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Abstract

Due to information asymmetry, finding opti-
mal policies for Decentralized Partially Ob-
servable Markov Decision Processes (Dec-
POMDPs) is hard with the complexity grow-
ing doubly exponentially in the horizon
length. The challenge increases greatly in the
multi-agent reinforcement learning (MARL)
setting where the transition probabilities, ob-
servation kernel, and reward function are un-
known. Here, we develop a general com-
pression framework with approximate com-
mon and private state representations, based
on which decentralized policies can be con-
structed. We derive the optimality gap of ex-
ecuting dynamic programming (DP) with the
approximate states in terms of the approxi-
mation error parameters and the remaining
time steps. When the compression is exact
(no error), the resulting DP is equivalent to
the one in existing work. Our general frame-
work generalizes a number of methods pro-
posed in the literature. The results shed light
on designing practically useful deep-MARL
network structures under the “centralized
learning distributed execution” scheme.

1 INTRODUCTION

Finding optimal policies for Decentralized Par-
tially Observable Markov Decision Processes (Dec-
POMDPs) is hard due to information asymmetry,
which refers to the mismatch in the set of informa-
tion each agent has in a multi-agent environment. In
fact, a finite-horizon Dec-POMDP with more than one
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agent is NEXP-complete (Bernstein et al., 2002), im-
plying a doubly exponential complexity growth in the
horizon length. In decentralized control theory, the-
oretical solutions have been proposed to find the op-
timal control laws for Dec-POMDPs. Notably among
them is the common information (CI) approach (Nay-
yar et al., 2013), a framework that decomposes the
decision of a full policy into the decision of a “prescrip-
tion policy” from the CI known by all the agents, and
the “prescription” itself which is a full characterization
of how the agents should act based on any realization
of their own private information (PI). This approach
e↵ectively transforms the decentralized model back to
a centralized one from the view of a fictitious “coor-
dinator” who only observes the CI, and permits a co-
ordinator level sequential decomposition using a belief
state a’la POMDPs (Kumar and Varaiya, 2015).

The challenge increases greatly in the multi-agent re-
inforcement learning (MARL) setting where the model

– transition probabilities, observation kernel, and re-
ward function – is unknown. When the agents learn
concurrently, information asymmetry causes another
issue called the “non-stationarity issue,” since the ef-
fective environment observed by each agent is time-
varying as the other agents learn and update their
policies. The issue can be alleviated in principle by
the “centralized learning and distributed execution”
scheme (Dibangoye and Bu↵et, 2018) as the learning
is from the coordinator’s viewpoint; indeed, if agents
only update their policies using CI, they can perfectly
track others’ policies. However, there is still a big
gap in applying the CI approach to the MARL set-
ting. First, the Bayesian updates of the belief state in
the CI approach require the knowledge of the model,
which is not available in the MARL setting. More-
over, the linear growth of length of private histories
leads to the doubly exponential growth of the space
of prescriptions in time, which is explosively large
even for toy-size environments and forbids any practi-
cal explorations in such space. One natural question
is whether we can restrict attention to some policies
(and prescriptions) that take some state variable as
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inputs without losing much performance, where the
state variables encapsulate the crucial information rel-
evant to future decisions in a time-invariant domain,
and where the representations (ways of encapsulation)
can be learned without the knowledge of the model.

In this paper, we formulate good approximate common
and private state representations for learning close-
to-optimal policies in unknown finite-horizon Dec-
POMDPs, where each agent receives its own private
information plus a common observation. The agents
also share the same commonly observed rewards; how-
ever, they may not know each others’ actions. We
propose conditions in Definition 3 for an approximate
su�cient private state (ASPS), which compresses an
agent’s private information, i.e., its action observation
history (AOH), and conditions in Definition 5 for an
approximate su�cient common state (ASCS), which
compresses the fictitious coordinator’s AOH, with the
actions being ASPS-based prescriptions and the obser-
vations being common observations. Critically, using
Theorem 4 and Theorem 6, in Theorem 7 we derive
the optimality gap in terms of the error parameters
of our compressions and the remaining time steps, be-
tween the value functions of two dynamic program-
mings (DPs): one in Algorithm 1 for the optimal pol-
icy using the CI approach without compression, with
states being the complete coordinator’s AOHs and ac-
tions being the prescriptions from Nayyar et al. (2013);
and the other in Algorithm 3 using our framework
with states being any valid

1 ASCSs and the actions
being ASPS-based prescriptions for valid ASPS. Our
framework generalizes a number of results in the lit-
erature: first, it extends the approximate information
state (AIS) framework (Subramanian and Mahajan,
2019; Subramanian et al., 2020) to the multi-agent set-
ting; second, it extends the CI approach (Nayyar et al.,
2013) and the follow-up su�cient private information
(SPI) framework that compresses the private states
(Tavafoghi et al., 2021), to their approximate state rep-
resentation counterpart; third, it generalizes the work
by Mao et al. (2020) to include non-injective compres-
sions and a general approximate common state repre-
sentation. Our results can provide guidance on design-
ing Deep Learning (DL) structures to learn the (com-
pressed) state representations and the optimal policies
(using learned representations) under the centralized
learning distributed execution scheme, which applies
to practical o✏ine or online MARL settings.

Related Work. The problem of state representa-
tion is well studied in the single-agent POMDP case.
Stochastic control theory details the conditions an in-

formation state (IS) needs to satisfy so that it acts as
the Markov state in an equivalent MDP so one may

1
Satisfying the approximation criteria.

only consider IS-based policies without loss of gener-
ality (Mahajan and Mannan, 2016); the belief state
is an example of such IS (Kumar and Varaiya, 2015).
Subramanian et al. (2020) extends the idea to an ap-

proximate information state (AIS), where the IS con-
ditions hold approximately; importantly, the optimal-
ity gap of running DP with any valid AIS is quanti-
fied. Based on their AIS scheme, they propose a DL
framework that learns the AIS representation without
knowing the model. Recent work on Deep Bisimula-

tion for Control (DBC) (Zhang et al., 2021b) in the DL
literature uses similar ideas: they train an encoder to
predict well the instantaneous rewards and transitions,
and use the encoder output to train the policies. The
encoder is an encapsulation or a compression. The
optimality gap established is similar to the result of
the infinite horizon case in Subramanian and Maha-
jan (2019). There are more representation learning
schemes not requiring model knowledge in the DL or
RL literature, e.g. Ha and Schmidhuber (2019), with
the bulk without theoretical guidance or guarantees.

In the multi-agent context, Nayyar et al. (2013) pro-
pose a belief IS for the coordinator using the CI ap-
proach, without compressing agents’ private informa-
tion. Tavafoghi et al. (2018) further compress private
histories to su�cient private information (SPI) so that
the corresponding spaces of the belief IS and prescrip-
tions are time-invariant. They identify conditions such
that restricting attention to SPI-based policies is with-
out loss of optimality. However, not only do they con-
sider a control setting where the model is required,
but also only present compression of the common his-
tory to a belief state, which is a narrow class of com-
pression schemes. Nevertheless, this work will be a
starting point of our work. Mao et al. (2020) consider
an information state embedding that injectively maps
agents’ histories to representations in a fixed domain,
and quantify the e↵ect of the embedding on the value
function like Subramanian and Mahajan (2019). How-
ever, their requirement that the mapping is injective is
impractical for two reasons: one, an injective mapping
does not reduce the policy complexity; and two, real
world applications often demand non-injective encap-
sulations - e.g., tiger (Kaelbling et al., 1998) where one
IS is the number of right observations minus the num-
ber of left observations, which is non-injective. More-
over, they also compress the common state to a belief
state, but it is unclear how this can be done in practice
without model information.

Another line of work in deep-MARL literature also
applies the notion of CI (also known as the common
knowledge) to solving MARL problems (Schroeder de
Witt et al., 2019; Foerster et al., 2019; Lerer et al.,
2019; Sokota et al., 2021). They search for opti-



Hsu Kao, Vijay Subramanian

mal policies for a Dec-POMDP when the model is
known, while we consider designing sample e�cient
and lower regret learning algorithms in an o✏ine or
online MARL setting for an unknown model. More-
over, many of them involve heuristic or approximation
methods without knowing the potential loss from the
approximations or apply a variety of machine learning
schemes without a theoretical basis or understanding.

