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Abstract—Software performance is a critical quality attribute that determines the success of a software system. However, practitioners
lack comprehensive and holistic understanding of how real-life performance issues are caused and resolved in practice from the technical,
engineering, and economic perspectives. This paper presents a large-scale empirical study of 570 real-life performance issues from 13
open source projects from various problem domains, and implemented in three popular programming languages, Java (192 issues),

C/C++ (162 issues), and Python (216 issues). From the technical perspective, we summarize eight general types of performance issues

with corresponding root causes and resolutions that apply for all three languages. We also identify available tools for detecting and
resolving different types of issues from the literature. In addition, we found that 27% of the 570 issues are resolved by design-level
optimization—coordinated revision of a group of related source files and their design structure. We reveal four typical design-level
optimization patterns, including classic design patterns, change propagation, optimization clone, and parallel optimization that
practitioners should be aware of in resolving performance issues. From the engineering perspective, this study analyzes how test code
changes in performance optimization. We found that only 15% of the 570 performance issues involve revision of test code. In most cases,
the revised test cases focus on the functional logic of the performance optimization, rather than directly evaluate the performance
improvement. This finding points to the potential lack of engineering standard for formally verifying performance optimization in regression
testing. Finally, from the economic perspective, we analyze the “Return On Investment” of performance optimization. We found that
design-level optimization usually requires more investment, but not always yields to higher performance improvement. However,
developers tend to use design-level optimization when they concern about other quality attributes, such as maintainability and readability.

Index Terms—software performance, software design structure, design patterns, testing code

1 INTRODUCTION

Software performance is a critical quality attribute
measured by the timeliness, responsiveness, and resource
consumption of a system at run-time [1], [2], [3], [4],
[5]. Performance issues can lead to severe consequences,
including budget overrun, project delay, and market loss [1],
[4]. Despite the numerous prior studies that investigate the
causes and resolutions of real-life performance issues [4],
[6], [7], [8], [9], practitioners still lack a comprehensive and
holistic understanding of how performance issues are caused,
resolved, and tested from the technical, engineering, and
economic perspective.

First of all, from the technical perspective, practitioners
still miss the full landscape of common types of performance
issues and their respective resolutions. On the one hand,
most existing studies focus on a specific type of performance
issues. For example, a well studied type of performance
issues is caused by inefficient loop iterations [10], [11], [12],
[13], [14]. On the other hand, the few empirical studies [4],
[6] that reveal the categorization of common performance
issues are based on relatively small datasets—e.g. only 100
and 109 performance issues are investigated in [4] and [6],
respectively. They usually focus on a specific programming
language or a specific software project domain, such as
JavaScript [9] or Android smart-phone applications [7], [8].
This study aims to contribute a comprehensive overview of
different types of performance issues based on a much larger
scale dataset containing 570 real-life performance issues.
These issues are from open-source projects implemented in
three popular programming languages—;Java, Python, C/C++.
This enables the analysis of the impact of programming
language on the causes and resolutions of performance issues

in practice.

In addition, in existing literature, performance issues
are often treated by code-level fixes, e.g. a few lines
of code revision in a single source file [10], [13].
However, practitioners often encounter performance issues
with architectural roots, including the unwitting use of
architectural performance anti-patterns, such as god classes
that induce foci of overload in hardware or software
objects [15]. To the best of our knowledge, we are the
first to investigate performance optimization from a design
perspective. More specifically, we divide performance
optimization into two general types: 1) the localized
optimization which is implemented in a few lines of code in
a single source file; and 2) the design-level optimization that
involves coordinated revision of a group of related source
files and their design structure. A typical example of localized
optimization is the resolution of fixing inefficient iterations
by adding a single line checking condition to “break” the
loop. While a typical example of design-level optimization
is the resolution of issue AVRO-753 [16] (discussed in detail
in Section 5). The program becomes very slow for special
input types. In the resolution, developers employed a factory
design pattern to separate and encapsulate the algorithms for
treating different input types into different factories. Without
the factory design pattern, there will be a potential god class
overloaded with responsibilities for treating all input types.
In this study, we reveal the typical design-level optimization
patterns in resolving performance issues.

Furthermore, from the engineering perspective, software
testing is an inseparable part of modern software engineering
process, especially for agile approaches [1], [17], [18],
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[19]. Practitioners often rely on test cases to identify
performance issues before releasing the product [2],
[19]. Thus, testing should also be an essential aspect
in performance optimization. However, there is little
understanding regarding whether and how performance
optimization leads to revision of related test cases. This
study fills this gap by conducting a holistic analysis
of the test-production co-change patterns that appear in
performance optimization. The goal is to provide insights for
practitioners to treat performance optimization and testing
as an integrated task.

Finally, software development is constrained by limited
time and resources in practice. However, most existing
work treats performance issues from purely technical
perspectives, without considering the economics behind
resolving performance issues. To fill this gap, this study
evaluates the ROI (Return on Investment) for addressing
each performance issue in our dataset. As the proxy for the
investment, we measure the number of engaged developers
and the number of discussions for resolving each issue.
As for the return, we measure the extent of performance
improvement from fixing each issue. Additionally, we argue
that performance optimization may also concern other
long-term benefits as the return, such as design quality and
code maintainability. The tricky part is that these benefits
are mostly implicit to measure. Thus, we extract related
information from developers” discussions and comments
when they address the performance issues. We compare the
ROI between the localized and design-level optimization
resolution to provide for the purpose of prioritizing different
optimization strategies in practice.

In summary, this study fills the above gaps in
practitioners” understanding regarding real-life performance
issues by answering four research questions:

o  RQI1-What are the common root causes and resolutions
of performance issues? We summarize and categorize
common types of performance issues based on 570
real-life performance issues from open source projects
implemented in three commonly used languages,
Java, Python, and C/C++. We also conduct extensive
literature review to find available tools for detecting
and fixing related performance issues. We are
particularly interested in investigating the impact of
programming language on performance issues.

o RQ2-Whether and how performance issues are addressed
by design-level optimization? We first show how often
performance issues in our dataset are resolved
by design-level optimization. Next, we reveal the
common design-level optimization patterns and why
they are necessary in resolving some performance
issues. In particular, we are interested in finding out
whether the design-level optimization patterns differ
for issues in different programming language.

o RQ3-Whether and how does the testing code change
with performance optimization? We first measure how
often developers revise test code in performance
optimization. Next, we investigate to what extent the
revised test code and production code are related
to each other, and what are the test-production
co-change patterns in performance optimization.

2

o RQ4-What is the ROI for fixing performance issues? We
aim to compare the ROI of localized and design-level
optimization. In addition, we examine whether and
how the ROI of performance optimization differs for
different programming languages.

This work is a substantial extension to our prior work [20],
including the four key aspects:

o The original study only includes 192 performance
issues from Java projects; while this study extends the
dataset to include additional 378 performance issues
from Python (162 issues) and C/C++ (216 issues)
projects. This allows us to gain a more comprehensive
understanding of real-life performance issues.

e We particularly focus on analyzing the impact
of programming language on the root causes,
the design-level optimization patterns, the ROI in
performance optimization.

e We add a new research question that investigates
whether and how test code changes in performance
optimization. This provides a holistic angle to
examine test code maintenance and evolution as
an integral engineering process in performance
optimization.

e In the ROI analysis, we investigate whether and how
other aspects of concerns, such as maintainability,
co-occur as return with performance optimization.
In particular, we reveal whether localized and
design-level optimization associate with other aspects
of concern differently.

The key motivation of this extension is to help
practitioners gain a comprehensive understanding of
real-life performance issues that are based on different
programming languages. We chose Java, Python, and C++,
because these three programming languages are the most
popular object-oriented programming languages in the recent
decade [21], [22]. Due to their popularity and wide use in
practice, our study can potentially benefit a broad group
of practitioners who use these three languages in their
daily practice. The comparison of the three programming
languages cross-cuts three research questions. The goal
is to reveal potential impact of programming language
on root causes (RQ1), design-level optimization (RQ?2),
and ROI (RQ4). This sheds light on the potential impact
of programming language on the performance issues for
practitioners. It is worth noting that, overall, the root
causes, design-level optimization patterns, and performance
improvement factors are not significantly impacted by the
choice of programming language. While performance issues
in C++, tend to yield the highest performance improvement
(more than 200 times improvement), compared to Java and
Python.

This study contributes unique insights for practitioners
who concern software performance in the following aspects:

e Root cause: We summarize eight common root
causes of real-life performance issues, which are
general to the three programming languages and
provide a comprehensive overview for practitioners.
Developers may benefit from existing tools that focus
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on different root causes, but the availability and
usability of these tools could be an issue.

o Design-level Optimization: A non-trivial portion
of real-life performance issues requires design-level
optimization, despite the programming language. We
summarize four types of design-level optimization
patterns, including 1) Classic Pattern, 2) Change
Propagation, 3) Optimization Clone, and 4) Parallel
Optimization. This provides empirical insights for
practitioners in terms of how performance issues may
be addressed at the design-level.

o Test/Production Code Co-change: Only 15% of
the performance issues involve test code revision.
From these issues, we discover five test-production
co-change patterns, including 1) Method Replacement,
2) Performance Input Revision, 3) Test Logic
Modification, 4) Test Case Addition, and 5) Test
File Addition. Among these five patterns, only the
Performance Input Revision pattern directly targets at
verifying the performance of the program in different
input, while the other four patterns indirectly verify
the effectiveness of the performance optimization
by focusing on the functional logic of the revised
production code. Therefore, performance testing is
a potential weak point in the practice of regression
testing.

e ROI: Generally, design-level optimization requires
more investment to implement compared to localized
optimization, and does not always result in higher
performance improvement. However, for all the three
programming languages, design-level optimizations
are more likely to be associated with return in other
aspects of concerns, such as maintainability and
readability, etc. We imply that one motivating scenario
for design-level optimization is for achieving the
long-term benefits while fixing performance issues.

The remainder of the paper is organized as following.
Section 2 introduces the background techniques for us
to analyze design-level optimization resolution. Section 3
discusses the research questions and the rationale in detail.
Section 4 introduces the dataset and overall study approach
for answering the research questions. Section 5 presents the
study results. Section 6 discusses the threats and limitations
in this work. Section 7 discusses related work. Section 8
concludes the paper.

2 BACKGROUND
2.1 Design Structure Matrix (DSM)

Design Structure Matrix (DSM) is proposed by Baldwin and
Clark [23] to capture the complexity of system design. A DSM
is a square matrix, in which each design variable corresponds
both to a row and a column of the matrix. A cell is checked
if and only if the design decision corresponding to its row
depends on the design decision corresponding to the column.
A DSM represents modules as blocks along the diagonal.
DSM is often used in modeling software systems [24], [25].
The elements can represent source files. Each cell captures
the different types of structural dependencies of the file on
the row to the file on the column. In this work, we model

3
1 2 3 4 5
1 TrueTypeFont (1)
2 PDTrueTypeFont ext (2)
3 GlyfCompositeDescript |dp (3)
4 TTFGlyph2D dp dp (4)
5 CIDType2Container dp (5)

(a) DSM Example: PDFBox-2303 (Before Revision)

1 2 3 4 5 6
1 GlyphTable (1) +dp
2 TrueTypeFont +dp (2)
3 PDTrueTypeFont +dp ext (3)
4 GlyfCompositeDescript |+dp -dp (4)
5 TTFGlyph2D +dp dp dp (5)
6 CIDType2Container dp (6)

(b) Diff-DSM Example: PDFBox-2303 (After Revision)

Fig. 1: Examples of DSM and Diff-DSM

two general types of structural dependency: 1) “Ext”, which
indicates that the file on the row extends the file on the
column; and 2) “dp”, which indicates other general types
of structural dependency, such as method call, from the
file on the row to the file on the column. Figure 1la is a
DSM example containing 5 source files that associate with
performance issue PDFBOX-2303 (elaborated later) in open
source project PDFBox. The rows and columns represent the
source files, arranged in the same order. The cells display the
dependencies among these files. For example, Cell[2, 1] says
“ext”, meaning PDTrueTypeFont (row 2) extends TrueTypeFont
(row 1). Cell[4,2] says “dp”, meaning TTFGlyph2D (row 4)
has a structural dependency on PDTrueTypeFont (row 2).

