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Abstract
Actor-critic (AC) algorithms have been widely
used in decentralized multi-agent systems to learn
the optimal joint control policy. However, ex-
isting decentralized AC algorithms either need
to share agents’ sensitive information or lack
communication-efficiency. In this work, we de-
velop decentralized AC and natural AC (NAC)
algorithms that avoid sharing agents’ local in-
formation and are sample and communication-
efficient. In both algorithms, agents share only
noisy rewards and use mini-batch local policy
gradient updates to ensure high sample and com-
munication efficiency. Particularly for decentral-
ized NAC, we develop a decentralized Marko-
vian SGD algorithm with an adaptive mini-batch
size to efficiently compute the natural policy
gradient. Under Markovian sampling and lin-
ear function approximation, we prove that the
proposed decentralized AC and NAC algorithms
achieve the state-of-the-art sample complexities
O(ϵ−2 ln ϵ−1) and O(ϵ−3 ln ϵ−1), respectively,
and achieve an improved communication com-
plexity O(ϵ−1 ln ϵ−1). Numerical experiments
demonstrate that the proposed algorithms achieve
lower sample and communication complexities
than the existing decentralized AC algorithms.

1. Introduction
Multi-agent reinforcement learning (MARL) has achieved
great success in various application domains, including con-
trol (Yanmaz et al., 2017; Chalaki & Malikopoulos, 2020;
Venturini et al., 2021), robotics (Yan et al., 2013), wire-
less sensor networks (Krishnamurthy et al., 2008; Yuan
et al., 2020), intelligent systems (Zhang et al., 2021), etc.
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In MARL, a set of fully decentralized agents interact with
a dynamic environment following their own policies and
collect local rewards, and their goal is to collaboratively
learn the optimal joint policy that achieves the maximum
expected accumulated reward.

Classical policy optimization algorithms have been well
developed and studied, e.g., policy gradient (PG) (Sutton
et al., 2000), actor-critic (AC) (Konda & Tsitsiklis, 2000)
and natural actor-critic (NAC) (Peters & Schaal, 2008; Bhat-
nagar et al., 2009). In particular, AC-type algorithms are
more computationally tractable and efficient as they take
advantages of both policy gradient and value-based updates.
However, in the multi-agent setting, decentralized AC is
more challenging to design compared with the centralized
AC, as the algorithm updates involve sensitive agent infor-
mation, e.g., local actions, rewards and policies, which must
be kept locally in the decentralized learning process. In the
existing designs of decentralized AC, the agents need to
share either their local actions (Zhang et al., 2018b;a; Bono
et al., 2018; Perolat et al., 2018; Zhang & Zavlanos, 2019;
Lin et al., 2019b; Heredia & Mou, 2019; Lin et al., 2019a;
Chen et al., 2020) or local rewards (Foerster et al., 2018; Ma
et al., 2021; Lyu et al., 2021) with their neighbors, and hence
are not desired. This issue is addressed by Algorithm 2 of
(Zhang et al., 2018b) at the cost of learning a parameterized
model to estimate the averaged reward, yet this approach
requires extra learning effort and the reward estimation can
be inaccurate. Moreover, existing decentralized AC algo-
rithms are not sample and communication-efficient, and do
not have finite-time convergence guarantee, especially under
the practical Markovian sampling setting. Therefore, we
aim to address the following important question.

• Q1: Can we develop a decentralized AC algorithm that
is convergent, sample and communication-efficient, and
avoids sharing agents’ local actions and policies?

On the other hand, as an important variant of the decen-
tralized AC, decentralized NAC algorithm has not been
formally developed and rigorously analyzed in the exist-
ing literature. In particular, a major challenge is that we
need to develop a fully decentralized and computationally
tractable scheme to compute the inverse of the high dimen-
sional Fisher information matrix, and this scheme must be
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both sample and communication efficient. Hence, we want
to ask:

• Q2: Can we develop a computationally tractable and
communication-efficient decentralized NAC algorithm
that has a low sample and communication complexity?

In this study, we answer these questions by developing fully
decentralized AC and NAC algorithms that are sample and
communication-efficient, and do not reveal agents’ local
actions and policies. Our contributions are summarized as
follows.

1.1. Our Contributions

We develop fully decentralized AC and NAC algorithms
and analyze their finite-time sample and communication
complexities under Markovian sampling. Our results and
comparisons to existing works are summarized in Table 1.
In particular, our decentralized AC and NAC algorithms
adopt the following novel designs to accurately estimate the
policy gradient in an efficient way.

• Noisy Local Rewards: In a decentralized setting, local pol-
icy gradients (estimated by the agents) involve the average
of all agents’ local rewards. To help agents estimate this
averaged reward without revealing the raw local rewards,
we let them share Gaussian-corrupted local rewards with
their neighbor, and the variance of the Gaussian noise can
be adjusted by each agent.

• Mini-batch Updates: We apply mini-batch Markovian
sampling to both the decentralized actor and critic up-
dates. Compared to the approach with single-sample up-
dates, this approach i) helps the agents obtain accurate
estimations of the corrupted averaged reward; ii) signifi-
cantly reduces the variance of policy gradient caused by
Markovian sampling; and iii) significantly reduces the
communication frequency and complexity.

For our decentralized NAC algorithm, we additionally adopt
the following design to compute the inverse of the Fisher
information matrix in an efficient and decentralized way.

• Decentralized Natural Policy Gradient: By reformulating
the natural policy gradient as the solution of a quadratic
program, we develop a decentralized Markovian SGD
that allows the agents to estimate the corresponding local
natural gradients by communicating only scalar variables
with their neighbors. In particular, we use an increas-
ing batch size to optimize the sample complexity of the
decentralized Markovian SGD.

Theoretically, we provide finite-time convergence analysis
of both algorithms under Markovian sampling. Specifi-
cally, we prove that our decentralized AC and NAC algo-
rithms achieve the sample complexities O(ϵ−2 ln ϵ−1) and
O(ϵ−3 ln ϵ−1), respectively, both of which match the state-

of-the-art complexities of their centralized versions (Xu
et al., 2020b). Moreover, with a proper large batch size,
both algorithms achieve a significantly reduced communica-
tion complexity O(ϵ−1 ln ϵ−1) compared to that with batch
size one. In particular, our analysis involves new technical
developments. First, we need to characterize the bias and
variance of (natural) policy gradient and stochastic gradient
caused by the noisy rewards and the inexact local averaging
steps, and control them with proper choices of batch sizes
and number of local averaging steps. Second, when using
decentralized Markovian SGD to compute the inverse Fisher
information matrix, we need to use an exponentially increas-
ing batch size to achieve an optimized sample complexity
bound. Such a Markovian SGD with adaptive batch size has
not been studied before and can be of independent interest.

1.2. Related Work

Convergence Analysis of AC and NAC. In the centralized
setting, the AC algorithm was firstly proposed by (Konda &
Tsitsiklis, 2000) and later developed into the natural actor-
critic (NAC) algorithm (Peters & Schaal, 2008; Bhatnagar
et al., 2009). Then, (Konda, 2002; Bhatnagar, 2010) and
(Kakade, 2001; Bhatnagar et al., 2007; 2009) establish the
asymptotic convergence rate of centralized AC and NAC,
respectively. Furthermore, (Wang et al., 2019a; Kumar et al.,
2019; Qiu et al., 2019; Xu et al., 2020c; Wu et al., 2020) and
(Wang et al., 2019a) establish the finite-time convergence
rate of centralized AC and NAC, respectively. Moreover,
(Xu et al., 2020b) improves the finite-time sample complexi-
ties of the above works to the state-of-the-art result for both
centralized AC and NAC by leveraging mini batch sampling,
and our sample complexities match these state-of-the-art
results.

In the decentralized setting, a few works have established the
almost sure convergence result of AC (Foerster et al., 2018;
Lin et al., 2019b; Suttle et al., 2019; Ma et al., 2021), but
they do not characterize the finite-time convergence rate and
the sample complexity.To the best of our knowledge, there
is no formally developed decentralized NAC algorithm.

Decentralized TD-type Algorithms. The finite-time con-
vergence of decentralized TD(0) has been obtained using
i.i.d samples (Wai et al., 2018; Doan et al., 2019; Wang et al.,
2020; Liu & Olshevsky, 2021) and Markovian samples (Sun
et al., 2020; Wang et al., 2020), respectively, without reveal-
ing the agents’ local actions, policies and rewards. Decen-
tralized off-policy TD-type algorithms have been studied in
(Macua et al., 2014; Stanković & Stanković, 2016; Cassano
et al., 2020; Chen et al., 2021).

Decentralized AC in Other MARL Settings. Some works
apply decentralized AC to other MARL settings. For exam-
ple, (Srinivasan et al., 2018; Perolat et al., 2018; Hennes
et al., 2020; Chen et al., 2020; Xiao et al., 2021) studied



Submission and Formatting Instructions for ICML 2022

Table 1: List of complexities of the existing AC and NAC algorithms for achieving E[∥∇J(ω)∥2] ≤ ϵ
and E[J(ω∗)− J(ω))] ≤ ϵ, respectively.

Algorithm Papers Share local Sampling Sample Communication
action/policy scheme complexity complexity

Centralized AC

(Qiu et al., 2019) – i.i.d. Õ(ϵ−4) –
(Kumar et al., 2019) – i.i.d. O(ϵ−2.5) –

(Xu et al., 2020c) – Markovian O(ϵ−2.5 ln3 ϵ−1) –
(Wu et al., 2020) – Markovian Õ(ϵ−2.5) –
(Xu et al., 2020b) – Markovian O(ϵ−2 ln ϵ−1) –

Decentralized AC

(Zhang et al., 2018b;a)
(Foerster et al., 2018) × Markovian – –

(Zhang & Zavlanos, 2019)
(Lin et al., 2019b;a)
(Zhang et al., 2018b)
(Suttle et al., 2019) ✓ Markovian – –

(Ma et al., 2021)
This work ✓ Markovian O(ϵ−2 ln ϵ−1) O(ϵ−1 ln ϵ−1)

Centralized NAC (Xu et al., 2020c) – Markovian O(ϵ−4 ln2 ϵ−1) –
(Xu et al., 2020b) – Markovian O(ϵ−3 ln ϵ−1) –

Decentralized NAC This work ✓ Markovian O(ϵ−3 ln ϵ−1) O(ϵ−1 ln ϵ−1)

adversarial game. (Lowe et al., 2017) studied a mixed
cooperative-competitive environment where each agent max-
imizes its own Q function (Lowe et al., 2017). (Chen et al.,
2020) proposed Delay-Aware Markov Game which consid-
ers delay in Markov game. (Zhang et al., 2016; Luo et al.,
2019) studied linear control system and linear quadratic
regulators instead of an MDP. (Wang et al., 2019b) studied
sequential prisoner’s dilemmas. Three concurrent works
(Chen et al., 2022; Zeng et al., 2022; Hairi et al., 2022)
also propose decentralized AC algorithms that do not reveal
agents’ sensitive information for cooperative MARL. How-
ever, (Chen et al., 2022) focuses on homogeneous Markov
game, a specific cooperative MARL setting with homo-
geneity assumption, and has only asymptotic convergence
guarantee. (Zeng et al., 2022) allows to share part of individ-
ual policy parameters to other agents and achieves sample
complexity O(ϵ−2.5) under i.i.d. sampling, which is larger
than O(ϵ−2 ln ϵ−1) of our decentralized AC under the more
difficult Markovian sampling. (Hairi et al., 2022) matches
the sample complexity O(ϵ−2 ln ϵ−1) and communication
complexity O(ϵ−1 ln ϵ−1) of our proposed decentralized
AC under Markovian sampling, but it focuses on average
reward setting, while we focus on discounted reward setting.
In addition, none of the existing works study decentralized
NAC to the best of our knowledge.

Policy Gradient Algorithms. Policy gradient (PG) and
natural policy gradient (NPG) are popular policy optimiza-
tion algorithms. (Agarwal et al., 2019) characterizes the
iteration complexity of centralized PG and NPG algorithms
by assuming access to exact policy gradient. They also
established a sample complexity result O(ϵ−6) in the i.i.d.

setting for NPG, which is worse than the state-of-the-art
result O(ϵ−3 ln ϵ−1) of both centralized NAC (Xu et al.,
2020b) and our decentralized NAC with Markovian sam-
ples. (Huang et al., 2020) leverages STORM, a variance
reduction and momentum technique, to accelerate policy
gradient and further accelerates it using Hessian-aided tech-
nique, both of which achieve state-of-the-art sample com-
plexity O(ϵ−3). (Huang et al., 2022) uses both STORM
and mirror descent algorithm to accelerate policy gradient
and also achieves sample complexity O(ϵ−3). (Bai et al.,
2021) proposes decentralized PG in a simple cooperative
MARL setting, where all the agents share one action and
the same policy, and they establish a iteration complexity in
the order of O(ϵ−4). (Daskalakis et al., 2021; Zhao et al.,
2021) apply decentralized PG to Markov games. (Alfano
& Rebeschini, 2021) applies decentralized NPG to a differ-
ent cooperative MARL setting where each agent observes
its own state, takes its own action and has access to these
information of its neighbors.

2. Review of Multi-Agent RL
In this section, we first introduce some standard settings
of RL. Consider an agent that starts from an initial state
s0 ∼ ξ and collects a trajectory of Markovian samples
{st, at, Rt}t ⊂ S × A × R by interacting with an un-
derlying environment (with transition kernel P) follow-
ing a parameterized policy πω with induced stationary
state distribution µω. The agent aims to learn an opti-
mal policy that maximizes the expected accumulated re-
ward J(ω) = (1 − γ)E

[∑∞
t=0 γ

tRt
]
, where γ ∈ (0, 1)

is a discount factor. The marginal state distribution is de-
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noted as Pω(st) and the visitation measure is defined as
νω(s) := (1 − γ)

∑∞
t=0 γ

tPω(st = s), both of which
depend on the policy parameter ω ∈ Ω and the transi-
tion kernel P . We also define the mixed transition kernel
Pξ(·|s, a) := γP(·|s, a) + (1 − γ)ξ(·), whose stationary
state distribution is known to be νω .

In the multi-agent RL (MARL) setting, M agents are con-
nected via a fully decentralized network and interact with a
shared environment. The network topology is specified by a
doubly stochastic communication matrix W ∈ RM×M . At
any time t, all the agents share a common state st. Then,
every agent m takes an action a(m)

t following its own cur-
rent policy π

(m)
t (·|st) parameterized by ω

(m)
t . After all

the actions at := {a(m)
t }Mm=1 are taken, the global state

st transfers to a new state st+1 and every agent m re-
ceives a local reward R(m)

t . In this MARL setting, each
agent m can only access the global state {st}t, its own ac-
tions {a(m)

t }t and rewards {R(m)
t }t and policy π(m)

t . Next,
define the joint policy πt(at|st) :=

∏M
m=1 π

(m)
t (a

(m)
t |st)

parameterized by ωt = [ω
(1)
t ; . . . ;ω

(M)
t ], and define the

average reward Rt := 1
M

∑M
m=1R

(m)
t . The goal of the

agents is to collaboratively learn the optimal joint policy
that maximizes the expected accumulated average reward
J(ω) := (1 − γ)E

[∑∞
t=0 γ

tRt

∣∣∣s0 ∼ ξ
]
. Throughout, we

consider the setting that the agents interact with the environ-
ment and observe a trajectory of MDP transition samples,
which are used to learn the optimal joint policy.

3. Sample and Communication-Efficient
Decentralized AC

In this section, we propose a decentralized actor-critic (AC)
algorithm that is sample and communication-efficient and
avoids revealing agents’ actions, policies and raw rewards.

We first consider a direct extension of the centralized AC
to the decentralized case. As each agent m has its own
policy π(m), it aims to update the policy parameter ω(m)

using the local policy gradient ∇ω(m)J(ω). Under linear
approximation of the value function Vθ(s) ≈ ϕ(s)⊤θ where
ϕ(s) is the feature vector, the local policy gradient has the
following stochastic approximation.

∇ω(m)J(ωt)≈[
Rt+γϕ(s

′
t+1)

⊤θ
(m)
t − ϕ(st)

⊤θ
(m)
t

]
ψ
(m)
t (a

(m)
t |st), (1)

where a(m)
t ∼ π

(m)
t (·|st), st+1 ∼ Pξ(·|st, at),

s′t+1 ∼ P(·|st, at). (2)

Here, θ
(m)
t is agent m’s critic parameter and

ψ
(m)
t (a

(m)
t |st) = ∇ω(m) lnπ

(m)
t (a

(m)
t |st) is the local

score function. It is clear that both θ(m)
t and ψ(m)

t (a
(m)
t |st)

can be obtained/computed by agent m using the local
information. However, the average reward Rt requires
agent m aggregating the local rewards from all the other
agents, which raises concerns. In the existing literature
on decentralized AC, this issue is avoided by either 1)
sharing the agents’ actions with each other instead (Zhang
et al., 2018b;a; Bono et al., 2018; Perolat et al., 2018;
Zhang & Zavlanos, 2019; Lin et al., 2019b; Heredia &
Mou, 2019; Lin et al., 2019a; Chen et al., 2020), yet the
action information is also highly sensitive; or 2) learning
a parameterized model to estimate the average reward
(Zhang et al., 2018b), which requires extra learning effort
and does not provide an accurate estimation. Hence, we
are motivated to develop a simpler approach that provides
accurate estimation of the average reward while avoids
sharing raw local rewards.

1. Efficient Policy Gradient Estimation. We propose a de-
centralized policy gradient estimation scheme that improves
the sample and communication efficiency and avoids reveal-
ing the agents’ local actions, policies and raw rewards. First,
in order for each agent to estimate the average reward Rt in
eq. (1), we let each agent m generate a noisy local reward
R̃

(m)
t = R

(m)
t (1+e

(m)
t ) and share with other agents, where

e
(m)
t ∼ N (0, σ2

m). The noise variance is determined by the
agent based on its desired level. Specifically, every agent m
first initializes its local estimation of the averaged reward
R

(m)

t using its own noisy reward, i.e., R
(m)

t,0 = R̃
(m)
t . Then,

each agent m performs decentralized local averaging with
its neighbors Nm for T ′ iterations, i.e.,

R
(m)

t,ℓ+1=
∑
m′∈NmWm,m′R

(m′)

t,ℓ , ℓ=0, 1,. . ., T ′ − 1. (3)

After that, agentm obtains the final estimateR
(m)

t := R
(m)

t,T ′ .

It can be shown that R
(m)

t converges to the averaged noisy
reward 1

M

∑M
m=1 R̃

(m)
t exponentially fast. Ideally, by av-

eraging these noisy local rewards over the M agents, the
variance of the noise in the final estimation will be scaled by
a factor of 1

M . Therefore, to obtain an accurate estimation,
the network needs to have a sufficiently large number of
agents, which does not always hold in practice. To address
this issue, we let each agent m collect a mini-batch of N
Markovian samples in each iteration t to estimate the local
policy gradient, which then takes the following form.

∇̂ω(m)J(ωt) =
1

N

(t+1)N−1∑
i=tN

[
R

(m)

i + γϕ(s′i+1)
⊤θ

(m)
t

− ϕ(si)
⊤θ

(m)
t

]
ψ
(m)
t (a

(m)
i |si), (4)

where R
(m)

i is an estimation of Ri obtained by agent m
following the process described in eq. (3). Intuitively,
each R

(m)

i is corrupted by a zero-mean noise with vari-
ance O( 1

M ) due to averaging over the agents. Then, the
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mini-batch samples further help scale the noise variance by
a factor of 1

N . Consequently, with a sufficiently large batch
sizeN , we can obtain an accurate estimation of the averaged
reward and hence the policy gradient. To summarize, our
decentralized policy gradient estimation scheme has the
following advantages.

