Graphs with prescribed radius, diameter, and center

Kelly Guest
Tuskegee University, kbraganguest@gmail.com
Andrew Johnson
Kennesaw State University, ajohn301@students.kennesaw.edu
Peter Johnson
Auburn University, johnspd@auburn.edu
William Jones
State University of New York at Binghamton, wjones4@binghamton.edu
Yuki Takahashi
Grinnell College, takahash@grinnell.edu
Zhichun (Joy) Zhang
Swarthmore College, zzhang3@swarthmore.edu

Abstract

Among other things, it is shown that for every pair of positive integers r, d, satisfying $1<r<d \leq 2 r$, and every finite simple graph H, there is a connected graph G with diameter d, radius r, and center H.

Key words and phrases: distance in graph, eccentricity of a vertex, radius/diameter of a connected graph, central vertex, center of a connected graph.
AMS Subject Classification: 05C12

1 Introduction

All graphs referred to will be finite and simple. The vertex and edge sets of a graph G will be denoted $V(G)$ and $E(G)$, respectively. If G is connected and

This research was supported by NSF grant no. 1950563.
$u, v \in V(G), \operatorname{dist}_{G}(u, v)$ is the length of a shortest walk in G from one of u, v to the other; a geodesic under the shortest-walk metric. As every shortest walk is a path, $\operatorname{dist}_{G}(u, v)$ may also be formulated as the length of a shortest path in G with end-vertices u and v.

If G is connected and $v \in V(G)$, the eccentricity of v in G, denoted $\varepsilon_{G}(v)$, is:

$$
\varepsilon_{G}(v)=\max _{u \in V(G)}\left\{\operatorname{dist}_{G}(u, v)\right\}
$$

The radius of a connected graph G is:

$$
\operatorname{rad}(G)=\min _{u \in V(G)}\left\{\varepsilon_{G}(u)\right\}
$$

and its diameter is:

$$
\operatorname{diam}(G)=\max _{u \in V(G)}\left\{\varepsilon_{G}(u)\right\}
$$

Equivalently,

$$
\operatorname{diam}(G)=\max _{u, v \in V(G)}\left\{\operatorname{dist}_{G}(u, v)\right\}
$$

It is easy to see that $\operatorname{rad}(G) \leq \operatorname{diam}(G) \leq 2 \operatorname{rad}(G)$. It is a standard exercise in a first course in graph theory to show that for any positive integers satisfying $r \leq d \leq 2 r$, there is a connected graph G such that $\operatorname{rad}(G)=r$ and $\operatorname{diam}(G)=d$. (A more challenging, but still elementary, exercise would be to determine, for pairs r, d constrained as above, the values of n such that there exists a connected graph G with $\operatorname{rad}(G)=r, \operatorname{diam}(G)=d$, and $|V(G)|=n$.)

A vertex $v \in V(G)$ is a central vertex in G if and only if $\varepsilon_{G}(v)=\operatorname{rad}(G)$. The center of G, denoted $C(G)$, is the subgraph of G induced by the set of centers of G. (Therefore, that set is $V(C(G))$.)

The question broached in [1] is: which graphs can be installed as the center of another graph? That is, given a graph H, can you find a connected graph G such that $C(G) \cong H$?

As reported in [1], this question in full generality was killed at its birth as a question meriting research by a brilliant observation of S. Hedetniemi (Steve? Sandra?), encapsulated in Figure 1.

Figure 1: A connected graph G with an arbitrary graph H as its center. Each vertex of H is adjacent to both u and v, in G.

The authors of [1] resurrect the problem by asking: for a distinguished family \mathcal{F} of connected graphs, which graphs H can be the center of a graph $G \in \mathcal{F}$? And, for such H and \mathcal{F}, how small can $|V(G)|-|V(H)|$ be, if $G \in \mathcal{F}$? These questions have borne fruit, but we are going in a different direction.

The graph G in Figure 1 has diameter 4 and radius 2. The set of central vertices of G is precisely $V(H)$, regardless of what H is. If the paths leading away from H from u and v are each lengthened to have length $t>1$, the result is a graph with center H, radius $t+1$, and diameter $2 t+2$.