2.2 Diff-DSM

In this work, we use Diff-DSM, which is built upon the DSM,
to specifically capture the design structure change in software
development. Diff-DSM has the following uniqueness for
the purpose of this study: 1) it only contains files and
their structural dependencies involved in a revision; 2) it
highlights the added and removed files in the revision; and 3)
it highlights the added and removed structural dependencies
among involved source files. A Diff-DSM is automatically
computed by taking a revision ID and the project repository
as the input [26].

As an example, Figure 1b is a Diff-DSM showing the
difference in design structure resulted from fixing the
performance issue PDFBOX-2303. This issue causes slowness
while rendering large external glyphs (e.g. Asian glyphs)
such as “STXihei”. The reason is that the program has to load
and construct objects for 37255 glyph tables and each table is
15.7 Mb. To resolve this issue, developers created a new file,
named GlyphTable, which is responsible of loading individual
glyph table only when necessary. Figure 1b illustrates the
overall design structure change for this resolution. First,
the top row, GlyphTable, is highlighted in green, indicating
that GlyphTable is a new file added in this revision that
contains the core strategy for eliminating unnecessary data
loading. Second, Cell[2, 1], Cell[3, 1], Cell[4, 1], and Cell
[5, 1] say “+dp” (in green font), which indicates that four
files from TrueTypeFont (row 2) to TTFGlyph2D (row 5),
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added dependencies on the new file GlyphTable (row 1) to
leverage the optimized loading strategy. In addition, Cell [4,
2] says “-dp” (red font), meaning GlyfCompositeDescript (row
4) removed dependency from the original TrueTypeFont (row
2) which contains the original loading method that leads
to redundant and unnecessary data loading. As shown in
this example, the Diff-DSM provides a lens for us to review
the rationale of design structure change for performance
optimization.

3 RESEARCH QUESTIONS

As mentioned earlier, this paper aims to answer four research
questions. Here, we discuss each RQ in detail.

RQ1: What are the common root causes of real-life
software performance issues? Practitioners should be aware
of the common types of performance issues to be able to
effectively prevent, identify, and fix performance issues. We
answer this question in two parts:

e RQ-1.1 What are the common root causes of performance
issues? And, how does the programming language impact
the root causes? The motivation of this sub-RQ is to
evaluate the impact of the programming language
on the root causes. On the one hand, we aim to
reveal whether the root causes are general to all
three languages; and on the other hand, we are
also interested to see if certain root causes are
more relevant in a particular language. Related
observations can provide empirical insights for
practitioners using different languages.

e RQ-1.2 How well is each root cause addressed with
available tools? We aim to identify tools from
existing literature that are available to detect and fix
performance issues in real-life projects implemented
with different programming languages.

RQ2: Are performance issues addressed by
design-level optimizations, and if so, how? We hypothesize
that some performance issues require design-level
optimization to maximize performance improvements and
ensure code quality at the same time. We address this RQ in
two parts as well:

e RQ-2.1 What percentage of performance issues require
design-level optimization? And, what are the typical
design-level optimization patterns? We distinguish local
and design-level optimization resolution based on the
scope of change in fixing performance issues. For the
design-level resolution, we further investigate what
are the typical design-level optimization patterns
and why they are necessary in addressing some
performance issues.

e RQ-2.2 Does programming language impact the
design-level optimization patterns? We examine whether
and how the programming language impacts
the design-level optimization patterns and their
distribution.

e RQ-2.3 Do root causes or project domains impact the
design-level optimization patterns? We examine the
distribution of the design-level optimization over
two other dimensions, including the root causes and
project domains. The goal is to reveal whether these

4

factors impact the choice of design-level optimization
patterns.

RQ3: Does the test code change with performance
optimizations, and if so, how? Software testing is an
integrated part of modern software development. Software
performance issues are often detected by executing the
test cases to find the “hot-spots” [27], [28], [29]. This RQ
investigates how likely the test code changes together with
the performance optimization, and also reveals the nature
of the co-change between test code and production code in
performance optimization. We address this RQ in two parts:

e RQ-3.1 How often do practitioners change test code in
performance optimization? We assume that design-level
optimization is more likely to involve test code
revision compared to localized optimization due to
the larger change scope and complexity of change.

o RQ-3.2 What are the common test-production co-change
patterns in performance optimization? We reveal whether
and how the revision of production code for
performance optimization cause changes to the test
code. We categorize the test-production co-change
patterns to understand the nature of causality.

RQ4: What is the ROI (Return on Investment) for fixing
performance issues? Software development is constrained
by limited resource and time, and concerns quality attributes
other than performance,. This RQ helps practitioners treat
performance issues economically. We address this RQ in two
parts as well:

o RQ-4.1 What is the overall ROI for addressing performance
issues? In particular, do developers concern about other
aspects of benefits in performance optimization? We
measure the number of involved developers and the
number of discussions as the proxy of investment,
and measure the extent of performance improvement
as the return. In addition, we investigate whether
developers also concern other aspects of benefits, such
as maintainability and readability, when addressing
performance issues.

e RQ-4.2 How is the ROI of localized and design-level
optimization compared to each other? We focus on
comparing the ROI of localized and design-level
optimization. This provides insights for practitioners
to prioritize the two optimization strategies. In
particular, we assume that developers prone
to design-level optimization when they also
concern about other aspects of benefits, such as
maintainability, as the return.

4 STUDY SUBJECTS AND APPROACH
4.1 Study Subjects

This study focus on a total of 570 performance issues from 13
open source projects from the Apache Software Foundation [43].
Table 1 summarizes the facts about the study subjects and
performance issues.

These subjects were selected based on the following
considerations. First, these projects are implemented in three
very commonly used programming languages, including
Java (row 1 to row 5), Python (row 6 to row 10), and
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TABLE 1: Facts about the Study Subjects and Performance Issues

ID  Subject Apache Category Description Focused Lan in Code Base (%) #Issues # Perf-key # Verified # Resolved # Issues Merged by PL

1 PDFBox [30] Content, Library PDF Library Java (99%) 3,855 135 93 74

2 Avro [31] Big-data, Library Data Serialization Java (44%) 2,151 135 113 41

3 Groovy [32] Library Programming Language Java (98%) 8,476 137 107 36

4 Collections [33]  Build Management Dependency Manager Java (99%) 435 51 46 23

5 Ivy[34] Build Management Dependency Manager Java (95%) 1,522 54 41 18 192

6  Beam [35] Big-data Streaming Data Model Python (18%) 7,940 254 155 98

7 Qpid [36] Server-client Enterprise Message System Python (100%) 7,778 102 97 35

8  LibCloud [37] Cloud Storage Manager Python (99%) 593 29 20 18

9  Climate [38] Content Climate Model Python (96%) 857 16 13 9

10  PyLucene [39] Search Search Engine Library Python (39%) 42 4 2 2 162

11 PHP [40] Language Programming Language C++ (97%) 123,660 309 186 149

12 Kudu [41] Big-data Storage Manager C++ (90%) 2,336 54 38 34

13 Mesos [42] Cloud Cluster Manager C++ (92%) 7,101 41 38 33 216
Total 166,747 1,421 939 570 570

Note: Column 1 (“ID”) shows the ID of the studied project.
Column 2 (“Subject”) shows the name of the project.

Column 3 (“Apache Category”) shows the domain of the project, as specified on the Apache Software Foundation [43].

Column 4 (“Description”) is a brief description of the project.

Column 5 (“Focused Lan in Code Base (%)”) shows the focused programming language and its percentage in code base of the project.
Column 6 (“# Issues”) shows the total number of issues in the issue tracking system of the project.

Column 7 (“# Perf-key”) shows the number of issues that match the keywords that are relevant to performance.

Column 8 (“# Verified”) shows the number of manually verified performance issues of the project.

Column 9 (“# Resolved”) shows the number of verified performance issues that have code revision in the project.

Column 10 (“# Issue Merged by PL”) shows the number of studied performance issues for each programming language.

C++ (row 11 to row 13). Of a particular note, as shown
in the column “Focused Lan in Code Base (%)”, for most
projects, we study the main programming language, which
accounts for more than 90% of the code base. Avro, Beam,
and PyLucene are exceptions—the language we focus on
takes 44% (Java), 18% (Python), and 39% (Python) of their
code bases, respectively. When analyzing each issue, we
confirm the programming language in the issue resolution.
Thus, whether we focus on the main language of a project
does not impact the validity of our findings. Overall, our
study includes 192 performance issues from Java projects,
162 from Python projects, and 216 from C++ projects. This
helps us to investigate the impact of language on the causes
and resolutions of real-life performance issues. Second, the
projects are in different domains as shown in the column
“Description”. Thus performance issues from these projects
represent diverse features of various domains. The data
diversity helps us draw general observations of real-life
performance issues of different natures. Third, these projects
are all well accepted, successful, and are all still active
in the open source community. Lastly, the source code,
version control repository, and issue-tracking systems of
these subjects are all well organized and readily available
on the Apache Software Foundation [43]. They provide high
quality performance issue data for our study.

4.2 Study Approach

Figure 2 shows the overview of our approach, which comes
in five main steps:

o Step 1: Data Collection. We collect the performance
issues from the issue tracking systems of the selected
projects.

e Step 2: Root Cause Analysis. We perform root
cause analysis of the retrieved performance issues
by inspecting both the issue reports and the code
revision, and then we identify available tools for
addressing related issues from the literature (RQ1).

e Step 3: Design-Level Optimization Analysis. We
focus on analyzing the performance issues that
require design-level optimization (RQ2).

ECode Repositori

E—"

| Issue Tracking System I

Step 1: Data Collection
Keyword Manual Code Revision
Matching Verification Collection
Step 2: Root Cause Analysis
Issue Report Code Revision Literature
Annotation Inspection Review
. r"_—_"-— ‘_: _______ =4

Design-Level Localized
Optimization Optimization

e
Step 3: Design- Step 4: Step 5: ROI
level Optimization ([ Test/Production Analysis
Analysis Code Co-change
Diff-DSM Analysis Discussion
Rgversg Coverage Analysis
Engineering Analysis
Profiling Data
Optimization Co-change Analysis
Core Marking Pattern
Inspection Other Aspects
Optimization of Concerns
Pattern Analysis
Inspection

Fig. 2: Study Overview

e Step 4: Test/Production Code Co-Change Analysis.
We analyze the test code revision involved in
performance optimization (RQ3).

e Step 5: ROI Analysis. We examine the Return on
Investment (ROI) of the performance issues (RQ4).