• Avoid sharing raw rewards: The agents share only noisy
rewards R̃(m)

t with their neighbors, and the noise variance
can be adjusted based on the desired level such that R(m)

t

is unknown to the other agents. This is in contrast to other
decentralized AC algorithms where the agents need to
either share local actions, rewards or collaboratively learn
an additional parameterized reward model.

• Sample-efficient: The mini-batch updates help greatly
suppress the noise variance of the local policy gradient
in (4) and improve its estimation accuracy. On the other
hand, mini-batch policy gradient also helps reduce the
optimization variance caused by Markovian sampling and
leads to a good finite-time sample complexity as we prove
later. We note that there is no trade-off between noise
variance and sample efficiency here, because for highly
noisy local rewards we can choose a large batch size to
suppress the overall estimation error to the desired level.

• Communication-efficient: The mini-batch updates also
significantly reduce the communication frequency as well
as the complexity compared to the single-sample updates,
as we prove later. In comparison, the existing decentral-
ized AC requires to perform one communication round
per Markovian sample.

Remark. The mini-batch policy gradient in eq. (4) can
be computed in an accumulative way by the agent when
observing the mini-batch of transition samples on the fly.
There is no need to store these samples and perform a large
batch computation.

2. Fully Decentralized Critic Update. The critic param-
eters of the agents are updated following the standard de-
centralized TD-type algorithm. Specifically, consider the
t-th local critic update of each agent m. It first collects a
mini-batch of Nc Markovian samples. Then, starting from a
fixed initialization θ(m)

t,0 = θ−1, agent m performs Tc itera-
tions of decentralized TD updates as follows, where {st}t∈N

follows the transition kernel P and a(m)
t ∼ π

(m)
t (·|st): for

t′ = 0, 1, ..., Tc − 1,

θ
(m)
t,t′+1 =

∑
m′∈Nm

Wm,m′ θ
(m′)
t,t′ +

β

Nc

(t+1)Nc−1∑
i=tNc

[
R

(m)
i

+ γϕ(si+1)
⊤θ

(m)
t,t′ − ϕ(si)

⊤θ
(m)
t,t′

]
ϕ(si). (5)

Then, the updated critic parameter is set to be θ(m)
t := θ

(m)
t,Tc

.
To further reduce the consensus error, we perform additional

T ′
c steps of local model averaging, as also adopted in (Chen

et al., 2021). The pseudo code of the entire decentralized
AC algorithm is summarized in Algorithms 1 and 2 below.

Algorithm 1 Decentralized Actor-Critic
Initialize: Actor-critic parameters ω0, θ−1.
for actor iterations t = 0, 1, . . . , T − 1 do

▶ Critic update on θt: by Algorithm 2.
▶ Collect N Markovian samples by eq. (2).
for agents m = 1, ...,M in parallel do

▶ Send noisy local rewards and perform T ′ local
average steps following eq. (3).
▶ Compute the estimated local policy gradient
∇̂ω(m)J(ωt) following eq. (4).
▶ Actor update on ωt:
ω
(m)
t+1 = ω

(m)
t + α∇̂ω(m)J(ωt).

end
end
Output: ωT̃ with T̃ uniform∼ {1, 2, . . . , T}.

Algorithm 2 Decentralized TD (critic update)
Initialize: Critic parameter θt,0 = θ−1.
for critic iterations t′ = 0, 1, . . . , Tc − 1 do

▶ Collect Nc Markovian samples following policy πt
and transition kernel P .
for agents m = 1, ...,M in parallel do

▶ Send local critic parameters.
▶ Decentralized TD update in eq. (5).

end
end
for iterations t′ = Tc, ..., Tc + T ′

c − 1 do
for agents m = 1, ...,M in parallel do

▶ θ
(m)
t,t′+1 =

∑
m′∈NmWm,m′ θ

(m′)
t,t′ .

end
end
Output: θt = θt,Tc+T ′

c
.

4. Finite-Time Analysis of Decentralized AC
In this section, we analyze the finite-time convergence of
Algorithm 1 and characterize the sample and communica-
tion complexities. All the notations and universal constants
are summarized in Appendices A & F respectively. We first
introduce the following standard assumptions that have been
widely adopted in the existing literature.

Assumption 1. Regarding the transition kernels P,Pξ, de-
note µω, νω respectively as their stationary state distribu-
tions under policy πω and denote P,Pξ respectively as their
marginal state distributions. Then, there exist constants
κ > 0 and ρ ∈ (0, 1) such that for all t ≥ 0,

sup
s∈S

dTV
(
P (st | s0 = s) , µω

)
≤ κρt,
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sup
s∈S

dTV
(
Pξ (st | s0 = s) , νω

)
≤ κρt (6)

where dTV (P,Q) denotes the total-variation distance be-
tween probability measures P and Q.

Assumption 2. There exist constants Cψ, Lψ, Lπ > 0
such that for all ω, ω̃ ∈ Ω, s ∈ S and a ∈ A,
∥ψω(a|s)∥ ≤ Cψ, ∥ψω̃(a|s) − ψω(a|s)∥ ≤ Lψ∥ω̃ − ω∥
and dTV

(
πω̃(·|s), πω(·|s)

)
≤ Lπ∥ω̃ − ω∥.

Assumption 3. There exists Rmax > 0 such that for any
agent m and any Markovian sample (s, a, s′), we have 0 ≤
R(m)(s, a, s′) ≤ Rmax.

Assumption 4. The feature vectors satisfy ∥ϕ(s)∥ ≤ 1
for all s ∈ S. There exists a constant λϕ > 0 such that
λmin

(
Es∼µω [ϕ(s)ϕ(s)⊤]

)
≥ λϕ for all ω.

Assumption 5. The communication matrix W ∈ RM×M

of the decentralized network is doubly stochastic, and its
second largest singular value satisfies σW ∈ [0, 1).

Assumption 1 has been widely considered in the exist-
ing literature (Bhandari et al., 2018; Qiu et al., 2019; Xu
et al., 2019; Xu & Liang, 2020; Shaocong et al., 2020; Xu
et al., 2020b; Chen et al., 2021) and it holds for any time-
homogeneous Markov chains with finite-state space and any
uniformly ergodic Markov chains. Assumption 2 introduces
boundedness and Lipschitzness to the policy and its asso-
ciated score function (Yang et al., 2020; Xu et al., 2020b),
and holds for many parameterized policies such as Gaussian
policy (Kumar et al., 2019) and Boltzman policy (Ghosh &
Aggarwal, 2020). Assumption 4 can always hold by nor-
malizing the feature vector ϕ(s) Assumption 5 is widely
used in decentralized optimization (Singh et al., 2020; Saha
et al., 2020) and multi-agent reinforcement learning (Sun
et al., 2020; Wang et al., 2020; Chen et al., 2021), which
ensures that all the decentralized agents can reach a global
consensus.

With the above assumptions, we obtain the following finite-
time convergence result of the decentralized AC algorithm.
Throughout, we follow (Xu et al., 2020b; Wu et al., 2020)
and define the critic approximation error as ζcritic

approx :=

supω Es∼νω (Vω(s) − ϕ(s)⊤θ∗ω)
2 where θ∗ω is the optimal

critic parameter (see its definition right before Lemma D.3
in Appendix D). We also define sample complexity as the
total number of Markovian samples required for achieving
E[∥∇J(ω)∥2] ≤ ϵ. All the universal constants are listed in
Appendix F.

Theorem 1. Let Assumptions 1–5 hold and adopt the hyper-
parameters of the decentralized TD in Algorithm 2 following
Lemma D.4. Choose α ≤ 1

4LJ
, T ′ ≥ lnM

2 lnσ−1
W

. Then, the out-
put of the decentralized AC in Algorithm 1 has the following
convergence rate.

E
[∥∥∇J(ωT̃ )∥∥2] ≤ 4Rmax

Tα
+4(c4σ

2T ′

W +c5β
2σ

2T ′
c

W )+

4c6

(
1− λB

8
β
)Tc

+
4c7
N

+
4c8
Nc

+64C2
ψζ

critic
approx.

Moreover, to achieve E
[∥∥∇J(ωT̃ )∥∥2] ≤ ϵ for any ϵ ≥

128C2
ψζ

critic
approx, we can choose T,N,Nc = O(ϵ−1) and

Tc, T
′
c, T

′ = O(ln ϵ−1). Consequently, the overall sam-
ple complexity is T (TcNc +N) = O(ϵ−2 ln ϵ−1), and the
communication complexities for synchronizing linear model
parameters and rewards are T (Tc + T ′

c) = O(ϵ−1 ln ϵ−1)
and TT ′ = O(ϵ−1 ln ϵ−1), respectively.

To the best of our knowledge, Theorem 1 provides the
first finite-time analysis of decentralized AC under Marko-
vian sampling. To elaborate, under any pre-specified
variance σ2

m of the reward noise, our result shows that
the gradient norm asymptotically converges to the order
O(N−1 + N−1

c + ζcritic
approx), which can be made arbitrarily

close to the linear model approximation error ζcritic
approx by

choosing sufficiently large batch sizes N,Nc. In particular,
exact gradient convergence can be achieved when there is
no model approximation error. The overall sample complex-
ity of our decentralized AC is O(ϵ−2 ln ϵ−1), matching the
state-of-the-art complexity result for centralized AC (Xu
et al., 2020b). Moreover, with proper choices of the batch
sizes N,Nc = O(ϵ−1), the overall communication com-
plexity is significantly reduced to O(ϵ−1 ln ϵ−1) compared
to that with batch size one.

The proof of Theorem 1 relies on developing several new
algorithmic and technical developments to reduce the com-
munication complexity of both the decentralized actor and
critic updates while establishing tight convergence error
bounds for both components. We further elaborate on these
novel technical developments below.

• To achieve an overall reduced communication complex-
ity, we adopt mini-batch updates in both the actor and
critic steps to reduce the communication frequency, as
opposed to the single sample-based update adopted in the
existing work on decentralized TD learning (Sun et al.,
2020). Specifically, in the analysis of the decentralized
TD described in Algorithm 2 (see Lemma D.4), the mini-
batch updates with batch size O(ϵ−1) substantially im-
prove the communication complexity from O(ϵ−1 ln ϵ−1)
to O(ln ϵ−1) and help achieve the state-of-the-art sample
complexity. Eventually, this together with the mini-batch
updates in the decentralized actor steps help achieve the
desired overall low communication complexity.

• To achieve the state-of-the-art overall sample complexity,
we require a fast convergence of the decentralized TD
learning. Although the standard Tc decentralized mini-
batch TD updates can yield a small convergence error for
the global critic model (i.e., the average of all local critic
models), it still suffers from a relatively large consensus
error. To resolve this issue, we introduce an additional T ′

c
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global consensus steps in Algorithm 2 to reduce the con-
sensus error. It is proved that a small number O(ln ϵ−1)
of such steps suffices to yield a desired TD error.

• We inject random noises into the local raw rewards R(m)
t

to protect the information. These noises introduce addi-
tional Markovian bias and variance to the local policy
gradients in (4). Fortunately, as proved in Lemma D.6,
by applying mini-batch policy gradient updates, we are
able to control the bias and variance induced by the noisy
rewards to an acceptable level that does not affect the
overall sample and communication complexities.

5. Decentralized Natural AC
Natural actor-critic (NAC) is a popular variant of the AC
algorithm. It utilizes a Fisher information matrix to per-
form a natural policy gradient update, which helps attain
the globally optimal solution in terms of the function value
convergence. In this section, we develop a fully decen-
tralized version of the NAC algorithm that is sample and
communication-efficient.

A major challenge of developing fully decentralized NAC
algorithm is computing the inverse Fisher information
matrix-vector product involved in the natural policy gra-
dient update. To explain, first recall the exact natu-
ral policy gradient update of the centralized NAC al-
gorithm, i.e., ωt+1 = ωt + αF (ωt)

−1∇J(ωt), where
F (ωt) := Est∼νωt ,at∼πt(·|st)

[
ψt(at|st)ψt(at|st)⊤

]
is the

Fisher information matrix. However, in the multi-agent
case, it is challenging to perform the natural policy gra-
dient update in a decentralized manner. This is be-
cause the Fisher information matrix F (ωt) is based on
the concatenated multi-agent score vector ψt(at|st) =

[ψ
(1)
t (a

(1)
t |st); ...;ψ(M)

t (a
(M)
t |st)] and the inverse matrix-

vector product F (ωt)−1∇J(ωt) is not separable with re-
gard to each agent’s policy parameter dimensions. Next,
we develop a fully decentralized scheme to implement the
natural policy gradient update in the multi-agent setting.

First, the natural policy gradient h(ωt) := F (ωt)
−1∇J(ωt)

is the solution of a quadratic program, i.e.,

h(ωt)=argmin
h

fωt(h) :=
1

2
h⊤F (ωt)h−∇J(ωt)⊤h. (7)

Therefore, we can apply K steps of SGD with Markovian
sampling to solve this problem and obtain an estimated
natural policy gradient update. Specifically, starting from
the initialization ht,0 = ht−1 (obtained in the previous
iteration), in the k-th SGD step, we sample a mini-batch
Bt,k 1 of Nk Markovian samples to estimate ∇fωt(h)

1Specifically, the mini-batch Bt,k contains sample indices{
tN +

∑k−1
k′=0 Nk′ , . . . , tN +

∑k
k′=0 Nk′ − 1

}
.

as 1
Nk

∑
i∈Bt,k ψt(ai|si)ψt(ai|si)

⊤ht,k − ∇̂J(ωt;Bt,k),
where ∇̂J(ωt;Bt,k) is estimated in the same decentralized
way as eq. (4) using the mini-batch of samples Bt,k. In par-
ticular, each agentm needs to compute the corresponding lo-
cal gradient 1

Nk

∑
i∈Bt,k ψ

(m)
t (a

(m)
i |si)

[
ψt(ai|si)⊤ht,k

]
−

∇̂ω(m)J(ωt;Bt,k), in which ψ
(m)
t (a

(m)
i |si) and

∇̂ω(m)J(ωt;Bt,k) can be computed/estimated by the
agent m. Then, it suffices to obtain an estimate
of the scalar ψt(ai|si)⊤ht,k, which can be rewrit-
ten as

∑M
m=1 ψ

(m)
t (a

(m)
i |si)⊤h(m)

t,k . This summation
can be easily estimated by the decentralized agents
through local averaging. Specifically, each agent
m locally computes z

(m)
i,0 = ψ

(m)
t (a

(m)
i |si)⊤h(m)

t,k

and performs Tz steps of local averaging, i.e.,
z
(m)
i,ℓ+1 =

∑
m′∈NmWm,m′ z

(m′)
i,ℓ , ℓ = 0, 1, . . . , Tz − 1.

After that, the quantity Mz
(m)
i,Tz

can be proven to converge

to the desired summation
∑M
m=1 ψ

(m)
t (a

(m)
i |si)⊤h(m)

t,k

exponentially fast. Finally, the local gradient for agent m is
approximated as

∇̂ω(m)fωt(ht,k) =
M

Nk

∑
i∈Bt,k

ψ
(m)
t (a

(m)
i |si)z(m)

i,Tz

− ∇̂ω(m)J(ωt;Bt,k). (8)

Algorithm 3 Decentralized Natural Actor-Critic
Initialize: Actor-critic parameters ω0, θ−1, natural policy
gradient h−1.
for actor iterations t = 0, 1, . . . , T − 1 do

▶ Critic update on θt: by Algorithm 2.
for agents m = 1, ...,M in parallel do

for iterations k = 0, 1, . . . ,K − 1 do
▶ Collect Nk Markovian samples following
eq. (2).
▶ Send R̃(m)

i and z(m)
i,ℓ and perform T ′ and Tz

local average steps, respectively.
▶ Estimate local gradient ∇̂ω(m)fωt(ht,k) fol-
lowing eqs. (8) and (4).
▶ Perform SGD update in eq. (9).

end
▶ Actor update on ωt: ω

(m)
t+1 = ω

(m)
t + αh

(m)
t .

end
end
Output: ωT̃ with T̃ uniform∼ {1, 2, . . . , T}.

Then, the agent m performs the following SGD updates to
obtain h(m)

t := h
(m)
t,K .

h
(m)
t,k+1=h

(m)
t,k − η∇̂ω(m)fωt(ht,k), k=0, ...,K − 1. (9)

We emphasize that the above mini-batch SGD updates
use Markovian samples. In particular, as shown in Sec-
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tion 6, we need to develop an adaptive batch size scheduling
scheme for this SGD in order to reduce its sample complex-
ity. We summarize the decentralized NAC in Algorithm 3.

6. Finite-time Analysis of Decentralized NAC
To analyze the decentralized NAC, we introduce the follow-
ing additional standard assumptions.

Assumption 6. There exists a constant λF > 0 such that
λmin

(
F (ω)

)
≥ λF > 0,∀ω ∈ Ω.

Assumption 7. There exists C∗ > 0 such that for ω∗ =
argmaxω∈Ω J(ω) and any ω ∈ Ω,

Es∼νω,a∼πω(·|s)
[(νω∗(s)πω∗(a|s)

νω(s)πω(a|s)

)2]
≤ C2

∗ .

Assumption 6 ensures that the Fisher information matrix
F (ω) is uniformly positive definite, and is also considered in
(Yang et al., 2020; Liu et al., 2020; Xu et al., 2021). Assump-
tion 7 regularizes the discrepancy between the stationary
state-action distributions νω∗(s)πω∗(a|s) and νω(s)πω(a|s)
(Wang et al., 2019a; Xu et al., 2020a).

We obtain the following finite-time convergence re-
sult of the decentralized NAC. Throughout, we fol-
low (Wang et al., 2019a; Xu et al., 2020b; 2021)
and define the actor approximation error ζactor

approx :=

supωminhEs∼νω,a∼πω
[(
ψω(a|s)⊤h − Aω(s, a)

)2]
. All

universal constants are listed in Appendix F.

Theorem 2. Let Assumptions 1–7 hold and adopt the hy-
perparameters of the decentralized TD in Algorithm 2
following Lemma D.4. Choose hyperparameters α ≤
min

(
1,

λ2
F

4LJC2
ψ
,
C2
ψ

2LJ

)
, β ≤ 1, T ′ ≥ lnM

2 lnσ−1
W

, η ≤
1

2C2
ψ

, Tz ≥ ln(3DJC
2
ψ)

lnσ−1
W

, K ≥ ln 3
ln(1−ηλF /2)−1 , N ≥

2304C4
ψ(κ+1−ρ)

ηλ5
F (1−ρ)(1−ηλF /2)(K−1)/2 and Nk ∝ (1 − ηλF /2)

−k/2.
Then, the output of Algorithm 3 satisfies

J(ω∗)− E
[
J(ωT̃ )

]
≤ c17
Tα

+ c18

(
1− ηλF

2

)(K−1)/4

+ c19σ
Tz
W + c20σ

T ′

W

+ c21βσ
T ′
c

W + c22

(
1− λB

8
β
)Tc/2

+
c23√
Nc

+ Cψ

√
c16ζcritic

approx + c24ζ
critic
approx + C∗

√
ζactor

approx.