Our aim here is to answer the question: for which positive integers d, r, satisfying $r \leq d \leq 2 r$, and graphs H, does there exist a connected graph G such that $\operatorname{rad}(G)=r, \operatorname{diam}(G)=d$, and $C(G) \simeq H$? The extension of the observation of Hedetniemi just above shows that there is such a G for every $H, r>1$, and $d=2 r$. Our main result, in Section 3, is that there is such a G for every H, $r>1$, and $r<d \leq 2 r$. In the next section we deal with extremes, and alternative solutions to that in Section 3, in some cases.

2 Extremes and alternative solutions

$2.1 \quad r=d$

If $\operatorname{rad}(G)=\operatorname{diam}(G)$, then G is its own center. Therefore, $H=C(G)$ and $\operatorname{rad}(G)=\operatorname{diam}(G)$ if and only $H \simeq G$ and $\operatorname{rad}(H)=\operatorname{diam}(H)$.

$2.2 r=1, d=2$

If $\operatorname{rad}(G)=1$, then each central vertex of G is adjacent to every other vertex of G. Therefore, if $H \cong C(G)$ then H must be a complete graph, and each vertex of H must be adjacent to each vertex of $V(G) \backslash V(H)$. Furthermore, since all central vertices of G are in $V(H)$, it must be that every $v \in V(G) \backslash V(H)$ has a non-neighbor in G in $V(G) \backslash V(H)$.

Let " \vee " stand for the join of two graphs: $X \vee Y$ is formed by taking disjoint copies of X and Y and then adding in every edge $x y, x \in V(X), y \in V(Y)$. By the paragraph above, when $r=1, d=2$, the only H for which a solution G can exist are $H=K_{t}, t>0$, and the only possible solutions are $K_{t} \vee Y$ in which Y is a graph with $|V(Y)|>1$ and for each $y \in V(Y)$, the degree $\operatorname{deg}(y)$ of $y \in V(Y)$ satisfies $\operatorname{deg}_{Y}(y)<|V(Y)|-1$.

Every such $G=K_{t} \vee Y$ satisfies $\operatorname{rad}(G)=1, \operatorname{diam}(G)=2$, and $C(G)=K_{t}$, so we have completely characterized the values of $H\left(H=K_{t}\right)$ for which our problem with $r=1, d=2$ has a solution, and all possible solutions ($G=K_{t} \vee Y$, as above).

2.3 A standard method

Proposition 1. Suppose that X is a connected graph with $|V(X)|>1, \operatorname{rad}(X)>$ 1 , and $V(C(X))=\{h\}$; i.e., there is a single central vertex in X. For an arbitrary graph H, if G is formed by replacing h by H, with every vertex of H adjacent in G to every vertex in X to which h is adjacent, then $\operatorname{rad}(G)=\operatorname{rad}(X), \operatorname{diam}(G)=$ $\operatorname{diam}(X)$, and $C(G) \cong H$.

The proof is straightforward. Note that the assumption that $\operatorname{rad}(X)=\varepsilon_{X}(h) \geq$ 2 plays a role in the proof that $H \cong C(G)$.

For instance, the graph in Figure 1 is obtained from $X=P_{5}$, the path on 5 vertices, by the device of Proposition 1. The generalization to the solution of our problem for all H when $d=2 r \geq 4$ uses the device of Prop. 1 with $X=P_{2 r+1}$.

In Figure 2 we have a graph X with a single central vertex h such that $\operatorname{rad}(X)=r, \operatorname{diam}(G)=2 r-1$, for arbitrary $r \geq 2$. By Proposition 1, this shows that every graph H can be the center of a graph G of radius r and diameter $2 r-1$, for every $r \geq 2$.

Figure 2: A graph X with radius $r \geq 2$, diameter $2 r-1$, and a single central vertex h; and a graph G with $\operatorname{rad}(G)=r, \operatorname{diam}(G)=2 r-1$, and $C(G) \simeq H$. The paths hanging off the vertices of C_{6} are all P_{r-1}, paths of length $r-2$. In the case $r=2$, they are not there, and $|V(X)|=7$.

For those who enjoy variety, we can vary X to the graph Y shown in Figure 3 , which gives another solution to our problem when $d=2 r$ and H arbitrary.

Figure 3: A graph with a single central vertex, radius $r \geq 2$, and diameter $2 r$.