Table 2 lists the data items that we extract in the study
steps for synthesizing the results and insights for the RQs.
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For the sake of transparency, the detailed data described
in Table 2 is shared here: https://doi.org/10.5281/zenodo.
6383167. In the following, we elaborate each on step:

4.2.1 Step 1: Data Collection

As shown in Table 1, we initially collected a total of 166,747
issues the issue tracking systems of the 13 projects. These
issues dated back to the creation of each project. First, we
apply keyword matching to select issues that are relevant to
performance, similar to the practice in prior studies [6], [44],
[45]. The keywords used include: “fast, slow, perform, latency,
throughput, optimize, speed, heuristic, waste, efficient, unnecessary,
redundant, too many times, lot of time, too much time”. These are
the combination of the keywords used in previous studies. If
the summary or description of an issue report contains one
or more keywords, it is potentially a performance issue. As
shown in the fourth column in Table 1, a total of 1,225 issues
were kept by matching relevant keywords.

Next, we manually read and verify each issue report
to exclude false positives. For example, “performance”
sometimes refers to the productivity of the developers.
This further distills a total of 868 issues shown in Column
“Verified” of Table 1.

We identify and collect the code revision(s) for each
performance issue from either 1) the proposed patch(es)
in the Apache JIRA issue reports if available, or 2) from the
projects code repository, such as Github, by locating the issue
ID that appeared in the commit message. Issues without
linked solutions, either because they were not solved or
because the linkage was missing, are dropped. We finally
identified 570 resolved performance issues for this study.
These issues are referred to by their IDs (i.e. D1 in Table 2).

In preparing for the following steps, we manually
annotate four key aspects of information (if available) in each
issue report. They are: 1) the text that describes root cause
(D2), 2) the proposed solution, 3) the profiling data (D12), and
4) any other aspects of concerns (D15) e.g. maintainability,
readability, etc. Figure 3 is an example of an annotated issue
report, PDFBOX-591 [46].

4.2.2 Step 2: Root Cause Analysis

This step aims to reveal the recurring root causes (RQ-1.1)
and identify tools from the literature (RQ-1.2).

For RQ-1.1, we apply open coding to derive the root
cause categorization [47]. First, we summarize the root cause
of each issue in brief terms (D3) based on the extracted
root cause description (D2) from the issue report. Also,
we manually inspect and summarize the code revision(s)
of each issue to gain in-depth understanding of the root
cause and resolution to consolidate the summary in D3.
We first do so on 50 randomly selected issues of each
programming language to generate the initial set of D3
coding of the root causes. Next, we involve all authors to
discuss, merge, and consolidate the D3 codes to generate
the initial code book (D4) that captures the recurring root
causes. For example, “loop break” and “infinite iteration” are
merged to Inefficient Iteration performance issues. Similarly,
“adding buffer” and “cache optimization” are merged to Repeated
Computation, since the goal of adding or optimizing a buffer
or a cache is to store the calculated results to avoid repeated
computation. In the follow-up analysis of the remaining

PDFBox-591:
arser.readUntilEndStream() rewrite

Root Cause: The current implementation of this method uses
a very slow test for end of stream conditions. A profile of the
readUntilEndStream() method shows that a huge chunk of the
method’s processing time is being consumed in the cmpCircu-
larBuffer() call - which is purely part of the test for the end of
stream marker. In other words, the readUntilEndOfStream()
is spending twice as much time testing for the end of stream
marker as it is reading bytes from the stream.

Proposed Solution: A better solution is to use a simpler,
direct fail-fast test conditional structure that uses byte prim-
itives. I strongly recommend that the current method be re-
moved and replaced with the following code below.
Profiling Data: This results in a relative speed up of readUn-
tilEndStream() method of a little over a factor of 3 (a ratio of
113/37 = 3.05 if you want to be more precise). This in turn helps
the overall performance of PDDocument.parse() by about a
factor of 2.7.

Other Concerns: Note the addition of some byte constants
used to make the code readable”

PDFBox Performance Issue: BaseP-

Fig. 3: Issue Annotation-PDFBOX-591

issues, we also summarize the root cause of each issue in
brief terms (D3), and then categorize each issue following
the D4 root cause code book. The authors of this study
hold group discussion for resolving uncertain cases in this
process. We found that the initial code book based on
50 issues of each language is quite representative of the
remaining issues, therefore, no new code (root cause types)
are added in the following up analysis. We also found
that, some issues match multiple root causes. For example,
PDFBOX-1337 [48] matches both Inefficient Synchronization
and Inefficient Data Structure. In this issue, a dead lock
appears with more than 6 threads. Developers replaced
the original data structure, SynchronizedMap, with a more
efficient data structure, ConcurrentHashMap, which avoids
the multi-thread blocking.

For RQ-1.2, we perform an extensive literature review to
identify the tools for detecting and/or fixing performance
issues of different root causes. The literature review follows
the procedure for performing systematic reviews [49]. The
literature selection is composed of three rounds:

o 1st Round—Initial Selection: we define the search
string as “(Software) AND (Performance) AND (<the
name of a root cause>)”, and retrieve the initial
set of literature from Google Scholar digital library.
We manually review the top ranked papers and
stop searching when the retrieved papers became
irrelevant — based on our experience, this usually
stops at the top 30 papers.

e 2nd Round—Snowballing: We apply the
snowballing search [50], [51] to further retrieve
more relevant literature that are referenced in papers
from the 1st Round.

e 3rd Round—Expansion: We expand the “name of a
root cause” in the search string based on synonymous
found in the “snowballed” literature in the 2nd Round.
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TABLE 2: Data Extraction and Synthesis for Analyzing Performance Issues

ID  Data Item Description Related RQ
D1 IssueID ID of the performance issue.
D2  Root Cause Text Extracted text from issue description that describes to root cause. R

. . o Q-1.1
D3 Open Coding Results of manual open coding process for summarizing root causes.
D4  Root Cause Categorized root causes of the performance issue.
D5  #DPC Files The number of revised production code files. RO-2.1
D6  Optimization Level The optimization level, i.e., localized or design-level, of the performance issue. ’
D7  PC Summary The summary of revised production code. RQ-2.2
D8 DL Pattern The categorized optimization pattern of the design-level optimization. )
D9  #TC Files The number of revised test code files. RQ-3.1
D10 PC-TC Linkage The linkage between production code and test code revision. )
D11 TC Summary The summarized key changes to of the test code. RQ-32
D12 Co-Change Pattern = The categorized test/production code co-change pattern. ’
D13 Improvement Factor The improvement factor of the performance issue after revision.
D14 # Developers The number of involved developers in the performance issue. RQ-4.1
D15 # Discussions The number of discussions (comments) in the performance issue.
D16  Other Concerns The other aspects of concerns while resolving the performance issue. RQ-4.2

This helps us to retrieve literature that use different
names for the same type of performance issues. For
example, we found that “data structure” is also called
“collection” or “container” in different literature [52],
[53], [54], [55].

In each round, we select the most relevant literature by
following the inclusion and exclusion criteria listed in Table 3.

TABLE 3: Inclusion and Exclusion Criteria

ID  Inclusion Criteria

I1  The paper is peer-reviewed.

12 The paper is written in English.

I3 The paper is not grey literature, e.g. technical report, patent, or working in progress.
14 The paper is published in a international conference, journal or symposium.

ID  Exclusion Criteria

E1 A previous version of the paper whose extended version has been included.

E2  The paper is a secondary study (literature review) of existing techniques/approaches.
E3  The paper does not addresses real-life performance issues.

E4 The paper does not contribute a tool for detecting/fixing performance issues.

There are 42 papers in our final list. We carefully read and
annotate related data items in each paper as listed in Table 4.
The detailed data is shared with the link https://doi.org/
10.5281/zenodo.6383167, following the schema of Table 4.
We derive the insights and conclusions for RQ-1.2 based on
the targeted root cause (PD4), usage (PD5), programming
language (PD6), and link (PD?) to the tools.

TABLE 4: Annotated Data Items for Existing Tools

ID  Data Item Description

PD1 Title The title of the paper.

PD2  Year The year when the study is published.

PD3  Tool The name of proposed tool.

PD4 Root Cause The root cause of involved performance issues.

PD5 Usage If the tool can automatically detect and/or fix performance issues.
PD6 Language The programming languages of performance issues.

PD7  Link The web link for downloading and installing the tool if available.

4.2.3 Step 3: Design-level Optimization Analysis
This step aims to identify design-level optimization (RQ-2.1)
and reveal the typical patterns (RQ-2.2).

First, for RQ-2.1, we count the number of revised source
code files for each performance issue in the project version

control system. Admittedly, developers may simultaneously
makes a group of changes in one commit, thus revising
a group of files does not always imply a design-level
optimization. For instance, developers may combine multiple
change requests, e.g., fixing a functional bug, with the
performance optimization. Thus, we manually verify and
exclude the code revision where a group of source files is
not revised due to performance optimization. This is done
based on our understanding of the code revision (D7) and the
description of root causes (D2 and D3) to performance issues.
For example, in issue PDFBOX-1924, the main purpose is
fixing a functional bug. Developers revise four source files,
but only one line of code is for improving performance. We
record this sanitized number as D5 in Table 2.

Based on the scope of code revision, specified in D5, we
distinguish performance issues into two types: 1) localized
optimization that revises a single production code file; and 2)
potential design-level optimization that simultaneously revises
a group of related production code files. We record the level
of optimization as D6 in Table 2 for answering RQ-2.1.

Next, to answer RQ-2.2, we summarize the logic of
the code revision (recorded as D7 in in Table 2) and
adopt Diff-DSM modeling approach [56] to formally and
automatically capture which and how source files are
involved in the performance optimization. As introduced
in Section 2, the Diff-DSM helps us to capture the essential
design structure change in the code revision.

In our prior work [26], we developed a novel design
modeling approach, called DesignDiff, that models and
visualizes the high-level design differences resulting from
every code revision. Given a commit ID and the code base of
a software project, our approach automatically interprets and
visualizes the high-level design difference and generates the
analysis results as Diff-DSM matrices. The implementation
overview of the DesignDiff approach is composed of two
main parts: 1) design difference extraction and 2) modeling
and visualizing. In the first part, our approach uses Git
APIs to revert the code base into two status before and
after a given commit. Next, it retrieves the referenced files
set before and after revision to comprehensively capture
indirect design impacts of the given commit. In the second
part, our approach models and visualizes a commit as a
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sequence of design changes. It first uses a third-party tool,
named SciTool Understand, to calculate two graphs of the
given commit before and after revision. In the two graphs,
the nodes represent the involved code files and the edges
represent the dependencies among these code files. Next, a
simple graph comparator identifies the differences between
the two graphs, including the added or removed code files
and modified dependencies. The final output is a Diff-DSM
that highlights the added or removed files and modified
dependencies.

Marking the “optimization core” in each Diff-DSM relies
on matching the root cause (D4) and source file(s) with the
most directly relevant revisions. This matching is based on
our understanding of the code revision (D7). In addition to
the source code revision itself, usually, the commit messages
and the code comments left by developers are very helpful.
We also carefully examine the other files that are revised
with the “optimization core”. This helps us understand how
the other files change with the core and provides additional
confirmation of the “optimization core”.