Moreover, to achieve J(ω∗) − E
[
J(ωT̂ )

]
≤ ϵ for

any ϵ ≥ 2Cψ
√
c16ζcritic

approx + 2c24ζ
critic
approx + 2C∗√ζactor

approx,

we can choose T = O(ϵ−1), N,Nc = O(ϵ−2),
Tc, T

′
c, T

′, Tz,K = O(ln ϵ−1). Consequently, the overall
sample complexity is T (TcNc +N) = O(ϵ−3 ln ϵ−1), and
the communication complexities for synchronizing linear

model parameters, rewards and inner products z(m)
ℓ are

T (Tc + T ′
c) = O(ϵ−1 ln ϵ−1), TT ′ = O(ϵ−1 ln ϵ−1) and

TTz = O(ϵ−1 ln ϵ−1) respectively.

Theorem 2 provides the first finite-time analysis of fully
decentralized natural AC algorithm. Our result proves that
the function value optimality gap converges to the order
O
(
N

−1/2
c +

√
ζcritic

approx +
√
ζactor

approx

)
, which can be made ar-

bitrarily close to the actor and critic approximation error by
choosing a sufficiently large batch size Nc. In particular,
exact global optimum can be achieved when there is no
model approximation error. We note that the overall sam-
ple complexity of our decentralized NAC is O(ϵ−3 ln ϵ−1),
matching the state-of-the-art complexity result for central-
ized NAC (Xu et al., 2020b). Moreover, with the mini-batch
updates, the overall communication complexity is signifi-
cantly reduced to O(ϵ−1 ln ϵ−1) compared to that with batch
size one.

Similar to that of Theorem 1, our analysis of Theorem 2
also leverages the mini-batch decentralized TD updates to
reduce the communication complexity and deal with the
bias and variance of the local policy gradient introduced by
noisy rewards. In addition, decentralized NAC uses mini-
batch SGD with Markovian sampling to solve the quadratic
problem in eq. (7). Here, we use a special geometrically
increasing batch size scheduling scheme, i.e., Nk ∝ (1 −
ηλF /2)

−k/2, to achieve the best possible convergence rate
under the total sample budget that

∑K
k=1Nk = N and

obtain the desired overall sample complexity result. Such an
analysis of SGD with Markovian sampling under adaptive
batch size scheduling has not been studied in the literature
and can be of independent interests.

7. Experiments
We test our decentralized algorithms in three experiments:
a decentralized ring network, a fully connected network,
and a two-agent cliff navigation environment. Due to space
limitation, we present only the ring network experiment
results. Please refer to Appendix E for the other results, all
of which demonstrate the effectiveness of our algorithms.

We simulate a fully decentralized ring network with 6 agents.
We implement four decentralized AC-type algorithms and
compare their performance, namely, our Algorithms 1 and
3, the existing decentralized AC algorithm (Algorithm 2 of
(Zhang et al., 2018b)) that uses a linear model to parameter-
ize the agents’ averaged reward (we name it DAC-RP1 for
decentralized AC with reward parameterization), and a mod-
ified version of DAC-RP1 that uses minibatch updates with
batch size N = 100, which we refer to as DAC-RP100. For
our Algorithm 1, we choose T = 500, Tc = 50, T ′

c = 10,
Nc = 10, T ′ = Tz = 5, β = 0.5, {σm}6m=1 = 0.1, and
consider batch size choicesN = 100, 500, 2000. Algorithm
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Figure 1: Comparison of accumulated discounted reward
J(ωt) among decentralized AC and NAC-type algorithms
in a simulated ring network with 6 agents.

3 uses the same hyperparameters as those of Algorithm 1
except that T = 2000 in Algorithm 3. For DAC-RP1, we
set learning rates βθ = 2(t + 1)−0.9, βv = 5(t + 1)−0.8

and batch size N = 1 as mentioned in (Zhang et al., 2018b).
The modified DAC-RP100 adopts the same learning rates
as Algorithm 1 with N = 100.

Figure 1 plots the accumulated reward J(ωt) v.s. commu-
nication and sample complexity. Each curve includes 10
repeated experiments, and its upper and lower envelopes
denote the 95% and 5% percentiles of the 10 repetitions,
respectively. For our decentralized AC algorithm (top two
figures), its communication and sample complexities for
achieving a high accumulated reward are significantly re-
duced under a larger batch sizeN . This matches our theoret-
ical understanding in Theorem 1 that a large N helps reduce
the communication frequency and policy gradient variance.
In comparison, DAC-RP1 (with N = 1) has little improve-
ment on the accumulated reward. Moreover, although the
modified DAC-RP100 (with N = 100) outperforms DAC-
RP1, its performance is much worse than our Algorithm 1
with N = 100. This performance gap is due to two reasons:
(i) Both DAC-RP algorithms suffer from an inaccurate pa-
rameterized estimation of the averaged reward, and their
mean relative reward errors are over 100%. In contrast, our
noisy averaged reward estimation achieves a mean relative
error in the range of 10−5 ∼ 10−4;(ii) Both DAC-RP algo-
rithms apply only a single TD update per-round, and hence
suffers from a large mean relative TD error (about 2% and
1% for DAC-RP1 and DAC-RP100, respectively) whereas

our algorithms perform multiple TD learning updates per-
round and achieve a smaller mean relative TD error (about
0.3%). For our decentralized NAC algorithm (bottom two
figures), one can make similar observations and conclusions.

8. Conclusion
We developed fully-decentralized AC and NAC algorithms
that are efficient and do not reveal agents’ local actions
and policies. The agents share noisy reward information
and adopt mini-batch updates to improve sample and com-
munication efficiency. Under Markovian sampling and lin-
ear function approximation, we proved that our decentral-
ized AC and NAC algorithms achieve the state-of-the-art
sample complexities O(ϵ−2 ln ϵ−1) and O(ϵ−3 ln ϵ−1), re-
spectively, and they both achieve a small communication
complexity O(ϵ−1 ln ϵ−1). Numerical experiments demon-
strate that our algorithms achieve better sample and com-
munication complexity than the existing decentralized AC
algorithm that adopts reward parameterization.
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A. Notations
Norms: For any vector x, we denote ∥x∥ as its ℓ2 norm. For any matrix X , we denote ∥X∥, ∥X∥F as its spectral norm and
Frobenius norm, respectively.

Difference matrix: ∆ := I − 1
M 11⊤, where 1 denotes a column vector that consists of 1s.

Moments of random vectors: For a random vector X , we define its variance and covariance matrix as Var(X) :=
E∥X −EX∥2 and Cov(X) := E

(
[X −EX][X −EX]⊤

)
, respectively. It is well known that E∥X∥2 = Var(X) + ∥EX∥2

and that Var(X) = tr[Cov(X)].

Score function: At any time t, The joint score function ψt(at|st) := ∇ω lnπt(at|st) can be decomposed into individual
score functions ψ(m)

t (a
(m)
t |st) := ∇ω(m) lnπ

(m)
t (a

(m)
t |st) as ψt(at|st) = [ψ

(1)
t (a

(1)
t |st), . . . , ψ(M)

t (a
(M)
t |st)].

Reward functions: At any time t, we denote R(m)
t := R(m)(st, at, st+1) and Rt := R(st, at, st+1), where R(s, a, s′) =

1
M

∑M
m=1R

(m)(s, a, s′).

Policy gradient: The policy gradient theorem (Sutton et al., 1999) shows that

∇J(ω) = Eνω
[
Aω(s, a)ψω(s, a)

]
. (10)

where Aω(s, a) := Qω(s, a)−Vω(s) denotes the advantage function. In the decentralized case, we have the approximations
Vω(st) ≈ ϕ(st)

⊤θ,Qω(st, at) ≈ Rt+γϕ(s
′
t+1)

⊤θ where s′t+1 ∼ P(·|st, at). Therefore, we can stochastically approximate
the partial policy gradient as eq. (1), i.e., for m = 1, ...,M ,

∇ω(m)J(ωt)≈
[
Rt + γϕ(s′t+1)

⊤θ
(m)
t − ϕ(st)

⊤θ
(m)
t

]
ψ
(m)
t (a

(m)
t |st).

We also define the following mini-batch stochastic (partial) policy gradient.

∇̃ω(m)J(ωt) :=
1
N

∑(t+1)N−1
i=tN

[
Ri + γϕ(s′i+1)

⊤θ
(m)
t − ϕ(si)

⊤θ
(m)
t

]
ψ
(m)
t (a

(m)
i |si).

∇̃J(ωt) :=
[
∇̃ω(1)J(ωt); . . . ; ∇̃ω(M)J(ωt)

]
.

Filtrations: We define the following filtrations for Algorithms 1 & 3.
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Ft := σ
(
{θ(m)
t′ }m∈M,0≤t′≤t ∪ {si, ai, s′i+1, {e

(m)
i }m∈M}tN−1

i=0 ∪ {stN}
)
.

F ′
t := σ

[
Ft ∪ σ

(
{si, ai, s′i+1}

(t+1)N−1
i=tN+1

)]
.

Ft,k = σ
[
Ft ∪ σ

(
{si, ai, si+1, s

′
i+1, {e

(m)
i }m∈M}i∈∪k−1

k′=0
Bt,k′

)]
.

B. Proof of Theorem 1
Theorem 1. Let Assumptions 1–5 hold and adopt the hyperparameters of the decentralized TD in Algorithm 2 following
Lemma D.4. Choose α ≤ 1

4LJ
, T ′ ≥ lnM

2 lnσ−1
W

. Then, the output of the decentralized AC in Algorithm 1 has the following
convergence rate.

E
[∥∥∇J(ωT̃ )∥∥2] ≤ 4Rmax

Tα
+4(c4σ

2T ′

W +c5β
2σ

2T ′
c

W )+

4c6

(
1− λB

8
β
)Tc

+
4c7
N

+
4c8
Nc

+64C2
ψζ

critic
approx.

Moreover, to achieve E
[∥∥∇J(ωT̃ )∥∥2] ≤ ϵ for any ϵ ≥ 128C2

ψζ
critic
approx, we can choose T,N,Nc = O(ϵ−1) and Tc, T ′

c, T
′ =

O(ln ϵ−1). Consequently, the overall sample complexity is T (TcNc + N) = O(ϵ−2 ln ϵ−1), and the communication
complexities for synchronizing linear model parameters and rewards are T (Tc + T ′

c) = O(ϵ−1 ln ϵ−1) and TT ′ =
O(ϵ−1 ln ϵ−1), respectively.

Proof. Concatenating all the agents’ actor updates in Algorithm 1, we obtain the joint actor update ωt+1 = ωt + α∇̂J(ωt).
Then, the item 7 of Lemma D.5 implies that

J(ωt+1) ≥ J(ωt) +∇J(ωt)⊤(ωt+1 − ωt)−
LJ
2

∥∥ωt+1 − ωt
∥∥2

= J(ωt) + α∇J(ωt)⊤∇̂J(ωt)−
LJα

2

2

∥∥∇̂J(ωt)∥∥2
(i)

≥ J(ωt) + α∥∇J(ωt)∥2 + α∇J(ωt)⊤
(
∇̂J(ωt)−∇J(ωt)

)
− LJα

2
∥∥∇̂J(ωt)−∇J(ωt)

∥∥2 − LJα
2
∥∥∇J(ωt)∥∥2

(ii)

≥ J(ωt) +
(α
2
− LJα

2
)
∥∇J(ωt)∥2 −

(α
2
+ LJα

2
)∥∥∇̂J(ωt)−∇J(ωt)

∥∥2
(iii)

≥ J(ωt) +
α

4
∥∇J(ωt)∥2 − α

∥∥∇̂J(ωt)−∇J(ωt)
∥∥2

where (i) and (ii) use the inequalities ∥x∥2 ≤ 2∥x − y∥2 + 2∥y∥2 and x⊤y ≥ − 1
2∥x∥

2 − 1
2∥y∥

2 for any x, y ∈ Rd,
respectively, and (iii) uses the condition that α ≤ 1

4LJ
. Then, summing up the inequality above over t = 0, 1, . . . , T − 1

yields that

J(ωT ) ≥ J(ω0) +
α

4

T−1∑
t=0

∥∇J(ωt)∥2 − α

T−1∑
t=0

∥∥∇̂J(ωt)−∇J(ωt)
∥∥2.

Rearranging the equation above and taking expectation on both sides yields that

E
∥∥∇J(ωT̃ )∥∥2 =

1

T

T−1∑
t=0

E∥∇J(ωt)∥2

≤ 4

Tα
E[J(ωT )− J(ω0)] +

4

T

T−1∑
t=0

E
[∥∥∇̂J(ωt)−∇J(ωt)

∥∥2]
(i)

≤ 4Rmax

Tα
+ 4c4σ

2T ′

W + 4c5β
2σ

2T ′
c

W + 4c6

(
1− λB

4
β
)Tc
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+
4c7
N

+
4c8
Nc

+ 64C2
ψζ

critic
approx, (11)

where (i) uses the item 4 of Lemma D.5 and eq. (39) of Lemma D.6 (The condition of Lemma D.6 that T ′ ≥ lnM
2 ln(σ−1)

holds). This proves the error bound of Theorem 1.

Finally, for any ϵ ≥ 128C2
ψζ

critic
approx, it can be easily verified that the following hyperparameter choices make the error bound in

(11) smaller than ϵ and also satisfy the conditions of this Theorem and those in Lemma D.4 that β ≤ min
(
λB
8C2

B
, 4
λB
, 1−σ2CB

)
,

Nc ≥
(

2
λB

+ 2β
) 192C2

B [1+(κ−1)ρ]
(1−ρ)λB .

α =min
(
1,

1

4LJ

)
= O(1)

β =min
( λB
8C2

B

,
4

λB
,
1− σ

2CB

)
= O(1)

T =
⌈48Rmax

αϵ

⌉
= O(ϵ−1)

T ′ =
⌈ 1

2 ln(σ−1)
max

[
ln(48c4ϵ

−1), lnM
]⌉

= O
(
ln(ϵ−1)

)
T ′
c =

⌈ ln(48c5β2ϵ−1)

2 ln(σ−1)

⌉
= O

(
ln(ϵ−1)

)
Tc =

⌈ ln(48c6ϵ
−1)

2 ln[(1− λBβ/4)−1]

⌉
= O

(
ln(ϵ−1)

)
N =

⌈48c7
ϵ

⌉
= O(ϵ−1)

Nc =
⌈
max

[48c8
ϵ
,
( 2

λB
+ 2β

)192C2
B [1 + (κ− 1)ρ]

(1− ρ)λB

]⌉
= O(ϵ−1) (12)

C. Proof of Theorem 2
Theorem 2. Let Assumptions 1–7 hold and adopt the hyperparameters of the decentralized TD in Algorithm 2 following

Lemma D.4. Choose hyperparameters α ≤ min
(
1,

λ2
F

4LJC2
ψ
,
C2
ψ

2LJ

)
, β ≤ 1, T ′ ≥ lnM

2 lnσ−1
W

, η ≤ 1
2C2

ψ
, Tz ≥ ln(3DJC

2
ψ)

lnσ−1
W

,

K ≥ ln 3
ln(1−ηλF /2)−1 , N ≥ 2304C4

ψ(κ+1−ρ)
ηλ5
F (1−ρ)(1−ηλF /2)(K−1)/2 and Nk ∝ (1 − ηλF /2)

−k/2. Then, the output of Algorithm 3
satisfies

J(ω∗)− E
[
J(ωT̃ )

]
≤ c17
Tα

+ c18

(
1− ηλF

2

)(K−1)/4

+ c19σ
Tz
W + c20σ

T ′

W

+ c21βσ
T ′
c

W + c22

(
1− λB

8
β
)Tc/2

+
c23√
Nc

+ Cψ

√
c16ζcritic

approx + c24ζ
critic
approx + C∗

√
ζactor

approx.

Moreover, to achieve J(ω∗) − E
[
J(ωT̂ )

]
≤ ϵ for any ϵ ≥ 2Cψ

√
c16ζcritic

approx + 2c24ζ
critic
approx + 2C∗√ζactor

approx, we can choose

T = O(ϵ−1), N,Nc = O(ϵ−2), Tc, T ′
c, T

′, Tz,K = O(ln ϵ−1). Consequently, the overall sample complexity is T (TcNc +
N) = O(ϵ−3 ln ϵ−1), and the communication complexities for synchronizing linear model parameters, rewards and inner
products z(m)

ℓ are T (Tc + T ′
c) = O(ϵ−1 ln ϵ−1), TT ′ = O(ϵ−1 ln ϵ−1) and TTz = O(ϵ−1 ln ϵ−1) respectively.

Proof. Concatenating all the agents’ actor updates in Algorithm 3, we obtain the joint actor update ωt+1 = ωt + αht. Then,
the item 7 of Lemma D.5 implies that

J(ωt+1) ≥ J(ωt) +∇J(ωt)⊤(ωt+1 − ωt)−
LJ
2

∥∥ωt+1 − ωt
∥∥2
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= J(ωt) + α∇J(ωt)⊤ht −
LJα

2

2

∥∥ht∥∥2
(i)

≥ J(ωt) + α∇J(ωt)⊤F (ωt)−1∇J(ωt) + α∇J(ωt)⊤[ht − h(ωt)]

− LJα
2
∥∥ht − h(ωt)

∥∥2 − LJα
2
∥∥F (ωt)−1∇J(ωt)

∥∥2
(ii)

≥ J(ωt) +
( α

C2
ψ

− α

2C2
ψ

− LJα
2

λ2F

)
∥∇J(ωt)∥2 −

(αC2
ψ

2
+ LJα

2
)∥∥ht − h(ωt)

∥∥2
(iii)

≥ J(ωt) +
α

4C2
ψ

∥∇J(ωt)∥2 − αC2
ψ

∥∥ht − h(ωt)
∥∥2

where (i) uses the notation that h(ωt)
△
= F (ωt)

−1∇J(ωt) and the inequality that ∥x∥2 ≤ 2∥x − y∥2 + 2∥y∥2 for any

x, y ∈ Rd, (ii) uses the item 3 of Lemma D.7 and the inequality that x⊤y ≥ − 1
2C2

ψ
∥x∥2 − C2

ψ

2 ∥y∥2 for any x, y ∈ Rd, and

(iii) uses the condition that α ≤ min
(

λ2
F

4LJC2
ψ
,
C2
ψ

2LJ

)
. Taking expectation on both sides of the above inequality, summing

over t = 0, 1, . . . , T − 1 and rearranging, we obtain that

1

T

T−1∑
t=0

E∥∇J(ωt)∥2 ≤
4C2

ψ

Tα
E[J(ωT )− J(ω0)] +

4C4
ψ

T

T−1∑
t=0

E
∥∥ht − h(ωt)

∥∥2
(i)

≤
4C2

ψRmax

Tα
+ 4C4

ψ

[
c10

(
1− ηλF

2

)(K−1)/2

+ c11σ
2Tz + c12σ

2T ′

+ c13β
2σ2T ′

c + c14

(
1− λB

4
β
)Tc

+
c15
Nc

+ c16ζ
critic
approx

]
, (13)

where (i) uses the item 4 of Lemma D.5 and the item 8 of Lemma D.7.

