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Abstract—Alternating gradient-descent-ascent (AltGDA) is an
optimization algorithm that has been widely used for model
training in various machine learning applications, which aims
to solve a nonconvex minimax optimization problem. However,
the existing studies show that it suffers from a high computation
complexity in nonconvex minimax optimization. In this paper,
we develop a single-loop and fast AltGDA-type algorithm that
leverages proximal gradient updates and momentum acceleration
to solve regularized nonconvex minimax optimization problems.
By leveraging the momentum acceleration technique, we prove
that the algorithm converges to a critical point in nonconvex
minimax optimization and achieves a computation complexity in
the order of O(κ

11
6 ϵ−2), where ϵ is the desired level of accuracy

and κ is the problem’s condition number. Such a computation
complexity improves the state-of-the-art complexities of single-loop
GDA and AltGDA algorithms (see the summary of comparison
in Table I). We demonstrate the effectiveness of our algorithm
via an experiment on adversarial deep learning.

Index Terms—Minimiax optimization, alternating gradient
descent ascent, proximal gradient, momentum, complexity.

I. INTRODUCTION

Minimax optimization is an emerging and important opti-
mization framework that covers a variety of modern machine
learning applications. Some popular application examples
include generative adversarial networks (GANs) [13], adver-
sarial machine learning [37], game theory [10], reinforcement
learning [34], etc. A standard minimax optimization problem is
written as follows, where f is a differentiable bivariate function.

min
x∈Rm

max
y∈Y

f(x, y).

A basic algorithm for solving the above minimax optimiza-
tion problem is the gradient-descent-ascent (GDA), which
simultaneously performs gradient descent update and gradient
ascent update on the variables x and y, respectively, i.e.,
xt+1 = xt−ηx∇1f(xt, yt), yt+1 = yt+ηy∇2f(xt, yt). Here,
∇1 and ∇2 denote the gradient operator with regard to the first
and the second variable, respectively. The convergence rate of
GDA has been studied under various types of geometries of the
minimax problem, including strongly-convex-strongly-concave
geometry [9], nonconvex-(strongly)-concave geometry [23]

and Lojasiewicz-type geometry [5]. Recently, by leveraging
the popular momentum technique [3], [11], [20], [21], [28],
[38] for accelerating gradient-based algorithms, accelerated
variants of GDA have been proposed for strongly-convex-
strongly-concave [45] and nonconvex-strongly-concave [17]
minimax optimization. There are other accelerated GDA-type
algorithms that achieve a near-optimal complexity [22], [46],
but they involve complex nested-loop structures and require
function smoothing with many fine-tuned hyper-parameters,
which are not used in practical minimax machine learning.

Another important variant of GDA that has been widely
used in practical training of minimax machine learning is the
alternating-GDA (AltGDA) algorithm, which updates the two
variables x and y alternatively via xt+1 = xt− ηx∇1f(xt, yt),
yt+1 = yt + ηy∇2f(xt+1, yt). Compared with the update of
GDA, the y-update of AltGDA uses the fresh xt+1 instead
of the previous xt, and it is shown to converge faster than
the standard GDA algorithm [2], [4], [12], [42]. Despite
the popularity of the AltGDA algorithm, it is shown to
suffer from a high computation complexity in nonconvex
minimax optimization. Therefore, this study aims to improve
the complexity of AltGDA by leveraging momentum accel-
eration techniques. In particular, in the existing literature,
the convergence of momentum accelerated AltGDA is only
established for convex-concave minimax problems [43] and
bilinear minimax problems [12], and it has not been explored in
nonconvex minimax optimization that covers modern machine
learning applications. Therefore, this study aims to fill in this
gap by developing a single-loop proximal-AltGDA algorithm
with momentum acceleration for solving a class of regularized
nonconvex minimax problems, and analyze its convergence
and computation complexity.

A. Our Contribution

We are interested in a class of regularized nonconvex-
strongly-concave minimax optimization problems, where the
regularizers are convex functions that can be possibly non-
smooth. To solve this class of minimax problems, we propose
a single-loop proximal-AltGDA with momentum algorithm



(referred to as proximal-AltGDAm). The algorithm takes single-
loop updates that consist of a proximal gradient descent update
with the heavy-ball momentum, and a proximal gradient ascent
update with the Nesterov’s momentum. Our algorithm extends
the applicability of the conventional momentum acceleration
schemes (heavy-ball and Nesterov’s momentum) for nonconvex
minimization to nonconvex minimax optimization.

We study the convergence property of Proximal-AltGDAm.
Specifically, under standard smoothness assumptions on the
objective function and by viewing the accelerated alternating
GDA updates as inexact accelerated gradient updates, we
develop an analysis to show that every limit point of the
parameter sequences generated by the algorithm is a critical
point of the nonconvex regularized minimax problem. Moreover,
to achieve an ϵ-accurate critical point, the overall computation
complexity (i.e., number of gradient and proximal mapping
evaluations) is of the order O

(
κ

11
6 ϵ−2

)
, where κ > 1 is

the condition number of the problem. Thanks to momentum
acceleration and a tight analysis in our technical proof, such
a computation complexity is lower than that of the existing
single-loop GDA-type algorithms. See Table I for a summary
of comparison of the computation complexities and Appendix
E for their derivation.

Table I
COMPARISON OF COMPUTATION COMPLEXITY (NUMBER OF GRADIENT AND

PROXIMAL MAPPINGS EVALUATIONS) OF THE EXISTING SINGLE-LOOP
GDA-TYPE ALGORITHMS IN NONCONVEX-STRONGLY-CONCAVE MINIMAX

OPTIMIZATION, WHERE κ ≥ 1 IS THE PROBLEM CONDITION NUMBER.

Alternating Momentum Computation
update acceleration complexity

(Chen, et.al) [5] × × O(κ6ϵ−2)
(Huang, et.al) [17] × ✓ O(κ3ϵ−2)

(Lin, et.al) [23] × × O(κ2ϵ−2)
(Xu, et.al) [42] ✓ × O(κ5ϵ−2)

(Boţ and Böhm) [4] ✓ × O(κ2ϵ−2)

This work ✓ ✓ O(κ
11
6 ϵ−2)

B. Other Related Work

GDA-type algorithms: [27] studied a slight variant of GDA
by replacing gradients with subgradients for convex-concave
non-smooth minimax optimization. [42] studied AltGDA which
applies ℓ2 regularizer to the local objective function of
GDA followed by projection onto the constraint sets and
obtained its convergence rate under nonconvex-concave and
convex-nonconcave geometry. [26] also studied two variants
of GDA, Extra-gradient and Optimistic GDA, and obtained
linear convergence rate under bilinear geometry and strongly-
convex-strongly-concave geometry. [6], [18] studied GDA in
continuous time dynamics using differential equations. [1]
analyzed a second-order variant of the GDA algorithm.