Figure 1b (discussed in Section 2) contains an example of
“optimization core”. The root cause of PDFBOX-2303 [57] is
that “FontBox’s TTF GlyphTable reads the entire glyph table and
constructs an object for each glyph”. The resolution is to “modify
GlyphTable to make it lazy so that glyphs are read individually
only when needed”. Based on our methodology described
above, GlyphTable is marked as the “optimization core” of the
PDFBOX-2303, based on the combination of three aspects of
information: 1) developers left a comment in it, saying “
we don’t actually read the table yet because it can contain tens of
thousands of glyphs”; 2) the revised code in GlyphTable indeed
implements the lazy glyph loading that avoids unnecessary
reading of the entire glyph table; and 3) the other source
files are revised to accommodate the changes made to the
“optimization core”, i.e., “GlyphTable”.

Finally, we reveal typical design-level optimization
patterns (D8), combining our understanding of the code
revision logic (D7) and the analysis of individual Diff-DSM.
The patterns are categorized based on the nature of the
relationship between the “optimization core(s)” and other
source files in the Dif-DSM view. The example shown in
Figure 1b is recognized as the Change Propagation, since
the added dependencies are change prorogation from the
optimization core. As we will show in the answer to RQ2, we
also observed three other design-level optimization patterns,
including Classic Design Pattern, Optimization Clone, and
Parallel Optimization.

4.2.4 Step 4: Test-Production Co-change Analysis

This step aims to reveal test and production code co-change
patterns in performance issue resolution.

For RQ-3.1, we count the number of test files (D9) revised
with the performance optimization. When counting, we
confirm that the test code revision indeed is caused by, or at
least closely related to, the revision of the production code
under-test for performance optimization. This relies on two
aspects of information: 1) the revision logic in the test code
and production code; and 2) the revised test case name and
the production method name. For localized optimization,
this is straight forward since only one production source file
is involved. For the design-level optimization, the match
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focuses on the “optimization core” since it carries the
essence of the optimization. The test case name and the
product method name provides additional information. It
is a common convention that the test case name should
imply which production method it is testing. For example, in
PDFBOX-2126 [58], the test case testMultiplication() is revised
together with production function Matrix.multiply(Matrix m1,
Matrix m2), and their names suggest their connection. We
record how the test code revision is related to the production
code revision as D10 in Table 2.

After confirming the linkage between test and production
code revision, we further elaborate and analyze the nature of
their co-change (RQ-3.2). For example, in PDFBOX-2126 [58],
the method Matrix.copy() is replaced with Matrix.clone() in
both of the production source code and the test case. In
COLLECTIONS-450 [59], the developers create new test
cases to test the new production methods they create for
performance optimization. While in AVRO-1455 [60], the
developers change the test case logic according to the
production code revision. When analyzing the test case, we
found that revision to the input parameters, such as the
input array size or thread waiting time, is a unique pattern
in test code revision for performance testing. For example, in
AVRO-1090 [61], developers increased the input array size by
25 times (as shown in row 2 and 3 in Figure 12b) to test the
efficiency of revised method in production code for clearing
a very large array. We record the nature of co-changes as
D11 in in Table 2. Finally, we summarize recurring test and
production code co-change patterns (D12) based on the cases
we review.

4.2.5 Step 5: ROI Analysis

This step focuses on RQ4—The ROI analysis.

First, we estimate the investment for implementing
performance optimization based on the number of involved
developers and the number of discussions:

o #Developers (D14): The number of developers who
participated in the discussion of an issue report.
Generally, the more developers involved, the more
difficult/expensive to address.

o #Discussions (D15): The number of discussion
comments associated with an issue report. More
discussions are needed for addressing an issue, it
is more difficult/expensive to address.

The number of involved developers (D14) and the number of
discussions (D15) are directly crawled from the issue tracking
system. We create a program to download the issue report,
including description and discussion by the developers, in
the format of XML files. Then, we use an XML parsing
program to extract the number of developers (D14) and
the number of discussions (D15) submitted by the involved
developers from the XML files.

Next, for the estimation of return, we consider two
distinctive aspects:

(D13): The extent
improvement, as 1)

if performance measured

ResponseTime_AfterFix . b AfterF
. . roughput_AfterFix .
by response time; or 2) Throughpat_BeforeFix f
performance measured by throughput. Note that, the

e Improvement  Factor

of performance
ResponseTime_BeforeFix




IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2021-09-0398.R1

related metrics are extracted from the profiling data
embedded in issue reports and discussions. We did
not collect the profiling data ourselves due to the lack
of a systematic and reliable approach to replicate the
performance issues.

o Other aspects of concerns (such as code readability
and maintainability): We annotate and collect
the other aspects of concerns (D16) from the
issue report descriptions and discussions from
Apache JIRA issue tracking system. For example,
in issue PDFBOX-591 [46], we extract the related
description as “Note the addition of some byte constants
used to make the code more readable.” Thus, we
marked PDFBOX-591 also improved readability while
optimizing performance.

The insights and conclusions of RQ-4.1 is derived by
comparing the return (D13) and investment (D14, D15) for
the performance issues in different level of optimization (D6).
RQ-4.2 is based on the other aspects of concerns (D16).

5 STUDY RESULTS

This section answers the four research questions.

5.1

RQ-1.1 What are the common root causes of performance issues?
And, how does the programming language impact the root causes?
We observe eight general types of root causes that recur in the
570 performance issues. Each root cause has a corresponding
typical resolution. We will explain each in the following:

Inefficient Data Structure (IDS): The choice of an
inefficient data structure consumes a large amount of
memory and/or takes a long time. Typical resolution is
replacing the inefficient data structure by a more efficient
data structure. Although each of the three programming
languages has its specific data structures, the sub-optimal
choice of data structure could occur with any of them.
For example, in issue PDFBOX-410 [62] (Java), developers
replaced StringBuffer with StringBuilder to improve the
efficiency of text loading; in issue LIBCLOUD-254 [63]
(Python), developers replaced LazyList data structure by a
simple iteration; in issue MESOS-2126 [64] (C++), developers
replace the Queue by Vector, since Vector does dynamic
allocation only when necessary to reduce CPU cache usage in
most cases. This indicates that regardless of the programming
language, using the right data structure is important. Table 5
lists the common data structure replacement patterns we
observe. The most common case is to replace Array or List by
Set or Map, which makes data searching faster. On a particular
note, based on our dataset, Java projects are more likely to suffer
from this problem.

Repeated Computation (RC): A program repeatedly
performs the same computation and produces the same
output because the state from which the output is derived
has not changed. Typical resolution is to 1) store the output
in a cache or a buffer for re-using [65]; and 2) only perform
the computation when the program status changes.

Inefficient Iteration (II): The status of loop iterations
remains the same and the iterations become useless. A typical

Root Causes and Resolutions

9
TABLE 5: Inefficient Data Structure and Replacement

Inefficient Data Structure Replacement # Issues
Array, List Set, Map 23
HashMap, WeakHashMap  ConcurrentHashMap 8
String, StringBulffer StringBuilder 7
Integer, Float, Double int, float, double 4
HashMap TreeMap 3
LinkedList ArrayList 2
Others 7
Total 54

resolution is to check whether the loop status becomes stable;
if so, break and exit the loop.

Inefficient API Usage (IAU): Many different APIs
provide the same or similar functionalities, but some APIs are
more efficient than the others in certain context. This type of
problem is caused by sub-optimal choice of APIs [66]. Typical
resolution is to replace it with a more efficient one [67], [68],
[69].

Inefficient Synchronization (IS): These performance
problems are caused by the synchronization issues among
multiple threads. It usually happens because different
threads have to access the same resource, and thus they have
to wait for each other. In the worst cases, threads may even
get blocked, resulting in lengthy execution/waiting time. The
resolution is to improve the synchronization mechanism.

Redundant Data Processing (RDP): These performance
issues are caused by redundant or tedious data processing.
For example, a typical scenario is processing (e.g., copying
or initializing) a large chunk of data in small units, such as
bit by bit, or pixel by pixel (in graph transformation). The
typical resolution is to use more efficient data processing
strategy to avoid heavy iterative data processing, such as
processing all the data in one go, or to eliminate unnecessary
data processing.

Inefficiency under Special Cases (ISC): The program
runs well most of the time, but it becomes extremely slow
or causes memory bloat in special cases [6], [70], [71], [72],
[73]. In particular, the inefficiency tends to happen when the
input is either null or super large. Typical resolution is to 1)
add checking conditions for the special cases, and 2) employ
special algorithms to treat each special case efficiently.

General Inefficient Computation (GIC): These
performance issues are caused by other general inefficient
in the algorithm. They are usually addressed by specific
algorithmic improvements. As an example, in issue
PDFBOX-600 [74], the order of two checking conditions in
an and operator caused inefficiency, since in most cases, the
first checking condition is true and the second checking
condition is false. The developers switched the order to
avoid checking both conditions in most cases.

Impact of Programming Language on Root Causes:
Figure 4 shows the percentage of performance issues
associated with the eight root causes. We found that the
proportions of three root causes, Repeated Computation
(RDP), Inefficient Special Case (ISC), and General Inefficient
Computation (GIC) are quite consistent for the three languages.
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Fig. 4: Percentage of Root Causes in Different Languages

In comparison, the other root causes are more likely to
be associated with a certain programming language. For
example, Java projects (19%) are more likely to have Inefficient
Data Structure (IDS), compared to Python (3%) and C++
(6%) projects. Inefficient API Usage (IAU) is most common in
Python (21%), and it does not appear in C++ projects. This
could be because Python programming relies heavily on the
choice of existing APIs; while C++ projects tend to heavily
rely on the low level function implementation. However, we
acknowledge that this could be caused by our dataset, and
may not be generalized by another dataset.

We leverage the Mann Whitney U Test to provide some
quantitatively insights. We check the p-value, which indicates
the level of significant difference between the two groups
of samples. According to [75], p-value < 0.05 (5%) or even
p-value < 0.01 (1%) indicates significant difference. As shown
in Table 6, programming language does not have statistically
significant impact on the root causes.

Of a particular note, the eight types of causes are not
mutually-exclusive. Some issues are associated with multiple
root causes. For example, in PDFBOX-604 [76], developers
resolved 1) Inefficient Data Structure, by replacing StringBuffer
with StringBuilder to speed up the text encoding process,
2) Repeated Computation by allocating a new buffer that
memorizes the font type information, and 3) General Inefficient
Computation by avoiding unnecessary look ups for font sizes,
to address the performance issue in “text extraction” in
PDFBox from different aspects. Therefore, the percentages of
the eight categories do not add up to 100%.

TABLE 6: Impact of Programming Language on Root Causes

Comparison Group

All Root Causes

Java vs. Python
0.87

Java vs. C++  Python vs. C++

0.96

0.75

RQ-1.1 Implication: We observe eight common
recurring root causes of real-life performance issues.
These root causes apply generally to the three
programming languages. Practitioners should be
aware of these common root causes. This awareness
helps practitioners to prevent, identify and resolve
performance issues.