2 PRELIMINARIES

Notation. Let �(X ) denote the set of distribu-
tions on the space X , and ⌦(X) denote the space
where the variable X takes values. Superscripts
are used as the agent index and subscripts as the
time index. The notation Xc:d

a:b denotes the tuple
(Xc

a, . . . , X
d
a , . . . , X

c
b , . . . , X

d
b ). In some cases super-

scripts or subscripts are omitted, and if so the meaning
will be clarified. Capital letters are used for random
variables while lower case letters are for their realiza-
tions. For random variables X with a realization x,
we use the short hand notation P(·|x) , P(·|X = x)
and E[·|x] , E[·|X = x]. If a random variable appears
without realization in a place other than the operand
of E, then it means the related equation should hold
for any Borel measurable subset in its domain.

2.1 Dec-POMDP Model

We consider the Dec-POMDP model with N agents,
i.e., a tuple (S,A,PT , R,O,PO, T,PI) where the quan-
tities are: S is the state space; A = ⇧N

n=1An is the
joint action space whose elements are joint actions
A = A1:N ; PT : S ⇥A ! �(S) is the transition kernel
mapping a current state and a joint action to a dis-
tribution of new states; R : S ⇥A ! R is the reward
function mapping a current state and a joint action to
a real number; O = ⇧N

n=0On is the joint observation
space whose elements are joint observations O = O0:N ,
where O0 is commonly observed but On is only ob-
served by agent n; PO : S ! �(O) is the observation
kernel mapping a current state to a distribution of joint
observations; T is the time horizon; PI 2 �(S) is the
initial state distribution. Compared to the standard
Dec-POMDP model (Oliehoek and Amato, 2016), we
have an additional common observation (including the
reward), and our observations depend only on the cur-
rent state.

We assume S, A, O, and T are finite and known in
advance, while PT , R, PO, and PI are unknown in the
MARL setting. Further, agents have perfect recall.
At time t, agent n observes (O0

t , O
n
t ) generated from

PO(St), then uses the policy An
t = gnt (O

0
1:t, g1:t�1, Hn

t )
to select its action, where gs = g1:Ns and Hn

t =
(An

1:t�1, O
n
1:t) is agent n’s private history and known as

its AOH. The agents receive a reward Rt , R(St, At)2,
and the next state St+1 is generated from PT (St, At).
The goal is to find a policy g = g1:T to maximize the
common cumulative reward

E
"

TX

t=1

R(St, At)

����g
#
, (1)

where the expectation is taken over the measure gen-
erated by policy g applied to model (PT , R,PO,PI).

2.2 AIS Framework

In the single-agent POMDP setting, the spaces A and
O are not product spaces, and at time t the agent’s
policy is of the form gt : ⌦(Ht) ! ⌦(At), where
Ht = (A1:t�1, O1:t) is the agent’s AOH. Note the pol-
icy space grows exponentially in t as the length of Ht

grows linearly in t. Subramanian and Mahajan (2019)
give conditions of a representation encapsulating the
information in Ht that is approximately su�cient for
decision purposes into a time-invariant space.

Definition 1: An (✏, �)-approximate information
state bZt is the output of a function bZt = b#t(Ht) that
satisfies the following properties:
(AIS1) It evolves recursively bZt+1 = b�t( bZt, At, Ot+1).
(AIS2) It su�ces for approximate performance evalu-

ation |E[Rt|ht, at]� E[Rt|bzt, at]|  ✏ 8 ht, at.
(AIS3) It su�ces for approximately predicting the ob-

servation K(P(Ot+1|ht, at),P(Ot+1|bzt, at)) 
� 8 ht, at, where K(·, ·) is a distance between
two distributions3.

The value function at t obtained from Bellman equa-
tions with bZ’s as states falls behind the optimal value
function at the most by an expression linear in T � t,
✏, and � (Subramanian and Mahajan, 2019). When
✏ = � = 0, the expression is 0, and the AIS bZ degen-
erates to an IS Z.

In Subramanian and Mahajan (2019), a DL framework

is provided to find an “approximate mapping” b#t(·) for
any given POMDP model. The idea is to interpret the
quantities in the LHS of (AIS2) and (AIS3) as driving
the learning loss in DL, and let existing DL optimiza-
tion algorithms find good mappings. The resulting
AIS can then be used as the state in common policy
approximation methods to find a near-optimal policy.

2.3 Common Information based DPs

2.3.1 DP with No Compression

In a DecPOMDP, the action decision for agent n at
time t, An

t = gnt (O
0
1:t, g1:t�1, Hn

t ), can be split into

2
Or a noisy reward with mean Rt.

3
For example, Wasserstein and total variation distances.
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(a) The decision flow before

decomposition.

(b) The decision flow after de-

composition.

Figure 1: Illustration of the CI approach.

two steps. In the first step, based on past com-
mon observations and policies (O0

1:t, g1:t�1) (using per-
fect recall), the agent decides gnt and hence �n

t (·) ,
gnt (O

0
1:t, g1:t�1, ·); then in the second step, it simply

applies �n
t to Hn

t to obtain the action An
t = �n

t (H
n
t ).

The function �n
t is called the prescription (function),

since it prescribes what the agent should do based on
any possible realization of its private information.

This decomposition technique is called the CI ap-
proach (Nayyar et al., 2013). Note that the actual
decision is carried out in the first step and solely upon
CI (perfect recall makes policy common knowledge).
One may then imagine there is a fictitious coordina-
tor, labelled agent 0. At time t, the coordinator’s
policy is of the form dt : ⌦(H0

t ) ! ⌦(�t), where
H0

t , (O0
1:t,�1:t�1) is equivalent to (O0

1:t, g1:t�1) and
�t = �1:N

t ; then it sends �t to every agent, and agent
n selects An

t = �n
t (H

n
t ). It is shown that this decom-

position is without loss of generality (so without loss
of optimality too). The coordinator observes common
observation O0

t and chooses action �t; hence, H0
t can

be seen as the coordinator’s AOH and will be called the
full common state (FCS), while Hn

t will be referred to
as the full private state (FPS) of agent n. The trans-
formation of the decision flows by the CI approach is
illustrated in Figure 1, with the case of two agents.

From the perspective of the coordinator, the problem
is now a centralized POMDP, and the goal is to find a
policy d = d1:T that maximizes the expected cumula-
tive reward. This permits a sequential decomposition
with FCS as the state and an FPS-based prescription
(meaning the prescription takes FPS as its input) as
the action, which is presented in Algorithm 1.

Algorithm 1 Dynamic Programming with FCSs and
FPS-based Prescriptions

VT+1(h0
T+1) , 0

for t = T, . . . , 1 do
Qt(h0

t , �t) = E
⇥
R(St,�t(H1:N

t ))+
Vt+1((H0

t ,�t, O0
t+1))|H0

t = h0
t ,�t = �t

⇤

Vt(h0
t ) = max�t2⌦(�t) Qt(h0

t , �t)

In practice, the coordinator is virtual and the compu-
tation of the coordinator is carried out in all agents –

this is viable since the coordinator’s computation only
requires CI, which every agent has access to. Note the
update of the state is done by direct concatenation of
the incoming �t and O0

t+1.

2.3.2 DP with BCS

Nayyar et al. (2013) further compresses the FCS to
the belief common state (BCS) ⇧t = P(St, H1:N

t |H0
t ),

which is the conditional distribution on the state and
the FPSs given the FCS. It is shown that restrict-

ing attention to coordinator’s policy of the form
.
dt :

⌦(⇧t) ! ⌦(�t) is without loss of optimality. The DP
presented thus uses this BCS as the state and an FPS-
based prescription as the action – see Appendix A.2.

There are two problems with this approach when ap-
plied to the MARL setting. First, the BCS is updated
via a Bayesian update using PT and PO, which requires
model knowledge. Second, the growing length of H1:N

t

makes the spaces of ⇧t and �t explosively large and
impossible to explore. At a conceptual level we can
apply the AIS framework to the centralized POMDP
of the coordinator4; however, the underlying decen-
tralized information structure coupled with increasing
domain of private information makes practical imple-
mentations of this scheme challenging.

2.3.3 DP with BCS and SPI

To alleviate the aforementioned dimensionality issue,
Tavafoghi et al. (2018) further compresses the FPS to a
representation called the su�cient private information
(SPI) lying in a time-invariant domain. They identify
a set of conditions for the compression so that the SPI
is su�cient for decision making purposes.

Definition 2: A su�cient private information (SPI)
Z1:N
t is a tuple of outputs of a set of functions Zn

t =
#nt (H

0
t , H

n
t ) 8 n 2 [N ] satisfying the properties:

(SPI1) It evolves recursively, i.e., 8 n 2 [N ], Zn
t =

�nt (Z
n
t�1,�t�1, O0

t , A
n
t�1, O

n
t , g1:t�1).