Many other studies have developed stochastic GDA-type
algorithms. [23], [44] analyzed stochastic GDA and stochastic
AltGDA respectively. Variance reduction techniques have been
applied to stochastic minimax optimization, including SVRG-

based [8], [44], SARAH/SPIDER-based [25], [41], STORM
[34] and its gradient free version [16].
GDA-type algorithms with momentum: For strongly-convex-
strongly-concave problems, [45] studied accelerated GDA with
negative momentum. [22], [39] developed nested-loop AltGDA
algorithms with Nesterov’s Accelerated Gradient Descent that
achieve improved complexities. For convex-concave problems,
[7] analyzed stable points of both GDA and optimistic GDA
that apply negative momentum for acceleration. Moreover,
for nonconvex-(strongly)-concave problems, [40] developed a
single-loop GDA with momentum and Hessian preconditioning
and studied its convergence to a local minimax point. [17]
developed a mirror descent ascent algorithm with momentum
which includes GDAm as a special case. [30] studied nested-
loop GDA where multiple gradient ascent steps are performed,
and they also studied the momentum-accelerated version.
Similarly, [16], [34] developed GDA with momentum scheme
and STORM variance reduction, and a similar version of this
algorithm is extended to minimax optimization on Riemann
manifold [15]. [14] developed a single-loop Primal-Dual
Stochastic Momentum algorithm with ADAM-type methods.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we introduce the problem formulation and
technical assumptions. We consider the following class of
regularized minimax optimization problems.

min
x∈Rm

max
y∈Y

f(x, y) + g(x)− h(y), (P)

where f : Rm × Y → R is differentiable and nonconvex-
strongly-concave, g, h are possibly non-smooth convex regular-
izers, and Y is a bounded set with diameter R. In particular,
define the envelope function Φ(x) := maxy∈Y f(x, y)− h(y),
then the problem (P) can be rewritten as the minimization
problem minx∈Rm Φ(x) + g(x).

Throughout the paper, we adopt the following assumptions
on the problem (P). These are standard assumptions that have
been considered in the existing literature [5], [23].

Assumption 1. The minimax problem (P) satisfies:
1) Function f(·, ·) is L-smooth and function f(x, ·) is µ-

strongly concave for all x;
2) Function (Φ + g)(x) is bounded below and has compact

sub-level sets;
3) Function g, h are proper and convex.

In particular, item 3 of the above assumption allows the
regularizers g, h to be any convex function that can be
possibly non-smooth. Next, consider the mapping y∗(x) =
argmaxy∈Y f(x, y)− h(y), which is uniquely defined due to
the strong concavity of f(x, ·). The following proposition is
proved in [5], [23] that characterizes the Lipschitz continuity
of the mapping y∗(x) and the smoothness of the function Φ(x).
Throughout the paper, we denote κ = L/µ > 1 as the condition
number, and denote ∇1f(x, y),∇2f(x, y) as the gradients with
respect to the first and the second input variables, respectively.



Proposition 1 ([5], [23]). Let Assumption 1 hold. Then, the
mapping y∗(x) is κ-Lipschitz continuous and the function Φ(x)
is L(1 + κ)-smooth with ∇Φ(x) = ∇1f(x, y

∗(x)).

Lastly, recall that the minimax problem (P) is equivalent to
the minimization problem minx∈Rm Φ(x) + g(x). Therefore,
the optimization goal of the minimax problem (P) is to find a
critical point x∗ of the nonconvex function Φ(x) + g(x) that
satisfies the optimality condition 0 ∈ ∂(Φ + g)(x∗), where ∂
denotes the subdifferential operator.

III. PROXIMAL ALTERNATING GDA WITH MOMENTUM

In this section, we propose a single-loop proximal alternating-
GDA with momentum (proximal-AltGDAm) algorithm to solve
the regularized minimax problem (P).

We first recall the update rules of the basic proximal
alternating-GDA (proximal-AltGDA) algorithm [4] for solving
the problem (P). Specifically, proximal-AltGDA alternates
between the following two proximal-gradient updates (a.k.a.
forward-backward splitting updates [24]).

(Proximal-AltGDA):{
xt+1 = proxηxg

(
xt − ηx∇1f(xt, yt)

)
,

yt+1 = proxηyh

(
yt + ηy∇2f(xt+1, yt)

)
.

To elaborate, the first update is a proximal gradient descent
update that aims to minimize the nonconvex function f(x, yt)+
g(x) from the current point xt, and the second update is a
proximal gradient ascent update that aims to maximize the
strongly-concave function f(xt+1, y)− h(y) from the current
point yt. More specifically, the two proximal gradient mappings
are formally defined as

proxηxg

(
xt − ηx∇1f(xt, yt)

)
:= argmin

u∈Rm

{
g(u) +

1

2ηx
∥u− xt + ηx∇1f(xt, yt)∥2

}
,

proxηyh

(
yt + ηy∇2f(xt+1, yt)

)
:= argmin

v∈Y

{
h(v) +

1

2ηy
∥v − yt − ηy∇2f(xt+1, yt)∥2

}
.

Compared with the standard (proximal) GDA algorithm [5],
[23], the proximal ascent step of proximal-AltGDA evaluates
the gradient at the freshest point xt+1 instead of xt. Such an
alternative update is widely used in practice and usually leads
to better convergence properties [2], [4], [12], [42].

Next, we introduce momentum schemes to accelerate the
convergence of proximal-AltGDA. As the two proximal
gradient steps of proximal-AltGDA are used to solve two
different types of optimization problems, namely, the nonconvex
problem f(x, yt) + g(x) and the strongly-concave problem
f(xt+1, y) − h(y), we consider applying different momen-
tum schemes to accelerate these proximal gradient updates.
Specifically, the proximal gradient descent step minimizes
a composite nonconvex function, and we apply the heavy-
ball momentum scheme [33] that was originally designed for
accelerating nonconvex optimization. Therefore, we propose the
following proximal gradient descent with heavy-ball momentum
update for minimizing the nonconvex part of the problem (P).

(Heavy-ball momentum):{
x̃t = xt + β(xt − xt−1),

xt+1 = proxηxg

(
x̃t − ηx∇1f(xt, yt)

)
.

To explain, the first step is an extrapolation step that applies
the momentum term β(xt−xt−1) (with momentum coefficient
β > 0), and the second proximal gradient step updates the
extrapolation point x̃t using the original gradient ∇1f(xt, yt).
In conventional gradient-based optimization, gradient descent
with such a heavy-ball momentum is guaranteed to find a
critical point of smooth nonconvex functions [31], [32].

