P

n+G(r—1) Z t) +2GR(T —1).

=1
In particular, if T = 1, then
> f(w(t) = fw®)]
t=1

B
n .
<R, +GRp > ¢e(B +1)

=1

4n
5

B

2n 2GR dn 4 G?R? in 4dn
- = ~7)\2 2 R2 2 2§ : i =
(3 log 5 + J 9 (log 5 ) + (4G R? + 16G%R ¢§(z))10g 5 ) log 5 log

i=1

Proof. From Proposition B.2, we obtain the following bound.
S — f(w")]
t=1
n n—71+1
> w(t);Tryr1) + Fw 5245 1) = f(w)] + Ry + G(r—1) > k() +2GR(r - 1).
= t=1
To complete the proof, it suffices to bound the first term; we define this term as

Zy = Z[f(w(t)) = F(w(t); Tt4r-1) + F(W2447-1) — f(w")].

t=1

3

We apply the same decomposmon as the (13) of [Agarwal and Duchi, 2012]. Define the index set Z(i) as {1,..., | 2
fori <n —7[2]and {1,...,[2]} otherwise. Then we have

J+13

T

Z, _Z Z X -EXFE D+ Y EBIXIF ),

i=1teZ(i 1=1teZ(t)

where

Xi = Fw((t =17 +1) = f(@) + F@sirsi0) = F(w((t = D+ Dirrrioa).



i i B
Note that by Lemma 5.1, we have that E[X}|F;_,] < &t S~7

i

1 ®¢(T7B + 1). Then, we have

( nGRZ¢f TB+1i) ) Z > [Xi —EX{F 4] >7)

=1 teZ ()

< (U{Z —~E[X}|F_) > 1))
g' (Z E[X(1F]) > 1)

Define Y := 3,7, (X! — E[X}|F}_,]] and o : \)\F Notice that X} — E[X}|F;_,] is a centered random variable, that

is, E[X} — E[X{|F{_,]] = 0. Unlike the corresponding step in [Agarwal and Duchi, 2012], — E[X]] is not bounded by
a constant with probability 1. We develop Azuma’s inequality (Lemma B.3) to deal with the situation where | X} — E[X}|
exceed the desired bound.

2
g g
P(Y2 )< 2ex (_2722042) -

Also, bounding the additional concentration probability term 3"/, P(| X} — E[X{|Fi_,]| > ) with leveraging the mini-
batch structure requires the generalized Bernstein’s inequality. The detailed calculation can be found in the discussion after
Lemma B.4. We obtain that

P(|X} — E[X{|F 4] > o).

o+
Il Mﬂ\:
—

_ . A2
P (|X; — E[X{|Fq]| > a) <2exp | — ,
(1% ~ BXGIF] 2 ) ( c+§GRj§+1GG2RQZf1¢E(¢)>

where C' = 4G? R2. In summary, the concentration bound for Z,, is

B(7, > GRE Y 6e(rB +1) +9)

2
< 27 exp (— i > + 7

P(|X; — E[X{|F 4]l > o)

-
Il Mﬂ:
A

272%a2
2 /\2
§27exp< 7) +2nexp< 1 X >
2 nB C+3GR—=> +16G2R2271¢5()
2 .
Then, let § = 2nexp ( — c+%GR%+1é\G2R2 P ¢g(i))’ and we obtain that

B
_ dop A 2 2 1) - loe 22
—<C+3GR\/§+16GR ;@5(@)) log =

It is a quadratic function of A. Solving it yields that

2 4 4 G?R? 4n\2
A= 7%1 il G*R (1og?n>

B
4an
= 2 p2 ;
3 o8 + 5 B —|—(C’+16GR E qﬁg(z))log 5 (10)

i=1
2

Also, let g = 2Texp (—M) , we have that
B

2

A 4
72 = QTnE -log i

? .