(SPI2) It su�ces for performance evaluation
E[R(St, At)|h0

t , h
n
t , at] = E[R(St, At)|h0

t , z
n
t , at]

8 n, h0
t , h

n
t , at.

(SPI3) It su�ces for predicting itself and the com-
mon observation P(Z1:N

t+1 , O
0
t+1|h0

t , h
1:N
t , �t, at)

= P(Z1:N
t+1 , O

0
t+1|h0

t , z
1:N
t , �t, at) 8 h0:N

t , �t, at.
(SPI4) It su�ces for predicting other agents’ SPI

P(Z�n
t |h0

t , h
n
t ) = P(Z�n

t |h0
t , z

n
t ) 8 n, h0

t , h
n
t .

The coordinator now considers SPI-based prescrip-
tions ⇤t = ⇤1:N

t where An
t = ⇤n

t (Z
n
t ), and the BCS

is changed to ⇧
⇠

t = P(St, Z1:N
t |H

⇠ 0

t ) where H
⇠ 0

t =

4
Strictly speaking, this requires a straightforward ex-

tension to time-varying action spaces for di↵erent time

steps – see Subramanian et al. (2020) Section 5 for details.
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(O0
1,⇤1, . . . , O0

t ). It is shown that restricting attention
to coordinator’s policy of the form d

⇠

t : ⌦(⇧
⇠

t) ! ⌦(⇤t)
is without loss of optimality. The resulting DP uses the
BCS as the state and SPI-based prescription as the ac-
tion – see Appendix A.3. Note that the compression
actually leads to an action compression for the coor-
dinator – from FPS-based prescriptions to SPI-based
prescriptions – which has no loss in performance.

With ⇧
⇠

t, Z1:N
t , and ⇤t all lying in time-invariant

spaces, the complexity no longer grows with time.
However, it is unclear how to find mappings satisfy-
ing Definition 2 and update the BCSs in an MARL
setting. Further, the solution focuses on a decentral-
ized setting wherein the (lossless) compression func-
tions are consistent (common knowledge), and the per-
formance assessments and predictions are based only
on the information of any particular agent. Ensuring
these properties in the RL context would require sig-
nificant communication, particularly during learning
the compression.

3 APPROXIMATE STATE

REPRESENTATIONS

We seek to extend the idea of identifying represen-
tations su�cient for approximately optimal decision
making from Section 2.2 to the multi-agent setting,
and develop a general compression framework for com-
mon states and private states (hence also prescrip-
tions) whose mappings can be learned from samples
obtained by interacting with the environment alone.

In this section, we propose our general states rep-
resentation framework for approximate planning and
control in partially observable MARL problems. We
start by compressing private histories to ASPS; for the
coordinator, this induces an action compression from
FPS-based prescriptions to ASPS-based prescriptions.
Then based on this compression, the common history
is further compressed to ASCS.

The framework we develop will be consistent with the
philosophy of recent empirical MARL work wherein
there is a centralized agent called the supervisor. The
supervisor observes all the quantities and develops
good compression of private information and common
information that the coordinator can use to produce
close-to-optimal prescriptions (using the compressed
common information), which can be implemented by
the agents using just their own compressed private in-
formation. We detail the supervisor in Section 4.1 but
point out here that it has the knowledge of H0:N

t for
all t 2 [T ]. Note that this viewpoint is consistent with
the “centralized training with distributed execution”
setting of the empirical MARL work.

3.1 Compressing Private States

Definition 3: An (✏p, �p)-approximate su�cient pri-
vate state (ASPS) bZ1:N

t is a tuple of outputs of a set
of functions bZn

t = b#nt (H0
t , H

n
t ) 8 n 2 [N ] satisfying:

(ASPS1) It evolves in a recursive manner, that is,
8 n 2 [N ], bZn

t = b�nt ( bZn
t�1,�t�1, O0

t , O
n
t ).

(ASPS2) It su�ces for approximate performance
evaluation

��E[R(St, At)|h0
t , h

1:N
t , at] �

E[R(St, At)|h0
t , bz1:Nt , at]

��  ✏p/4 8 h0:N
t , at.

(ASPS3) It su�ces for approximately predict-
ing observations K

�
P(O0:N

t+1 |h0
t , h

1:N
t , at),

P(O0:N
t+1 |h0

t , bz1:Nt , at)
�
 �p/8 8 h0:N

t , at.

This definition induces the ASPS-based prescription,
which is a mapping b�t : ⌦( bZ1:N

t ) ! ⌦(At) that pre-

scribes the action tuple for all ASPSs At = b�t( bZ1:N
t ) =

(b�1t ( bZ1
t ), . . . , b�Nt ( bZN

t )) in a component-wise manner.
One can run a DP with FCSs as states and ASPS-
based prescriptions as actions – see Algorithm 2.

Algorithm 2 Dynamic Programming with FCSs and
ASPS-based Prescriptions

bVT+1(h0
T+1) , 0

for t = T, . . . , 1 do
bQt(h0

t , b�t) = E
⇥
Rt(St, b�t( bZ1:N

t ))

+bVt+1((H0
t , b⇤t, O0

t+1))|H0
t = h0

t , b⇤t = b�t
⇤

bVt(h0
t ) = maxb�t2⌦(b⇤t)

bQt(h0
t , b�t)

The compression is characterized by functions b#1:Nt .
These functions also relate ⌦(�t) and ⌦(b⇤t) as ASPS-
based prescriptions are a strict subset of FPS-based
prescritions; this detail will be explained in Section 4.2.
For now we note that here the conditions we set for
the action compression from ⌦(�t) to ⌦(b⇤t) are on
the private states instead of defining an encapsulation
directly on the actions (i.e., prescriptions); moreover,
the compression may depend on the common state h0

t

as well. Hence, this falls outside of the action com-
pression scheme studied in Subramanian et al. (2020).
We bound the error between the value functions ob-
tained from Algorithm 2 and the optimal value func-
tions obtained from Algorithm 1 in the following the-
orem proved in Section 4.2.

Theorem 4: Assume the reward function R is
bounded by R̄. For any h0

t 2 ⌦(H0
t ) and �⇤ 2

argmax� Qt(h0
t , �), with t̄ = T � t, there exists a

b� 2 ⌦(b⇤t) such that

Qt(h
0
t , �

⇤)� bQt(h
0
t , b�) 

t̄(t̄+ 1)

2
(✏p+TR̄�p)+(t̄+1)✏p,

(2)

Vt(h
0
t )� bVt(h

0
t ) 

t̄(t̄+ 1)

2
(✏p+TR̄�p)+(t̄+1)✏p. (3)
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3.2 Compressing Common States

While restricting attention to ASPS-based prescrip-
tions, we further compress the common history to an
approximate representation by applying the state com-
pression result of Subramanian and Mahajan (2019).

Definition 5: An (✏c, �c)-approximate su�cient com-
mon state (ASCS) bZ0

t is the output of a function
bZ0
t = b#0t (H0

t ) satisfying the properties:
(ASCS1) It evolves in a recursive manner, that is,

bZ0
t = b�0t ( bZ0

t�1, b⇤t�1, O0
t ).

(ASCS2) It su�ces for approximate perfor-
mance evaluation, i.e., 8 h0

t , b�t, we have��E[Rt(St, At)|h0
t , b�t]�E[Rt(St, At)|bz0t , b�t]

��  ✏c.
(ASCS3) It su�ces for approximately predicting

common observation, i.e., 8 h0
t , b�t, we have

K
�
P(O0

t+1|h0
t , b�t),P(O0

t+1|bz0t , b�t)
�
 �c/2.

In our proposed representation framework, agents
compress the CI and PI to ASCS bZ0

t and ASPS bZ1:N
t ,

which can be updated recursively using the incoming
CI and PI. Agents use the same policy d

V

t : ⌦( bZ0
t ) !

⌦(b⇤t) to decide the ASPS-based prescription b⇤t from
bZ0
t , then they apply b⇤t to their own ASPS bZn

t to ob-
tain the action An

t . Approximately optimal policies
then result from the DP with ASCSs as states and
ASPS-based prescriptions as actions – see Algorithm 3.