On the other hand, as the proximal gradient ascent step of
proximal-AltGDA maximizes a composite strongly-concave
function, we are motivated to apply the popular Nesterov’s
momentum scheme [29], which was originally designed for
accelerating strongly-concave (convex) optimization. Specifi-
cally, we propose the following proximal gradient ascent with
Nesterov’s momentum update for maximizing the strongly-
concave part of the problem (P).

(Nesterov’s momentum):{
ỹt = yt + γ(yt − yt−1),

yt+1 = proxηyh

(
ỹt + ηy∇2f(xt+1, ỹt)

)
.

(1)

To elaborate, the first step is a regular extrapolation step that
involves momentum, which is the same as the first step of
the heavy-ball scheme. The only difference from the heavy-
ball scheme is that the starting point of the second proximal
gradient step changes from yt to its extrapolated point ỹt.

We refer to the above algorithm design as proximal-AltGDA
with momentum (proximal-AltGDAm), and the algorithm
updates are formally presented in Algorithm 1. It can be seen
that proximal-AltGDAm is a simple algorithm that has a single
loop structure, and adopts alternating updates with momentum
acceleration. More importantly, it involves only standard hyper-
parameters such as the learning rates and momentum parameters
and therefore is easy to implement in practice. Such a practical
algorithm is much simper than the other accelerated GDA-
type algorithms that involve complex nested-loop structure and
require fine-tuned function smoothing [22], [46].

Algorithm 1 Proximal Alternating GDA with Momentum
(proximal-AltGDAm)
Input: Initialization x−1 = x0, y−1 = y0, learning rates ηx, ηy ,
momentum parameters β, γ.
for t = 0, 1, 2, . . . , T − 1 do

x̃t = xt + β(xt − xt−1),

xt+1 = proxηxg

(
x̃t − ηx∇1f(xt, yt)

)
,

ỹt = yt + γ(yt − yt−1),

yt+1 = proxηyh

(
ỹt + ηy∇2f(xt+1, ỹt)

)
.

end
Output: xT , yT .



IV. CONVERGENCE AND COMPUTATION COMPLEXITY OF
PROXIMAL-ALTGDAM

Although the proposed proximal-AltGDAm algorithm applies
the popular heavy-ball momentum and Nesterov’s momentum
to the GDA updates in a straightforward way, its convergence
analysis cannot directly follow from the existing studies of
momentum accelerated gradient descent algorithms. To explain
more specifically, notice that in the x-proximal gradient update
of Algorithm 1, it involves the partial gradient ∇1f(xt, yt),
which corresponds to the gradient of the time-varying function
f(·, yt) (since yt changes over time t). Similarly, the y-proximal
gradient update involves the gradient of another time-varying
function f(xt+1, ·). Therefore, both momentum accelerated
proximal gradient updates are actually applied to time-varying
functions due to the nature of GDA updates. In this sense, the
existing analysis of momentum accelerated gradient descent
algorithms cannot be directly applied to analyze this algorithm.

To analyze the convergence of Algorithm 1, we first study
the x-proximal gradient update with heavy-ball momentum and
obtain the following characterization of per-iteration progress
on the objective function value.

Proposition 2. Let Assumption 1 hold. Then, the parameter
sequences {xt, yt}t generated by proximal-AltGDAm satisfy,
for all t = 0, 1, 2, ...,

Φ(xt+1) + g(xt+1)

≤ Φ(xt) + g(xt)−
(1− β

2ηx
− 2Lκ

11
6

)
∥xt+1 − xt∥2

+
β

2ηx
∥xt − xt−1∥2 +

L

4κ
11
6

∥y∗(xt)− yt∥2. (2)

The above proposition tracks the per-iteration optimiza-
tion progress made by the x-proximal gradient update with
heavy-ball momentum. To elaborate, the increment terms
∥xt+1 − xt∥2, ∥xt − xt−1∥2 are induced by the heavy-ball
momentum scheme. Moreover, since the x-update uses the
partial gradient ∇1f(xt, yt) to approximate the exact gradient
∇Φ(xt) = ∇1f(xt, y

∗(xt)), it naturally induces a tracking
error term ∥yt − y∗(xt)∥2 that tracks the optimization gap of
the y-update. Hence, we need to further bound this tracking
error term by analyzing the y-proximal gradient update with
Nesterov’s momentum, which we explore next.

As explained earlier, the momentum accelerated y-updates
in proximal-AltGDAm are applied to a time-varying strongly-
concave function f(xt+1, ·). Hence, the tracking error term
∥yt − y∗(xt)∥2 cannot be directly bounded using the standard
convergence result of Nesterov’s accelerated proximal gradient
algorithm [28]. Instead, we can view these y-updates as inexact
accelerated proximal gradient updates. To elaborate, note that
in the t-th iteration, the y-proximal gradient update is applied
to the function f(xt+1, ·). Then, we can rewrite the y-updates
in all the previous iterations k = 0, 1, ..., t− 1 as follows.

yk+1 = proxηyh

(
ỹk + ηy∇2f(xt+1, ỹk)

+ ηy [∇2f(xk+1, ỹk)−∇2f(xt+1, ỹk)]︸ ︷︷ ︸
ek+1

)
. (3)

That is, we can view all the previous y-updates as applied to
the fixed function f(xt+1, ·) with an inexactness ek+1 involved
in the computation of the partial gradient ∇2f(xt+1, ỹk).
In summary, the y-updates of proximal-AltGDAm can be
understood as inexact accelerated gradient updates applied
to the function f(xt+1, ·) at time t. In particular, under
the smoothness condition in Assumption 1, the inexactness
is bounded as ∥ek+1∥ ≤ L∥xk+1 − xt+1∥. Consequently,
we can leverage the existing convergence result of inexact
accelerated gradient algorithm [36] to bound the optimality
gap ∥yt − y∗(xt)∥2 as follows.

Proposition 3. Let Assumption 1 hold. Choose learning rate
ηy = 1

L and momentum parameter γ =
√
κ−1√
κ+1

. Then, the
parameter sequences {xt, yt} generated by proximal-AltGDAm
satisfy, for all t = 0, 1, 2, ...

∥yt+1−y∗(xt+1)∥2 ≤ 2Rκ√
L
(1− κ−0.5)t+1

+
6κ2√
L

t∑
j=1

(1− κ−0.5)t+1−j/2∥xj+1 − xj∥. (4)

Intuitively, in the above bound, the first term on the right
hand side corresponds to the normal accelerated convergence
rate, and the other term is induced by the inexactness ek. As
both terms are scaled by the accelerated convergence factor
(1−κ−0.5), we expect that the above bound converges fast and
further facilitates the convergence of eq. (2). Next, substituting
eq. (4) into eq. (2) and telescoping, we obtain the following
asymptotic stability properties of proximal-AltGDAm.