Substituting (10) into the above equation, we obtain that

B
+ (O +16G2R2 Y qsf(z')) log %") log 2 = T og 46".

i=1

v = 27—".(3@1 in 4G2R2(1 4n)2

B 355 T\og 5 U8y

Then, we conclude that with probability at least 1 — 6,

Y (w(t) = fw"))

t=1

B
SGRZ Y ¢e(rB +1)

i=1
2rn (2GR, 4n  |4G2R? /. 4n\2 & an A 4n
TN (25 g log — AG2R? + 16G2 R? V) 1og =) - log —2 1
5 (5l + 9B<°g5)+(GR+6GR;¢E(’))°g5) 08 5 085
n—7+1
+ R, +G(r—1) Z t) 4+ 2GR(T — 1). an
The desired result follows by noting that >_;-, f(w(t)) > nf(@,,). O

C REGRET ANALYSIS OF MINI-BATCH SGD

In this section, we derive the regret bound of mini-batch SGD algorithm. Throughout, for each sample loss F'(w;§), recall
that its gradient |V F(w; &)|| is uniformly bounded by G (see Assumption 2.1). In particular, we assume the k-th coordinate
of VF (w;€) is uniformly bounded by G, and we have G = />, G3.

1. Gradient Variance Bound under Dependent Data

In the i.i.d. setting, the variance of stochastic gradient decreases as the batch size increases. Specifically, we have

1 & 2 1 ¢ 2 267
Bl 2 VF (i) = Vi@ = 5 D_EIVF(wi&) = V)l < T

Therefore, E|| & Zil VF(w;&) — Vf(w)||> = O(%). However, this bound no longer holds if the data samples are
dependent. In the following lemma, we develop a similar result when the data is collected from a dependent stochastic
process. Recall that VF'(w(¢); z;) denotes the averaged gradient over the mini-batch x, i.e.,

VF(w(t); z) BZF

Lemma C.1. Ler {w(t)}+cn be the model parameter sequence generated by the mini-batch SGD in (5). Let Assumptions
2.1 and 3.1 hold. Then, with probability at least 1 — 6,

B og 24 B 1 ’
P20 =0 < [5G+ 256673 octi)]- RS | g2 (E—B‘bf”>

Proof. Let z; = {{f“}il be the ¢-th mini-batch samples. We consider the filtration within x; and denote it as {.7?,5(1)}
Then, by the definition of canonical filtration,

Xi 1= VF(w(t): &)
is measurable with respect to ft(l) Define

Yir = (X; — E[X;|Fic1)k



where (-);, denotes the k-th entry of the specified vector. And it is easy to see that {Y; 1 }; is a centered process for any
ke {1,2,...,d}. With these construction, we start from the following decomposition.

IVE(w(t); z:) = V f(w(t))]|?

=||VF(w(t);2) — E[VF (w(t); 20)| Fia] + E[VF (w(t); 24)| Fom1] = Vf(w(t))]*

<2||VF(w(t);ae) = E[VF(w(t);z0)| Fea]|? +2 |E[VEF (w(t); z,) | Fea] = Vf(w(@))]?.
(4) (B)

Then we will bound the term (A) and (B), respectively.

* Bounding (A): Note that

(X — E[Xi|F-a]]]?

Mm

IVE(w(t); z¢) = E[VF (w(t); 24)| Fe-a]|* = lel

B

[ >0 BxF D)

7Bl i
ol
i=1

Then, we show that the process {Y; 1 }; satisfies the conditions of Lemma B.4.

1

2

5| -

no

ol Bl

i a i N

- Since E[Y; |Fi—1] = 0, we conclude that {Y; ; }; is a centered process.

— Denote the k-th entry of X; as X; ;. We know that | X; ;| < Gj. Hence, we conclude that 0 < |Y; ;| < 2Gj.
Then, we can set b; = 2G)}, for all 4.

— Lastly, we can bound the quantity g defined in Lemma B.4 as follows.

B j—1

022G, Y SO IRV + S GEB
=1 1i=1
JB j—1
SAGEY D 0 —i)+3GiB
j=1i=1
B
SAGIBY 0c(j) + SGIB
j=1

Now, we can apply Lemma B.4 and obtain that

)\2
P Yir > A §exp<‘ )
(53423) <o (- mem T

With a union bound, we obtain that

)\2
P(\ZMPA) 526Xp< BiG2B 1 128G2B Y0 | ¢e( ))

Further applying the union bound over k = 1,2, ..., d, we obtain that

d
)\2
P Y| > 220 | <2 eXp<f : )
(kUl{| Z ] k}) zk: 1B4G2B +128G3B Y1, de())

A
BIGTBH128GEB S0, 6e()