RQ-1.2 How well is each root cause addressed with available
tools? In summary, we found 42 tools for detecting and/or
fixing real-life performance issues from a total of 504 papers

searched in three rounds. In the 1st round, we reviewed 240
papers and identified 19 available tools. In the 2nd round, we
performed snowballing expansion base on these 19 studies,
and identified 14 available tools from 154 papers. Finally,
in the 3rd round, we expanded the search string based on
synonymous found in the “snowballed” literature in the 2nd
Round, and identified 9 available tools from the retrieved
110 papers. These tools were published between 2003 to 2021
in ICSE (21%), ISSTA (12%), PLDI (12%), FSE (5%), ASE (5%),
OOPSLA (5%), and ICPE (5%), and other conferences or
journals (36%).

Table 7 lists these tools and the respective root causes
that they can detect and/or fix. The first column shows
the respective root cause. The second column lists the tool
name, with “D” indicating detecting and “F” indicating
fixing the performance issues. The third column shows the
programming language that the tool addresses. The last
column shows the publication year and whether a link to
download the tool is available (“A” means available).

Figure 5 summarizes an accumulative number of tools
for the three programming languages over the years. We
observe that 1) Overall, there are more tools for Java projects
(21 tools), compared to C/C++ (15 tools) and Python (8 tools);
2) Before 2013, C/C++ has the largest number of tools; and 3)
Since 2015, there has been an increasing number of Python
tools. Next, we will briefly discuss the tools for identifying
and resolving each root cause:

24

21 21

21
21

18

15

12

Accumulative Num of Tools

Hiw

2 5

e w o ©

o

2 2
_ 1 1 1
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Publcation Year

-4-Java Python C/C++

Fig. 5: Cumulative Number of Tools vs. Publication Year

1) Inefficient Data Structure (IDS): All the seven
tools can monitor the dynamic execution of a program
to recommend potential replacements of data structures.
Chameleon [53] and Perflint [77] instrument Java and C++
applications, respectively, to collect dynamic profiling data,
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TABLE 7: Existing Tools for Detecting/Fixing Performance

Issues
Root Cause Tool Language Year(A)
Inefficient Data  [D,F]: CHAMELEON [53] Java 2009
Structure [D,F]:Perflint [77] C++ 2009(A)
[D,F]: CFL [55] Java 2010
[D,F]: Brainy [78] C++ 2011
[D,F]: ContainerBloat [79] Java 2012
[D,F] CoCo [54] Java 2013
[D,F]: CollectionSwitch [52]  Java 2018
Repeated [D,F]: Likwid [80] C++ 2010
Computation [D]: Cachetor [81] Java 2013(A)
[D,F]: Memoizelt [65] Java 2015(A)
[D]: RedSpy [82] Ct++ 2017
[D]: LoadSpy [83] Java 2019
Inefficient [D] PET [84] Java 2010(A)
Iteration [D]: pyCPA [85] Python 2012
[D]: Toddler [11] Java 2013(A)
[D,F]: Caramel [10] Java/C/C++ 2015
[F]: Clarity [14] Java 2015
[D]: GLIDER [12] Java 2016(A)
[D]: LDoctor [13] Java/C/C++ 2017
Inefficient API  [D,F]: Pynamic [86] Python 2007(A)
Usage [D,F]: SEEDS [87] Java 2014
[D,F]: BIKER [67] Java 2018
Inefficient [D]: LIME [88] C++ 2011
Synchronization [D,F]: SHERIFF [89] C++ 2011(A)
[D]: PRADATOR [90] C++ 2014
[D]: SpeedGun [44] Java 2014(A)
[D]: SyncProf [91] C/C++ 2016
[D]: SyncPerf [92] C/C++ 2017
[D,F]: Pymoo [93] Python 2020(A)
[D]: Score-P [94] Python 2021(A)
Redundant Data  [D]: MRNet [95] C++ 2003
Processing [D,F]: Simplifier [96] Java 2012(A)
Inefficiency under  [D]: GA-Prof [70] Java 2015
Special Cases [D]: PerfPlotter [97] Java 2016(A)
[D]: FOREPOST [98] Java 2016
[D]: PerfFuzz [71] C 2018
[D]: PerfCI [99] Python 2020(A)
General [D]: Trend Profiler [27] C 2007
Inefficient [D]: Spectroscope [28] Perl/C++ 2011(A)
Computation [D]: Perprof-Py [100] Python 2016
[D]: PVLIB [101] Python 2016
[D]: VyPR [102] Python 2020(A)

Note: “D” means the tool can automatically detect.
“F” means the tool can automatically provide fixing resolutions.
“A” means the tool has available web link for downloading and installing.

such as function execution time and number of function
calls. These profiling data are then compared with a set
of “detection rules” to determine if the data structures
should be changed. Brainy [78] is more advanced than
Perflint—it feeds dynamic profiling data into a machine
learning model, and the model selects the best data
structure for performance optimization. Similarly, another
Java-based tool, CFL [55] leverages both the dynamic and
static analysis to find inappropriate use of data structures
in Java programs. ContainerBloat [79] focuses on data
structure replacement for reducing memory usage; while
Coco [54] focuses on improving the speed. In comparision,
CollectionSwitch [52] balances the speed and memory in data
structure replacement. Furthermore, CollectionSwitch [52]
is more advanced among others, since it does not only
support the replacement of simple data structures, such
as Set and Map, but also advanced data structures, such as
HashArrayList, TreeMap, and CompactHashMap etc.

2) Repeated Computation (RC): We found three tools,
Likwid [80], Cachetor [81], and Memoizelt [65], that
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can perform dynamic profiling to report operations that
repeatedly generating identical data values. Two detecting
tools, LoadSpy [83] and RedSpy [82], focus on Java and C++
applications, respectively. They can also identify repeated
memory loads of the same value or result-equivalent
computation which waste both memory and processor
functional units. Locating these operations can help
developers to add cache or buffer. Memoizelt [65] is more
advanced compared to other tools, because it automatically
provides suggestions regarding how to implement the
caching mechanism.

3) Inefficient Iteration (II): We found seven tools that can
detect Inefficient Iterations and add conditional breaks to fix
these issues [9], [10], [11], [12], [13], [84], [85]. Each tool relies
on a specific resolution for detecting and fixing the Inefficient
Iteration issues. For example, PET [84] is an automatic Java
test case generator for exposing iterations that spent large
amount of time. Caramel is a static analysis tool that detects
inefficient iterations and add conditional-breaks to fix the
issue [10]. pyCPA [85] and Clarity [14] are static analysis tools
that detects nested loop traversals based on path analysis.
Toddler [11] detects inefficient iterations by finding repetitive
memory accesses in dynamic execution. However, the
effectiveness of Toddler depends on the quality of input tests.
Another dynamic tool, Glider, automatically generates tests
for exposing unnecessary traversal of iterations [12]. Static
analysis tools can only find a subset of inefficient iterations;
while dynamic analysis tools are more comprehensive
but slowdown the program. Song et al. [13] proposed a
static-dynamic hybrid analysis tool, LDoctor, which is faster
than Toddler and more effective than Caramel.

4) Inefficient API Usage (IAU): We found three tools.
Pynamic [86], SEEDS [87] and BIKER [67], for detecting and
fixing Inefficient API Usage issues. The Python-based tool,
Pynamic [86], focuses on a specific type of Inefficient API
Usage that leads to long execution time under heavy file I/O
load. Python programs usually rely on third-party APIs for
reading and writing file from hard disk. But, these APIs may
not be efficient. Pynamic [86] wraps hard disk file loading
and manipulating utility functions as modules, which
replace inefficient APIs. SEEDS [87] focuses on the energy
consumption of applications running on battery-powered
mobile devices. It automatically detects Java APIs that
consumes a large amount of energy, and recommends
alternative APIs. BIKER [67] is another Java-based API
recommendation tool that leverages Stack Overflow posts to
recommend and prioritize candidate APIs to save execution
time and memory usage.

5) Inefficient Synchronization (IS): We found eight
tools for detecting and/or fixing Inefficient Synchronization
issues. They focus on different situations that cause Inefficient
Synchronization. LIME [88] analyzes parallel programs and
reports load imbalance that causes performance issues. Liu
et al. focuses on multi-threaded false sharing, which occurs
when two threads simultaneously update logically-distinct
objects. This may result in invalid data access, and when
this happens, new threads will be created to re-access the
data. Unnecessary thread creation degrades performance by
an order of magnitude [89], [90]. Thus, Liu et al. proposed
two C/C++-based tools, SHERIFF [89] and PRADATOR [90],
that can perform per-thread memory isolation to accurately
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detect false sharing. PRADATOR [90] detects false sharing
more accurately than SHERIFF [89], but SHERIFF can also
provide optimization suggestions. SpeedGun [44] is an
automatic performance regression testing tool for monitoring
thread-safe classes in Java programs. Java thread-safe classes
often struggled with two opposite goals: 1) the safety
goal requires synchronizing concurrent accesses, and 2)
the performance goal requires preventing unnecessary
synchronization [44]. The key idea of SpeedGun [44]
is to automatically generate multi-threaded performance
tests and notify developers of the performance changes
of the thread-safe classes after code revision. Similarly,
SyncProf [91] and SyncPerf [92] generate multi-threaded
performance tests for C/C++ applications to detect and
optimize synchronization bottlenecks. SyncPerf [92] is more
accurate than SyncProf [91] in detecting synchronization
bottlenecks. For the Python based tools, Pymoo [93]
evaluates the synchronization of multi-threaded execution
in distributed computing. It visualizes the performance
profiling data and makes optimization decisions such as
modifying the number of parallel threads. Score-P [94]
focuses on evaluating the efficiency of thread parallel, process
parallel, and accelerator-supported workloads.

6) Redundant Data Processing (RDP): We found two
tools for detecting and fixing Redundant Data Processing [95],
[96]. MRNet [95] monitors data communication between
front-end and back-end modules in C++-based applications.
It finds data transfer that happens in small pieces rather than
large bulks. Small pieces of data transfer can cause significant
latency, because the synchronization overhead with small
pieces of data transfer is much higher than that with large
chunks of data transfer. Thus MRNet alerts practitioners
once it monitors a large amount of small piece data transfer.
Simplifier [96], a Java-based tool, eliminates redundant data
transformation. It integrates small-sized data fragments (less
than 1Kb) into large bulks, and it also eliminate duplicated
data.

7) Inefficiency under Special Cases (ISC): We found
five tools for detecting performance issues that are
caused by Inefficiency under Special Cases. Shen et al.
proposed a Java-based tool, named GA-Prof [70], that
uses a genetic algorithm to explore a large space of
input value combinations for automatically and accurately
detecting performance bottlenecks that appear under
special combinations of input values. Chen et al. proposed
another Java-based tool, PerfPlotter [97], that captures input
probability distribution over execution time for the program.
PerfPlotter [97] heuristically explores high-probability
and low-probability paths through probabilistic symbolic
execution. Once a path is explored, this tool generates and
executes a set of test inputs to detect the special inputs that
cause slowness of the path. FOREPOST [98] is a Java-based
tools that can also generate a wide range of test inputs,
and it focuses on identifying the specific test input that can
potentially cause bottlenecks. The C-based tool, PerfFuzz [71],
can also generate a variety of input values to locate the
hot spots that are triggered by a special set of inputs.
PerfFuzz is more advanced than GA-Prof because it not only
detects performance bottlenecks in a single function, but also
provides pathological analysis of the total execution time
of a program under different test inputs. The Python-based
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tool chain, PerfCI [99], allows developers to differentiate
performance bottlenecks into two types, e.g., that manifests
in all inputs (“always-active”) and that is triggered on a
special condition (“hard-to-detect”). For the latter, PerfCI
provides a unit test runner which can execute the application
code many times based on different inputs to reproduce the
performance bottleneck under a special condition.