Corollary 1. Under the conditions of Proposition 3 and
stepsize ηx ≤ 1/(16Lκ

11
6 ), the sequences {xt, yt}t generated

by proximal-AltGDAm satisfy

∥xt+1 − xt∥, ∥yt − y∗(xt)∥, ∥yt+1 − yt∥
t→ 0.

Remark 1. In [5], the proximal-GDA algorithm (without
alternating update and momentum) uses a small learning rate
ηx ≤ O(L−2κ−3) to establish convergence. As a comparison,
proximal-AltGDAm allows to choose a much larger learning
rate ηx ≤ O(L−1κ−

11
6 ) to guarantee a faster convergence

(proved later), thanks to the momentum acceleration schemes.
Therefore, if we can show that {xt}t converges to a desired

critical point x∗, then the above stability properties of proximal-
AltGDAm implies that {yt}t converges to the corresponding
best response point y∗(x∗).

To further characterize the global convergence property of
proximal-AltGDAm, we define the following proximal gradient
mapping associated with the objective function Φ(x) + g(x).

G(x) :=
1

ηx

(
x− proxηxg

(
x− ηx∇Φ(x)

))
. (5)

The proximal gradient mapping is a standard metric for
evaluating the optimality of nonconvex composite optimization
problems [28]. It can be shown that x is a critical point of
(Φ + g)(x) if and only if G(x) = 0, and it reduces to the
normal gradient when there is no regularizer g. Hence, our



convergence criterion is to find a near-critical point x that
satisfies ∥G(x)∥ ≤ ϵ for some pre-determined accuracy ϵ > 0.

Next, by leveraging Proposition 2 and Proposition 3, we
obtain the following global convergence result of proximal-
AltGDAm and characterize its computational complexity (num-
ber of gradient and proximal mapping evaluations).

Theorem 1 (Global convergence). Under the conditions of
Proposition 3 and stepsize ηx ≤ 1/(16Lκ

11
6 ), the sequence

{xt}t generated by proximal-AltGDAm is bounded and has
a compact set of limit points. Also, every such limit point is
a critical point of (Φ + g)(x). Moreover, the total number
of iterations T required to achieve min0≤t≤T ∥G(xt)∥ ≤ ϵ
is T = O

(
κ

11
6 ϵ−2

)
, which is also the order of the required

computational complexity.

To elaborate, the first statement of Theorem 1 shows that the
sequence generated by proximal-AltGDAm converges to critical
points of the minimax problem. The second statement proves
that the computation complexity of proximal-AltGDAm for
finding a near-critical point is of the order O

(
κ

11
6 ϵ−2

)
, which

strictly improves the complexity O
(
κ2ϵ−2

)
of both GDA [23]

and proximal-AltGDA [4] in nonconvex-strongly concave min-
imax optimization. We note that the improvement is substantial
when the problem condition number κ = L/µ is large, while
the dependence on ϵ−2 is generally unimprovable in nonconvex
optimization. In addition, thanks to the momentum acceleration
schemes, our choice of learning rate ηx = O(L−1κ−

11
6 )

is more flexible than that ηx = O(L−1κ−2) adopted by
these GDA-type algorithms. These improvements are not only
attributed to momentum acceleration, but also to the elaborate
selection of the coefficients in the proof that aims to minimize
the dependence of the complexity on κ.

V. EXPERIMENTS

In this section, we compare proximal-AltGDAm with the
standard proximal-GDA/AltGDA algorithm [5] and the single-
loop accelerated AltGDA algorithm (APDA) [47]. All these
algorithms have a single-loop structure.

We consider solving the following regularized Wasserstein
robustness model (WRM) [37] using the MNIST dataset [19].

min
θ

max
{ξi}n

i=1

1

n

n∑
i=1

[
ℓ(hθ(ξi), yi)− λ∥ξi − xi∥2

]
− λ1

n∑
i=1

∥ξi∥1 +
λ2
2
∥θ∥2, (6)

where n = 60k is the number of training samples, θ is
the model parameter, (xi, yi) corresponds to the i-th data
sample and label, respectively, and ξi is the adversarial sample
corresponding to xi. We choose the cross-entropy loss function
ℓ. We add an ℓ1 regularization to impose sparsity on the
adversarial examples, and add an ℓ22 regularization to prevent
divergence of the model parameters.

We set λ = 1.0 that suffices to make the maximization
part be strongly-concave, and set λ1 = λ2 = 10−4. We use a
convolution network that consists of two convolution blocks

followed by two fully connected layers. Specifically, each
convolution block contains a convolution layer, a max-pooling
layer with stride step 2, and a ReLU activation layer. The
convolution layers in the two blocks have 1, 10 input channels
and 10, 20 output channels, respectively, and both of them
have kernel size 5, stride step 1 and no padding. The two fully
connected layers have input dimensions 320, 50 and output
dimensions 50, 10, respectively.

We implement all three algorithms using full gradients with
the whole training set of 60k images. We choose the same
learning rates ηx = ηy = 10−3 for all algorithms. For proximal-
AltGDAm, we choose momentum β = 0.25 and γ = 0.75. For
APDA, we choose the fine-tuned η = 2ηx. As the function Φ(x)
cannot be exactly evaluated, we run 100 steps of stochastic
gradient ascent updates with learning rate 0.1 to maximize
f(xt, y)− h(y) and obtain an approximated y∗(xt), which is
used to estimate Φ(x) + g(x).

Figure 1. Left: comparison of Φ(x) + g(x) of all four algorithms. Right:
comparison of the corresponding accuracy on the test dataset.

Figure 1 (Left) compares the estimated objective function
value achieved by all the three algorithms. It can be seen that
proximal-AltGDAm achieves the fastest convergence among
these algorithms and is significantly faster than the proximal-
GDA and the proximal-AltGDA. Figure 1 (Right) further
demonstrates the advantage of proximal-AltGDAm in the test
accuracy. It can be seen that the robust model trained by
proximal-AltGDAm achieves a much higher test accuracy.