Let % = 2exp (— > we obtain that

2d
2 2
G2B + 128G B§ e (j } log .

j=1

)\% {134



Then we conclude that,

d B

P ﬂ{|ZYi,k|2§[%GﬁB—leSGiBZQSg(j)}-log%d} >1-06.

k=1 i j=1
It implies that with the probability at least 1 — 4,
B

Xk: | XZ_:YWE < {?B(;Gﬁ) +1288( Y 0e)) (Yo 62)] .log%d,

j=1 k

By definition, G = />, Gi. Finally, we have the following bound for term (A): with probability at least 1 — &,

log %d

B

2 134 2 2 .
IVF(w(t); 2:) — EIVF(w(t); o) |Fea|? < [5-G% + 12862 0¢(j)] -

j=1

* Bounding (B): Note that

BV F(w(e); ) Fia) - V)] = | [ P € 17i) - [ VEwo: )|
< [I9F@®:¢IpE? € 17 - dud
< G- deli).

Then we bound the norm by triangle inequality,

[E[VE(w(t); 20)[Fra] = Vf(w(®)]| <

Finally, we obtain the bound for the term (B) as
2 6@
BV F(w(e); 20| Fia] = T F(w(®)] < G2 ( =L P60 ) .

Combing the bounds of (A) and (B) yields that with probability at least 1 — 6,

= og X B ) ?
IV F Gtz ~ VO < [0 125662 Y 0cl)] - 2 + 202 (Z—3¢5<>>

j=1

2. High-Probability Regret Bound

To derive the regret bound for the mini-batch SGD algorithm, we make the following additional mild assumption.
Assumption C.2. The stochastic optimization problem (P) satisfies

o Each sample loss F(-;€) : W — R is convex.

e The objective function f : W — R is L-smooth.



Theorem C.3 (High-probability regret bound). Let {w(t)}+cn be the model parameter sequence generated by the mini-batch
SGD in (5). Suppose Assumptions C.2, 3.1 and 2.1 hold. Then, with probability at least 1 — 6,

*“2

ngw(”an MT[(%fGQH%GQgM>1og35 2G2<21 L0c(0))?]

+20L ) (f(w(t) = f(w")).
t=1

Moreover, let n = O( the optimized upper bound is in the order of

)
T30, ¢e(4)”

mTfo(\/Tz#)w LZ Fw*)).

Proof. For convenience, we define g; = & Zf;l VF(w(t); §§i)). By the algorithm update (5), we obtain that

lw(®) = w|? — fJw(t +1) — w*||?

2(ge,w(t) —w”) < o + g
w(t) — w*||? = [lw(t + 1) — w*||?
< lw®) = w7 jl D = | g — V(@) + 209 Fw()]
Summing the above inequality over ¢ yields that
T
23 (g, w(t) — w*)
t=1
w(1) = w*|® = [Jw(T + 1) — w*|? d ) 4 )
< , +20) " llgr = VA(w@®)? + 4Ly " (f(w(t) — f(w*)).
t=1 t=1

By convexity of the function, we further obtain that
S () —w” 5 -
2) (F(w(t);z,) — Flw'ia,)) < ; +20)  llge = Vf(w(@)* +4nL Y (fw(t)) = f(w")).
t=1 t=1 t=1

Then, we apply Lemma C.1 to bound the second term Zthl lgt — V f(w(t))||? and then apply a union bound on over ¢. We
conclude that, with probability at least 1 — ¢,

Y (F(w(t)iz) = F(w*;z,))

t=1

1) — w*|? 268 z log 247 2 g\
e =l )277“’ B (562 +25662 3 geli)) =57 + 262 (Zl—g’i(’)) ]

j=1

T

T
+20L Y (f(w(t) = f(w")).

The proof is completed. Lastly, we set the learning rate 7. To minimize the obtained upper bound, it suffices to minimize
the first two terms, as the last term can be combined with the left hand side of (11) when we apply this regret bound. The
optimized learning rate is achieved when

2
lw(1) —w*?> 268 log 247 7 (i)
e =T {( G2+256G2]Zl¢ ) R B e }



Then, 7 is chosen as

[w(1) — w?/2
N 2
2%GQ+2%GQZﬁﬂ¢dﬁ)lgé +2gzciﬁgﬁg }

0( rsta0)
T- Z] 1¢5()

D EXPERIMENT SETUP
Recall that we consider the following convex quadratic optimization problem:

min Eeop,(w — §) Alw = &),

weRd
where A is a fixed positive semi-definite matrix and j is the uniform distribution on [0, 1]%. The data stream admitting such
a stationary distribution y can be generated by a certain Metropolis-Hastings sampler provided in [Jarner and Roberts, 2002].