Algorithm 3 Dynamic Programming with ASCSs
and ASPS-based Prescriptions

V

V

T+1(bz0T+1) , 0
for t = T, . . . , 1 do

Q

V

t(bz0t , b�t) = E
⇥
R(St, b⇤t( bZ1:N

t ))

+V

V

t+1(b�0t ( bZ0
t , b⇤t, O0

t+1))| bZ0
t = bz0t , b⇤t = b�t

⇤

V

V

t(bz0t ) = maxb�t2⌦(b⇤t)
Q

V

t(bz0t , b�t)

From Algorithm 2 to Algorithm 3, only the states are
further compressed, so a gap result bounding the dif-
ference between the two DPs holds, similar to the re-
sult in Subramanian and Mahajan (2019). See Ap-
pendix C for details.

Theorem 6: Assume the reward function R is
bounded by R̄. For any h0

t 2 ⌦(H0
t ) and b� 2 ⌦(b⇤t),

with t̄ = T � t, we have
bQt(h

0
t , b�)�Q

V

t(b#0t (h0
t ), b�)  t̄(✏c + TR̄�c) + ✏c, (4)

bVt(h
0
t )� V

V

t(b#0t (h0
t ))  t̄(✏c + TR̄�c) + ✏c. (5)

3.3 Main Result

Our main result bounds the optimality gap of value
functions obtained from performing DP with the gen-
eral common and private representations satisfying the

conditions in Definition 3 and Definition 5 as in Algo-
rithm 3, in comparison to the optimal value functions
computed from Algorithm 1.

Theorem 7: Assume the reward function R is
bounded by R̄. For any h0

t 2 ⌦(H0
t ) and �⇤ 2

argmax� Qt(h0
t , �), with t̄ = T � t, there exists a

b� 2 ⌦(b⇤t) such that
Qt(h

0
t , �

⇤)�Q

V

t(b#0t (h0
t ), b�) (6)

 t̄(t̄+ 1)

2
(✏p + TR̄�p) + (t̄+ 1)(✏c + ✏p) + t̄T R̄�c,

Vt(h
0
t )� V

V

t(b#0t (h0
t )) (7)

 t̄(t̄+ 1)

2
(✏p + TR̄�p) + (t̄+ 1)(✏c + ✏p) + t̄T R̄�c.

Proof: Combine Theorem 4 and Theorem 6. ⌅

We observe that the action compression induced by
private state compression leads to a gap quadratic in
remaining time t̄ = T � t (Theorem 4), and com-
mon state compression causes a gap linear in remain-
ing time. Also, note that the gap decreases to 0 as
(✏c, �c, ✏p, �p) go to 0. Having developed this result,
the remaining questions for learning using the sam-
ple data from the environment are: how to learn the
compression mappings b#0:N1:T with small error; and how
to learn good policies with the compressed represen-
tations. See Appendix E for a proposed scheme to
answer both these questions using DL methods.

3.4 Comparisons to Existing Schemes

Nayyar et al. (2013) and Tavafoghi et al. (2018) pro-
vide lossless (performance-wise) compression. We re-
fer to ASPS and its corresponding conditions with
✏p = �p = 0 as SPS; similarly, we refer to ASCS and
its corresponding conditions with ✏c = �c = 0 as SCS.
Missing proofs in this subsection are in Appendix D.

Relation to Nayyar et al. (2013). The private
history is not compressed in Nayyar et al. (2013), so it
is clearly a special case of SPS. The BCS proposed in
Nayyar et al. (2013) is a special case of SCS as well.

Proposition 8: The BCS ⇧t = P(St, H1:N
t |H0

t ) sat-
isfies the conditions of an SCS in Definition 5 with
✏c = �c = 0.

Relation to Tavafoghi et al. (2018). Our con-
ditions of SPS and Tavafoghi et al. (2018)’s condi-
tions of SPI both lead to performance su�ciency of
the space of SPI-based (or SPS-based) prescriptions.
The two sets of conditions are similar but not ex-
actly the same. Condition (SPI1) corresponds to
(SPS1); however, (SPS1) is stricter since we require
policy-independent compression, while Tavafoghi et al.
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(2018) allow policy-dependent compression. Condition
(SPI3) ensures future su�ciency as does (SPS3). Con-
ditions (SPI2) and (SPI4) together ensure present suf-
ficiency as does (SPS3).

Proposition 9: (SPS1) and (SPS3) imply (SPI3).
Proposition 10: (SPS2) and (SPI4) imply (SPI2).

Restricting to SPS, their BCS ⇧
⇠

t = P(St, Z1:N
t |H0

t ) is
a special case of SCS as well, so a result identical to
Proposition 8 holds with FPS changed to SPS.

Relation to Mao et al. (2020). Their private
state embedding does not require a recursive update
(ASPS1), but demands injective functions b#1:Nt . With
this additional assumption they show linearity of the
optimality gap in remaining time. For the common
state, the BCS they consider is a special case of our
SCS, just as the BCS of Tavafoghi et al. (2018).

A thorough comparison of the DPs proposed in this
work and in the literature is summarized in Table 1.

4 OPTIMALITY GAP ANALYSIS

In this section, we outline the optimality gaps intro-
duced in Section 3; details are in Appendix B.

4.1 Supervisor’s Functions

For better exposition, we introduce another set of Q/V
functions from an omniscient supervisor ’s perspective,
for the original decision problem. The supervisor can
access the union of the information of all agents: at
time t the supervisor knows H0:N

t . In contrast, coor-
dinator’s information is the intersection of the infor-
mation of all agents: H0

t . The supervisor, however,
only observes what is happening, lets the coordinator
decide all the policies and prescriptions, and imple-
ments the coordinator’s policies. Let d⇤1:T be a coor-
dinator’s optimal policy solved using Algorithm 1, i.e.
d⇤t (h

0
t ) 2 argmax�t2⌦(�t) Qt(h0

t , �t). Then the Q/V
functions defined in Algorithm 1 can be rewritten as

Qt(h
0
t , �t) = E

"
TX

⌧=t

R⌧

����h
0
t , �t, d

⇤
t+1:T

#
, (8)

Vt(h
0
t ) = E

"
TX

⌧=t

R⌧

����h
0
t , d

⇤
t:T

#
. (9)

The supervisor’s Q/V functions use similar concepts,
but with supervisor’s states and coordinator’s policies.

Definition 11: For any h0:N
t 2 ⌦(H0:N

t ), �t 2 ⌦(�t),
define the supervisor’s Q function as

QS
t (h

0
t , h

1:N
t , �t) , E

"
TX

⌧=t

R⌧

����h
0
t , h

1:N
t , �t, d

⇤
t+1:T

#
,

(10)

and the supervisor’s V function as

V S
t (h0

t , h
1:N
t ) , E

"
TX

⌧=t

R⌧

����h
0
t , h

1:N
t , d⇤t:T

#

= QS
t (h

0
t , h

1:N
t , �⇤t ),

(11)

where �⇤t 2 argmax�t2⌦(�t) Qt(h0
t , �t)

5.

Then the coordinator’s Q/V functions can be ex-
pressed as the expectation of supervisor’s Q/V func-
tions taken over the conditional distribution on FPSs
given the FCS:

Qt(h
0
t , �t) =

X

h1:N
t

P(h1:N
t |h0

t )Q
S
t (h

0
t , h

1:N
t , �t), (12)

Vt(h
0
t ) =

X

h1:N
t

P(h1:N
t |h0

t )V
S
t (h0

t , h
1:N
t ). (13)

4.2 Proof of Theorem 4

We first determine the relationship between the space
of FPS-based prescriptions ⌦(�t) and the space of
ASPS-based prescriptions ⌦(b⇤t). Consider a fixed
h0
t . Since the compression mappings bZ1:N

t =
b#1:Nt (H0

t , H
1:N
t ) are functions, there could be multi-

ple h1:N
t ’s that are mapped to the same bz1:Nt . A

b�t 2 ⌦(b⇤t) can thus be thought of as a special element
of ⌦(�t) that prescribes the same action for all the
FPSs h1:N

t ’s mapped to the same ASPS bz1:Nt . Hence,
we can construct an injective extension mapping from
⌦(b⇤t) to ⌦(�t) in this sense.

Definition 12: For any h0
t 2 ⌦(H0

t ), define the exten-
sion mapping  t : ⌦(b⇤t)⇥ ⌦(H0

t ) ! ⌦(�t) as follows:
for any h1:N

t and b�t, �t =  t(b�t, h0
t ) will first com-

press h1:N
t to bz1:Nt = b#1:Nt (h0

t , h
1:N
t ) (hence  t implic-

itly depends on b#t), then choose the action according
to b�t(bz1:Nt ). That is,

�t(h
1:N
t ) =  t(b�t, h0

t )(h
1:N
t ) , b�t(b#1:Nt (h0

t , h
1:N
t )).