VI. CONCLUSION

We develop a single-loop and fast AltGDA algorithm
that leverages proximal gradient updates and momentum
acceleration to solve general regularized nonconvex-strongly-
concave minimax optimization problems. By viewing the GDA
updates of the algorithm as inexact accelerated gradient updates,
we prove that the algorithm converges to a ϵ-critical point with
a computational complexity O(κ

11
6 ϵ−2), which substantially

improves the state-of-the-art result. In the future work, it is
interesting to develop a stochastic variant of this algorithm to
further improve the sample complexity.
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APPENDIX A
PROOF OF PROPOSITION 2

Proposition 2. Let Assumption 1 hold. Then, the parameter sequences {xt, yt}t generated by proximal-AltGDAm satisfy, for
all t = 0, 1, 2, ...,

Φ(xt+1) + g(xt+1)

≤ Φ(xt) + g(xt)−
(1− β

2ηx
− 2Lκ

11
6

)
∥xt+1 − xt∥2

+
β

2ηx
∥xt − xt−1∥2 +

L

4κ
11
6

∥y∗(xt)− yt∥2. (2)

Proof. Consider the t-th iteration of PGDAm. As the function Φ is L(1 + κ)-smooth (from Proposition 1), we obtain that

Φ(xt+1) ≤ Φ(xt) + ⟨xt+1 − xt,∇Φ(xt)⟩+
L(1 + κ)

2
∥xt+1 − xt∥2. (7)

On the other hand, by the definition of the proximal gradient step of xt, we have that

g(xt+1) +
1

2ηx
∥xt+1 − x̃t + ηx∇1f(xt, yt)∥2 ≤ g(xt) +

1

2ηx
∥xt − x̃t + ηx∇1f(xt, yt)∥2,

which further simplifies to

g(xt+1) ≤ g(xt) +
1

2ηx
∥xt − x̃t∥2 + ⟨xt − x̃t,∇1f(xt, yt)⟩

− 1

2ηx
∥xt+1 − x̃t∥2 − ⟨xt+1 − x̃t,∇1f(xt, yt)⟩

(i)
= g(xt) +

β2

2ηx
∥xt − xt−1∥2 −

1

2ηx
∥xt+1 − xt − β(xt − xt−1)∥2

+ ⟨xt − xt+1,∇1f(xt, yt)⟩

= g(xt) +
β2

2ηx
∥xt − xt−1∥2 −

1

2ηx
∥xt+1 − xt∥2 −

β2

2ηx
∥xt − xt−1∥2

+
β

ηx
⟨xt+1 − xt, xt − xt−1⟩+ ⟨xt − xt+1,∇1f(xt, yt)⟩

≤ g(xt)−
1

2ηx
∥xt+1 − xt∥2 +

β

2ηx
∥xt+1 − xt∥2 +

β

2ηx
∥xt − xt−1∥2 + ⟨xt − xt+1,∇1f(xt, yt)⟩, (8)

where (i) uses the fact that xt − x̃t = β(xt−1 − xt).
Adding up eq. (7) and eq. (8) yields that

Φ(xt+1) + g(xt+1)

≤ Φ(xt) + g(xt)−
( 1

2ηx
− L(1 + κ)

2

)
∥xt+1 − xt∥2 +

β

2ηx
∥xt+1 − xt∥2 +

β

2ηx
∥xt − xt−1∥2

+ ⟨xt+1 − xt,∇Φ(xt)−∇1f(xt, yt)⟩

≤ Φ(xt) + g(xt)−
( 1

2ηx
− L(1 + κ)

2

)
∥xt+1 − xt∥2 +

β

2ηx
∥xt+1 − xt∥2 +

β

2ηx
∥xt − xt−1∥2

+ ∥xt+1 − xt∥∥∇Φ(xt)−∇1f(xt, yt)∥

≤ Φ(xt) + g(xt)−
( 1

2ηx
− L(1 + κ)

2

)
∥xt+1 − xt∥2 +

β

2ηx
∥xt+1 − xt∥2 +

β

2ηx
∥xt − xt−1∥2

+ ∥xt+1 − xt∥∥∇1f(xt, y
∗(xt))−∇1f(xt, yt)∥

≤ Φ(xt) + g(xt)−
( 1

2ηx
− Lκ

)
∥xt+1 − xt∥2 +

β

2ηx
∥xt+1 − xt∥2 +

β

2ηx
∥xt − xt−1∥2

+ L∥xt+1 − xt∥∥y∗(xt)− yt∥
(i)

≤ Φ(xt) + g(xt)−
(1− β

2ηx
− Lκ− Lκ

11
6

)
∥xt+1 − xt∥2 +

β

2ηx
∥xt − xt−1∥2 +

L

4κ
11
6

∥y∗(xt)− yt∥2

≤ Φ(xt) + g(xt)−
(1− β

2ηx
− 2Lκ

11
6

)
∥xt+1 − xt∥2 +

β

2ηx
∥xt − xt−1∥2 +

L

4κ
11
6

∥y∗(xt)− yt∥2. (9)



where (i) uses AM-GM inequality that ab ≤ Ca2

2 + b2

2C for any a, b, C ≥ 0. This proves eq. (2)

APPENDIX B
PROOF OF PROPOSITION 3

Proposition 3. Let Assumption 1 hold. Choose learning rate ηy = 1
L and momentum parameter γ =

√
κ−1√
κ+1

. Then, the parameter
sequences {xt, yt} generated by proximal-AltGDAm satisfy, for all t = 0, 1, 2, ...

∥yt+1−y∗(xt+1)∥2 ≤ 2Rκ√
L
(1− κ−0.5)t+1

+
6κ2√
L

t∑
j=1

(1− κ−0.5)t+1−j/2∥xj+1 − xj∥. (4)

Proof. We rewrite the inner accelerated gradient ascent steps in Algorithm 1 as the inexact-proximal gradient method (3). Then,
based on Theorem 4 of [36], using ηy = 1

L and γ =
√
κ−1√
κ+1

, this method has the following convergence rate.

f(xt+1, yt+1)− f(xt+1, y
∗(xt+1))

≤ (1− κ−0.5)t+1
(√

2
(
f(xt+1, yt+1)− f(xt+1, y∗(xt+1))

)
+

√
2

µ

t+1∑
i=1

∥ei∥(1− κ−0.5)−i/2
)
. (10)

The above convergence rate can be simplified as follows.
µ

2
∥yt+1 − y∗(xt+1)∥2

(i)

≤ f(xt+1, yt+1)− f(xt+1, y
∗(xt+1))

≤ (1− κ−0.5)t+1
(√

2
(
f(xt+1, yt+1)− f(xt+1, y∗(xt+1))

)
+

√
2

µ

t+1∑
i=1

∥ei∥(1− κ−0.5)−i/2
)

(ii)

≤ (1− κ−0.5)t+1
√
L∥yt+1 − y∗(xt+1)∥2 +

√
2

µ

t+1∑
i=1

∥∇2f(xi, ỹi−1)−∇2f(xt+1, ỹi−1)∥(1− κ−0.5)t+1−i/2

(iii)