If you have been paying attention, you might exclaim: why do we need this? Hedetniemi's construction already gives us solutions of our problem in the case $d=2 r \geq 4$. Yes, bur Figure 3 gives a different solution, and different solutions of our problem contribute to the solution of a problem that towers over ours: given positive integers r and d satisfying $1<r<d \leq 2 r$, and a graph H, find all possible graphs G satisfying $\operatorname{rad}(G)=r, \operatorname{diam}(G)=d$, and $C(G) \cong H$. In view of Proposition 1, in pursuit of this larger problem, it is appropriate to pose the following: given d and r as above, find all graphs X such that $\operatorname{rad}(X)=r$, $\operatorname{diam}(X)=d$, and $C(X)=K_{1}$.

Moreover, the alternative solutions to the $d=2 r$ case provide a related problem: what properties characterize those graphs with $d=2 r$ and center K_{1} ? The majority of graphs constructed with center K_{1} in fact had $d=2 r$, and the solution to this problem will considerably narrow down the larger problem.

In Figure 4, we have, for $r \geq 2$, a graph of radius r and diameter $r+1$, and a graph of radius r and diameter $r+\left\lceil\frac{r}{3}\right\rceil$, both with a single central vertex.

G

Figure 4: A graph G with radius r and diameter $r+1$, and a graph H with radius r and diameter $r+\left\lceil\frac{r}{3}\right\rceil$. The "top" and the "bottom" of the drawing of H are

$$
P_{r+1} \text { 's. }
$$

2.4 A non-standard strategy in special cases

The strategy referred to, applicable only when H is connected is: attach pairwise vertex-disjoint paths to the vertices of H. This trick appears to be of use only in a special class of cases.

Proposition 2. Suppose that H is connected with $\operatorname{rad}(H)=\operatorname{diam}(H)=z$. Suppose that G is formed by attaching vertex-disjoint paths P_{t} to the vertices of H, with each vertex of H being an end of its attached path (when $t=1$, nothing
is attached, and $G=H)$. Then $\operatorname{rad}(G)=z+t-1, \operatorname{diam}(G)=2(t-1)+z$, and $C(G) \cong H$.

The proof is straightforward.
Corollary 1. If H is as in Proposition 2 then for all integers $r \geq z$ and $d=2 r-z$ there is a graph G, obtained as in Prop. 2 with $t=r-z+1$ such that $\operatorname{rad}(G)=r$, $\operatorname{diam}(G)=d$, and $C(G)=H$.

3 The main result

Lemma 1. Let X be the graph depicted in Figure 5. Suppose that $n \geq 0$ and $r \geq \max \{2, n+1\}$. Then h is the unique central vertex of $X, \operatorname{rad}(X)=r$, and $\operatorname{diam}(X)=r+n+1$.

Figure 5: A graph X with a single central vertex h, radius r and diameter $r+n+1$, provided $r \geq n+1$.

Proof. Clearly $\varepsilon_{X}(h)=\max \{r, n+1\}=r$. Checking shows that every other vertex of X has eccentricity $>r$ in X. For instance,

$$
\varepsilon_{X}\left(v_{1,1}\right)=\max \left\{\operatorname{dist}\left(v_{1,1}, w_{n}\right), \operatorname{dist}\left(v_{1,1}, v_{r+1,2}\right)\right\}=\max \{n+2, r+1\}=r+1
$$

Finally, it is easy to see that the vertices $v_{i, j}, i \in\{r, r+1\}, j \in\{1,2\}$, have the greatest eccentricity; for instance, $\varepsilon_{X}\left(v_{r, 1}\right)=\operatorname{dist}\left(v_{r, 1}, y_{n}\right)=r+n+1=$ $\operatorname{diam}(X)$.

Theorem 1. For all integers $r \geq 2$ and d satisfying $r<d \leq 2 r$ and every graph H there is a graph G such that $\operatorname{rad}(G)=r$, $\operatorname{diam}(G)=d$, and $C(G) \cong H$. Furthermore, G is obtainable from some graph by the method of Proposition 2.

Acknowledgement

We greatly thank Timothy Eller for drawing the graphs for us.

References

[1] Fred Buckley, Zevi Miller, and Peter J. Slater. On graphs containing a given graph as center. Journal of Graph Theory 5(1981), 427-434.