By Assumption 2, lnπω(s, a) is an Lψ-smooth function of ω. Denote ω∗:= argminω∈Ω J(ω) and denote Eω∗ as the
unconditional expectation over s ∼ νω∗ , a ∼ πω∗(·|s). We obtain that

Eω∗
[
lnπt+1(a|s)− lnπt(a|s)

]
≥ Eω∗

[(
∇ωt lnπt(a|s)

)⊤
(ωt+1 − ωt)

]
− Lψ

2
E∥ωt+1 − ωt∥2

= αEω∗
[
ψt(a|s)⊤ht

]
− Lψα

2

2
E
[
∥ht∥2

]
(i)

≥ αEω∗
[
ψt(a|s)⊤

(
ht − h(ωt)

)]
+ αEω∗

[
ψt(a|s)⊤h(ωt)−Aωt(s, a)

]
+ αEω∗

[
Aωt(s, a)

]
− Lψα

2E
[∥∥ht − h(ωt)

∥∥2]− Lψα
2E

[∥∥F (ωt)−1∇J(ωt)
∥∥2]

(ii)

≥ −αCψ
√

E
[∥∥ht − h(ωt)

∥∥2]− αC∗

√
ζactor

approx

+ αE
[
J(ω∗)− J(ωt)

]
− Lψα

2E
[∥∥ht − h(ωt)

∥∥2]− Lψα
2λ−2
F E

[∥∥∇J(ωt)∥∥2],
where (i) uses the inequality that ∥x∥2 ≤ 2∥x − y∥2 + 2∥y∥2 for any x, y ∈ Rd and the notation that h(ωt)

△
=

F (ωt)
−1∇J(ωt), (ii) uses Cauchy-Schwarz inequality, the items 3 & 6 of Lemma D.7, the inequality that E∥X∥ ≤√

E
[
∥X∥2

]
for any random vector X and the equality that Eω∗

[
Aωt(s, a)

]
= E

[
J(ω∗)− J(ωt)

]
(See its proof in Lemma

3.2 of (Agarwal et al., 2019).). Averaging the inequality above over t = 0, 1, . . . , T − 1 and rearranging it yields that

J(ω∗)− E
[
J(ωT̃ )

]
=

1

T

T−1∑
t=0

E
[
J(ωt)

]
≤ 1

Tα
Eω∗

[
lnπT (a|s)− lnπ0(a|s)

]
+ C∗

√
ζactor

approx +
Cψ
T

T−1∑
t=0

√
E
[∥∥ht − h(ωt)

∥∥2]
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+
Lψα

T

T−1∑
t=0

E
[∥∥ht − h(ωt)

∥∥2]+ Lψα

Tλ2F

T−1∑
t=0

E
[∥∥∇J(ωt)∥∥2]

(i)

≤ 1

Tα
Es∼νω∗

[
KL

(
πω∗(·|s)||π0(·|s)

)
− KL

(
πω∗(·|s)||πT (·|s)

)]
+ C∗

√
ζactor

approx

+ Cψ

[
c10

(
1− ηλF

2

)(K−1)/2

+ c11σ
2Tz + c12σ

2T ′
+ c13β

2σ2T ′
c

+ c14

(
1− λB

4
β
)Tc

+
c15
Nc

+ c16ζ
critic
approx

]1/2
+ Lψα

[
c10

(
1− ηλF

2

)(K−1)/2

+ c11σ
2Tz + c12σ

2T ′
+ c13β

2σ2T ′
c

+ c14

(
1− λB

4
β
)Tc

+
c15
Nc

+ c16ζ
critic
approx

]
+
Lψα

λ2F

{4C2
ψRmax

Tα
+ 4C4

ψ

[
c10

(
1− ηλF

2

)(K−1)/2

+ c11σ
2Tz + c12σ

2T ′
+ c13β

2σ2T ′
c

+ c14

(
1− λB

4
β
)Tc

+
c15
Nc

+ c16ζ
critic
approx

]}
(ii)

≤ 1

Tα
Es∼νω∗

[
KL

(
πω∗(·|s)||π0(·|s)

)]
+ C∗

√
ζactor

approx

+ Cψ

[√
c10

(
1− ηλF

2

)(K−1)/4

+
√
c11σ

Tz +
√
c12σ

T ′
+
√
c13βσ

T ′
c

+
√
c14

(
1− λB

4
β
)Tc/2

+

√
c15
Nc

+
√
c16ζcritic

approx

]
+ Lψ

(
1 +

4C4
ψ

λ2F

)[
c10

(
1− ηλF

2

)(K−1)/4

+ c11σ
Tz + c12σ

T ′
+ c13βσ

T ′
c

+ c14

(
1− λB

4
β
)Tc/2

+
c15√
Nc

+ c16ζ
critic
approx

]
+

4LψC
2
ψRmax

Tαλ2F
(iii)
=

c17
Tα

+ c18

(
1− ηλF

2

)(K−1)/4

+ c19σ
Tz + c20σ

T ′
+ c21βσ

T ′
c + c22

(
1− λB

4
β
)Tc/2

+
c23√
Nc

+ Cψ

√
c16ζcritic

approx + c24ζ
critic
approx + C∗

√
ζactor

approx, (14)

where (i) uses the definition of KL divergence that KL
(
πω∗(·|s)||πω(·|s)

)
= Ea∼πω∗ (·|s)

[
lnπω∗(a|s) − lnπω(a|s)

∣∣s]
and eqs. (13) & (54), (ii) uses the condition that α ≤ 1 and the inequality that

√∑n
i=1 xi ≤

∑n
i=1

√
xi for any

n ∈ N+ and x1, . . . , xn ≥ 0, (iii) uses the notations that c17:=Es∼νω∗

[
KL

(
πω∗(·|s)||π0(·|s)

)]
+

4LψC
2
ψRmax

λ2
F

, c18 :=

Cψ
√
c10+ c10Lψ

(
1+

4C4
ψ

λ2
F

)
, c19 := Cψ

√
c11+ c11Lψ

(
1+

4C4
ψ

λ2
F

)
, c20 := Cψ

√
c12+ c12Lψ

(
1+

4C4
ψ

λ2
F

)
, c21 := Cψ

√
c13+

c13Lψ

(
1 +

4C4
ψ

λ2
F

)
, c22 := Cψ

√
c14 + c14Lψ

(
1 +

4C4
ψ

λ2
F

)
, c23 := Cψ

√
c15 + c15Lψ

(
1 +

4C4
ψ

λ2
F

)
, c24 := c16Lψ

(
1 +

4C4
ψ

λ2
F

)
.

This proves the error bound of Theorem 2.

Finally, for any ϵ ≥ 2Cψ
√
c16ζcritic

approx + 2c24ζ
critic
approx + 2C∗√ζactor

approx, it can be verified that the following hyperparameter
choices make the error bound in (14) smaller than ϵ and satisfy all the conditions of this Theorem and those in Lemma D.4
that β ≤ min

(
λB
8C2

B
, 4
λB
, 1−σ2CB

)
, Nc ≥

(
2
λB

+ 2β
) 192C2

B [1+(κ−1)ρ]
(1−ρ)λB .

α =min
(
1,

λ2F
4LJC2

ψ

,
C2
ψ

2LJ

)
= O(1)

β =min
(
1,

λB
8C2

B

,
4

λB
,
1− σ

2CB

)
= O(1)
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η =
1

2C2
ψ

= O(1)

T =
⌈14c17
αϵ

⌉
= O(ϵ−1)

K =
⌈
max

[ ln 3

ln[(1− ηλF /2)−1]
,

4 ln(14c18ϵ
−1)

ln
[
(1− ηλF /2)−1

] + 1
]⌉

= O
[
ln(ϵ−1)

]
Tz =

⌈
max

[ ln(3DJC
2
ψ)

ln(σ−1)
,
ln(14c19ϵ

−1)

ln(σ−1)

]
=

⌉
O
[
ln(ϵ−1)

]
T ′ =

⌈
max

[ lnM

2 ln(σ−1)
,
ln(14c20ϵ

−1)

ln(σ−1)

]⌉
= O

[
ln(ϵ−1)

]
T ′
c =

⌈ ln(14c21ϵ−1)

ln(σ−1)

⌉
= O

[
ln(ϵ−1)

]
Tc =

⌈ 2 ln(14c22ϵ
−1)

ln[(1− λBβ/4)−1]

⌉
= O

[
ln(ϵ−1)

]
N =

⌈ 2304C4
ψ(κ+ 1− ρ)

ηλ5F (1− ρ)(1− ηλF /2)(K−1)/2

⌉
= O(ϵ−2)

Nc =
⌈
max

[( 2

λB
+ 2β

)192C2
B [1 + (κ− 1)ρ]

(1− ρ)λB
, 196c223ϵ

−2
]⌉

= O(ϵ−2) (15)

D. Supporting Lemmas
First, we extend the Lemma F.3 of (Chen et al., 2021) to the Lemma D.1 below. The item 1 of Lemma D.1 generalizes the
case n = 1 to any n ∈ N+, the items 2 & 3 remain unchanged, and the item 4 is added for convenience of our convergence
analysis.

Lemma D.1. The doubly stochastic matrix W and the difference matrix ∆ = I − 1
M 11⊤ have the following properties:

1. ∆Wn =Wn∆ =Wn − 1
M 11⊤ for any n ∈ N+.

2. The spectral norm of W satisfies ∥W∥ = 1.

3. For any x ∈ RM and n ∈ N+, ∥Wn∆x∥ ≤ σnW ∥∆x∥ (σW is the second largest singular value of W ). Hence, for any
H ∈ RM×M , ∥Wn∆H∥F ≤ σnW ∥∆H∥F .

4.
∥∥Wn − 1

M 11⊤
∥∥ ≤ σnW ,

∥∥Wn − 1
M 11⊤

∥∥
F
≤ σnW

√
M for any n ∈ N+.

Proof. The proof of items 2 & 3 can be found in (Chen et al., 2021). We prove the item 1 and item 4.

We prove item 1 by induction. The case n = 1 of the item 1 can be proved by the following two equalities, as shown in
(Chen et al., 2021).

∆W =
(
I − 1

M
11⊤

)
W =W − 1

M
11⊤W =W − 1

M
11⊤

W∆ =W
(
I − 1

M
11⊤

)
=W − 1

M
W11⊤ =W − 1

M
11⊤

Suppose the case of n = k holds for a certain k ∈ N+, then the following two equalities proves the case of n = k + 1 and
thus proves the item 1.

∆W k+1 = (∆W k)W =
(
W k − 1

M
11⊤

)
W =W k+1 − 1

M
11⊤

W k+1∆ =W (W k∆) =W
(
W k − 1

M
11⊤

)
=W k+1 − 1

M
11⊤
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The item 4 can be proved by the following two inequalities.∥∥∥Wn − 1

M
11⊤

∥∥∥ (i)
=

∥∥Wn∆
∥∥ = sup

x:∥x∥≤1

∥Wn∆x∥
(ii)

≤ sup
x:∥x∥≤1

σnW ∥∆∥∥x∥ (iv)
= σnW , (16)

∥∥∥Wn − 1

M
11⊤

∥∥∥
F

(i)
=

∥∥Wn∆
∥∥
F

(iii)

≤ σnW ∥∆∥F

(iv)
= σnW

√
M

(
1− 1

M

)2

+M(M − 1)
(
− 1

M

)2

≤ σnW
√
M, (17)

where (i) uses the item 1, (ii) and (iii) use the item 3 (H = I in (iii)), and (iv) uses the fact that ∆ has M diagnoal entries
1− 1

M and M(M − 1) off-diagnoal entries − 1
M , which implies that ∥∆∥ = 1.

Next, we extend the Lemma F.2. of (Chen et al., 2021) to the Lemma D.2 below.

Lemma D.2. Suppose the Markovian samples {si, ai}i≥0 are generated following the policy πω and transition kernel P ′

(can be P or Pξ), and s′i+1 ∼ P(·|si, ai). Then, for any deterministic mapping X : S × A× S × S → Rp×q (p, q ∈ N+

are arbitrary.) such that ∥X(s, a, s′, s̃)∥F ≤ Cx and for any s, s′, s̃ ∈ S, a ∈ A, we have

E
[∥∥∥ 1
n

n+n′−1∑
i=n′

X(si, ai, si+1, s
′
i+1)−X

∥∥∥2
F

∣∣∣sn′

]
≤9C2

x(κ+ 1− ρ)

n(1− ρ)
,∀n, n′ ∈ N+ (18)

where X = E
[
X(si, ai, si+1, s

′
i+1)

∣∣si] with si ∼ µω (or νω) when P ′ = P (or Pξ).

Proof. Denote Y (s, a, s′) := Es̃∼P′(·|s,a)
[
X(s, a, s′, s̃)

∣∣s, a, s′] which satisfies ∥Y (s, a, s′)∥ ≤ Cx and
Esi∼νω

[
Y (si, ai, si+1)

]
= X . Hence, Lemma F.2 of (Chen et al., 2021) can be applied to Y (s, a, s′) and obtain the

following inequality

E
[∥∥∥ 1
n

n+n′−1∑
i=n′

Y (si, ai, si+1)−X
∥∥∥2
F

∣∣∣sn′

]
≤8C2

x(κ+ 1− ρ)

n(1− ρ)
. (19)

Therefore, we obtain that

E
[∥∥∥ 1
n

n+n′−1∑
i=n′

X(si, ai, si+1, s
′
i+1)−X

∥∥∥2
F

∣∣∣{si, ai, si+1}n+n
′−1

i=n′

]

=
∥∥∥E[ 1

n

n+n′∑
i=n′

X(si, ai, si+1, s
′
i+1)−X

∣∣∣{si, ai, si+1}n+n
′−1

i=n′

]∥∥∥2
F

+ Var
[ 1
n

n+n′−1∑
i=n′

X(si, ai, si+1, s
′
i+1)

∣∣∣{si, ai, si+1}n+n
′−1

i=n′

]
(i)
=

∥∥∥ 1
n

n+n′−1∑
i=n′

Y (si, ai, si+1)−X
∥∥∥2
F

+
1

n2

n+n′−1∑
i=n′

Var
[
X(si, ai, si+1, s

′
i+1)

∣∣{si, ai, si+1}n+n
′−1

i=n′

]
(ii)

≤
∥∥∥ 1
n

n+n′−1∑
i=n′

Y (si, ai, si+1)−X
∥∥∥2
F
+
C2
x

n
(20)

where (i) uses the conditional independency among {s′i+1}
(t+1)N−1
i=tN on {si, ai, si+1}n+n

′−1
i=n′ and (ii) uses the fact that

∥X(si, ai, si+1, s
′
i+1)∥F ≤ Cx.
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Finally, eq. (18) can be proved via the following inequality.

E
[∥∥∥ 1
n

n+n′∑
i=n′

X(si, ai, si+1, s
′
i+1)−X

∥∥∥2
F

∣∣∣sn′

]
(i)

≤ E
[∥∥∥ 1
n

n+n′−1∑
i=n′

Y (si, ai, si+1)−X
∥∥∥2
F

∣∣∣sn′

]
+
C2
x

n

(ii)

≤ 8C2
x(κ+ 1− ρ)

n(1− ρ)
+
C2
x

n
≤ 9C2

x(κ+ 1− ρ)

n(1− ρ)
,

where (i) takes the conditional expectation of eq. (20) on s′n and (ii) uses eq. (19).

Next, we prove the following Lemmas D.3 & D.4 on the decentralized TD in Algorithm 2. We first define the following
useful notations.

λϕ := λmin

(
Es∼µω [ϕ(s)ϕ(s)⊤]

)
> 0, see Assumption 4.

B(s, s′) := ϕ(s)
[
γϕ(s′)− ϕ(s)

]⊤
.

Bt :=
1
Nc

∑(t+1)Nc−1
i=tNc

B(si, si+1).

Bω := Es∼µω,a∼πω(·|s),s′∼P(·|s,a)
[
B(s, s′)

]
.

b(m)(s, a, s′) := R(m)(s, a, s′)ϕ(s).

b(s, a, s′) := 1
M

∑M
m=1 b

(m)(s, a, s′).

b
(m)
t := 1

Nc

∑(t+1)Nc−1
i=tNc

b(m)(si, ai, si+1).

bt :=
1
M

∑M
m=1 b

(m)
t .

bω := Es∼µω,a∼πω(·|s),s′∼P(·|s,a)
[
b(s, a, s′)

]
.

θ∗ω := B−1
ω bω , which is the optimal critic parameter under policy πω .

Lemma D.3. The following bounds hold for Algorithm 2.

1. ∥B(s, s′)∥F , ∥Bt∥F , ∥Bω∥F ≤ CB := 1 + γ,
∥b(m)(s, a, s′)∥, ∥b(s, a, s′)∥, ∥b(m)

t ∥, ∥bt∥, ∥bω∥ ≤ Cb := Rmax.

2. θ⊤Bωθ ≤ −λB
2 ∥θ∥2 uniformly for all ω, where λB := 2(1− γ)λϕ > 0.

3. ∥θ∗ω∥ ≤ Rθ :=
2Cb
λB

uniformly for all ω.

Proof. We first prove the item 1. Notice that for any vectors x, y ∈ Rd,

∥xy⊤∥F =

√√√√ d∑
i=1

d∑
j=1

(xiyj)2 =

√√√√ d∑
i=1

x2i

√√√√ d∑
j=1

y2j = ∥x∥∥y∥.

Hence, we obtain that

∥B(s, s′)∥F =
∥∥ϕ(s)(γϕ(s′)− ϕ(s)

)⊤∥∥
F
= ∥ϕ(s)∥∥γϕ(s′)− ϕ(s)∥ ≤ 1 + γ := CB , (21)

∥b(s, a, s′)∥ = R(s, a, s′)∥ϕ(s)∥ ≤ Rmax := Cb. (22)

The other terms listed in the item 1 can be proved by applying the Jensen’s inequality to the convex function ∥ · ∥.
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Next, we prove the item 2, where we use the underlying distribution that s ∼ µω, a ∼ πω(·|s), s′ ∼ P(·|s, a). We obtain
that

θ⊤Bωθ = Eω
(
θ⊤ϕ(s)

[
γϕ(s′)− ϕ(s)

]⊤
θ
)

= γEω
[(
θ⊤ϕ(s)

)(
θ⊤ϕ(s′)

)]
− Eω

[(
θ⊤ϕ(s)

)2]
≤ γ

2

(
Eω

[(
θ⊤ϕ(s)

)2]
+ Eω

[(
θ⊤ϕ(s′)

)2])− Eω
[(
θ⊤ϕ(s)

)2]
(i)
= (γ − 1)Eω

[(
θ⊤ϕ(s)

)2]
= −(1− γ)θ⊤Eω[ϕ(s)ϕ(s)⊤]θ
(ii)

≤ −λB
2

∥θ∥2, (23)

where (i) uses the fact that s, s′ ∼ µω which is the stationary state distribution with the transition kernel P and the policy
πω , and (ii) uses Assumption 4 and we denote λB := 2(1− γ)λϕ > 0.

Finally, the item 3 can be proved via the following inequality.

∥θ∗ω∥2
(i)

≤ − 2

λB
(θ∗ω)

⊤Bωθ
∗
ω ≤ 2

λB
∥θ∗ω∥∥Bωθ∗ω∥ =

2

λB
∥θ∗ω∥∥bω∥ ≤ 2Cb

λB
∥θ∗ω∥, (24)

where (i) uses the item 2.

Lemma D.4. Under Assumptions 1–5 and choosing β ≤ min
(
λB
8C2

B
, 4
λB
, 1−σW2CB

)
, Nc ≥

(
2
λB

+ 2β
) 192C2

B [1+(κ−1)ρ]
(1−ρ)λB ,

Algorithm 2 has the following convergence rate.

M∑
m=1

E
[∥∥θ(m)

Tc+T ′
c
− θ∗ωt

∥∥2∣∣ωt] ≤ σ
2T ′
c

W β2c2 + 2M
[
c3

(
1− λB

8
β
)Tc

+
c1
Nc

]
. (25)

Moreover, to achieve
∑M
m=1 E

[∥∥θ(m)
Tc+T ′

c
− θ∗ωt

∥∥2∣∣ωt] ≤ ϵ, we can choose Tc, T ′
c = O

[
ln(ϵ−1)

]
and Nc = O(ϵ−1).