8) General Inefficient Computation (GIC): The
algorithm design of a program have the most fundamental
influence on software performance [27]. Poor algorithm
design can lead to inefficient computation in general.
The challenge is that the complexity derived from the
mathematical analysis of the algorithm design cannot
precisely reflect the run-time complexity [29]. Thus, related
tools focus on profiling the dynamic execution of programs
to identify “hot-spots” that are associated with inefficiency.
Goldsmith et al. proposed Trend Profiler to measure the
run-time complexity by executing a program on workloads
spanning several orders of magnitude [27]. Similarly,
Spectroscope [28], Perprof-Py [100], PVLIB [101], and
VyPR [102], also uses dynamic profiling to detect hot-spots in
running programs by collecting data such as the CPU time,
number of functions executions, and number of iterations,
etc.

RQ-1.2 Implication: Practitioners may benefit from
existing tools when facing similar performance issues.
However, there are several potential concerns: 1) The
applicability of the tools could be a potential problem.
The tools have not been tested and compared to each
other on any benchmark dataset; and 2) The availability
and usability of these tools are potential obstacles for
practitioners to using them, given that only 40% tools
have available web links and many are no longer actively
maintained.

5.2 Design-level Optimization

RQ-2.1 What percentage of performance issues require design-level
optimization? And, what are the typical design-level optimization
patterns? Among the total 570 performance issues, the
majority (73%) of performance issues were fixed by localized
code revisions, while the remaining 27% performance issues
were addressed by design-level optimizations. We reveal
four typical design-level optimization patterns with the help
of the Diff-DSM modeling introduced in Section 2:

1) Classic Design Patterns: The developers employ
classical design patterns for addressing the performance
issues and achieving good design at the same time. For
example, issue AVRO-753 [16] is caused by Inefficiency under
Special Cases. The BinaryEncoder is slow when processing
data chunks smaller than 128 bytes. The factory pattern
provides an elegant design for treating different input
cases in separate. Figure 6a shows the D-DSM of this
optimization. The developers added three new source files
(row 3 to 5), which form a factory design pattern. They
are: 1) BufferedBinaryEncoder (row 3), a concrete encoder that
efficiently deals with large data chunk by using a buffer;
and 2) DirectBinaryEncoder (row 4), the other type of encoder
that efficiently deals with small data chunk without buffer;
and 3) EncoderFactory (row 5), which is the factory pattern
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interface;. The EncoderFactory is in charge of picking the right
encoder with respect to the input size. Thus EncoderFactory
depends on a bunch of encoders (row 1 to row 4), including
the newly added two. Meanwhile, the clients of Encoder, such
as the tool classes (row 6 to 10) are all changed to refer to
EncoderFactory to benefit from the proper encoder.

1 2 3 4 5 6 7 8 9 10
1 BlockingBinaryEncoder (1) -Ext,-dp [+Ext, +dp
2 BinaryEncoder (2)
3 BufferedBinaryEncoder +Ext (3)
4 DirectBinaryEncoder +Ext (4)
5 EncoderFactory +dp +dp +dp +dp (5)
6 RpcSendTool +dp (6)
7 RpcReceiveTool +dp (7)
8 BinaryFragmentTolsonTool +dp (8)
9 DataFileReadTool +dp 9)
10 JsonToBinaryFragmentTool -dp +dp (10)
(a) Classic Design Pattern: Avro-753
1 2 3 4
1 Matrix(*) (1) 1 NumberFormatUtil (1) —
2 TextPosition . d (2 2 PDFAbstractContentStream(*) +dp (2)
3 PDFStreamEngine |dp dp (3)
4 ShowTextEngine  |dp @) 3 PDFContentStream dp dp (3)

(c) Type 2 Propagation:

b) Type 1 Propagation:
(b) Typ pag PDFBox-3421

PDFBox-893
1 2 3 4 5 6 7
1 PDTrueTypeFont |(1) 1 2 3 4 5
2 PDTypelCFont (2) 1 PDFont (1)
3 PDTypeOFont (3) 2 PDSimpleFont Ext (2)
4 PDTypelFont (4) 3 COSNumber (3)
5 PDType3Font (5) 4 1CUAImpl (4)
6 PDCIDFontTypeO dp (6) 5 PDFStreamEngine (5)
7 PDCIDFontType2 dp (7)

(e) Parallel Optimization:

(d) Optimization Clone: PDFBox-604

PDFBox-3224

Note: “Ext”: child class extends a parent class.

“dp”: a general dependency except extend or implement.
“-"” means the following dependency is removed.
“+” means the following dependency is added.

Files with shaded background are newly added.

Fig. 6: Design-level Optimization Patterns

2) Change Propagation: The root cause of a performance
issue is addressed in one source file, namely the optimization
core; and the optimization core propagates changes to a
group of source files that structurally connect to it. There are
two types of propagations: Type 1: The optimization core
propagates changes to a group of source files that structurally
depend on and benefit from the core. For example, Figure 6b
is for issue PDFBOX-893 [103]. The optimization core is
class Matrix (row 1), which contains Repeated Computation
of matrix production. It propagates changes to files on row
2 to row 4, which call the core. Type 2: The optimization
core propagates changes to a group of source files that the
core depends on, to support the core. For example, Figure 6c
is a Type 2 propagation for issue PDFBOX-3421 [104]. The
optimization core is PDAbstractContentStream, which suffers
from an inefficient special case. The developers created a new
utility class, named NumberFormatUtil. When applicable, it is
used by the optimization core.

3) Optimization Clone: The developers fix multiple
instances of the same performance root cause that are cloned
in multiple locations in the code base. We noticed that the
involved source files are usually structurally independent
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from each other. Issue PDFBOX-3224 [105] is such an
example, shown in Figure 6d. All the classes in this change is
a certain type of Font, such as PDTypelFont. A method, named
getBoundingBox(), which suffers from repeated computation,
is cloned in 7 Font related classes. Therefore, the optimization
is also cloned in 7 locations.

4) Parallel Optimization: The developers made parallel
optimizations in multiple locations that suffer from different
root causes for resolving an issue. In issue PDFBOX-604 [76]
as shown in Figure 6e, the developers made five parallel
optimization. For example, in PDFont (row 1), developers
added a cache to memorize font type to avoid repeated
computation. In PDSimpleFont (row 2), the developers
eliminated repeated computation. Each source file here
contains a separate optimization, but all belong to the “text
extraction” component.

RQ-2.1 Implication: According to Smith and
Williams [15], most performance issues have their roots
in poor architectural decisions made before coding
is done. Our results on these four patterns reinforce
this argument, which represent four design strategies
to resolve performance issues. Practitioners should
be aware of the design-level optimization patterns
and make informed design decision when fixing
performance issues.

RQ-2.2 Does programming language impact the design-level
optimization patterns? As shown in Figure 7, regardless of the
programming language, a non-trivial portion (22% to 34%)
of performance issues require design-level optimization.

90%

78%

80% 73%

70% 66%

60%
50%

40% 34%

27%
30% R 22%
20% "
10%

0%
Java Python

Localized Design-Level

Fig. 7: Localized vs. Design-Level Optimization

60% 54%

50%

42% 41%

40%
31% 30%
30%
20%
20%
11%10% 11%
0% 8% %% 7% .
o 2%
0% -
0%
Parallel

Optimization

Classic Pattern Type-l Change

Propagation

Type-ll Change
Propagation

Optimization
Clone

Java = Python 11C++

Fig. 8: Design-Level Optimization Pattern Distribution vs.
Programming Language
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In addition, as shown in Figure 8, for all of the
three programming languages, the majority of design-level
optimization pattern is Change Propagation. Furthermore, we
perform the Mann Whitney U Test to quantitatively evaluate
whether the programming language has an impact on the
design-level optimization patterns. The p-values for the three
groups of comparisons, e.g. Java vs. Python, Java vs. C++, and
Python vs. C++, are 0.6, 0.75, and 0.76, respectively. Thus, we
conclude that the four design-level optimization patterns are
not impacted by the programming language.

RQ-2.2 Implication: The four design-level optimization
patterns generally apply to the three different
programming languages. In particular, Change
Propagation is the most common pattern in all three
languages. Developers should pay attention to the
“Ripple-effect” in order to correctly and effectively
implement performance optimization.

RQ-2.3 Do root causes or project domains impact the
design-level optimization patterns?

First, for subject domains, the 13 open source software
projects are in seven different domains, as listed in the
column “Apache Category” in Table 1. This information is
specified by the Apache Software Foundation [43]. Figure 9
shows the distribution of design-level optimization patterns
over the seven project domains. Overall, we do not
observe distinction with the different domains, and Change
Propagation is the most common pattern for all. Therefore,
we conclude that domain should not have much impact on
the design-level optimization pattern.

Second, Figure 10 shows the distribution of design-level
optimization patterns over different root causes. The most
unique root cause is Inefficient Iteration (II), which us
exclusively associated with the Optimization Clone pattern.
It is because the resolution of Inefficient Iteration (II) issues
is to simply add conditional breaks. Related design-level
issues are adding breaks in multiple locations, which leads
to Optimization Clone. Otherwise, we did not observe much
impact on the choice of design-level optimization patterns in
the other root causes.

RQ-2.3 Implication: The design-level optimization
patterns are general to different subject domains and
root causes.

5.3 Test Code Changes

RQ-3.1: How often do practitioners change test code in performance
optimization? Among the 570 performance issues, only a
small portion (15%) involve test code revisions. Specifically,
there are 27%, 13%, and 6% involve test code revision
in Java, Python, and C++ performance issues, respectively.
Furthermore, among performance issues that involve test
code revision, the majority, 75%, only revise 1 test file; 13%
revise 2 test code files; and 12% revise 3 or more test files.
Figure 11 shows the percentage of design-level and
localized optimization that involve test code revision
respectively. We separate the analysis of three programming
languages. In Java issues, 49% of design-level optimization
involves test code revision; while only 17% localized
optimization involves test code revision. This indicates that
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design-level optimization is more likely to involve test code
change than localized optimization. This observation holds
for Python and C++ performance issues.

RQ-3.1 Implication: For most (85%) performance issues,
the optimization resolution does not include revision
of the test cases. When developers apply design-level
optimization, they are more likely to revise the test code
due to the higher complexity of change. This suggests
that it remains an open question whether and how
practitioners formally test performance optimization
as an integral part of regression testing.

RQ-3.2 What are the common test-production co-change
patterns in performance optimization?

We inspect the test code revision to understand the
nature of the test and production co-change in performance
optimization. We observed five co-change patterns:

1) Performance Input Revision: Developers change the
input parameters (e.g. array size and thread waiting time)
to performance test cases, such as for stress testing. This
is to directly verify the performance optimization. As an
example, issue AVRO-1090 [61] in Figure 12 is caused by
Redundant Data Processing (RDP). The developers added a
method named “avro_raw_array_clear()” (row 4 in Figure 12a)
to clear the array in one go instead of iteratively. The test
case increase the input array size by 25 times (row 2 and 3
in Figure 12b) to test the efficiency of clearing a very large
array.