≤ R
√
L(1− κ−0.5)t+1 +

√
2

µ

t+1∑
i=1

(1− κ−0.5)t+1−i/2
t∑

j=i

L∥xj+1 − xj∥

= R
√
L(1− κ−0.5)t+1 + L

√
2

µ

t∑
j=1

j∑
i=1

(1− κ−0.5)t+1−i/2∥xj+1 − xj∥

= R
√
L(1− κ−0.5)t+1 +

√
2Lκ

t∑
j=1

(1− κ−0.5)t+0.5 (1− κ−0.5)−j/2 − 1

(1− κ−0.5)−0.5 − 1
∥xj+1 − xj∥

≤ R
√
L(1− κ−0.5)t+1 +

√
2Lκ

t∑
j=1

(1− κ−0.5)t+1−j/2

1− (1− κ−0.5)0.5
∥xj+1 − xj∥

(iv)

≤ R
√
L(1− κ−0.5)t+1 + 2κ

√
2L

t∑
j=1

(1− κ−0.5)t+1−j/2∥xj+1 − xj∥,

where (i) and (ii) use ∇2f(xt+1, y
∗(xt+1)) = 0 and Assumption 1.1 that f(x, ·) is L-smooth and µ-strongly concave, (iii)

uses the fact that Y is bounded with diameter R and Assumption 1.1 that f is L-smooth, and (iv) uses 1
1−(1−κ−0.5)0.5 =

1+(1−κ−0.5)0.5

κ−0.5 ≤ 2κ0.5. Multiplying the above inequality with 2/µ proves Proposition 3.

APPENDIX C
PROOF OF COROLLARY 1

Corollary 1. Under the conditions of Proposition 3 and stepsize ηx ≤ 1/(16Lκ
11
6 ), the sequences {xt, yt}t generated by

proximal-AltGDAm satisfy

∥xt+1 − xt∥, ∥yt − y∗(xt)∥, ∥yt+1 − yt∥
t→ 0.



Proof. Telescoping eq. (4) over t = 0, 1, . . . , T − 1 yields that
T−1∑
t=0

∥yt+1 − y∗(xt+1)∥2

≤ 2Rκ√
L

T−1∑
t=0

(1− κ−0.5)t+1 +
6κ2√
L

T−1∑
t=0

t∑
j=1

(1− κ−0.5)t+1−j/2∥xj+1 − xj∥

≤ 2Rκ1.5√
L

+
6κ2√
L

T−1∑
j=1

T−1∑
t=j

(1− κ−0.5)t+1−j/2∥xj+1 − xj∥

≤ 2Rκ1.5√
L

+
6κ2.5√
L

T−1∑
j=1

(1− κ−0.5)j/2∥xj+1 − xj∥

≤ 2Rκ1.5√
L

+
3κ2.5√
L

T−1∑
j=1

( 1

κ
7
6

√
L
(1− κ−0.5)j + κ

7
6

√
L∥xj+1 − xj∥2

)
≤ 2Rκ1.5√

L
+

3κ
11
6

L
+ 3κ

11
3

T−1∑
j=1

∥xj+1 − xj∥2. (11)

Then, telescoping eq. (2) over t = 0, 1, . . . , T − 1 yields that

Φ(xT ) + g(xT )− Φ(x0)− g(x0)

≤ −
(1− β

2ηx
− 2Lκ

11
6

) T−1∑
t=0

∥xt+1 − xt∥2 +
β

2ηx

T−1∑
t=0

∥xt − xt−1∥2 +
L

4κ
11
6

T−1∑
t=0

∥y∗(xt)− yt∥2

(i)

≤ −
(1− 2β

2ηx
− 2Lκ

11
6

) T−1∑
t=0

∥xt+1 − xt∥2 +
L

4κ
11
6

(
R2 +

2Rκ1.5√
L

+
3κ

11
6

L
+ 3κ

11
3

T−1∑
j=1

∥xj+1 − xj∥2
)

≤ −
(1− 2β

2ηx
− 3Lκ

11
6

) T−1∑
t=0

∥xt+1 − xt∥2 +
LR2

4κ
11
6

+
R
√
L

2κ
1
3

+ 1 (12)

where (i) uses x−1 = x0, ∥y∗(x0)− y0∥ ≤ R and eq. (11). When ηx ≤ 1

16Lκ
11
6

and β ≤ 1
4 , rearranging the above inequality

yields that

Lκ
11
6

T−1∑
t=0

∥xt+1 − xt∥2 ≤ Φ(x0) + g(x0)− inf
x∈Rm

(
Φ(x) + g(x)

)
+
LR2

4κ
11
6

+
R
√
L

2κ
1
3

+ 1 < +∞ (13)

Letting T → ∞ in the above inequality yields that
∑∞

t=0 ∥xt+1 − xt∥2 < +∞, so ∥xt+1 − xt∥
t→ 0. Then, letting T → ∞

in eq. (11) yields that
∑∞

t=0 ∥yt+1 − y∗(xt+1)∥2 ≤ 2Rκ1.5
√
L

+ 3κ
11
6

L + 3κ
11
3

∑∞
j=1 ∥xj+1 − xj∥2 < +∞, so ∥yt − y∗(xt)∥

t→ 0.

The last term ∥yt+1 − yt∥
t→ 0 can be proved as follows.

∥yt+1 − yt∥ ≤ ∥yt+1 − y∗(xt+1)∥+ ∥y∗(xt)− yt∥+ ∥y∗(xt+1)− y∗(xt)∥
(i)

≤ ∥yt+1 − y∗(xt+1)∥+ ∥yt − y∗(xt)∥+ κ∥xt+1 − xt∥
t→ 0,

where (i) uses the fact that y∗ is κ-Lipschitz.

APPENDIX D
PROOF OF THEOREM 1

Theorem 1 (Global convergence). Under the conditions of Proposition 3 and stepsize ηx ≤ 1/(16Lκ
11
6 ), the sequence {xt}t

generated by proximal-AltGDAm is bounded and has a compact set of limit points. Also, every such limit point is a critical
point of (Φ+ g)(x). Moreover, the total number of iterations T required to achieve min0≤t≤T ∥G(xt)∥ ≤ ϵ is T = O

(
κ

11
6 ϵ−2

)
,

which is also the order of the required computational complexity.