Consequently, the sample complexity is TcNc = O
[
ϵ−1 ln(ϵ−1)

]
and the communication complexity is Tc + T ′

c =

O
[
ln(ϵ−1)

]
.

Proof. In Algorithm 2, by averaging the TD update rule (26) over the agents m ∈ M, we obtain that the averaged critic
parameter θt,t′ := 1

M

∑M
m=1 θ

(m)

t,t′ follows the following update rule

θt,t′+1 =
1

M

M∑
m=1

[ M∑
m′=1

Wm,m′θ
(m′)
t,t′ + β

(
Bt′θ

(m)
t,t′ + b

(m)
t′

)]
=

1

M

M∑
m′=1

θ
(m′)
t,t′ + β

1

M

M∑
m=1

(
Bt′θ

(m)
t,t′ + b

(m)
t′

)
= θt,t′ + β

(
Bt′θt,t′ + bt′

)
(26)

which can be viewed as a centralized TD update using the Markovian samples {si, ai}i from the transition kernel P and the
joint policy πt. Therefore, Theorem 4 in (Xu et al., 2020b) can be directly applied to analyze this centralized TD update and
obtain the following convergence rate of θt,t′ , since all the conditions of that theorem are met 2.

E
[∥∥θt,Tc − θ∗ωt

∥∥2∣∣ωt] ≤(
1− λB

4
β

)Tc
E
[∥∥θt,0 − θ∗ωt

∥∥2∣∣ωt]
+
( 2

λB
+ 2β

)192(C2
BR

2
θ + C2

b

)
[1 + (κ− 1)ρ]

(1− ρ)λBNc

2We corrected the typo 1− λB
8
β, which should be 1− λB

4
β.
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(i)

≤ 2

(
1− λB

4
β

)Tc (∥∥θ−1

∥∥2 +R2
θ

)
+
c1
Nc

(ii)

≤ c3

(
1− λB

4
β

)Tc
+
c1
Nc

. (27)

where (i) uses the condition that β ≤ 4/λB , the item 3 of Lemma D.3 and the constant that c1 :=
1920(C2

BR
2
θ+C

2
b )[1+(κ−1)ρ]

(1−ρ)λ2
B

,

(ii) uses the constant that c3 := 2
(∥∥θ−1

∥∥2 +R2
θ

)
.

Next, we consider the consensus error ∥∆Θt,t′∥2F =
∑M
m=1

∥∥θ(m)
t,t′ − θt,t′

∥∥2 where we define Θt,t′ := [θ
(1)
t,t′ , . . . , θ

(M)
t,t′ ]⊤.

Note that the critic-step (26) can be rewritten into the following matrix form

Θt,t′+1 =WΘt,t′ + β
(
Θt,t′B

⊤
t′ + [b

(1)
t′ ; . . . ; b

(M)
t′ ]⊤

)
; t′ = 0, 1, . . . , Tc − 1, (28)

which further implies that for any t′ = 0, 1, . . . , Tc − 1,

∥∥∆Θt,t′+1

∥∥
F

(i)

≤
∥∥W∆Θt,t′

∥∥
F
+ β

∥∥∆Θt,t′B
⊤
t′

∥∥
F
+ β

∥∥∆[b
(1)
t′ ; . . . ; b

(M)
t′ ]⊤

∥∥
F

(ii)

≤ (σW + βCB)
∥∥∆Θt,t′

∥∥
F
+ β

√√√√M

M∑
m=1

∥b(m)
t′ ∥2

(iii)

≤ 1 + σW
2

∥∥∆Θt,t′
∥∥
F
+ βMCb,

where (i) uses the item 1 of Lemma D.1, (ii) uses the item 3 of Lemma D.1 and the item 1 of Lemma D.3, (iii) uses the
condition that β ≤ 1−σW

2CB
and the item 1 of Lemma D.3. Telescoping the inequality above yields that

∥∥∆Θt,Tc
∥∥
F
≤

(1 + σW
2

)Tc∥∥∆Θt,0
∥∥
F
+

2βMCb
1− σW

(i)
=

2βMCb
1− σW

, (29)

where (i) uses the equality that ∆Θ0 = O due to the initial condition that Θt,0 = [θ−1; . . . ; θ−1]
⊤.

On the other hand, the final T ′
c local average steps in Algorithm 2 can be rewritten into the following matrix form

Θt,t′+1 =WΘt,t′ ; t = Tc, Tc + 1, . . . , Tc + T ′
c − 1.

Hence, the average critic parameter θt,t′ does not change in these local average steps, i.e.,

θt,Tc+T ′
c
=

1

M
Θ⊤
t,Tc+T ′

c
1 =

1

M
Θ⊤
t,Tc(W

T ′
c)⊤1 =

1

M
Θ⊤
t,Tc1 = θt,Tc . (30)

Therefore, we obtain that

M∑
m=1

∥∥θ(m)
t,Tc+T ′

c
− θt,Tc

∥∥2 =

M∑
m=1

∥∥θ(m)
t,Tc+T ′

c
− θt,Tc+T ′

c

∥∥2 = ∥∆Θt,Tc+T ′
c
∥2F = ∥∆WT ′

cΘt,Tc∥2F

(i)
= ∥WT ′

c∆Θt,Tc∥2F
(ii)

≤ σ
2T ′
c

W ∥∆Θt,Tc∥2F
(iii)

≤ σ
2T ′
c

W

(2βMCb
1− σW

)2 (iv)
= σ

2T ′
c

W β2c2/2 (31)

where (i) and (ii) use the items 1 and 3 of Lemma D.1 respectively, (iii) uses eq. (29), (iv) denotes that c2 := 2
(
2MCb
1−σW

)2
.

Combining eqs. (27) & (31) yields that

M∑
m=1

E
[∥∥θ(m)

t,Tc+T ′
c
− θ∗ωt

∥∥2∣∣ωt] ≤ 2

M∑
m=1

E
[∥∥θ(m)

t,Tc+T ′
c
− θt,Tc

∥∥2∣∣ωt]+ 2ME
[∥∥θt,Tc − θ∗ωt

∥∥2∣∣ωt]
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≤ σ
2T ′
c

W β2c2 + 2M
[
c3

(
1− λB

4
β
)Tc

+
c1
Nc

]
.

In the inequality above, replacing θ(m)
t,Tc+T ′

c
from Algorithm 2 by its corresponding variable θ(m)

t from Algorithm 1 proves
eq. (25). Finally, it can be easily verified that the following hyperparameter choices make the error bound in (25) smaller
than ϵ and also satisfy the conditions of Lemma D.4.

β = min
( λB
8C2

B

,
4

λB
,
1− σW
2CB

)
= O(1)

Nc = max
[( 2

λB
+ 2β

)192C2
B [1 + (κ− 1)ρ]

(1− ρ)λB
, 6Mc1ϵ

−1
]
= O(ϵ−1)

Tc =
⌈ ln(6Mc3ϵ

−1)

ln
[(
1− λBβ/4

)−1]⌉ = O
[
ln(ϵ−1)

]
T ′
c = 2

⌈ ln(3β2c2ϵ
−1)

ln(σ−1
W )

⌉
= O

[
ln(ϵ−1)

]

Lemma D.5. For any ω, ω̃ ∈ Ω, s ∈ S and a(m) ∈ Am (Am denotes the action space for the agent m), the following
properties hold.

1. ∥ψ(m)
ω (a(m)|s)∥ ≤ Cψ , where ψ(m)

ω (a(m)|s) := ∇ω(m) lnπ
(m)
ω (a(m)|s).

2. ∥ψ(m)
ω̃ (a(m)|s)− ψ

(m)
ω (a(m)|s)∥ ≤ Lψ∥ω̃(m) − ω(m)∥.

3. dTV
[
π
(m)

ω̃(m)(·|s), π
(m)

ω(m)(·|s)
]
≤ Lπ∥ω̃(m) − ω(m)∥.

4. 0 ≤ Vω(s), Qω(s, a) ≤ (1− γ)Rmax, 0 ≤ J(ω) ≤ Rmax.

5. dTV
[
νω(·|s), νω̃(·|s)

]
≤ Lν∥ω′ − ω∥ where Lν := Lπ[1 + logρ(κ

−1) + (1− ρ)−1].

6. dTV
[
Qω̃(s, a), Qω(s, a)

]
≤ LQ∥ω̃ − ω∥ where LQ := 2RmaxLν

1−γ .

7. J(ω) is LJ -smooth where LJ := Rmax(4Lν + Lψ)/(1− γ).

8. ∥∇J(ω)∥ ≤ DJ :=
CψRmax

1−γ .

9. F (ω) is LF -Lipschitz where LF := 2Cψ(LπCψ + LνCψ + Lψ).

10. h(ω) is Lh-Lipschitz where Lh := 2λ−1
F (DJλ

−1
F LF + LJ).

Proof. For any ω(m), ω̃(m) ∈ Ωm, s ∈ S and a(m) ∈ Am, arbitrarily select ω(m′) = ω̃(m′) ∈ Ωm′ , a(m
′) ∈ Am′ for every

m′ ∈ {1, ...,M}/{m}. Denote ω = [ω(1); . . . ;ω(M)], ω̃ = [ω̃(1); . . . ; ω̃(M)], a = [a(1), . . . , a(M)]. Notice that the joint
score vector has the following decomposition

ψω(a|s) = [ψ(1)
ω (a(1)|s); . . . ;ψ(M)

ω (a(M)|s)]. (32)

Hence, the items 1 & 2 can be proved via the following two inequalities, respectively.

∥ψ(m)
ω (a(m)|s)∥ ≤

√√√√ M∑
m′=1

∥ψ(m′)
ω (a(m′)|s)∥2 (i)

= ∥ψω(a|s)∥
(ii)

≤ Cψ.

∥ψ(m)
ω̃ (a(m)|s)− ψ(m)

ω (a(m)|s)∥ = ∥ψω̃(a|s)− ψω(a|s)∥
(i)

≤ Lψ∥ω̃ − ω∥ = Lψ∥ω̃(m) − ω(m)∥
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where (i) uses Assumption 2.

Next, we prove the item 3. Notice that

dTV
[
πω̃(·|s), πω(·|s)

]
(i)
= sup

A⊂A
|πω̃(A|s)− πω(A|s)|

(ii)

≥ sup
A1⊂A1,...,AM⊂AM

∣∣∣ M∏
m′=1

πω̃(m′)(Am′ |s)−
M∏

m′=1

πω(m′)(Am′ |s)
∣∣∣

(iii)
= sup

A1⊂A1,...,AM⊂AM

∣∣∣ M∏
m′=1,m′ ̸=m

πω(m′)(Am′ |s)
∣∣∣∣∣∣πω̃(m)(Am|s)− πω(m)(Am|s)

∣∣∣
(iv)
= sup

Am⊂Am

∣∣∣πω̃(m)(Am|s)− πω(m)(Am|s)
∣∣∣ = dTV

[
π
(m)

ω̃(m)(·|s), π
(m)

ω(m)(·|s)
]
,

where (i) denotes that πω(A|s) =
∫
A
πω(a|s)da, (ii) uses the relation that ×m∈MAm ⊂ A, (iii) uses our construction that

ω(m′) = ω̃(m′) ∈ Ωm′ ,∀m′ ∈ {1, ...,M}/{m}, and (iv) uses Am′ = Am′ to achieve the supremum. Therefore, the item 2
can be proved via the following inequality.

dTV
[
π
(m)

ω̃(m)(·|s), π
(m)

ω(m)(·|s)
]
= dTV

[
πω̃(·|s), πω(·|s)

] ≤
Lπ ∥ω̃ − ω∥ = Lπ∥ω̃(m) − ω(m)∥,

where (i) uses Assumption 2.

The item 4 can be proved by the following three inequalities that use Assumption 3.

0 ≤ Vω(s) = Eω
[ ∞∑
t=0

γtRt

∣∣∣s0 = s
]
≤

∞∑
t=0

γtRmax =
Rmax

1− γ
,

0 ≤ Qω(s, a) = Es′∼P(·|s,a)[R(s, a, s
′) + γVω(s

′)] ≤ Rmax + γ
Rmax

1− γ
=
Rmax

1− γ
,

0 ≤ J(ω) = (1− γ)Eω
[ ∞∑
t=0

γtRt

]
≤ (1− γ)

∞∑
t=0

γtRmax = Rmax.

The proof of the items 5 – 7 can be found in the proof of Lemma 3, Lemma 4 and Proposition 1 of (Xu et al., 2020b),
respectively.

Next, the item 8 is proved by the following inequality.∥∥∇J(ω)∥∥ =
∥∥Es∼νω,a∼πω(·|s)[Qω(s, a)ψω(a|s)]∥∥

(i)

≤ Es∼νω,a∼πω(·|s)
[
|Qω(s, a)|

∥∥ψω(a|s)∥∥] (ii)

≤ CψRmax

1− γ
,

where (i) applies Jensen’s inequality, (ii) uses Assumption 2 and the item 4.

Next, the item 9 is proved by the following inequality.∥∥F (ω̃)− F (ω)
∥∥

=
∥∥Es∼νπω̃ ,a∼πω̃(·|s)[ψω̃(a|s)ψω̃(a|s)⊤]− Es∼νπω ,a∼πω(·|s)

[
ψω(a|s)ψω(a|s)⊤

]∥∥
(i)

≤
∥∥Es∼νπω̃ ,a∼πω̃(·|s)[ψω̃(a|s)ψω̃(a|s)⊤]− Es∼νπω ,a∼πω(·|s)

[
ψω̃(a|s)ψω̃(a|s)⊤

]∥∥
+ Es∼νπω ,a∼πω(·|s)

[∥∥[ψω̃(a|s)− ψω(a|s)]ψω̃(a|s)⊤
∥∥]
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+ Es∼νπω ,a∼πω(·|s)
[∥∥ψω(a|s)[ψω̃(a|s)− ψω(a|s)]⊤

∥∥]
(ii)

≤
∥∥∥∫

S×A
[νω̃(s)πω̃(a|s)− νω(s)πω(a|s)]

[
ψω̃(a|s)ψω̃(a|s)⊤

]
dsda

∥∥∥+ 2CψLψ∥ω̃ − ω∥

≤ C2
ψ

∫
S×A

|νω̃(s)πω̃(a|s)− νω(s)πω(a|s)|dsda+ 2CψLψ∥ω̃ − ω∥

≤ C2
ψ

∫
S×A

νω̃(s)|πω̃(a|s)− πω(a|s)|dsda

+ C2
ψ

∫
S×A

πω(a|s)|νω̃(s)− νω(s)|dsda+ 2CψLψ
∥∥ω̃ − ω

∥∥
(iii)

≤ 2LπC
2
ψ

∥∥ω̃ − ω
∥∥+ 2LνC

2
ψ

∥∥ω̃ − ω
∥∥+ 2CψLψ

∥∥ω̃ − ω
∥∥ := LF

∥∥ω̃ − ω
∥∥

where (i) applies triangle inequality and then Jensen’s inequality to the norm ∥·∥, (ii) uses Assumption 2, (iii) uses the equality
that

∫
S νω(s)ds =

∫
A πω(a|s)da = 1 as well as the inequlities that

∫
A |πω̃(a|s)− πω(a|s)|da = 2dTV

[
πω̃(·|s), πω(·|s)

]
≤

2Lπ∥ω̃ − ω∥ (based on Assumption 2) and that
∫
S |νω̃(s)− νω(s)|ds = 2dTV

[
νω(·|s), νω̃(·|s)

]
≤ 2Lν∥ω′ − ω∥ (based on

the item 5).

Finally, the item 10 is proved by the following inequality∥∥h(ω̃)− h(ω)
∥∥

=
∥∥F (ω̃)−1∇J(ω̃)− F (ω)−1∇J(ω)

∥∥
≤ 2

∥∥[F (ω̃)−1 − F (ω)−1]∇J(ω̃)
∥∥+ 2

∥∥F (ω)−1[∇J(ω̃)−∇J(ω)]∥
(i)

≤ 2DJ

∥∥F (ω)−1[F (ω)− F (ω̃)]F (ω̃)−1
∥∥+ 2LJ

∥∥F (ω)−1
∥∥∥∥ω̃ − ω

∥∥
(ii)

≤ 2DJλ
−2
F LF

∥∥ω̃ − ω
∥∥+ 2LJλ

−1
F

∥∥ω̃ − ω
∥∥ := Lh

∥∥ω̃ − ω
∥∥,

where (i) uses the items 7 & 8, and (ii) uses the inequality that ∥F (ω)−1∥ = λmax(F (ω)
−1) = λmin[F (ω)]

−1 ≤ λ−1
F for

all ω (since F (ω) and F (ω)−1 are positive definite) and the item 9.

Next, we bound the approximation error of the following stochastic (partial) policy gradients.

∇̂ω(m)J(ωt) :=
1

N

(t+1)N−1∑
i=tN

[
R

(m)

i + γϕ(s′i+1)
⊤θ

(m)
t − ϕ(si)

⊤θ
(m)
t

]
ψ
(m)
t (a

(m)
i |si), (33)

∇̂J(ωt) :=
[
∇̂ω(1)J(ωt); . . . ; ∇̂ω(M)J(ωt)

]
, (34)

∇̂ω(m)J(ωt;Bt,k) :=
1

Nk

∑
i∈Bt,k

[
R

(m)

i + γϕ(s′i+1)
⊤θ

(m)
t − ϕ(si)

⊤θ
(m)
t

]
ψ
(m)
t (a

(m)
i |si), (35)

∇̂J(ωt;Bt,k) :=
[
∇̂ω(1)J(ωt); . . . ; ∇̂ω(M)J(ωt)

]
. (36)

Lemma D.6. Let Assumptions 1-5 hold and adopt the hyperparameters of the decentralized TD in Algorithm 2 following
Lemma D.4. Choose T ′ ≥ lnM

2 ln(σ−1
W )

. Then, the following properties hold.

1. The estimated average reward R
(m)

i has the following bias and variance bound.

M∑
m=1

E
[
R

(m)

i −Ri
∣∣Ri]2 ≤Mσ2T ′

W R2
max, (37)

M∑
m=1

Var
[
R

(m)

i

∣∣Ri] ≤4R2
maxσ

2, (38)

where Ri := [R
(1)
i ; . . . ;R

(M)
i ] denotes the joint reward.
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2. The stochastic policy gradients have the following error bound.

E
[∥∥∇̂J(ωt)−∇J(ωt)

∥∥2] ≤c4σ2T ′

W + c5β
2σ

2T ′
c

W + c6

(
1− λB

8
β
)Tc

+
c7
N

+
c8
Nc

+ 16C2
ψζ

critic
approx (39)

E
[∥∥∇̂J(ωt;Bt,k)−∇J(ωt)

∥∥2∣∣Ft,k] ≤c4σ2T ′

W + 16C2
ψ

M∑
m=1

∥∥θ(m)
t − θ∗ωt

∥∥2
+

c7
Nk

+ 16C2
ψζ

critic
approx, (40)

where Ft,k := σ
[
Ft ∪ σ

(
{si, ai, si+1, s

′
i+1, {e

(m)
i }m∈M}i∈∪k−1

k′=0
Bt,k′

)]
.

Proof. We will first prove the item 1.

When Ri := [R
(1)
i ; . . . ;R

(M)
i ] is given and fixed, the randomness of R̃(m)

i := R
(m)
i (1 + e

(m)
i ) and ∇̂ω(m)J(ωt) defined in

eq. (4) only comes from the noises {e(m)
i }Mm=1. Since {e(m)

i }Mm=1 are independent noises with zero mean and variances
σ2
1 , . . . , σ

2
M , R̃i := [R̃

(1)
i ; . . . ; R̃

(M)
i ] has the following moments

E
[
R̃i|Ri

]
= Ri,

cov
[
R̃i|Ri

]
= diag

[
(R

(1)
i )2σ2

1 , . . . , (R
(M)
i )2σ2

M

]
:= Σi.