Given the compression b#1:Nt ,  t is well-defined. Un-
der this circumstance and with an abuse of notation,
�t =  t(b�t, h0

t ) will be written as �b�t,h0
t

when the con-
sidered compression is clear from the context and will
be referred to as the �t extended from b�t under h0

t .

The following proposition says that for any FCS one
can find an ASPS-based prescription whose extension
nearly achieves the same Q-value as an optimal pre-
scription, up to a gap linear in the remaining time t̄.

5
The supervisor’s Q function and V function are only

defined when the FPS h
1:N
t is admissible under h

0
t , i.e.

P(h1:N
t |h

0
t ) > 0. Throughout the rest of the paper, we

assume that only admissible FPSs are considered.
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This implies that it nearly su�ces to consider the class
of prescriptions extended from ASPS-based prescrip-
tions for DP purposes.

Proposition 13: Assume the reward function R is
bounded by R̄. For any h0

t 2 ⌦(H0
t ) and �⇤ 2

argmax� Qt(h0
t , �), there exists a b� 2 ⌦(b⇤t) with

���Qt(h
0
t , �

⇤)�Qt(h
0
t , �b�,h0

t
)
���  t̄(✏p+TR̄�p)+✏p, (14)

which leads to
�����Vt(h

0
t )� max

b�2⌦(b⇤t)
Qt(h

0
t , �b�,h0

t
)

�����  t̄(✏p + TR̄�p) + ✏p.

(15)

Before proving this critical proposition we need a few
intermediate results. The first key lemma says that
with the same supervisor’s state, the supervisor’s Q-
values for two di↵erent prescriptions will be the same
as long as they prescribe the same action for the given
PI. In particular, the fact that the two prescriptions
may prescribe di↵erent actions for other PIs becomes
irrelevant after learning the given PI is realized from
the supervisor’s view.

Lemma 14: For any h0
t 2 ⌦(H0

t ) and h 2 ⌦(H1:N
t ),

let �1, �2 2 ⌦(�t) be two prescriptions that choose the
same action on h, i.e. �1(h) = �2(h) = a. Then

QS
t (h

0
t , h, �1) = QS

t (h
0
t , h, �2). (16)

Lemma 14 has an important implication for the
structure of the optimal prescription. Let us define
QS

t (h
0
t , h, �1) , QS

t (h
0
t , h, a), which is a well-defined

quantity from Lemma 14. Given any h0
t 2 ⌦(H0

t )
and h1:N

t 2 ⌦(H1:N
t ), since the choice of �t(h1:N

t )
has no bearing on other QS

t (h
0
t , h, �t)’s where h 6=

h1:N
t , we want to select an �t(h1:N

t ) that maximizes
QS

t (h
0
t , h

1:N
t , �t) as a result of (12). It follows that an

optimal prescription �⇤ 2 argmax�t
Qt(h0

t , �t) is a pre-
scription that prescribes optimal actions for all PIs:

�⇤(h) 2 argmax
at

QS
t (h

0
t , h, at) 8 h 2 ⌦(H1:N

t ). (17)

Lemma 14 represents a reduction from doubly exponen-

tial to exponential in search complexity of an optimal
policy. Specifically, given any h0

t 2 ⌦(H0
t ), instead of

searching �⇤ in the whole space of ⌦(�t) whose size is

|⌦(At)||⌦(H1:N
t )|, the structure in (17) suggests search-

ing ⌦(At) for each h1:N
t 2 ⌦(H1:N

t ), totaling a size of
|⌦(H1:N

t )| · |⌦(At)|6. This particular structure of opti-
mal prescriptions might be helpful when designing the

6
The size |⌦(H

1:N
t )| is of order O(e

T
) as the length of

H
1:N
t is linear in T ; hence, |⌦(At)|

|⌦(H1:N
t )|

is doubly expo-

nential in T while |⌦(H
1:N
t )| · |⌦(At)| is exponential in T .

The search should be performed for all h
0
t 2 ⌦(H

0
t ), where

|⌦(H
0
t )| is also O(e

T
); this does not change the complexi-

ties for the two cases.

prescription representations for the agents in practical
implementations. Further reduction from exponential

to constant in search complexity is done by compress-
ing public and private states to time-invariant spaces.

Next we show that the supervisor’s Q-values will be
nearly the same for two di↵erent FPSs that map to
the same ASPS and a prescription that prescribes the
same action on these two FPSs.

Lemma 15: Assume the reward function R is
bounded by R̄. For any h0

t 2 ⌦(H0
t ), let h1, h2 2

⌦(H1:N
t ) be two FPSs under h0

t that map to the
same ASPS bz 2 ⌦( bZ1:N

t ), i.e. bz = b#1:Nt (h0
t , h1) =

b#1:Nt (h0
t , h2), and let � 2 ⌦(�t) be a prescription that

chooses the same action on these two FPSs �(h1) =
�(h2) = a. Then
��QS

t (h
0
t , h1, �)�QS

t (h
0
t , h2, �)

��  t̄(✏p+TR̄�p)/2+✏p/2.
(18)

Mixing up two FPSs with the same compressed state
will incur a constant instantaneous cost resulted from
(ASPS2), and a transitioning cost from (ASPS3).
They will transition to two FPSs with the same com-
pression again from (ASPS1), which suggests a contin-
uation cost linear in t̄ by induction.

Using the above two lemmas, we show that the super-
visor’s V function will di↵er little for two supervisor’s
states with the same compression of private states.

Corollary 16: Assume the reward function R is
bounded by R̄. For any h0

t 2 ⌦(H0
t ), let h1, h2 2

⌦(H1:N
t ) be two FPSs under h0

t that map to the same
ASPS bz 2 ⌦( bZ1:N

t ), i.e. bz = b#t(h0
t , h1) = b#t(h0

t , h2),
and let �⇤ 2 argmax� Qt(h0

t , �) be an optimal prescrip-
tion. Then

��V S
t (h0

t , h1)� V S
t (h0

t , h2)
��

,
��QS

t (h
0
t , h1, �

⇤)�QS
t (h

0
t , h2, �

⇤)
��

 t̄(✏p + TR̄�p)/2 + ✏p/2.

(19)

Proof of Proposition 13: Given an optimal pre-
scription �⇤ 2 argmax� Qt(h0

t , �), we will specifically

construct a b� 2 ⌦(b⇤t) that serves for the claim. For
each bz 2 ⌦( bZ1:N

t ), define

Hbz =
n
h 2 ⌦(H1:N

t ) : b#1:Nt (h0
t , h) = bz

o
(20)

to be the class of h’s in ⌦(H1:N
t ) that are compressed

to bz under the considered compression b#1:Nt . By the
Axiom of Choice, for each bz 2 ⌦( bZ1:N

t ) there exists a
representative of the class Hbz coming from arbitrary
choice function, which we denote as h̄bz. We then con-
struct the b� by b�(bz) = �⇤(h̄bz); the corresponding ex-
tension in ⌦(�t) will be

�b�,h0
t
(h) = �⇤

⇣
h̄b#1:N

t (h0
t ,h)

⌘
8 h 2 ⌦(H1:N

t ), (21)
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that is, the prescription first compresses the input FPS
and finds the representative of the corresponding com-
pression class, then it mimics what the optimal pre-
scription would have done with the representative. For
any h 2 ⌦(H1:N

t ), we have

���QS
t (h

0
t , h, �

⇤)�QS
t (h

0
t , h, �b�,h0

t
)
���


���QS

t (h
0
t , h, �

⇤)�QS
t (h

0
t , h̄b#1:N

t (h0
t ,h)

, �⇤)
���

+
���QS

t (h
0
t , h̄b#1:N

t (h0
t ,h)

, �⇤)�QS
t (h

0
t , h̄b#1:N

t (h0
t ,h)

, �b�,h0
t
)
���

+
���QS

t (h
0
t , h̄b#1:N

t (h0
t ,h)

, �b�,h0
t
)�QS

t (h
0
t , h, �b�,h0

t
)
���

 (T � t)(✏p + TR̄�p) + ✏p,

as the first term is bounded by (T � t)(✏p+TR̄�p)/2+
✏p/2 due to Corollary 16, the second term is 0 due
to Lemma 14, and the third term is bounded by
(T�t)(✏p+TR̄�p)/2+✏p/2 due to Lemma 15. If it hap-
pens to be the case that h = h̄b#1:N

t (h0
t ,h)