Specifically, it is described as follows.

* Let the “proposal" distribution ¢(x) have the density of Beta(r + 1, 1); that is,

)+ 12" xe(0,1]
Q(m)_{o ¢ 0,1

Define the acceptance probability «(z,y) = min{ ZEZ) 1}

« If the current state is &, then we sample ( ~ g. Define the next state £;41:

€t+1 _ ft Ww.p. 1- a(gta C)7
< W.p. Oé(&,()-

* Go back to Step 2 to generate the next state.

We repeatedly generate d independent sequences starting from the same initial state so = 0 to obtain a d-dimension Markov
chain. It has been shown that the above generated Markov chain converges to p in distribution with an algebraic convergence
rate ¢¢ (k) < O(k~'/") in Proposition 5.2, [Jarner and Roberts, 2002].

We consider the following bias term at the fixed point w = 0g4.
(Bias):  |E[F(w;x;)|zo = 04] — f(w)|.

It can be used to approximate the left-hand side of Lemma 5.1. Since E [F(w, Zr)|so = Od] cannot be explicitly obtained, we
use Monte Carlo method to estimate this conditional expectation. That is, we generate n = 10, 000 independent trajectories
starting from xy = 04. At the step 7, we estimate the expected value as % Yo F(w; xg)), where x(f) with the superscript
(¢) indicates that it is sampled from the i-th trajectory. Then we investigate the relation between the step 7 and the mixing

parameter r and the relation between the step 7 and the batch size B. All the results are presented in Section 6.

For the neural network experiments, we setup the hyper-parameters as described as follows: When comparing the correlation
coefficients, we fix the batch size B = 1000, and apply the scaling described in Section 6.1 n = , / S =i — ¢ - When
j=1

comparing the influence of batch size on a fixed correlated data stream, we fix the correlation coefficients = 2.0 and set up
the standard linear scaling n = 0.0001 x B log B for the fair comparison among different batch sizes.



E ADDITIONAL EXPERIMENTS

We include a support vector machine (SVM) experiment here as a complement of empirical studies. The online data generator
directly follows the construction used in Section 6.2; that is, we generate an algebraic ¢-mixing Markov chain {X;}: then
mapping each X; to a label of the MNIST dataset. For each image with size 28 x 28, we flatten it as a 784-dimensional
vector. We train the SVM model by solving

HBH ]E(w,y)N'D‘CHinge (me’ Z/)

where (z, y) is the image data and its corresponding label, D is the stationary distribution of data stream, and Lyinge is the
multi-class Hinge loss. We verify the performance of SGD over different dependence coefficient r with a fixed batch size.
More specifically, we set the batch size B = 128, and adjust the correlation coefficients r from {1.0,1.25,1.5,1.75,2.0}.
The learning rate is set as the scaling rule described in Section 6.1 n = 0.01 X m Figure 4 (left) gives the
experiment result and it indicates that the convergence of SGD becomes slower when ;he data dependence is increasing.
Furthermore, we fix the correlation coefficient » = 2.0 and compare the performance of SGD with different batch sizes.
Here the learning rate follows the standard linear scaling = 0.0001 x B log B for the fair comparison among different
batch size. The experiment result in Figure 4 (right) shows increasing the batch size can reduce the convergence error.

101_ L _ 100.
r=1.0 —— Batch Size = 8
— r=125 —— Batch Size = 16
r=1.5 Batch Size = 32
w 100 r=175 Batch Size = 64
8 — r=2.0 s S i
o . o Batch Size = 128
-l
|
101  \Q
1071 %M &:\\\
e
0 32k 64k 96k 128k 0 2.4k 4.8k 8k
Num. of gradient computation Num. of gradient computation

Figure 4: Comparison of sample complexity of SGD over dependent data with different mixing coefficients and batch sizes.
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