Hence, R̂i := [R
(1)

i , . . . , R
(m)

i ]⊤ =WT ′
R̃i (the second “=” comes from eq. (3) and the notations that R̃(m)

i := R̂
(m)
i,0 and

that R̂(m)
i := R̂

(m)
i,T ′) has the moment that E

[
R̂i|Ri

]
= WT ′

Ri and Cov
[
R̂i|Ri

]
= WT ′

Σi(W
T ′
)⊤. Therefore, eq. (37)

can be proved as follows

M∑
m=1

E
[
R

(m)

i −Ri
∣∣Ri]2 =

∥∥∥E[R̂i −Ri1
∣∣Ri]∥∥∥2 =

∥∥∥WT ′
Ri −

1

M
11⊤Ri

∥∥∥2
≤

∥∥∥WT ′
− 1

M
11⊤

∥∥∥2∥Ri∥2 (i)

≤ Mσ2T ′

W R2
max,

where 1 is a M -dim vector of 1’s, (i) uses the inequality that ∥Ri∥2 =
∑M
m=1(R

(m)
i )2 ≤MR2

max (based on Assumption 3)
and the item 4 of Lemma D.1. Then, eq. (38) can be proved as follows

M∑
m=1

var
[
R

(m)

i

∣∣Ri] = Var
[
R̂i|Ri

]
= tr

[
(WT ′

)⊤ΣiW
T ′]

= tr
[(
WT ′

− 1

M
11⊤

)
Σi

(
WT ′

− 1

M
11⊤

)⊤]
+ tr

[
(WT ′

)Σi

( 1

M
11⊤

)]
+ tr

[( 1

M
11⊤

)
Σi(W

T ′
)⊤

]
+ tr

[( 1

M
11⊤

)
Σi

( 1

M
11⊤

)]
(i)

≤ MR2
maxσ

2
∥∥∥WT ′

− 1

M
11⊤

∥∥∥2 + 2

M
tr
[
WT ′

Σi11
⊤]+ 1

M2
tr[1(1⊤Σi1)1

⊤]

(ii)

≤ MR2
maxσ

2σ2T ′

W +
2

M
1⊤ΣiW

T ′
1+

1

M2
(1⊤Σi1)tr[1⊤1]

(iii)

≤ R2
maxσ

2 +
3

M
1⊤Σi1

= R2
maxσ

2 +
3

M

M∑
m=1

(R
(m)
i )2σ2

m

(iv)

≤ 4R2
maxσ

2,
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where (i) uses the equality that tr(Y ⊤) = tr(Y ) and the inequality (41) below in which X =WT ′ − 1
M 11⊤ and the m-th

entry of vm ∈ RM is 1 while its other entries are 0, (ii) uses the item 4 of Lemma D.1 and the equality that tr(xy⊤) = y⊤x
for any x, y ∈ RM , (iii) uses the condition that T ′ ≥ [lnM ]/[2 ln(σ−1

W )] and the item 1 of Lemma D.1, (iv) uses Assumption
3.

tr(XΣiX
⊤) =tr(X⊤XΣi) =

M∑
m=1

v⊤mX
⊤XΣivm ≤

M∑
m=1

∥vm∥∥X∥2∥Σivm∥

=

M∑
m=1

(R
(m)
i )2σ2

m∥X∥2 ≤MR2
maxσ

2∥X∥2. (41)

Next, we will prove eq. (39) in the item 2, where the error term can be decomposed as follows∥∥∇̂J(ωt)−∇J(ωt)
∥∥2 ≤ 4

∥∥∇̂J(ωt)− gt
∥∥2︸ ︷︷ ︸

(I)

+4
∥∥gt − g∗t

∥∥2︸ ︷︷ ︸
(II)

+4
∥∥g∗t − g∗t

∥∥2︸ ︷︷ ︸
(III)

+4
∥∥g∗t −∇J(ωt)

∥∥2︸ ︷︷ ︸
(IV )

, (42)

where we use the following notations that

gt := [g
(1)
t ; . . . ; g

(M)
t ], (43)

g
(m)
t :=

1

N

(t+1)N−1∑
i=tN

[
Ri + γϕ(s′i+1)

⊤θ
(m)
t − ϕ(si)

⊤θ
(m)
t

]
ψ
(m)
t (a

(m)
i |si), (44)

g∗t :=
1

N

(t+1)N−1∑
i=tN

[
Ri + γϕ(s′i+1)

⊤θ∗ωt − ϕ(si)
⊤θ∗ωt

]
ψt(ai|si), (45)

g∗t := Es∼νωt ,a∼πt(·|s),s′∼P(·|s,a)
[
R(s, a, s′) + γϕ(s′)⊤θ∗ωt − ϕ(s)⊤θ∗ωt

]
ψt(a|s)

∣∣ωt]. (46)

Conditioned on the following filtration

F ′
t :=σ

[
Ft ∪ σ

(
{si, ai, s′i+1}

(t+1)N−1
i=tN+1

)]
=σ

(
{θ(m)
t′ }m∈M,0≤t′≤t ∪ {si, ai, s′i+1}

(t+1)N−1
i=0 ∪ {s(t+1)N} ∪ {{e(m)

i }m∈M}tN−1
i=0

)
,

the error term (I) can be bounded as follows.

E
[∥∥∇̂J(ωt)− gt,k

∥∥2∣∣∣F ′
t

]
= E

[ M∑
m=1

∥∥∇̂ω(m)J(ωt)− g
(m)
t,k

∥∥2∣∣∣F ′
t

]
(i)
=

M∑
m=1

E
[∥∥∥ 1

N

(t+1)N−1∑
i=tN

(
R

(m)

i −Ri
)
ψ
(m)
t (a

(m)
i |si)

∥∥∥2∣∣∣F ′
t

]
(ii)

≤
M∑
m=1

∥∥∥E[ 1

N

(t+1)N−1∑
i=tN

(
R

(m)

i −Ri
)
ψ
(m)
t (a

(m)
i |si)

∣∣∣F ′
t

]∥∥∥2
+

M∑
m=1

Var
[ 1

N

(t+1)N−1∑
i=tN

(
R

(m)

i −Ri
)
ψ
(m)
t (a

(m)
i |si)

∣∣∣F ′
t

]
(iii)

≤
M∑
m=1

∥∥∥E[ 1

N

(t+1)N−1∑
i=tN

(
R

(m)

i −Ri
)∣∣∣F ′

t

]
ψ
(m)
t (a

(m)
i |si)

∥∥∥2
+

1

N2

M∑
m=1

(t+1)N−1∑
i=tN

Var
[(
R

(m)

i −Ri
)
ψ
(m)
t (a

(m)
i |si)

∣∣F ′
t

]
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(iv)

≤
M∑
m=1

[ 1

N

(t+1)N−1∑
i=tN

E
(
R

(m)

i −Ri
∣∣F ′
t

)]2∥∥ψ(m)
t (a

(m)
i |si)

∥∥2
+

1

N2

M∑
m=1

(t+1)N−1∑
i=tN

∥∥ψ(m)
t (a

(m)
i |si)

∥∥2var
[
R

(m)

i −Ri
∣∣F ′
t

]
(v)

≤
C2
ψ

N

M∑
m=1

(t+1)N−1∑
i=tN

[
E
(
R

(m)

i −Ri
∣∣F ′
t

)]2
+
C2
ψ

N2

(t+1)N−1∑
i=tN

M∑
m=1

var
[
R

(m)

i

∣∣F ′
t

]
(vi)

≤ C2
ψ(Mσ2T ′

W R2
max) +

C2
ψ

N
(4R2

maxσ
2)

= C2
ψR

2
max

(
Mσ2T ′

W +
4

N
σ2

)
, (47)

where (i) uses the definitions of ∇̂ω(m)J(ωt) and g(m)
t defined in eqs. (33) & (44) respectively, (ii) uses the relation

that E∥X∥2 = Var(X) + ∥EX∥2 for any random vector X , (iii) uses the facts that ψ(m)
t (a

(m)
i |si), Ri ∈ F ′

t are fixed

while {R(m)

i }(t+1)N−1
i=tN are random and independent given F ′

t , (iv) uses the equality that Var(xY ) =
∑d
j=1 var(xyj) =∑d

j=1 y
2
j var(x) = ∥y∥2var(x) for any random scalar x and fixed vector Y = [y1, . . . , yd] ∈ Rd (Here we denote

y = ψ
(m)
t (a

(m)
i |si) ∈ F ′

t), (v) applies Jensen’s inequality to the convex function (·)2 and uses the item 1 of Lemma D.5 as

well as the fact that Ri ∈ F ′
t is fixed, (vi) uses eqs. (37) & (38) and the fact that the conditional distribution of R

(m)

i on
Ri ∈ F ′

t is the same as that on F ′
t since the noise e(m)

i is independent from any other variables.

Then we bound the error term (II) of eq. (42) as follows.

∥∥gt − g∗t
∥∥2 =

M∑
m=1

∥∥∥ 1

N

(t+1)N−1∑
i=tN

(
[γϕ(s′i+1)− ϕ(si)]

⊤(θ
(m)
t − θ∗ωt)

)
ψ
(m)
t (a

(m)
i |si)

∥∥∥2
(i)

≤ 1

N

(t+1)N−1∑
i=tN

M∑
m=1

∥∥γϕ(s′i+1)− ϕ(si)
∥∥2∥∥θ(m)

t − θ∗ωt
∥∥2∥∥ψ(m)

t (a
(m)
i |si)

∥∥2
(ii)

≤
C2
ψ(1 + γ)2

N

(t+1)N−1∑
i=tN

M∑
m=1

∥∥θ(m)
t − θ∗ωt

∥∥2
= 4C2

ψ

M∑
m=1

∥∥θ(m)
t − θ∗ωt

∥∥2, (48)

where (i) applies Jensen’s inequality to the convex function ∥ · ∥2, (ii) uses Assumption 4 and the item 1 of Lemma D.5.

To bound the error term (III) of eq. (42), denote that

X(s, a, s′, s̃) =
[
R(s, a, s̃) + γϕ(s̃)⊤θ∗ωt − ϕ(s)⊤θ∗ωt

]
ψt(a|s), (49)

which satisfies ∥X(s, a, s′, s̃)∥ ≤
[
|R(s, a, s̃)|+

∥∥γϕ(s̃)+ϕ(s)∥∥∥∥θ∗ωt∥∥]∥∥ψt(a|s)∥∥ ≤ Cψ(Rmax+2Rθ) (the second ≤ uses
the item 3 of Lemma D.3) andX = Esi∼νt

[
X(si, ai, si+1, s

′
i+1)

∣∣Ft] = g∗t where sN , ωt ∈ Ft := σ
(
{θ(m)
t′ }m∈M,0≤t′≤t∪

{si, ai, s′i+1, {e
(m)
i }m∈M}tN−1

i=0 ∪ {stN}
)

are fixed. Hence, Lemma D.2 yields that

E
[∥∥g∗t − g∗t

∥∥2∣∣Ft] = E
[∥∥∥ 1

N

(t+1)N−1∑
i=tN

X(si, ai, si+1, s
′
i+1)−X

∥∥∥2∣∣∣Ft]
≤

9C2
ψ(Rmax + 2Rθ)

2(κ+ 1− ρ)

N(1− ρ)
. (50)

Next, we bound the error term (IV) of eq. (42). Notice that

g∗t −∇J(ωt)
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= Eωt
[(
R(s, a, s̃) + [γϕ(s̃)− ϕ(s)]⊤θ∗ωt −

[
R(s, a, s̃) + γVωt(s̃)− Vωt(s)

])
ψt(a|s)

∣∣∣ωt]
= Eωt

[(
γ
[
ϕ(s̃)⊤θ∗ωt − Vωt(s̃)

]
−
[
ϕ(s)⊤θ∗ωt − Vωt(s)

])
ψt(a|s)

∣∣∣ωt]. (51)

Hence,

∥g∗t −∇J(ωt)∥2 =
∥∥∥Eωt[(γ[ϕ(s̃)⊤θ∗ωt − Vωt(s̃)

]
−

[
ϕ(s)⊤θ∗ωt − Vωt(s)

])
ψt(a|s)

∣∣∣ωt]∥∥∥2
(i)

≤ Eωt
[∥∥∥(γ[ϕ(s̃)⊤θ∗ωt − Vωt(s̃)

]
−

[
ϕ(s)⊤θ∗ωt − Vωt(s)

])
ψt(a|s)

∥∥∥2∣∣∣ωt]
(ii)

≤ 2C2
ψEωt

[
γ2

∥∥∥ϕ(s̃)⊤θ∗ωt − Vωt(s̃)
∥∥∥2 + ∥∥∥ϕ(s)⊤θ∗ωt − Vωt(s)

∥∥∥2∣∣∣ωt]
= 2C2

ψγ
2

∫
S×A×S

∥∥∥ϕ(s̃)⊤θ∗ωt − Vωt(s̃)
∥∥∥2νt(s)πt(a|s)P(s̃|s, a)dsdads̃

+ 2C2
ψEωt

[∥∥∥ϕ(s)⊤θ∗ωt − Vωt(s)
∥∥∥2∣∣∣ωt]

(iii)

≤ 2C2
ψγ

∫
S×A×S

∥∥∥ϕ(s̃)⊤θ∗ωt − Vωt(s̃)
∥∥∥2νt(s)πt(a|s)Pξ(s̃|s, a)dsdads̃

+ 2C2
ψEωt

[∥∥∥ϕ(s)⊤θ∗ωt − Vωt(s)
∥∥∥2∣∣∣ωt]

(iv)
= 2C2

ψ(γ + 1)Eωt
[∥∥∥ϕ(s)⊤θ∗ωt − Vωt(s)

∥∥∥2∣∣∣ωt]
(v)

≤ 4C2
ψζ

critic
approx, (52)

where (i) applies Jensen’s inequality to the convex function ∥ · ∥2, (ii) uses the inequality that ∥x+ y∥2 ≤ 2∥x∥2 + 2∥y∥2
for any x, y ∈ Rd, (iii) uses the inequality that P(s′|s, a) ≤ γ−1Pξ(s′|s, a);∀s, s′ ∈ S, a ∈ A, (iv) uses the equality that∫
S×A νt(s)πt(a|s)Pξ(s̃|s, a)dsda = νt(s̃), and (v) uses the notation that ζcritic

approx := supω Es∼νω
[∣∣Vω(s) − ϕ(s)⊤θ∗ω

∣∣2].
Substituting eqs. (47),(48),(50)&(52) into eq. (42) yields that

E
[∥∥∇̂J(ωt)−∇J(ωt)

∥∥2∣∣Ft]
≤ 4C2

ψR
2
max

(
Mσ2T ′

W +
4

N
σ2

)
+ 16C2

ψ

M∑
m=1

∥∥θ(m)
t − θ∗ωt

∥∥2
+

36C2
ψ(Rmax + 2Rθ)

2(κ+ 1− ρ)

N(1− ρ)
+ 16C2

ψζ
critic
approx

= c4σ
2T ′

W +
c7
N

+ 16C2
ψ

M∑
m=1

∥∥θ(m)
t − θ∗ωt

∥∥2 + 16C2
ψζ

critic
approx, (53)

where θ(m)
t , ωt ∈ Ft are fixed, and we take the conditional expectation of eq. (47) on Ft ⊂ F ′

t and denote that c4 :=

4MC2
ψR

2
max, c7 := 16C2

ψR
2
maxσ

2 +
36C2

ψ(Rmax+2Rθ)
2(κ+1−ρ)

1−ρ . Substituting eq. (25) into the unconditional expectation of
eq. (53) yields that

E
[∥∥∇̂J(ωt)−∇J(ωt)

∥∥2]
≤ c4σ

2T ′

W +
c7
N

+ 16C2
ψ

(
σ
2T ′
c

W β2c2 + 2M
[
c3

(
1− λB

8
β
)Tc

+
c1
Nc

])
+ 16C2

ψζ
critic
approx

= c4σ
2T ′

W + c5β
2σ

2T ′
c

W + c6

(
1− λB

8
β
)Tc

+
c7
N

+
c8
Nc

+ 16C2
ψζ

critic
approx,

where we denote that c5 := 16c2C
2
ψ , c6 := 32Mc3C

2
ψ , c8 := 32Mc1C

2
ψ . This proves eq. (39).

Equation (40) can be proved in the same way as that of proving eq. (53). There are two differences. First, ∇̂J(ωt;Bt,k)
uses the minibatch Bt,k of size Nk while ∇̂J(ωt) uses batchsize N . Second, eq. (40) is conditioned on the filtration
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Ft,k := σ
[
Ft ∪ σ

({
si, ai, si+1, s

′
i+1, {e

(m)
i }m∈M

}
i∈∪k−1

k′=0
Bt,k′

)]
which includes not only the filtration Ft use by eq. (53)

but also the minibatches ∪k−1
k′=0Bt,k′ used by the previous (k − 1) SGD steps.

Lemma D.7. Implementing Algorithm 3 with η ≤ 1
2C2

ψ
, T ′ ≥ lnM

2 ln(σ−1
W )

, Tz ≥ ln(3DJC
2
ψ)

ln(σ−1
W )

, K ≥ ln 3
ln[(1−ηλF /2)−1] , N ≥

2304C4
ψ(κ+1−ρ)

ηλ5
F (1−ρ)(1−ηλF /2)(K−1)/2 and Nk ∝ (1− ηλF /2)

−k/2, the involved quantities have the following properties, where Eω
denotes the expectation under the underlying distributions that s ∼ νω , a ∼ πω(·|s).

1. λF ≤ λmax[F (ω)] = ∥F (ω)∥ ≤ C2
ψ,∀ω.

2. 1
2 ≤ 1− ηC2

ψ ≤
∥∥I − ηF (ω)

∥∥ ≤ 1− ηλF , so η ≤ 1
2λF

.

3. C−2
ψ ≤ ∥F (ω)−1∥ ≤ λ−1

F . For any ω, x ∈ Rdω , x⊤F (ω)−1x ≥ C−2
ψ ∥x∥2.

4.
∥∥h(ω)∥∥ ≤ 1

λF

∥∥∇J(ω)∥∥ ≤ DJ
λF

.

5. h(ω) = argmin
h

Eω
[(
ψω(a|s)⊤h−Aω(s, a)

)2]
, so

Eω
[(
ψω(a|s)⊤h(ω)−Aω(s, a)

)2] ≤ ζactor
approx where s ∼ νω , a ∼ πω(·|s).

6. Eω∗
[
ψω(a|s)⊤h(ω)−Aω(s, a)

]
≥ −C∗

√
ζactor

approx,∀ω.

7. Nk =
N(1−ηλF /2)(K−1−k)/2(1−

√
1−ηλF /2)

1−(1−ηλF /2)K/2
≥ 576C4

ψ(κ+1−ρ)
λ4
F (1−ρ) .

8. ht approximates the natural gradient h(ωt) with the following error bound.

E
[∥∥ht − h(ωt)

∥∥2] ≤ c10

(
1− ηλF

2

)(K−1)/2

+ c11σ
2Tz
W + c12σ

2T ′

W + c13β
2σ

2T ′
c

W

+ c14

(
1− λB

8
β
)Tc

+
c15
Nc

+ c16ζ
critic
approx. (54)

Proof. The item 1 is proved by the following inequality.