, i.e. h is the

representative, then the original term |QS
t (h

0
t , h, �

⇤)�
QS

t (h
0
t , h, �b�,h0

t
)| is 0. Taking the conditional expecta-

tion on h given h0
t gives the claim. ⌅

Proof of Theorem 4: There are three main quan-
tities: Vt(h0

t ) is the value obtained from execut-
ing optimal FPS-based prescriptions to the end,
maxb�2⌦(b⇤t)

Qt(h0
t , �b�,h0

t
) is from executing the op-

timal ASPS-based prescription for step t and then
optimal FPS-based prescriptions afterwards to the
end, and bVt(h0

t ) is from executing optimal ASPS-
based prescriptions to the end. Proposition 13 es-
tablishes that restricting to ASPS-based prescrip-
tions in one step incurs a gap (between Vt(h0

t ) and
maxb�2⌦(b⇤t)

Qt(h0
t , �b�,h0

t
)) linear in T � t. Using an in-

duction argument to accumulate this gap in every step

from T back to t yields the gap (between Vt(h0
t ) and

bVt(h0
t )) to be quadratic in T � t. See Appendix B for

detailed derivations. ⌅

We briefly summarize the analysis framework pre-
sented in Section 4.2. In Lemma 14 and Lemma 15,
we bound the di↵erences of two supervisor’s Q-
functions, i.e.,

��QS
t (h

0
t , h, �1)�QS

t (h
0
t , h, �2)

�� and��QS
t (h

0
t , h1, �)�QS

t (h
0
t , h2, �)

��. The two results lead
to Corollary 16, which bounds the di↵erence of two
supervisor’s V -functions

��V S
t (h0

t , h1)� V S
t (h0

t , h2)
��.

From these three intermediate results, we quantify the
cost of restricting to ASPS-based prescriptions in one

step in Proposition 13, which is linear in T � t. Then
we induct this result through the horizon, which shows
restricting to ASPS-based prescriptions all the way in-
curs a gap quadratic in T � t.

5 PRACTICAL IMPLICATIONS

The main result provides a nice theoretical support of
designing practical low-regret deep-MARL algorithms,
just as the way the DL schemes solves POMDP RL
proposed in Subramanian et al. (2020). Algorithms
using our framework will consists of two steps when
learning optimal policies. In the first step, the agents
use function approximation (FA) methods (e.g. DL
models) to learn representations of the common and
private states. Our contribution is to identify measures
for “good representations” – they should satisfy the
conditions of ASCS and ASPS with low error parame-
ters (✏c, �c, ✏p, �p). The FA methods will try to predict
the instantaneous reward and new observations while
quantities in the LHS of the conditions are good candi-
dates of the loss functions. In the second step, assum-
ing the agents have learned good representations, they
use policy approximation theory (Sutton and Barto,
2018) to learn good policies from the coordinator’s

view, thus alleviating the non-stationarity issue. The
parameters of the policy function approximator can
be updated by policy gradient theorem with a long-
term reward approximation. In Subramanian et al.
(2020), the two steps are performed concurrently us-
ing the concept of two time-scale algorithms (Borkar,
1997), with the first/second step being the fast/slow
time-scale, as the policy approximator learns policies
based on the learned representations. A more concrete
algorithmic framework is given in Appendix E.

Note that the main result does not reflect the regret in
practical implementations, as it is only the optimality
gap given the approximate parameters in one episode.
As we pointed out, in practice, one uses ML algorithms
to learn representations that minimizes the approx-
imation errors, while using policy gradient methods
to learn the optimal policy (instead of solving DP di-
rectly). The true regret will then depend on both the
convergence rate of the state representation learning
and the policy gradient method used.

6 CONCLUSION

In this paper, we developed a general approximate
state representation framework for MARL problems
in a Dec-POMDP setting. We bounded the optimal-
ity gap in terms of the approximation error param-
eters and the number of remaining time steps. The
theory provides guidance on designing deep-MARL al-
gorithms, which has great potential in practical uses.
Future directions include: exploring DL methods for
applications using our framework, designing a repre-
sentation for prescriptions, designing fully decentral-
ized MARL schemes by adding communication, and
extensions to general-sum games.
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Supplementary Material:

Common Information based Approximate State Representations in

Multi-Agent Reinforcement Learning

A Supplementary Details

A.1 More Related Work

Kara and Yuksel (2020) consider a special type of AIS – the N -memory, which contains the information from
the last N steps. Here, the compression function is fixed but in contrast to Subramanian et al. (2020), the
approximation error given each history need not be uniform. When the model is known, they provide conditions
that bound the regret of N -memory policies (policies that depend on N -memory), and an algorithm that finds
optimal policies within this class. The first algorithm to learn the optimal policies of POMDPs with sub-linear
regret in an online setting is proposed in Jafarnia-Jahromi et al. (2021). Using a posterior sampling-based scheme,
the algorithm maintains the posterior distribution on the unknown parameters of the considered POMDP, and
adopts the optimal policy with respect to a set of parameters sampled from the distribution in each episode. The
posterior update in the algorithm, however, heavily relies on the knowledge of the observation kernel, which is
usually unknown in RL settings.

State representation for control is studied extensively in the literature (Lesort et al., 2018). Early work on
predictive state representation (PSR) of POMDPs (Littman et al., 2001) only focuses on the encapsulation of
the histories and does not explore its system prediction ability. The bisimulation relation clusters MDP states
with similar rewards and transitions, and a bisimulation metric convexly combines the errors of the rewards and
the transitions between two states (Ferns et al., 2011). The di↵erence of the value functions of two states can
be upper-bounded by the metric. The causal state representation (Zhang et al., 2021a) for POMDPs clusters
the histories in the space of AOHs that will produce the same future dynamics. Using the observation history
as the state, the considered POMDP can be transformed into an MDP, so that the results from the bisimulation
literature can be applied.

A.2 DP with BCS

Algorithm 4 Dynamic Programming with BCSs and FPS-based Prescriptions
.
VT+1(⇡T+1) , 0
for t = T, . . . , 1 do

.
Qt(⇡t, �t) = E

h
R(St,�t(H1:N

t )) +
.
Vt+1(⌘t(⇧0

t ,�t, O0
t+1))|⇧t = ⇡t,�t = �t

i

.
Vt(⇡t) = max�t2⌦(�t)

.
Qt(⇡t, �t)

The BCS is updated through Bayesian update with the function ⌘t Nayyar et al. (2013).

A.3 DP with BCS and SPI

Algorithm 5 Dynamic Programming with BCSs and SPI-based Prescriptions

V
⇠

T+1(⇡
⇠
T+1) , 0

for t = T, . . . , 1 do

Q
⇠

t(⇡
⇠
t,�t) = E

h
R(St,⇤t(Z1:N

t )) + V
⇠

t+1(⌘
⇠
t(⇧

⇠

t,⇤t, O0
t+1))|⇧

⇠

t = ⇡⇠t,⇤t = �t
i

V
⇠

t(⇡
⇠
t) = max�t2⌦(⇤t) Q

⇠

t(⇡
⇠
t,�t)
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Similar to the case of Algorithm 4, the revised version of BCS (now a distribution on the state and the SPI) is
updated through Bayesian update with the function ⌘⇠t.

A.4 DP Comparison

Table 1: Dynamic programming comparison.

Work
Algorithm

/Definition
Agent

Common

State

Private

State
Action

Compression

Common/Private

Incurred DP Gap

Common/Private

Single AOH - Action None 0

Belief State P(St|Ht) Single BS - Action Lossy 0

Subramanian and Mahajan (2019)
Definition 1

with ✏ = � = 0
Single IS - Action Lossy 0

Subramanian and Mahajan (2019) Definition 1 Single AIS - Action Lossy Linear

CI Approach

(No Compression)
Algorithm 1 Multi FCS FPS FPS-pres. None/None 0/0

Nayyar et al. (2013) Algorithm 4 Multi BCS FPS FPS-pres. Lossy/None 0/0

Tavafoghi et al. (2018) Algorithm 5 Multi BCS SPI SPI-pres. Lossy/Lossy 0/0

Subramanian et al. (2020) - Multi ASCS FPS FPS-pres. Lossy/None Linear/0

Mao et al. (2020) - Multi BCS ASPS ASPS-pres. Lossy/Lossless 0/Linear

This work

Algorithm 3

with ✏c = �c = 0

and ✏p = �p = 0

Multi SCS SPS SPS-pres. Lossy/Lossy 0/0

This work Algorithm 2 Multi FCS ASPS ASPS-pres. None/Lossy 0/Quadratic

This work Algorithm 3 Multi ASCS ASPS ASPS-pres. Lossy/Lossy Linear/Quadratic

B Omitted Analysis in Section 4.2

The following lemma shows that given the FPS, the actions the chosen prescription chooses for other FPSs does
not a↵ect the next step statistics.