2) Method Replacement: A production method is replaced
to improve performance; and the test case also replaces
this method. For example, issue PDFBOX-2126 [58] in
Figure 13 is caused by Inefficiency under Special Case (ISC).
When rendering a PDF page, the clipping path may change.
The original copying method, Matrix copy() (row 7 to 9 in
Figure 13a), is time and memory consuming in this case. Thus,
developers replaced the original method by a deep clone
method, Matrix clone() (row 1 to 5 in Figure 13a), that directly
copies a matrix based on the system’s cached value (row
3 in Figure 13a). Consequently, in the test case, developers
also replaced the method Matrix copy() with Matrix clone() for
testing the replication of matrix. This saves 50% rendering
time on average.

3) Test Logic Modification: The logic in the production
changes for performance optimization, and the test code
logic changes accordingly. For example, the performance
issue, AVRO-1455 [60] as shown in Figure 14, is caused by
General Inefficient Computation (GIC). Developers modified
the returned values to be immutable in the production
code to avoid unnecessary primitive type conversion, which
saves execution time. Consequently, the respective test
case (Figure 14b) adds the checking conditions to test if
the returned values are immutable, instead of the original
primitive types.

4) Test Case Addition: The production code creates a
new method for performance optimization, and the test
code adds a respective new test case for this method. As
an example, issue COLLECTIONS-450 [59] is caused by
Inefficiency under Special Cases (ISC). The developers add
a new method named forAllButLastDo(), which executes
complicated iteration when the input is not null; otherwise,
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1 .
2 avro_resolved_array writer free_elements (
3 aiface->child resolver, self);
4 + avro raw_array clear(&self->children);
5 return 0;
(a) Production Code
1 test simple array resolved reader (
2 - "simple array resolved writer"™, 10000, ...)
3 + "simple array resolved writer", 250000, ...)

(b) Test Code

Fig. 12: Co-Change Pattern 2: Performance Input Revision

it directly returns null when the input is null. This method
improves performance in the case of null input by avoiding
unnecessary iteration. Consequently, the test code creates a
new test case named forAllButLastDolterator() to verify the

1 + public Matrix clone(){
2 o+ Matrix clone = new Matrix();
3+ System.arraycopy(single, 0, clone.single);
4 + return clone;
5 + }
[
7 - public Matrix copy(){
8 - return (Matrix) clone();
s - 1}
10
11 public Matrix multiply(Matrix ml, Matrix m2) {
12 ...
13 - return retVal.copy():;
14 + return retVal.clone();
15 }

(a) Production Code
1 testMultiplication() {
2 .
3 - Matrix ml = testMatrix.copy();
4 - Matrix m2 = testMatrix.copy();
5 4+ Matrix ml = testMatrix.clone();
6 + Matrix m2 = testMatrix.clone();
7
8 }

(b) Test Code

Fig. 13: Co-Change Pattern 1: Method Replacement

correctness of forAllButLastDo()—whether it can return null
when the input is null.

5) Test File Addition: When the production code contains
drastic changes with new functions, a new file is added to the
test code that is dedicated to testing the new functions. For
example, issue AVRO-709 is caused by Repeated Computation
(RC). Developers found that the majority of the execution
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1 public Object getDefaultValue (Field field) {
2 .

3 case FLOAT:

4 - return (T)new Float ((Float) wvalue);
5+ return value; // immutable

6 case INT:

7 - return (T)new Integer ((Integer) value);
g8 + return value; // immutable

9 case LONG:

10 - return (T)new Long((Long) value);

11 + return value; // immutable

12 case DOUBLE:

13 - return (T)new Double ((Double) wvalue);
14 + return value; // immutable

15 case BOOLEAN:
return (T)new Boolean((Boolean) wvalue);
return value; // immutable

(a) Production Code

1 public void testDeepCopy() {

2 ..

3 if((field.schema() .getType() != Type.ENUM)

4 && field.schema() .getType() != Type.NULL)

5 + && field.schema () .getType() != Type.BOOLEAN)
[ && field.schema() .getType() != Type.INT)

7 0+ && field.schema () .getType() != Type.LONG)

8 + && field.schema () .getType() != Type.FLOAT)
9 + && field.schema().getType() != Type.DOUBLE)
10 && field.schema () .getType() != Type.STRING)
11

12 }

(b) Test Code

Fig. 14: Co-Change Pattern 3: Test Logic Modification

time was spent on repeatedly looking up JSON properties.

Thus, developers created two caches to store the searched
properties. A set of utility functions is also added to facilitate
the implementation of these two caches. Therefore, the
developers created a new test file. It not only verifies the
correctness of the added functions—such as read() and write()
for JSON properties—but also records the execution time of
the new functions.

Figure 15 shows the distribution of the five
test-production co-change patterns in issues of the three
programming languages. As we can see, Method Replacement
and Test Case Addition are most common in all three
languages.

7
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Fig. 15: Distribution of Test/Production Code Co-Change
Patterns
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TABLE 8: Impact of Programming Language on ROI
(measured by p-values)

Comparison Group Java vs. Python  Java vs. C++  Python vs. C++

# Involved Developers 0.99 0.75 0.67
# Involved Discussions 091 0.83 0.83
Improvement Factor 0.24 0.4 0.11

RQ-3.2 Implication: We discover five test/production
code co-change patterns in these issues. Among
these five patterns, only Performance Input Revision
directly targets at verifying the performance of the
program in different input. The other four patterns
indirectly verifying the effectiveness of the performance
optimization by focusing on the functional logic of the
revised production code. This implies that performance
is a potential weak point in the practice of regression
testing — developers may lack systematic approach
to thoroughly and explicitly test the performance
optimization.

5.4 Return on Investment

RQ-4.1 What is the overall ROI for addressing performance issues?
In particular, what are the other aspects of concerns while fixing
performance issues? Figure 16 shows the results for the Return
on Investment (ROI) seprately for the three languages—Java
in Figure 16a, Python in Figure 16b, and C/C++ in Figure 16c.
The investment is measured by the number of involved
developers and the number of discussions. The return is
measured by the the extent of performance improvement.

We observe that, regardless of the programming language,
the majority performance issues involves less than 2
developers and have less than 5 comments. While the return
can vary in a large range up to more than 200 times. As
shown in Table 8, the results of Mann Whitney U Test suggests
that the programming language does not have statistically
significant impact on the investment — the p-values of the
test are all above 0.1.

It is worth noting that, as shown in Figure 16b,
52% of Python issues yield to less than 2x performance
improvements, but 29% of Python issues have 20 to 50
times performance improvement. Furthermore, we found
that 75% of these issues (with 20 to 50 times improvement)
are caused by Inefficient API Usage (IAU). Thus, replacing API
in Python can result rewarding performance improvement.
In comparison, 35% C++ performance issues yield to more
than 50 times performance improvement, and 12% issues
even reach more than 200 improvement after fixing.

We found that a total of 46 performance issues (8%) also
involve other concerns in seven aspects—maintainability,
compatibility, readability, security, flexibility, simplification,
and reliability. Figure 17 shows the distribution of these 46
issues that are associated with the seven concerns for the
three languages. As we can see, the most common concern
that are often associated with performance optimization is
maintainability in all three languages. Overall, the Mann
Whitney U Test shows that the programming language does
not make a difference on the impact to other aspects of
concerns. This finding is consistent with our finding in
Section 5.2.
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Fig. 16: Return on Investment (ROI) for Performance Issues

Of a particular note, the influence on the other aspects of

concern is not always positive in performance optimization.

That is, the resolutions of 85% of the 46 issues yield
positive influence on these other concerns; while for
the remaining 15% issues, developers trade off other
concerns for performance optimization. For example, in
issue AVRO-739, developers replaced JSON format date
time with milliseconds timestamp in Java “long” type. The
developers acknowledged that this replacement sacrifices
readability for trading performance optimization. We only
observed negative impacts from performance optimization
on maintainability, readability, and simplification in our
dataset.
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(c) C++ Performance Issues

Fig. 18: ROI for Localized vs. Design-Level Optimization

RQ-4.1 Implication: Regardless of the programming
language, it takes less than 2 developers and less
than 5 discussions to resolve a performance issue in
most cases. We did not observe statistically significant
impact from programming language on the return.
However, it is worth noting that C++ has the highest
potential performance improvement — 12% issues yield
to more than 200 times improvement. Furthermore, in
8% performance issues, developers also concern about
seven other aspects of quality attributes when fixing
the performance issues — maintainability is the most
common concern in addressing performance issues.

RQ-4.2 How are the ROIs of the localized and design-level
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optimizations compare to each other? Figure 18a, Figure 18b, and
Figure 18c show the cumulative distribution function plot of
the number of discussions (left side) and the improvement
factor (right side) for the localized (the lines with the
cross marker) and design-level (the lines with the triangle
marker) optimization for the issues in Java, Python, and C++
subjects. For all three programming languages, the plots of
the number of discussions for localized optimizations are
consistently and non-trivially below the plots for design-level
optimizations. This means that a larger portion of localized
optimizations requires less investment compared to the
design-level optimizations.

30%
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20% 17% 17%
15%
10% 8%

5% 3%
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% of Issues with Other Concerns

0%
Java Python C++

Programming Language

Design-Level Localized

Fig. 19: Other Concerns in Localized vs. Design-Level
Optimization

The difference between the improvement factor of
localized and design-level optimization is relatively small,
compared to the difference in investment. In addition,
the result for the three programming languages shows
some inconsistency. For Java and C++ issues, the plots of
improvement factor for localized optimizations are higher
than the plots of design-level optimization—indicating that
the localized optimizations tend to yield higher return.
But for Python issues, the result is the opposite. In depth
investigation of the Python data revealed that the majority
(60%) of the highly rewarded performance optimization (i.e,
improvement factor greater than 20x) involved replacing the
API usage at the design-level—replacing cross-cutting API
usage simultaneously in multiple Python modules.

Furthermore, as shown in Figure 19, on average, around
20% of design-level optimizations have other aspects of
concerns, but only around 4% localized issues are associated
with other aspects of concerns in their return for the
three programming languages. Therefore, we infer that
one motivating scenario for design-level optimization is for
achieving the long-term benefits while fixing performance
issues.

RQ-4.2 Implication: Design-level optimization requires
more investment to develop compared to localized
optimization. But it does not always warrant higher
performance improvement. However, for all three
programming languages, design-level optimization is
more likely to be associated with return in other aspects
of concerns, such as maintainability.
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6 LIMITATIONS AND THREATS TO VALIDITY

First of all, in the data collection, we cannot guarantee that all
performance issues in the selected projects are captured. We
use keyword matching for selecting performance issues. It is
possible that a performance issue report does not contain any
keyword. Therefore, we cannot guarantee a 100% recall in
retrieving all related issues in the projects. Also, we manually
verify an issue truly relates to performance, which relies on
our understanding and may involve biases.

In RQ1, the root cause analysis is also potentially
biased by the authors’ understanding and experience.
On the one hand, we cannot guarantee that our dataset
comprehensively covers all possible types of performance
issues. On the other hand, each root cause may be further
categorized into different sub-types. For example, Alam et
al. categorized Inefficient Synchronization performance issues
into five detailed situations, such as load imbalance (i.e,
disproportionate thread computation and waiting time)
and over-synchronization (i.e., extensive lock acquisitions),
etc [92]. The goal of this study is to provide an overview
of different types of performance issues that are commonly
observed in real-life projects. We acknowledge that it is still
open to future research to discover a more comprehensive
and fine-grained taxonomy of performance issues.