Proof. We first prove the existence of the limit points of {xt}. Note that in eq. (12), 1−2β
2ηx

− 2Lκ
11
6 ≥ 0 since ηx ≤ 1

16Lκ
11
6

and β ≤ 1
4 as specified in Proposition 3. Hence, for all T ≥ 0,

Φ(xT ) + g(xT ) ≤ Φ(x0) + g(x0) +
LR2

4κ
11
6

+
R
√
L

2κ
1
3

+ 1 < +∞,



which implies that {Φ(xt) + g(xt)}t is upper bounded. Hence, based on Assumption 1.2, the sequence {xt}t is bounded and
thus has a compact set of limit points.

Next, we prove that every limit point x of {xt}t is a critical point of (Φ + g)(x), i.e., 0 ∈ ∂(Φ + g)(x). By the optimality
condition of the proximal gradient update of xt+1 we have

0 ∈ ∂g(xt+1) +
1

ηx

(
xt+1 − x̃t + ηx∇1f(xt, yt)

)
= ∂g(xt+1) +

1

ηx

(
xt+1 − xt − β(xt − xt−1) + ηx∇1f(xt, yt)

)
,

which implies that − 1
ηx

(
xt+1 − xt − β(xt − xt−1) + ηx∇1f(xt, yt)

)
∈ ∂g(xt+1) and thus by convexity of g we have

g(x) ≥ g(xt(j)+1)−
1

ηx

(
xt+1 − xt − β(xt − xt−1) + ηx∇1f(xt, yt)

)⊤
(x− xt(j)+1);∀x ∈ Rm. (14)

As xt(j)
j→ x∗ and ∥yt(j) − y∗(xt(j))∥

t→ 0, we have yt(j)
t→ y∗(x∗) due to continuity of y∗(·). Also note that the convex

function g is continuous (See Corollary 10.1.1 of [35]). Hence, letting j → ∞ in eq. (14) yields that

g(x) ≥ g(x∗)−∇1f(x
∗, y∗(x∗)⊤(x− x∗) = g(x∗)−∇Φ(x∗)⊤(x− x∗);∀x ∈ Rm, (15)

which further implies that −∇Φ(x∗) ∈ ∂g(x∗) ⇒ 0 ∈ ∂(Φ + g)(x∗). Hence, x∗ in a critical point of (Φ + g)(x).

Finally, we derive the non-asymptotic computational complexity to obtain min0≤t≤T ∥G(xt)∥ ≤ ϵ. Note that

∥G(xt+1)∥ =
1

ηx

∥∥xt+1 − proxηxg

(
xt+1 − ηx∇Φ(xt+1)

)∥∥
(i)

≤ 1

ηx

∥∥xt+1 − x̃t + ηx
[
∇1f(xt, yt)−∇f1

(
xt+1, y

∗(xt+1)
)]∥∥

≤ 1

ηx

∥∥xt+1 − xt − β(xt − xt−1)
∥∥+ L∥xt+1 − xt∥+ L∥y∗(xt+1)− y∗(xt)∥+ L∥y∗(xt)− yt∥

(ii)

≤
( 1

ηx
+ L+ Lκ

)
∥xt+1 − xt∥+

β

ηx
∥xt − xt−1∥+ L∥y∗(xt)− yt∥,

where (i) uses xt+1 ∈ proxηxg

(
x̃t − ηx∇1f(xt, yt)

)
, ∇Φ(x) = ∇f1

(
x, y∗(x)

)
(from Proposition 1) and the non-expansiveness

of proximal mapping, (ii) uses the property that y∗ is κ-Lipschitz continuous in Proposition 1. Hence,

(T − 1) min
0≤t≤T

∥G(xt)∥2

≤ (T − 1) min
1≤t≤T−1

∥G(xt+1)∥2

≤
T−1∑
t=1

∥G(xt+1)∥2

≤
T−1∑
t=1

[
3
( 1

ηx
+ L+ Lκ

)2
∥xt+1 − xt∥2 +

3β2

η2x
∥xt − xt−1∥2 + 3L2∥y∗(xt)− yt∥2

]
(i)

≤ 3(18Lκ
11
6 )2

T−1∑
t=0

∥xt+1 − xt∥2 + 27L2κ
11
3

T−1∑
t=0

∥xt+1 − xt∥2 + 3L2
T−1∑
t=0

∥y∗(xt)− yt∥2

(ii)

≤ 999L2κ
11
3

T−1∑
t=0

∥xt+1 − xt∥2 + 3L2
(2Rκ1.5√

L
+

3κ
11
6

L
+ 3κ

11
3

T−1∑
j=1

∥xj+1 − xj∥2
)
+ 3L2∥y∗(x0)− y0∥2,

(iii)

≤ 1008L2κ
11
3

Lκ
11
6

(
Φ(x0) + g(x0)− inf

x∈Rm

(
Φ(x) + g(x)

)
+
LR2

4κ
11
6

+
R
√
L

2κ
1
3

+ 1
)
+ 6RL1.5κ1.5 + 9Lκ

11
6 + 3L2R2

= O(κ
11
6 ).

where (i) uses β ≤ 1
4 and the maximum possible stepsize ηx = 1

16Lκ
11
6

, (ii) uses eq. (11), and (iii) uses eq. (13) and the

fact that Y is bounded with diameter R. Based on the above inequality, when the number of iterations T ≥ O(κ
11
6 ϵ−2),

min0≤t≤T ∥G(xt)∥ ≤
√
O(κ

11
6 )/(T − 1) ≤ ϵ. Since each iteration has O(1) number of gradient and proximal mapping

evaluations, the order of computational complexity is also O(κ
11
6 ϵ−2).



APPENDIX E
DERIVIATION OF COMPUTATIONAL COMPLEXITIES IN TABLE I

In this section, we will derive some computational complexities in Table I that are not directly shown in their corresponding
papers. Note that all these GDA-type algorithms in Table I are single-loop. Hence, the computational complexity (the number
of gradient evaluations) has the order of O(T ) where T is the number of iterations.

First, the papers in Table I use different convergence measures for computational complexity. Specifically, [5], [17] and our
work show computational complexity to achieve ∥G(x)∥ ≤ ϵ where the proximal gradient mapping G is defined in (5). [4], [23]
use the measure mint dist

(
Φ(xt) + ∂g(xt),0

)
≤ ϵ where Φ(x) := maxy∈Y f(x, y)− h(y), ∂g denotes the partial gradient of g

and dist
(
A,0

)
denotes the distance between 0 and any set A. [42] has no regularizers g, h and uses the convergence measure

mint ∥∇f(xt, yt)∥ ≤ ϵ when y ∈ Rd is unconstrained, which does not necessarily yield the desired approximate critical point
of Φ.

A. Derivation of complexity in [5]

In [5], Proposition 2 states that the Lyapunov function H(zt) := Φ(xt)+g(xt)+(1− 1
4κ2 )∥yt−y∗(xt)∥2 where zt := (xt, yt)

are generated by GDA decreases at the following rate.