Lemma 17: Let h0
t 2 ⌦(H0

t ), h 2 ⌦(H1:N
t ), � 2 ⌦(�t), and a = �(h) 2 ⌦(At). Then

P(St+1, H
1:N
t+1 |H0

t = h0
t , H

1:N
t = h,�t = �) = P(St+1, H

1:N
t+1 |H0

t = h0
t , H

1:N
t = h,At = a).

Proof: We will omit specifying the original random variables when their realizations are given in the proof.

P(St+1, H
1:N
t+1 |h0

t , h, �) = P(St+1, H
1:N
t+1 |h0

t , h, �, a)

=
X

st

P(st|h0
t , h, �, a) · P(St+1, H

1:N
t+1 |h0

t , h, �, a, st)

=
X

st

P(st|h0
t , h, a) · P(St+1|h0

t , h, �, a, st) · P(H1:N
t+1 |h0

t , h, �, a, st, St+1) (� is after st)

=
X

st

P(st|h0
t , h, a) · P(St+1|a, st) · P(H1:N

t+1 |h0
t , h, �, a, st, St+1) (PT specifies St+1 given St and At)

=
X

st

P(st|h0
t , h, a) · P(St+1|a, st) · P(O1:N

t+1 |h0
t , h, �, a, st, St+1) (H1:N

t+1 = (H1:N
t , At, O1:N

t+1))

=
X

st

P(st|h0
t , h, a) · P(St+1|a, st) · P(O1:N

t+1 |St+1) (PO specifies O1:N
t+1 given St+1)

=
X

st

P(st|h0
t , h, a) · P(St+1, H

1:N
t+1 |h0

t , h, a, st)

= P(St+1, H
1:N
t+1 |h0

t , h, a).

⌅

Proof of Lemma 14: The proof for the instantaneous part is straightforward as St is irrelevant to the choice
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of �t

E
⇥
Rt(St,�t(H

1:N
t ))|h0

t , h, �1
⇤
=
X

st

P(st|h0
t , h, �1)Rt(st, �1(h))

=
X

st

P(st|h0
t , h, �1(h))Rt(st, a)

=
X

st

P(st|h0
t , h)Rt(st, a) (�1 and �2 are exogenously given)

= E
⇥
Rt(St,�t(H

1:N
t ))|h0

t , h, �2
⇤
. (by symmetry)

To show equality for the continuation part, we first define the following policy for all ⌧ = t+ 1, . . . , T :

d0⌧ (h
0
⌧ ) =

⇢
d⇤⌧ (h

0
t , �1, h

0
t+1:⌧ ) if h0

⌧ = (h0
t , �2, h

0
t+1:⌧ ) 8 h0

t+1:⌧ ,
d⇤⌧ (h

0
⌧ ) otherwise,

where d⇤⌧ is an optimal policy at time step ⌧ . Also, we have h0
t+1:⌧ = o0t+1 when ⌧ = t + 1, and h0

t+1:⌧ =
(o0t+1, �t+1, . . . , o0⌧ ) when ⌧ > t+1, so that the entire (h0

t , �1, h
0
t+1:⌧ ) 2 ⌦(H0

⌧ ). This policy performs the optimal
policy at all times, except when �2 is chosen at time t, it will mimic what the optimal policy would have done if
�1 was chosen instead; owing to perfect recall, future prescriptions can depend on past ones. Then

E
⇥
V S
t+1(H

0
t+1, H

1:N
t+1 )|h0

t , h, �1
⇤
= E

"
TX

⌧=t+1

R⌧ (S⌧ , A⌧ )

����h
0
t , h, �1, d
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t+1:T

#

= E
"

TX
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����h
0
t , h, �1, d

0
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#
(⇤)
= E

"
TX
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R⌧ (S⌧ , A⌧ )

����h
0
t , h, �2, d

0
t+1:T

#

 E
"

TX

⌧=t+1

R⌧ (S⌧ , A⌧ )

����h
0
t , h, �2, d

⇤
t+1:T

#
= E

⇥
V S
t+1(H

0
t+1, H

1:N
t+1 )|h0

t , h, �2
⇤
,

where the inequality holds as d0t+1:T may not be an optimal choice from the current history. By symmetry, the
inequality implies that

E
⇥
V S
t+1(H

0
t+1, H

1:N
t+1 )|h0

t , h, �1
⇤
= E

⇥
V S
t+1(H

0
t+1, H

1:N
t+1 )|h0

t , h, �2
⇤
.

The equality labeled by (⇤) follows from the fact that under the policy d0t+1:T , choosing �1 and �2 will generate the
exact future statistics. We will show this in the following. We first prove the following claim using mathematical
induction.
Claim: for all ⌧ = t+ 1, . . . , T , we have

P(St+1:⌧ , O
0:N
t+1:⌧ , At+1:⌧ |h0

t , h, �1, a, d
0
t+1:T ) = P(St+1:⌧ , O

0:N
t+1:⌧ , At+1:⌧ |h0

t , h, �2, a, d
0
t+1:T ).

Base case: the claim holds for ⌧ = t+ 1.
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0
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=
X

st

P(st|h0
t , h) · P(St+1|h0

t , h, �1, a, st, d
0
t+1) · P(O0:N

t+1 , At+1|h0
t , h, �1, a, st, d

0
t+1, St+1)

=
X

st

P(st|h0
t , h) · P(St+1|st, a) · P(O0:N

t+1 , At+1|h0
t , h, �1, a, st, d

0
t+1, St+1) (PT specifies St+1 given St and At)

=
X

st

P(st|h0
t , h) · P(St+1|st, a) · P(O0:N

t+1 |h0
t , h, �1, a, st, d

0
t+1, St+1) · P(At+1|h0

t , h, �1, a, st, d
0
t+1, St+1, O

0:N
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=
X

st

P(st|h0
t , h) · P(St+1|st, a) · P(O0:N

t+1 |St+1) · P(At+1|h0
t , h, �1, a, st, d

0
t+1, St+1, O

0:N
t+1)

(PO specifies O0:N
t+1 given St+1)

=
X

st

P(st|h0
t , h) · P(St+1|st, a) · P(O0:N

t+1 |St+1) · I
�
At+1 = d0t+1(h0, �1, O

0
t+1)(h, a,O

1:N
t+1)

 

=
X

st

P(st|h0
t , h) · P(St+1|st, a) · P(O0:N

t+1 |St+1) · I
�
At+1 = d0t+1(h0, �2, O

0
t+1)(h, a,O

1:N
t+1)

 
(definition of d0t+1)

= P(St+1, O
0:N
t+1 , At+1|h0

t , h, �2, a, d
0
t+1:T ). (symmetric argument)

Induction step: assuming the claim holds for ⌧ , we show it holds for ⌧ + 1 as well.

P(St+1:⌧+1, O
0:N
t+1:⌧+1, At+1:⌧+1|h0

t , h, �1, a, d
0
t+1:T )

= P(St+1:⌧ , O
0:N
t+1:⌧ , At+1:⌧ |h0

t , h, �1, a, d
0
t+1:T ) · P(S⌧+1, O

0:N
⌧+1, A⌧+1|h0

t , h, �1, a, d
0
t+1:T , St+1:⌧ , O

0:N
t+1:⌧ , At+1:⌧ )

= P(St+1:⌧ , O
0:N
t+1:⌧ , At+1:⌧ |h0

t , h, �2, a, d
0
t+1:T ) · P(S⌧+1, O

0:N
⌧+1, A⌧+1|h0

t , h, �1, a, d
0
t+1:T , St+1:⌧ , O

0:N
t+1:⌧ , At+1:⌧ )

(induction hypothesis)

= P(St+1:⌧ , O
0:N
t+1:⌧ , At+1:⌧ |h0

t , h, �2, a, d
0
t+1:T ) · P(S⌧+1|S⌧ , A⌧ ) · P(O0:N

⌧+1|S⌧+1)

· I
�
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�
h0
t , �1, O

0
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0
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0
t+1), O

0
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0
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�
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(†)
= P(St+1:⌧ , O

0:N
t+1:⌧ , At+1:⌧ |h0
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0
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⌧+1|S⌧+1)

· I
�
A⌧+1 = d0⌧+1

�
h0
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0
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0
t+1(h

0
t , �2, O
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0
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0
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= P(St+1:⌧ , O
0:N
t+1:⌧ , At+1:⌧ |h0

t , h, �2, a, d
0
t+1:T ) · P(S⌧+1, O

0:N
⌧+1, A⌧+1|h0

t , h, �2, a, d
0
t+1:T , St+1:⌧ , O

0:N
t+1:⌧ , At+1:⌧ )