λF
(i)

≤λmin[F (ω)] ≤ λmax[F (ω)]
(ii)
= ∥F (ω)∥

=
∥∥Eω[ψ(a|s)ψ(a|s)⊤]∥∥ ≤ Eω

[∥∥ψ(a|s)∥∥∥∥ψ(a|s)⊤∥∥] (iii)

≤ C2
ψ,

where (i) uses Assumption 6, (ii) uses the fact that F (ω) is positive definite implied by Assumption 6, (iii) applies Jensen’s
inequality to the convex function ∥ · ∥ and (iv) uses Assumption 2.

Next we will prove the item 2. On one hand,

λmin

[
I − ηF (ω)

]
= 1− ηλmax

[
F (ω)

] (i)

≥ 1− ηC2
ψ ≥ 1

2
, (55)

where (i) uses the item 1, (ii) uses the condition that η ≤ 1
2C2

ψ
. On the other hand,

λmin

[
I − ηF (ω)

]
≤ λmax

[
I − ηF (ω)

] (i)
= ∥I − ηF (ω)∥ = I − ηλmin

[
F (ω)

]
≤ 1− ηλF , (56)

where (i) uses the fact that I − ηF (ω) is positive definite based on eq. (55). Hence, eqs. (55) & (56) prove the item 2.

The item 3 can be proved by the fact that F (ω)−1 is positive definite with minimum eigenvalue λmax[F (ω)]
−1 ≥ C−2

ψ and
maximum eigenvalue λmin[F (ω)]

−1 ≤ λ−1
F implied by the item 1.

The item 4 can be proved by the following inequality.

∥h(ω)∥ =
∥∥F (ω)−1∇J(ω)

∥∥ ≤
∥∥F (ω−1)

∥∥∥∥∇J(ω)∥∥ (i)

≤ λ−1
F

∥∥∇J(ω)∥∥ (ii)

≤ λ−1
F DJ ,
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where (i) uses the item 3 and (ii) uses the item 8 of Lemma D.5.

Next we will prove item 5.

Consider the following function of x ∈ Rdω .

fω(x) =
1

2
Eω

[(
ψω(a|s)⊤x−Aω(s, a)

)2]
=

1

2
x⊤Eω

[
ψω(a|s)ψω(a|s)⊤

]
x− Eω

[
Aω(s, a)ψω(a|s)

]⊤
x+

1

2
Eω

[
Aω(s, a)

2
]

=
1

2
x⊤F (ω)x−∇J(ω)⊤x+

1

2
Eω

[
Aω(s, a)

2
]

Since ∇2f(ω) = F (ω) is positive definite, f is strongly convex quardratic and thus it has unique minimizer h(ω) =
F (ω)−1∇J(ω) obtained by solving h from the equation ∇fω(h) = F (ω)h−∇J(ω) = 0. Hence,

Eω
[∥∥ψω(a|s)⊤h(ω)−Aω(s, a)

∥∥2]
= min

h
Eω

[(
ψω(a|s)⊤h−Aω(s, a)

)2]
≤ sup

ω
min
h

Eω
[(
ψω(a|s)⊤h−Aω(s, a)

)2]
:= ζactor

approx, (57)

which proves the item 5.

The item 6 can be proved by the following inequality.

Eω∗
[
Aω(s, a)− ψω(a|s)⊤h(ω)

]
=

∫
νω∗(s)πω∗(a|s)

[
Aω(s, a)− ψω(a|s)⊤h(ω)

]
dsda

=

∫
νω(s)πω(a|s)

νω∗(s)πω∗(a|s)
νω(s)πω(a|s)

[
Aω(s, a)− ψω(a|s)⊤h(ω)

]
dsda

= Eω
[νω∗(s)πω∗(a|s)
νω(s)πω(a|s)

[
Aω(s, a)− ψω(a|s)⊤h(ω)

]]
≤

√
Eω

[(νω∗(s)πω∗(a|s)
νω(s)πω(a|s)

)2]√
Eω

[(
Aω(s, a)− ψω(a|s)⊤h(ω)

)2] (i)

≤ C∗

√
ζactor

approx, (58)

where (i) uses Assumption 7 and the item 5. Multiplying −1 to the above inequality proves the item 6.

Next, the item 7 can be proved as follows.

Nk
(i)
=N

(1− ηλF /2)
−k/2∑K−1

k′=0(1− ηλF /2)−k
′/2

=
N(1− ηλF /2)

(K−1−k)/2(1−
√
1− ηλF /2)

1− (1− ηλF /2)K/2

(ii)

≥
2304C4

ψ(κ+ 1− ρ)

ηλ5F (1− ρ)(1− ηλF /2)(K−1)/2

(1− ηλF /2)
(K−1)/2(ηλF /2)

1 +
√

1− ηλF /2

≥
576C4

ψ(κ+ 1− ρ)

λ4F (1− ρ)
,

where (i) uses the conditions that Nk ∝ (1 − ηλF /2)
−k/2 and

∑K−1
k=0 Nk = N and (ii) uses the condition that N ≥

2304C4
ψ(κ+1−ρ)

ηλ5
F (1−ρ)(1−ηλF /2)(K−1)/2

Finally, we will prove the item 8. Until the end of this proof, we use the underlying distribution that ai ∼ πt(·|si),si+1 ∼
Pξ(·|si, ai) for tN ≤ i ≤ (t+ 1)N − 1 in the t-th iteration of the multi-agent NAC algorithm (Algorithm 1).
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The local averaging steps of zi,ℓ := [z
(1)
i,ℓ , . . . , z

(M)
i,ℓ ]⊤ yield the following consensus error bound.

M∑
m=1

(z
(m)
Tz

− zTz )
2 = ∥∆zi,Tz∥2 = ∥∆WTzzi,0∥2

(i)
= ∥WTz∆zi,0∥2

(ii)

≤ σ2Tz
W ∥∆zi,0∥2

(iii)

≤ σ2Tz
W

M∑
m=1

(z
(m)
i,0 )2 = σ2Tz

W

M∑
m=1

[
ψ
(m)
t (a

(m)
i |si)⊤h(m)

t,k

]2
(iv)

≤ C2
ψσ

2Tz
W

M∑
m=1

∥∥h(m)
t,k

∥∥2 ≤ C2
ψσ

2Tz
W

∥∥ht,k∥∥2,
where zTz := 1

M

∑M
m=1 z

(m)
i,Tz

, (i) and (ii) use the items 1 and 3 of Lemma D.1 respectively, (iii) uses the equality that
∥∆∥ = 1, and (iv) uses the item 1 of Lemma D.5.

Then, we define the following stochastic gradients of function fω .

∇̃ω(m)fωt(ht,k) :=
1

Nk

∑
i∈Bt,k

ψ
(m)
t (a

(m)
i |si)ψt(ai|si)⊤ht,k − ∇̂ω(m)J(ωt;Bt,k)

∇̃fωt(ht,k) :=
1

Nk

∑
i∈Bt,k

ψt(ai|si)ψt(ai|si)⊤ht,k − ∇̂J(ωt;Bt,k)

=
[
∇̃ω(1)fωt(ht,k); . . . ; ∇̃ω(M)fωt(ht,k)

]
,

∇̂ω(m)fωt(ht,k) :=
M

Nk

∑
i∈Bt,k

ψ
(m)
t (a

(m)
i |si)z(m)

i,Tz
− ∇̂ω(m)J(ωt;Bt,k),

∇̂fωt(ht,k) :=
[
∇̂ω(1)fωt(ht,k); . . . ; ∇̂ω(M)fωt(ht,k)

]⊤
,

where ∇̂ω(m)J(ωt;Bt,k) and ∇̂J(ωt;Bt,k) are defined in eqs. (35) & (36) respectively. Hence,∥∥∇̂fωt(ht,k)− ∇̃fωt(ht,k)
∥∥2

=

M∑
m=1

∥∥∇̂ω(m)fωt(ht,k)− ∇̃ω(m)fωt(ht,k)
∥∥2

=

M∑
m=1

∥∥∥ 1

Nk

∑
i∈Bt,k

[
Mz

(m)
i,Tz

− ψt(ai|si)⊤ht,k
]
ψ
(m)
t (ai|si)

∥∥∥2
(i)

≤ 1

Nk

∑
i∈Bt,k

M∑
m=1

∥∥M(
z
(m)
i,Tz

− zTz
)
ψ
(m)
t (ai|si)

∥∥2
(ii)

≤
M2C2

ψ

Nk

∑
i∈Bt,k

M∑
m=1

(z
(m)
i,Tz

− zTz )
2 ≤M2C4

ψσ
2Tz
W

∥∥ht,k∥∥2. (59)

where (i) uses the equality that ψt(ai|si)⊤ht,k =
∑
m∈M z

(m)
i,Tz

=MzTz , (ii) uses the item 1 of Lemma D.5.

Since, ωt, ht,k ∈ Ft,k while {si, ai}i∈Bt,k are random. Hence,

E
[∥∥∇̂fωt(ht,k)−∇fωt(ht,k)

∥∥2∣∣Ft,k]
= E

[∥∥∥ 1

Nk

∑
i∈Bt,k

[
ψt(ai|si)ψt(ai|si)⊤

]
ht,k − ∇̂J(ωt;Bt,k)− F (ωt)ht,k +∇J(ωt)

∥∥∥2∣∣∣Ft,k]
(i)

≤ 2E
[∥∥∥ 1

Nk

∑
i∈Bt,k

[
ψt(ai|si)ψt(ai|si)⊤

]
− F (ωt)

∥∥∥2∥ht,k∥2∣∣∣Ft,k]
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+ 2E
[∥∥∇̂J(ωt;Bt,k)−∇J(ωt)

∥∥2∣∣Ft,k]
(ii)
= 2E

[∥∥∥ 1

Nk

∑
i∈Bt,k

[
ψt(ai|si)ψt(ai|si)⊤

]
− F (ωt)

∥∥∥2∣∣∣Ft,k]∥ht,k∥2
+ 2E

[∥∥∇̂J(ωt;Bt,k)−∇J(ωt)
∥∥2∣∣Ft,k]

(iii)

≤
18C4

ψ(κ+ 1− ρ)

Nk(1− ρ)
∥ht,k∥2 + 2c4σ

2T ′

W +
2c7
Nk

+ 32C2
ψ

M∑
m=1

∥∥θ(m)
t − θ∗ωt

∥∥2 + 32C2
ψζ

critic
approx, (60)

where (i) uses the inequalities that ∥x+ y∥2 ≤ 2∥x∥2 + 2∥y∥2 for any x, y ∈ Rd, (ii) uses the fact that ht,k ∈ Ft,k, and
(iii) uses eq. (40) and applies Lemma D.2 to the quantity that X(s, a, s′, s̃) = ψt(a|s)ψt(a|s)⊤ in which ωt ∈ Ft,k is fixed
and ∥X(s, a, s′, s̃)∥F ≤ C2

ψ .

Combining eqs. (59) & (60) yields that

E
[∥∥∇̂fωt(ht,k)−∇fωt(ht,k)

∥∥2∣∣Ft,k]
≤2E

[∥∥∇̂fωt(ht,k)− ∇̃fωt(ht,k)
∥∥2∣∣Ft,k]+ 2E

[∥∥∇̃fωt(ht,k)−∇fωt(ht,k)
∥∥2∣∣Ft,k]

≤C4
ψ

[
2M2σ2Tz

W +
36(κ+ 1− ρ)

Nk(1− ρ)

]
∥ht,k∥2 + 4c4σ

2T ′

W

+
4c7
Nk

+ 64C2
ψ

M∑
m=1

∥∥θ(m)
t − θ∗ωt

∥∥2 + 64C2
ψζ

critic
approx. (61)

Therefore,

E
[∥∥ht,k+1 − h(ωt)

∥∥2∣∣Ft,k]
= E

[∥∥ht,k − η∇̂fωt(ht,k)− h(ωt)
∥∥2∣∣Ft,k]

(i)

≤ (1 + ηλF )E
[∥∥ht,k − η∇fωt(ht,k)− h(ωt)

∥∥2∣∣Ft,k]
+
[
1 + (ηλF )

−1
]
E
[∥∥η[∇̂fωt(ht,k)−∇fωt(ht,k)

]∥∥2∣∣Ft,k]
(ii)
= (1 + ηλF )

∥∥ht,k − ηF (ωt)
[
ht,k − h(ωt)

]
− h(ωt)

∥∥2
+ η

(
η + λ−1

F

)
E
[∥∥∇̂fωt(ht,k)−∇fωt(ht,k)

∥∥2∣∣Ft,k]
= (1 + ηλF )

∥∥[I − ηF (ωt)
][
ht,k − h(ωt)

]∥∥2
+ η

(
η + λ−1

F

)
E
[∥∥[∇̂fωt(ht,k)−∇fωt(ht,k)]

∥∥2∣∣Ft,k]
(iii)

≤ (1 + ηλF )(1− ηλF )
2
∥∥ht,k − h(ωt)

∥∥2
+

2η

λF

(
C4
ψ

[
2M2σ2Tz

W +
36(κ+ 1− ρ)

Nk(1− ρ)

]
∥ht,k∥2 + 4c4σ

2T ′

W

+
4c7
Nk

+ 64C2
ψ

M∑
m=1

∥∥θ(m)
t − θ∗ωt

∥∥2 + 64C2
ψζ

critic
approx

)
≤ (1− ηλF )

∥∥ht,k − h(ωt)
∥∥2

+
2η

λF

(
2C4

ψ

[
2M2σ2Tz

W +
36(κ+ 1− ρ)

Nk(1− ρ)

]
(∥ht,k − h(ωt)∥2 + ∥h(ωt)∥2)

+ 4c4σ
2T ′

W +
4c7
Nk

+ 64C2
ψ

M∑
m=1

∥∥θ(m)
t − θ∗ωt

∥∥2 + 64C2
ψζ

critic
approx

)
(iv)

≤
(
1− ηλF

2

)∥∥ht,k − h(ωt)
∥∥2 + 2η

λF

(
2C4

ψ

[
2M2σ2Tz

W +
36(κ+ 1− ρ)

Nk(1− ρ)

]D2
J

λ2F
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+ 4c4σ
2T ′

W +
4c7
Nk

+ 64C2
ψ

M∑
m=1

∥∥θ(m)
t − θ∗ωt

∥∥2 + 64C2
ψζ

critic
approx

)
(v)

≤
(
1− ηλF

2

)∥∥ht,k − h(ωt)
∥∥2 + 8η

λF

(
C4
ψM

2σ2Tz
W +

c9
Nk

+ c4σ
2T ′

W + 16C2
ψ

M∑
m=1

∥∥θ(m)
t − θ∗ωt

∥∥2 + 16C2
ψζ

critic
approx

)

where (i) uses the inequality that ∥x+ y∥2 ≤ (1+ ηλF )∥x∥2 + [1+ (ηλF )
−1]∥y∥2 for any x, y ∈ Rd, (ii) uses the notation

that ∇fωt(h) = F (ωt)h−∇J(ωt) = F (ωt)[h− h(ωt)] and the fact that ωt, ht,k ∈ Ft,k, (iii) uses eq. (61) and the item 2

of this Lemma, (iv) uses the conditions that Tz ≥
ln(3DJC

2
ψ)

ln(σ−1
W )

and the item 7 of this Lemma, and (v) uses the notation that

c9 :=
18C4

ψD
2
J (κ+1−ρ)

λ2
F (1−ρ) + c7.

Then, taking unconditional expectation of the above inequality and iterating it over k = 0, 1, . . . ,K − 1 yield that

E
[∥∥ht − h(ωt)

∥∥2] = E
[∥∥ht,K − h(ωt)

∥∥2]
≤

(
1− ηλF

2

)K
E
[∥∥ht,0 − h(ωt)

∥∥2]+ 8η

λF

K−1∑
k=0

(
1− ηλF

2

)K−1−k

(
C4
ψM

2σ2Tz
W +

c9
Nk

+ c4σ
2T ′

W + 16C2
ψ

M∑
m=1

E
[∥∥θ(m)

t − θ∗ωt
∥∥2]+ 16C2

ψζ
critic
approx

)
(i)

≤
(
1− ηλF

2

)K
E
[∥∥ht−1 − h(ωt)

∥∥2]
+

16

λ2F

(
C4
ψM

2σ2Tz
W + c4σ

2T ′

W + 16C2
ψ

M∑
m=1

E
[∥∥θ(m)

t − θ∗ωt
∥∥2]+ 16C2

ψζ
critic
approx

)
+

8ηc9[1− (1− ηλF /2)
K/2]

NλF (1−
√
1− ηλF /2)

K−1∑
k=0

(
1− ηλF

2

)(K−1−k)/2

(ii)

≤
(
1− ηλF

2

)K
E
[∥∥ht−1 − h(ωt)

∥∥2]+ 16

λ2F

(
C4
ψM

2σ2Tz
W + c4σ

2T ′

W + 16C2
ψζ

critic
approx

)
+

256C2
ψ

λ2F

(
σ
2T ′
c

W β2c2 + 2M
[
c3

(
1− λB

8
β
)Tc

+
c1
Nc

])
+

8ηc9

NλF (1−
√

1− ηλF /2)2

(iii)

≤
(
1− ηλF

2

)K
E
[∥∥ht−1 − h(ωt)

∥∥2]+ 16

λ2F

(
C4
ψM

2σ2Tz
W + c4σ

2T ′

W + 16C2
ψζ

critic
approx

)
+

256C2
ψ

λ2F

(
σ
2T ′
c

W β2c2 + 2M
[
c3

(
1− λB

8
β
)Tc

+
c1
Nc

])
+

128c9
Nηλ3F

(62)

(iv)

≤ 3
(
1− ηλF

2

)K
E
[∥∥ht−1 − h(ωt−1)

∥∥2 + ∥∥h(ωt−1)
∥∥2 + ∥∥− h(ωt)

∥∥2]
+

16

λ2F

(
C4
ψM

2σ2Tz
W + c4σ

2T ′

W + 16C2
ψζ

critic
approx

)
+

256C2
ψ

λ2F

(
σ
2T ′
c

W β2c2 + 2M
[
c3

(
1− λB

8
β
)Tc

+
c1
Nc

])
+

128c9
Nηλ3F

(v)

≤ 3
(
1− ηλF

2

)K
E
[∥∥ht−1 − h(ωt−1)

∥∥2]+ 6D2
J

λ2F

(
1− ηλF

2

)K
+

16

λ2F

(
C4
ψM

2σ2Tz
W + c4σ

2T ′

W + 16C2
ψζ

critic
approx

)
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+
256C2

ψ

λ2F

(
σ
2T ′
c

W β2c2 + 2M
[
c3

(
1− λB

8
β
)Tc

+
c1
Nc

])
+

128c9
Nηλ3F

,

where (i) uses the notation that ht,0 = ht, the item 7 of this Lemma and the inequality that
∑K−1
k=0

(
1− ηλF

2

)K−1−k ≤ 2
ηλF

,

(ii) uses Lemma D.4, (iii) uses the inequality that 1

(1−
√

1−ηλF /2)2
=

(1+
√

1−ηλF /2)2

(ηλF /2)2
≤ 16

(ηλF )2 implied by the item 2 of

this Lemma, (iv) uses the inequality that ∥x+ y + z∥2 ≤ 3∥x∥2 + 3∥y∥2 + 3∥z∥2,∀x, y, z ∈ Rd, and (v) uses the items 4
of this Lemma. Taking unconditional expectation of the above inequality and iterating it over t yield that

E
[∥∥ht − h(ωt)

∥∥2]
(i)

≤
[
3
(
1− ηλF

2

)K]t
E
[∥∥h0 − h(ω0)