We used the Mann Whitney Test in RQ-1.1, RQ-2.2,
and RQ-4.1 for evaluating the significance of the impact of
programming language on different aspects of performance
issue root causes and resolution. According to [75], p-value
< 0.05 (5%) or even p-value < 0.01 (1%) indicates statistically
significant difference. No significant impact was found in
any of the above analysis — indicating that the root causes,
design choices, and ROI are overall independent from the
programming language.

In RQ-1.2, we focus on literature that contributes available
tools for detecting and fixing real-life performance issues.
There are literature that provides a conceptual approach for
addressing performance issues without contributing a tool.
We did not consider such literature since it is impossible to
evaluate the availability and applicability. In addition, we did
not evaluate the actual effectiveness and usability of the 42
tools from the literature. The reason is two-fold. First, most of
the tools do not have an available link to download. For those
with a link, many are no longer maintained. Second, to apply
the tools on our dataset requires building and configuring
the projects to repeat the performance issues. However, it is
a known research challenge to replicate real-life performance
issues [1], [4].

In RQ?2, the identification of design-level optimization
and the related patterns is potentially biased by our
understanding, since we manually exclude source file
revisions irrelevant to performance optimization, and
mark the optimization core in design-level optimization.
Furthermore, according to Smith and Williams [15], most
performance issues have their roots in poor architectural
decisions made before coding is done. Their work is based
on a toy project. Our study, to the contrary, is based on
570 performance issues from 13 open source projects. A
possible explanation of only 29% design-level optimization
in our dataset is that we focus on open source projects.
According to RQ-4.2, design-level optimization requires more
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development effort, and is more likely to involve other
aspects of concerns. The choice of design-level optimization
could be impacted by various factors, such as the dedication
and discipline of developers, project schedule and budget,
as well as the need to support other quality attributes
such as maintainability. The 29% design-level optimization
— although not significant portions — already underscore
the necessity and importance of design-level optimization
in practice. In our future work, We plan to explore more
performance issues from commercial projects.

In RQ3, a low percentage (15%) of issues are with test
code revisions. We conjecture that either the developers
mainly focus on revising the production code, neglecting
the verification of the performance optimization; or the
developers change the related test code in separate commits.
If the latter case, it is impractical for us to accurately trace
all the related test code changes. Thus, we cannot guarantee
that we have retrieved all the related test code revisions.
However, this low percentage points to the potential lack
of discipline, awareness, and systematic methodology for
testing performance issues and their resolution in practice.
And we argue that our analysis, based on 85 (15%) issues,
should meaningfully represent the production and test code
co-change patterns in performance optimization.

Admittedly, in RQ4, the number of involved developers
and the number of discussions may not accurately measure
the effort. In proprietary projects, the effort could be
measured more accurately based on the reported human
hours [106]. However, humans hours are not available in our
research, since it is based on open source software projects.
In addition, there are other measures, such as LoC (Lines of
Code). However, according to Anda ef al. [107], LoC could
be misleading in representing the human effort in software
development. For example, a large amount of LoC does not
imply more effort. The two metrics employed in our study
may provide a closer proxy compared to the LoC, and they
have been commonly used in previous studies, such as [108],
[109].

In addition, the performance improvement is based
on the profiling data provided in the performance issue
reports and their discussions. We did not reproduce the
issues to collect the profiling data ourselves. It is a
known challenge to replicate real-life performance issues
due to various factors, such as reproducing the run-time
environment, and configuring the input that lead to the
performance issues [110]. Reproducing the performance
issues in large-scale, distributed software systems, such as
Beam and Mesos, is particularly impractical in lab settings.
We lack a systematic approach to collect reliable profiling
data. Thus, we decide to use the reported performance

improvement, which is more reliable due to developers’

expertise with their projects. Reproducing the performance
issues is highly valuable and also a rich problem that
deserves to be investigated in a separate, dedicated study.
Finally, the availability of discussions that are related to
other aspects of concerns (i.e. the form of return other than
performance improvement) relies on the expertise of and
convention following by the developers. That is, we cannot
verify the benefits to other aspects of concerns mentioned by
the developers; and, we cannot guarantee that developers
always acknowledge such benefits in all the issue discussions
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when applicable.

7 RELATED WORK
71

There are several prior empirical studies that also investigate
and categorize real-life software performance issues [6], [7],
[8], [9]. However, these studies are not as comprehensive
as ours in terms of the size and diversity of the dataset.
In addition, none of the prior studies investigates the
design-level optimization, the test-production co-changes,
or the ROI in resoving performance issues.

Jin et al. reviewed 109 real-life performance issues from
5 widely-used open source software projects (e.g., Mozilla,
MySQL, and Chromium, etc.). They categorized the root
cause of these performance issues into four types, including;:
1) “Uncoordinated Functions”, which map to the Repeated
Computation in our study, 2) “Skippable Functions”, which
map to the General Inefficient Computation in our work,
3) “Synchronization Issues”, which map to our Inefficient
Synchronization, and 4) “Others”, which are the issues that
cannot be categorized into the above three.

Liu et al. [8] and Linares-Vasquez et al. [7] focused on
performance issues from Android smart-phone applications.
Liu et al. [8] categorized performance issues into three types
based on their consequences, including 1) GUI lagging,
2) energy leak, and 3) memory bloat. Linares-Vasquez et
al. [7] summarized three root causes for performance issues
that related to energy consumption, including: 1) “API
misuse”, 2) “data structure bad manipulation”, and 3) “failure
of switching out of thread”. These root causes are equivalent
to the Inefficient API Usage, Inefficient Data Structure, and
Inefficient Synchronization in our study.

Selakovic et al. [9] investigated 98 fixed performance
issues from 16 JavaScript-based projects and summarized
seven types of performance issue root causes. Comparing
to our findings, they only miss the Inefficient Synchronization
since JavaScript does not support multi-threading.

Software Performance Empirical Study

7.2 Model-based Performance Engineering

Model-based  performance Engineering uses modelling
techniques to predict performance metrics of a system,
such as execution speed, resource utilization, and
throughput [111], [112], [113]. In ongoing software projects,
practitioners often recover architecture models from the
source code of a software system using reverse engineering
techniques [114], [115], [116]. There are three types of
architecture models that are often used for model-based
performance engineering. They include 1) the behavioral
model of the system, which captures architecture as the
collaborations among system objects, their internal state
changes, the dynamic interactions among objects during
system operation, e.g., UML Sequence Diagram [117], [118],
2) the component model, which captures the architecture
of a system as a set of components, connectors, and their
compositions, e.g., Palladio Component Model [119], [120], and
3) the hybrid model, which captures the architecture of a
system as the combination of the component structures and
their behavioral interactions, e.g., Probability Matrix [121],
[122]. Practitioners annotate these architecture models
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with performance-related information, such as branching
probabilities [123], [124], workload status [121], [122], [125],
and resource demand [114], [116], [120]. The annotated
architecture models are transformed into performance
models, such as Queuning Networks [117], [118], [126], [127],
[128], Place/Transition (Petri) Nets [111], [129], [130], [131],
and Stochastic Process Algebra [2], [111], [132]. Finally, these
performance models help to predict the performance
metrics of a system by using the analytical tools, such
as SHARPE [123], [124], [133], QPN Solver [129], and
GreatSPN [2], [134].

Model-based Performance Engineering can predict the
performance of a system early—even before the
implementation effort starts [2]. However, it requires high
expertise from the analyst, and thus is potentially difficult to
scale with the complexity of real-life systems.

7.3 Performance Testing and Profiling

Performance testing is one of the most thoroughly studied
approaches to addressing performance concerns in practice.
Performance testing executes a system and constructs a
profile of the system, in terms of responsiveness and stability
under various workloads [1].

There are four major types of performance testing
methodologies, including load testing, stress testing,
endurance testing, and spike testing [17], [18]. Load
testing evaluates the behavior of a software system under
specific workloads. Stress testing executes and profiles
the system under extreme workloads to discover the
maximum capacity of the system. Endurance testing executes
and profiles the system under continuous workload. The
purpose is to determine whether the system can scale
up to support enduring and increasing workloads. Spike
testing determines whether a system can sustain a sudden
increase in workload. [19]. During performance testing,
practitioners leverage profiling tools to keep track of
performance metrics, such as response time, throughput,
and resource utilization [135]. These tools are available for
different platforms, programming languages, and execution
environments, with different advantages [136]. For example,
WebLoad can generate real-life and reliable workload
scenarios for testing complex systems [137]. LoadNinja has the
highest coverage for performance testing [138]. LoadView can
be applied to real-life browsers and web applications [139].
StresStimulus can detect hidden concurrency errors by
measuring performance metrics, such as network latency
and data transmission loss ratio [140]. Apache [Meter [141]
is the most widely-used performance testing/profiling tool
for Java projects and it has been integrated to many IDEs,
such as Eclipse and NetBeans. SmartMeter can automatically
generate a performance assessment report [142]. Rational
Performance Tester [143] is a powerful performance testing tool
developed by IBM, which supports load testing that involves
multiple users and generates a comprehensive performance
assessment report.

One purpose of performance testing is to reveal
performance bottlenecks in software systems by dynamically
testing the system [17], [144], [145]. However, it does not
provide insights regarding how real-life performance issues
are usually caused and should be resolved in practice.
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Therefore, this empirical study provides complementary
knowledge for practitioners to more effectively treat
performance issues.

8 CONCLUSION

This study contributes a large-scale empirical study of
570 real-life performance issues from Java, C/C++, and
Python projects. This study is the first-of-its-kind to provide
holistic analysis of the root causes and resolutions of these
performance issues in that it covers the technical, engineering,
and economic perspectives in resolving performance issues.

First, we revealed eight common root causes and
corresponding resolutions of performance issues. These eight
root causes apply generally to three programming languages
— Java, Python, and C++. The programming language does
not have statistically significant impact on the root causes.
Practitioners should be aware of these common root causes
and resolutions in preventing and resolving performance
issues.

Second, to the best of our knowledge, we are the
first to investigate performance optimization from a
design-perspective. That is, we found that some performance
issues require coordinated revision of a group of related
source files and their design structure to achieve performance
improvement and other aspects of quality concerns, such
as maintainability. We revealed four common design-level
optimization strategies that practitioners should be aware of.

Next, we consider testing as an integral part of
performance optimization by analyzing the common
test-production co-change patterns in performance
optimization. We found that developers not only directly
verify the performance improvement by tuning input sizes,
but more frequently indirectly verify the performance
optimization by focusing on the functional logic. We infer
that practitioners may lack formal processes to follow in
verifying performance optimization in regression testing.

Finally, we consider software development as an
economic activity by evaluating the ROI of performance
optimization. In particular, we found that the design-level
optimization usually requires higher investment — more
developers and more discussions to come up with
the resolution. But it does not always yield to higher
extent of performance improvement. However, design-level
optimization is necessary when practitioners also concern
about other aspects of quality concerns, such as
maintainability.

Therefore, this study provides unique and novel insights
for practitioners to treat performance issues from the
technical, engineering, and economic perspectives, which
are not available in the state-of-the-art research.
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