H(zt+1) ≤ H(zt)− 2∥xt+1 − xt∥2 −
1

4κ2
(
∥yt+1 − y∗(xt+1)∥2 + ∥yt − y∗(xt)∥2

)
. (16)

Note that for GDA, the gradient mapping (5) has the following norm bound

∥G(xt+1)∥ =
1

ηx

∥∥xt+1 − proxηxg

(
xt+1 − ηx∇Φ(xt+1)

)∥∥
(i)

≤ 1

ηx

∥∥xt+1 − xt + ηx
[
∇1f(xt, yt)−∇f1

(
xt+1, y

∗(xt+1)
)]∥∥

≤
( 1

ηx
+ L

)
∥xt+1 − xt∥+ L∥y∗(xt+1)− y∗(xt)∥+ L∥y∗(xt)− yt∥

(ii)

≤
( 1

ηx
+ L+ Lκ

)
∥xt+1 − xt∥+ L∥y∗(xt)− yt∥

where (i) uses the GDA update rule xt+1 ∈ proxηxg

(
xt−ηx∇1f(xt, yt)

)
, the expression ∇Φ(x) = ∇f1

(
x, y∗(x)

)
in Proposition

1 and the non-expansiveness of proximal mapping, (ii) uses the property that y∗ is κ-Lipschitz continuous Proposition 1. Hence,
we obtain the following convergence rate.

min
0≤t≤T

∥G(xt)∥2 ≤ 1

T

T−1∑
t=0

∥G(xt+1)∥2

≤ 1

T

T−1∑
t=0

[
2
( 1

ηx
+ L+ Lκ

)2
∥xt+1 − xt∥2 + 2L2∥y∗(xt)− yt∥2

]
(i)

≤ 1

T

T−1∑
t=0

[
O(κ6)∥xt+1 − xt∥2 + 2L2∥y∗(xt)− yt∥2

]
≤ O(κ6)

T

T−1∑
t=0

(
2∥xt+1 − xt∥2 +

1

4κ2
∥yt+1 − y∗(xt+1)∥2

)
(ii)

≤ O(κ6)

T

T−1∑
t=0

(
H(zt)−H(zt+1)

)
≤ O(κ6)

T

(
H(z0)−H(zT )

)
(17)

where (i) uses the maximum possible stepsize ηx = 1
κ3(L+3)2 = O(κ−3) in [5]. Therefore, To let min0≤t≤T ∥G(xt)∥ ≤ ϵ, the

computational complexity has the order T = O(κ6ϵ−2).

B. Derivation of complexity in [17]

The mirror descent ascent algorithm (Algorithm 1) in [17] updates the variables x and y simultaneously using proximal mirror
descent and momentum accelerated mirror ascent steps respectively. Specifically, using the Bregman functions ψt(x) :=

1
2∥x∥

2

and ϕt(y) :=
1
2∥y∥

2 which are both ρ = 1-strongly convex, this algorithm becomes proximal GDA with momentum on y
variable.



Substituting ρ = 1 into Theorem 2 that provides convergence rate under deterministic minimax optimization (i.e., there are
no stochastic samples in the objective function), we obtain the following hyperparameter choices η = O(1), L = Lf (1 + κ) =

O(Lfκ)
1, λ = O(L−1

f ), γ = O
[
min

(
L−1,

µ/Lf

κ2 ,
µ/Lf

L2
f

)]
= O

[
min(L−1

f κ−1, κ−3, L−2
f κ−1)

]
= O(κ−3) (Without loss of

generality, we assume µ ≤ 1 which implies that κ = Lf/µ ≥ Lf ). Then the convergence rate (25) becomes

min
1≤t≤T

∥G(xt)∥ ≤ 1

T

T∑
t=1

∥Gt∥ ≤ O

(√
F̃ (x1)− F ∗ +∆1

√
Tγρ

)

(i)
= O

(√
Φ(x1) + g(x1)− infx

(
Φ(x) + g(x)

)
+ ∥y1 − y∗(x1)∥

√
Tκ−3

)
(18)

where (i) uses the notations in [17] that Gt = G(xt), F̃ (x) = Φ(x) + g(x), ∆1 = ∥y1 − y∗(x1)∥ and the above hyperparameter
choices. Hence, to achieve min1≤t≤T ∥Gt∥ ≤ ϵ, the required computation complexity is T ≥ O

(
κ3ϵ−2

(
Φ(x1) + g(x1) −

infx(Φ(x) + g(x)) + ∥y1 − y∗(x1)∥2
))

. In Table I, we only keep the dependence of T (ϵ) on ϵ ≈ 0 and κ≫ 1, which yields
O
(
κ3ϵ−2

)
.

C. Derivation of complexity in [42]

[42] aims to solve the following minimax optimization

min
x∈X

max
y∈Y

f(x, y).

where X and Y are nonempty closed convex sets and Y is also compact. The following AltGDA algorithm with projection
mappings PX and PY is analyzed for nonconvex-strongly concave geometry where f is L-smooth2 and f(·, y) is µ-strongly
concave for any y ∈ Y . {

xk+1 = PX
(
xk − η−1∇xf(xk, yk)

)
yk+1 = PY

(
yk + ρ∇yf(xk+1, yk)

) (19)

Using the largest possible stepsizes η−1 = O(L−1κ−3), ρ = O(µL−2) = O(L−1κ−1) that satisfies eq. (3.18), the following
key variables in Theorem 3.1 can be computed as follows.

d1 =O(L−1κ−5)

F1 − F =f(x1, y1)− min
x∈X ,y∈Y

f(x, y) +O(Lκ3σ2
y)

where σy is the diameter of the compact set Y . Hence the number of iterations (also the order of the computation complexity)
required to achieve ∥∇xf(xk, yk)∥ ≤ ϵ, 1

ρ

∥∥yk − PY
(
yk + ρ∇yf(xk, yk)

)∥∥ ≤ ϵ (note that this does not necessarily yields
approximate critical point of Φ(x) := maxy∈Y f(x, y)) is

T (ϵ) = O
(F1 − F

d1ϵ2

)
= O

(
ϵ−2Lκ5

(
f1 − min

x∈X ,y∈Y
f(x, y) + 32Lκ3σ2

y

))
.

In Table I, we only keep the dependence of T (ϵ) on ϵ ≈ 0 and κ≫ 1, which yields O
(
κ5ϵ−2

)
.

1Lf in [17] has the same meaning as our L, the Lipschitz parameter of ∇f .
2In Assumption 2.1 of [42], let all the Lipschitz smooth parameters Lx = Ly = L12 = L21 := L for simplicity.
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