∥∥2]+ 12D2
J

λ2F

(
1− ηλF

2

)K
+

32

λ2F

(
C4
ψM

2σ2Tz
W + c4σ

2T ′

W + 16C2
ψζ

critic
approx

)
+

512C2
ψ

λ2F

(
σ
2T ′
c

W β2c2 + 2M
[
c3

(
1− λB

8
β
)Tc

+
c1
Nc

])
+

256c9
Nηλ3F

(ii)

≤
[
3
(
1− ηλF

2

)K]t[(
1− ηλF

2

)K
E
[∥∥h−1 − h(ω0)

∥∥2]
+

16

λ2F

(
C4
ψM

2σ2Tz
W + c4σ

2T ′

W + 16C2
ψζ

critic
approx

)
+

256C2
ψ

λ2F

(
σ
2T ′
c

W β2c2 + 2M
[
c3

(
1− λB

8
β
)Tc

+
c1
Nc

])
+

128c9
Nηλ3F

]
+

12D2
J

λ2F

(
1− ηλF

2

)K
+

32

λ2F

(
C4
ψM

2σ2Tz
W + c4σ

2T ′

W + 16C2
ψζ

critic
approx

)
+

512C2
ψ

λ2F

(
σ
2T ′
c

W β2c2 + 2M
[
c3

(
1− λB

8
β
)Tc

+
c1
Nc

])
+

256c9
Nηλ3F

(iii)

≤ 2
(
1− ηλF

2

)K(∥∥h−1

∥∥2 + D2
J

λ2F

)
+

12D2
J

λ2F

(
1− ηλF

2

)K
+

48

λ2F

(
C4
ψM

2σ2Tz
W + c4σ

2T ′

W + 16C2
ψζ

critic
approx

)
+

768C2
ψ

λ2F

(
σ
2T ′
c

W β2c2 + 2M
[
c3

(
1− λB

8
β
)Tc

+
c1
Nc

])
+

384c9
ηλ3F

ηλ5F (1− ρ)(1− ηλF /2)
(K−1)/2

2304C4
ψ(κ+ 1− ρ)

(iv)

≤ c10

(
1− ηλF

2

)(K−1)/2

+ c11σ
2Tz
W + c12σ

2T ′

W + c13β
2σ

2T ′
c

W

+ c14

(
1− λB

8
β
)Tc

+
c15
Nc

+ c16ζ
critic
approx

where (i) uses the inequality that 3(1− ηλF /2)
K ≤ 1 implied by the condition that K ≥ ln 3

ln[(1−ηλF /2)−1] , (ii) uses eq. (62)

with t = 0, (iii) uses the condition that N ≥ 2304C4
ψ(κ+1−ρ)

ηλ5
F (1−ρ)(1−ηλF /2)(K−1)/2 as well as the inequalities that

∥∥h−1 − h(ω0)
∥∥2 ≤

2
∥∥h−1

∥∥2+2
∥∥h(ω0)

∥∥2 ∗
≤ 2

∥∥h−1

∥∥2+2D2
Jλ

−2
F (* uses the item 4 of this Lemma) and that 3(1−ηλF /2)K ≤ 1, (iv) denotes

that c10 := 2∥h−1∥2+ 14D2
J

λ2
F

+
c9λ

2
F

C4
ψ

, c11 :=
48C4

ψM
2

λ2
F

, c12 := 48c4
λ2
F

, c13 :=
768c2C

2
ψ

λ2
F

, c14 :=
1536Mc3C

2
ψ

λ2
F

, c15 :=
1536Mc1C

2
ψ

λ2
F

,

c16 :=
768C2

ψ

λ2
F

. This proves the item 8 of this Lemma.
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E. Experiment Setup and Additional Results
E.1. Experiment Setup

We simulate a fully decentralized ring network with 6 fully decentralized agents, using communication matrix with diagonal
entries 0.4 and off-diagnonal entries 0.3. The shared state space contains 5 states and each agent can take 2 actions. We
adopt the softmax policy πω(a|s) ∝ eωs,a . The entries of the transition kernel and the reward functions are independently
generated from the standard Gaussian distribution (with proper normalization of the absolute value for the transition kernel).
We use the rows of a 5-dimensional identity matrix as state features. We set the discount factor γ = 0.95.

We implement and compare four decentralized AC-type algorithms in this multi-agent MDP: our decentralized AC in
Algorithm 1, our decentralized NAC in Algorithm 3, an existing decentralized AC algorithm (Algorithm 2 of (Zhang et al.,
2018b)) that uses a linear model to parameterize the agents’ averaged reward R(s, a, s′) =

∑
i λifi(s, a, s

′) (we name
it DAC-RP1 for decentralized AC with reward parameterization) 3, and our proposed modified version of DAC-RP1 to
incorporate minibatch, which we refer to as DAC-RP100 with batch size N = 100. For our Algorithm 1, we choose
T = 500, Tc = 50, T ′

c = 10, Nc = 10, T ′ = Tz = 5, β = 0.5, {σm}6m=1 = 0.1, and consider batch size choices
N = 100, 500, 2000. Algorithm 3 uses the same hyperparameters as those of Algorithm 1 except that T = 2000 in
Algorithm 3. We select α = 10, 50, 200 for Algorithm 1 with N = 100, 500, 2000 respectively, and Tz = 5, α = 0.1, 0.5, 2,
η = 0.04, 0.2, 0.8, K = 50, 100, 200, Nk ≡ 2, 5, 10 for Algorithm 3 with N = 100, 500, 2000, respectively. For DAC-RP1
that was originally designed for discount factor γ = 1, we slightly adjust it to fit our setting where 0 < γ < 14. For this
adjusted DAC-RP1, we select diminishing stepsizes βθ = 2(t + 1)−0.9, βv = 5(t + 1)−0.8 as recommended in (Zhang
et al., 2018b) and use the rows of a 1600-dimensional identity matrix as the reward features {fi(s, a, s′) : s, s′ ∈ S, a ∈ A}
(i = 1, 2, . . . , 1600) to fully express R(s, a, s′) over all the 5×26×5 = 1600 triplets (s, a, s′). DAC-RP100 has batchsizes
100 and 10 for actor and critic updates respectively, and selects constant stepsizes βv = 0.5, βθ = 10. This setting is similar
to Algorithm 1 with N = 100 to inspect the reason of performance difference between Algorithm 1 and DAC-RP1. All
the algorithms are repeated 10 times using initial state 0 and the same initial actor parameter ω0 generated from standard
Gaussian distribution.

E.2. Gradient Norm Convergence Results in Ring Network

Figure 2 plots ∥∇J(ωt)∥2 v.s. communication complexity (t(Tc + Tc + T ′) = 65t, t(Tc + Tc + T ′ + Tz) = 70t and 2t
for Algorithms 1 & 3, and both DAC-RP algorithms, respectively)5 and sample complexity (t(TcNc +N), 2t and 110t for
both of our AC-type algorithms, DAC-RP1 and DAC-RP100, respectively).6 For each curve, its upper and lower envelopes
denote the 95% and 5% percentiles of the 10 repetitions, respectively.

Similar to the result of accumulative reward J(ωt) shown in Figure 1, it can be seen from Figure 2 that the communication
and sample efficiency of both our decentralized AC and NAC algorithms improve with larger batchsize due to reduced
gradient variance, which matches our understanding in Theorems 1 & 2. Our decentralized AC and NAC algorithms
significantly outperform DAC-RP1 which has batchsize 1. Using mini-batch, DAC-RP100 outperforms a lot than DAC-RP1,
and converges to critical points earlier than Algorithm 1. However, it can be seen from Figure 1 that such early convergence
turns out to have much lower J(ωt) than Algorithm 1 with N = 100 and Nc = 10. Such a performance gap is caused by
two reasons: (i) Both DAC-RP1 and DAC-RP100 suffer from an inaccurate parameterized estimation of the averaged reward,
and the mean relative estimation errors of both DAC-RP1 and DAC-RP100 are over 100% 7. In contrast, our noisy averaged

3The original algorithm in (Zhang et al., 2018b) uses the parameterization R(s, a) =
∑

i λifi(s, a), and we extend to our setting
where the rewards also depend on the next state s′.

4(Zhang et al., 2018b) defined the Q-function Qθ(s, a) = E
[
rt+1 − J(θ)

]
for policy parameter θ and used the temporal differences

δit = rit+1 − µi
t + Vt+1(v

i
t)− Vt(v

i
t) and δ̃it = Rt(λ

i
t)− µi

t + Vt+1(v
i
t)− Vt(v

i
t) for critic update and actor update respectively. To

fit 0 < γ < 1, we use δit = rit+1 + γVt+1(v
i
t)− Vt(v

i
t) and δ̃it = Rt(λ

i
t) + γVt+1(v

i
t)− Vt(v

i
t) where µi

t ≈ J(θt) is removed since
Qθ(s, a) = E(rt+1). In addition, we used two different chains generated from transition kernels P , Pξ respectively for critic update and
actor update as in our Algorithm 1.

5Each update of our decentralized AC uses Tc + T ′
c and T ′ communication rounds for synchronizing critic model and rewards,

respectively. Each update of our decentralized NAC uses Tc + T ′
c, T ′, T ′

z communication rounds for synchronizing critic model, rewards
and scalar z, respectively. Each update of both DAC-RP1 and DAC-RP100 uses 1 communication round for synchronizing v and λ
respectively.

6DAC-RP1 uses 1 sample for actor and critic updates respectively. DAC-RP100 uses 100 and 10 samples for actor and critic updates
respectively.

7The relative reward estimation error at the t-th iteration of both DAC-RP1 and DAC-RP100 is defined as A/B where A =
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Figure 2: Comparison of ∥∇J(ωt)∥2 among decentralized AC-type algorithms in a ring network.

Figure 3: Comparison of optimality gap J(ω∗)−J(ωt) among decentralized AC-type algorithms in fully connected network.

reward estimation achieves a mean relative error in the range of 10−5 ∼ 10−4. 8 ; (ii) Both DAC-RP1 and DAC-RP100
apply only a single TD update per-round, and hence suffers from a larger mean TD learning error (about 2% and 1% for
DAC-RP1 and DAC-RP100, respectively), whereas our algorithms perform multiple TD learning updates per-round and
achieve a smaller mean relative error (about 0.3% and 0.07% for our decentralized AC and NAC respectively) 9. All these
relative errors are averaged over iterations.

E.3. Additional Experiments in Fully Connected Network
To investigate the effect of network topology on the performance of our algorithms, we also conduct the above experiments
on a fully connected network with 6 fully decentralized agents, using communication matrix with diagonal entries 0.4 and
all the other entries 0.12. The MDP environment and all the hyperparameters are the same as the above experiments for ring
network. Figures 3 & 4 plot the learning curves of the optimality gap J∗ − J(ωt) and ∥∇J(ωt)∥2 respectively for fully
connected network. To make comparison, we plot J∗ − J(ωt) and ∥∇J(ωt)∥ in Figures 5 & 2 respectively for the above
experiments with ring network. It can be seen by comparing these figures that network topology does not much affect the
performance of these algorithms, so the conclusions for ring network that we summarized right before this subsection also
holds for fully connected network.

1
M|S|2|A|

∑M
m=1

∑
s,s′∈S

∑
a∈A[R(s, a, s′)−

∑
i λ

(m)
i fi(s, a, s

′)]2 and B = 1
|S|2|A|

∑
s,s′∈S

∑
a∈A R(s, a, s′)2.

8At the t-th iteration of Algorithms 1 & 3, we focus on r
(m)
t = 1

N

∑(t+1)N−1
i=tN R

(m)
i as the estimation of the batch-averaged reward

rt =
1
N

∑(t+1)N−1
i=tN Ri since its estimation error affects the accuracy of the policy gradient (4). The relative estimation error is defined

as 1
Mr2t

∑M
m=1(r

(m)
t − rt)

2.
9The TD error at the t-th iteration is defined as 1

M∥θ∗ωt∥
2

∑M
m=1 ∥θ

(m)
t − θ∗ωt∥

2.
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Figure 4: Comparison of ∥∇J(ωt)∥2 among decentralized AC-type algorithms in fully connected network.

Figure 5: Comparison of optimality gap J(ω∗)− J(ωt) among decentralized AC-type algorithms in ring network.

E.4. Two-agent Cliff Navigation

Figure 6: Two-agent cliff navigation. (“S”, “X”, “D” denote
starting point, cliff and destination respectively. The optimal
path is shown in red.)

In this subsection, we test our algorithms in solving a
two-agent Cliff Navigation problem (Qiu et al., 2021) in
a grid-world environment. This problem is adapted from
its single-agent version (see Example 6.6 of (Sutton &
Barto, 2018)). As illustrated in Figure 6, two agents start
from the starting point “S” on a 3 × 4 grid and aim to
reach the destination “D”. Here, global state is defined as
the joint location of the two agents, and there are in total
(3× 4)2 = 144 global states. In most states, an agent can
choose to move up, down, left or right by one step and
receives −1 reward. However, once an agent falls into
the cliff “X”, it will return to the starting point “S” and
receives −100 reward. When an agent reaches “D”, it
will always stay at “D”, and receives 0 reward if the other agent also reaches/stays at “D”, or receives −0.5 reward otherwise.
If an agent is not at “X” or “D” and selects a direction that points outside the grid, then it stays in the previous location
and receives −1 reward. The optimal path for both agents is the red path shown in Figure 6, which has the minimum
accumulative reward J∗ = −0.1855 under the discount factor γ = 0.95.

For our Algorithm 1, we choose T = 500, Tc = 50, T ′
c = 10, Nc = 10, T ′ = Tz = 5, β = 0.5, {σm}6m=1 = 0.1, and

consider batch size choices N = 100, 500, 2000. Our Algorithm 3 uses the same hyperparameters as those of Algorithm 1
except that we choose T = 2000. We select α = 1, 5, 20 for Algorithm 1 withN = 100, 500, 2000 respectively, and Tz = 5,
α = 0.002, 0.01, 0.04, η = 0.002, 0.01, 0.04, K = 50, 100, 200, Nk ≡ 2, 5, 10 for Algorithm 3 with N = 100, 500, 2000,
respectively. For DAC-RP1, we select T = 10000, βv = 10(t+ 1)−0.6 and βθ = 5(t+ 1)−0.6. For DAC-RP100, we use
T = 2000 and batchsizes 100 and 10 for actor and critic updates respectively, and selects constant stepsizes βv = 0.5,
βθ = 1. This setting is similar to Algorithm 1 with N = 100 to inspect performance difference between Algorithm 1 and
DAC-RP1.
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Figure 7: Comparison of optimality gap J(ω∗)− J(ωt) among decentralized AC-type algorithms on cliff navigation.

Figure 8: Comparison of optimality gap J(ω∗)− J(ωt) among decentralized AC-type algorithms on cliff navigation.

We plot J∗−J(ωt) and ∥∇J(ωt)∥ in Figures 7 & 8 respectively. It can be seen from these figures that both our Algorithm 1
& Algorithm 3 significantly reduce the function value gap J∗−J(ωt), and their convergence is faster with a larger batchsize.
In contrast, the function value gaps of DAC-RP1 and DAC-RP100 do not decrease sufficiently and converge to a high
value. In particular, since DAC-RP100 achieves a larger function value gap than our Algorithm 1 with N = 100 while their
hyperparameter choices are similar, we attribute this performance gap to the inaccurate average reward estimation and TD
error, as we analyzed in Appendix E.2.

F. List of Constants
The following global constants are frequently used.

M : The number of agents.

γ: Discount rate.

Rmax: The reward bound such that 0 ≤ R(m)(s, a, s′) ≤ Rmax for any s, s′ ∈ S and a ∈ A (Assumption 3). Hence,

0 ≤ R
(m)

(s, a, s′), R
(m)
i , Ri ≤ Rmax.

σW ∈ [0, 1): The second largest singular value of W .

ω∗ := maxω J(ω) denotes the optimal policy parameter.

The following constants are defined in Lemma D.3.

CB := 1 + γ.

Cb := Rmax.

λϕ := λmin

(
Es∼µω [ϕ(s)ϕ(s)⊤]

)
> 0 satisfies Assumption 4.

λB := 2(1− γ)λϕ > 0. (Assumption 4 implies that λϕ > 0.)

Rθ :=
2Cb
λB

.
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The policy-related norm bounds and Lipschitz parameters are defined as follows.

Cψ, Lψ, Lπ > 0 defined in Assumption 2: For all s ∈ S, a ∈ A and ω, ω̃, ∥ψω(a|s)∥ ≤ Cψ, ∥ψω̃(a|s) − ψω(a|s)∥ ≤
Lψ∥ω̃ − ω∥ and dTV

(
πω̃(·|s), πω(·|s)

)
≤ Lπ∥ω̃ − ω∥.

Lν := Lπ[1 + logρ(κ
−1) + (1− ρ)−1].

LQ := 2RmaxLν
1−γ .

LJ := Rmax(4Lν + Lψ)/(1− γ).

DJ :=
CψRmax

1−γ .

LF := 2Cψ(LπCψ + LνCψ + Lψ).

Lh := 2λ−1
F (DJλ

−1
F LF + LJ) where λF := infω∈Ω λmin[F (ω)] > 0 (λmin denotes the minimum eigenvalue) which

satisfies Assumption 6.

The following constants are defined to simplify the notations in the proof.

c1 :=
1920(C2

BR
2
θ+C

2
b )[1+(κ−1)ρ]

(1−ρ)λ2
B

.

c2 := 2
(
2MCb
1−σW

)2
.

c3 := 2
(∥∥θ−1

∥∥2 +R2
θ

)
where θ−1 is the initial parameter of decentralized TD (Algorithm 2).

c4 := 4MC2
ψR

2
max.

c5 := 16c2C
2
ψ .

c6 := 32Mc3C
2
ψ .

c7 := 16C2
ψR

2
maxσ

2 +
36C2

ψ(Rmax+2Rθ)
2(κ+1−ρ)

1−ρ .

c8 := 32Mc1C
2
ψ .

c9 :=
18C4

ψD
2
J (κ+1−ρ)

λ2
F (1−ρ) + c7.

c10 := 2∥h−1∥2 + 14D2
J

λ2
F

+
c9λ

2
F

C4
ψ

where h−1 is the initial natural gradient of Algorithm 3.

c11 :=
48C4

ψM
2

λ2
F

.

c12 := 48c4
λ2
F

.

c13 :=
768c2C

2
ψ

λ2
F

.

c14 :=
1536Mc3C

2
ψ

λ2
F

.

c15 :=
1536Mc1C

2
ψ

λ2
F

.

c16 :=
768C2

ψ

λ2
F

.

c17 := Es∼νω∗

[
KL

(
πω∗(·|s)||π0(·|s)

)]
+

4LψC
2
ψRmax

λ2
F

.

c18 := Cψ
√
c10 + c10Lψ

(
1 +

4C4
ψ

λ2
F

)
.



Submission and Formatting Instructions for ICML 2022

c19 := Cψ
√
c11 + c11Lψ

(
1 +

4C4
ψ

λ2
F

)
.

c20 := Cψ
√
c12 + c12Lψ

(
1 +

4C4
ψ

λ2
F

)
.

c21 := Cψ
√
c13 + c13Lψ

(
1 +

4C4
ψ

λ2
F

)
.

c22 := Cψ
√
c14 + c14Lψ

(
1 +

4C4
ψ

λ2
F

)
.

c23 := Cψ
√
c15 + c15Lψ

(
1 +

4C4
ψ

λ2
F

)
.

c24 := c16Lψ

(
1 +

4C4
ψ

λ2
F

)
.
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