= P(St+1:⌧+1, O
0:N
t+1:⌧+1, At+1:⌧+1|h0

t , h, �2, a, d
0
t+1:T ),

where the equality in (†) holds due to the definition of policy d0. Note that with the CI-based approach, a generic
policy dt first maps an FCS H0

t to a prescription �t, which in term maps an FPS H1:N
t to an action At; therefore,

dt(H0
t )(H

1:N
t ) = �t(H1:N

t ) = At refers to the final action At under the policy dt and the supervisor’s state
(H0

t , H
1:N
t ). The claim implies that P(S⌧ , A⌧ |h0

t , h, �1, d
0
t+1:T ) = P(S⌧ , A⌧ |h0

t , h, �2, d
0
t+1:T ) for all ⌧ = t+1, . . . , T ,

i.e. conditioning on h0
t , h, d

0
t+1:T , the distribution of (S⌧ , A⌧ ) is exactly the same given �1 or �2; and (S⌧ , A⌧ )

where ⌧ = t+ 1, . . . , T is what the expectations on both sides of (⇤) are taken on. ⌅

Proof of Lemma 15: We preceed the proof by mathematical induction. The instantaneous part and the base
case t = T follow trivially from (ASPS2)

��E
⇥
Rt(St, At)|h0

t , h1, �
⇤
� E

⇥
Rt(St, At)|h0

t , h2, �
⇤��


��E

⇥
Rt(St, At)|h0

t , h1, �
⇤
� E

⇥
Rt(St, At)|h0

t , bz, �
⇤��+

��E
⇥
Rt(St, At)|h0

t , bz, �
⇤
� E

⇥
Rt(St, At)|h0

t , h2, �
⇤��

 ✏p/4 + ✏p/4 ((ASPS2))

= ✏p/2.

For the continuation part, we have

E
⇥
V S
t+1((H

0
t ,�t, O

0
t+1), H

1:N
t+1 )|h0

t , h1, �
⇤

=
X

o0:Nt+1

P(o0:Nt+1|h0
t , h1, �)V

S
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0
t , �, o

0
t+1), (h1, a, o

1:N
t+1))

=
X

o0:Nt+1

X

st+1

P(o0:Nt+1, st+1|h0
t , h1, �)V

S
t+1((h

0
t , �, o

0
t+1), (h1, a, o

1:N
t+1))

=
X
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P(o0:Nt+1|h0
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P(o0:Nt+1|st+1) · P(st+1|h0
t , h1, �) · V S

t+1((h
0
t , �, o

0
t+1), (h1, a, o

1:N
t+1)) (PO specifies O0:N

t+1 given St+1)

=
X

o0:Nt+1

X

st+1

P(o0:Nt+1|st+1) · P(st+1|h0
t , h1, a) · V S

t+1((h
0
t , �, o

0
t+1), (h1, a, o

1:N
t+1)) (Lemma 17)
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=
X

o0:Nt+1

P(o0:Nt+1|h0
t , h1, a)V

S
t+1((h

0
t , �, o

0
t+1), (h1, a, o

1:N
t+1)),

and the same equality holds for h2. Therefore,
��E
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0
t ,�t, O

0
t+1), H

1:N
t+1 )|h0
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⇤
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������



������

X

o0:Nt+1

P(o0:Nt+1|h0
t , h1, a)V

S
t+1((h

0
t , �, o

0
t+1), (h1, a, o

1:N
t+1))�

X

o0:Nt+1

P(o0:Nt+1|h0
t , bz, a)V S

t+1((h
0
t , �, o

0
t+1), (h1, a, o

1:N
t+1))

������

+

������

X

o0:Nt+1

P(o0:Nt+1|h0
t , bz, a)V S

t+1((h
0
t , �, o

0
t+1), (h1, a, o

1:N
t+1))�

X

o0:Nt+1

P(o0:Nt+1|h0
t , h2, a)V

S
t+1((h

0
t , �, o

0
t+1), (h1, a, o

1:N
t+1))

������

+

������

X

o0:Nt+1

P(o0:Nt+1|h0
t , h2, a)V

S
t+1((h

0
t , �, o

0
t+1), (h1, a, o

1:N
t+1))�

X

o0:Nt+1

P(o0:Nt+1|h0
t , h2, a)V

S
t+1((h

0
t , �, o

0
t+1), (h2, a, o

1:N
t+1))

������

:= 1�+ 2�+ 3�.

For the first two terms, we have
1�, 2�  2kVt+1k1 · �p/8  TR̄�p/4

by (ASPS3). Note that the above equation follows if K(·, ·) is the total variation distance. If it is instead the
Wasserstein metric, then the total variation distance will still be bounded by �p

�
minx,y2⌦(O0:N

t+1),x 6=y kx� yk; we
can redefine this value as �p so that the total variation distance is still bounded by �p.

Now consider a fixed realization of o0:Nt+1. We have

b#1:Nt+1((h
0
t , �, o

0
t+1), (h1, a, o

1:N
t+1))

= b�1:Nt+1(b#1:Nt (h1), h
0
t , �, o

0:N
t+1) ((ASPS1))

= b�1:Nt+1(b#1:Nt (h2), h
0
t , �, o

0:N
t+1) (assumption)

= b#1:Nt+1((h
0
t , �, o

0
t+1), (h2, a, o

1:N
t+1)), ((ASPS1))

so that under the public FCS (h0
t , �, o

0
t+1), the two FPSs (h1, a, o1:Nt+1) and (h2, a, o1:Nt+1) will be mapped to the

same ASPS as well. Hence, by the induction hypothesis of Lemma 15 which leads to Corollary 16 at the t + 1
step, we obtain

��V S
t+1((h

0
t , �, o

0
t+1), (h1, a, o

1:N
t+1))� V S

t+1((h
0
t , �, o

0
t+1), (h2, a, o

1:N
t+1))

��

 (T � t� 1)(✏p + TR̄�p)/2 + ✏p/2.

The last term can thus be bounded by

3� 
X

o0:Nt+1

P(o0:Nt+1|h0
t , h2, a)

��V S
t+1((h

0
t , �, o

0
t+1), (h1, a, o

1:N
t+1))� V S

t+1((h
0
t , �, o

0
t+1), (h2, a, o

1:N
t+1))

��


X

o0:Nt+1

P(o0:Nt+1|h0
t , h2, a)[(T � t� 1)(✏p + TR̄�p)/2 + ✏p/2]

= (T � t� 1)(✏p + TR̄�p)/2 + ✏p/2.

Combining the three terms plus the instantaneous part, it follows that
��QS

t (h
0
t , h1, �)�QS

t (h
0
t , h2, �)

��  ✏p/2 + 2 · TR̄�p/4 + (T � t� 1)(✏p + TR̄�p)/2 + ✏p/2

= (T � t)(✏p + TR̄�p)/2 + ✏p/2.

⌅
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Proof of Corollary 16: Assume the optimal prescription �⇤ prescribes di↵erent actions on the two FPSs
h1, h2 2 ⌦(H1:N

t ), so that �⇤(h1) = a1 and �⇤(h2) = a2 where a1 6= a2; otherwise, the claim directly follows by
Lemma 15. Also, define �0, �00 2 ⌦(�t) by

�0(h) =

⇢
a1 if h = h2,
�⇤(h) otherwise,

�00(h) =

⇢
a2 if h = h1,
�⇤(h) otherwise.

Let �1 = QS
t (h

0
t , h1, �⇤) and �2 = QS

t (h
0
t , h2, �⇤). Denote Bt , (T � t)(✏p + TR̄�p)/2 + ✏p/2 for simplicity. From

(12), Qt(ht, �⇤) can be expanded as

Qt(h
0
t , �

⇤) =
X

h 6=h1,h2

P(h|h0
t )Q

S
t (h

0
t , h, �

⇤) + P(h1|h0
t )�1 + P(h2|h0

t )�2.

Likewise, we can also expand Qt(ht, �0) to

Qt(h
0
t , �

0)

=
X

h 6=h1,h2

P(h|h0
t )Q

S
t (h

0
t , h, �

0) + P(h1|h0
t )Q

S
t (h

0
t , h1, �

0) + P(h2|h0
t )Q

S
t (h

0
t , h2, �

0)

�
X

h 6=h1,h2

P(h|h0
t )Q

S
t (h

0
t , h, �

0) + P(h1|h0
t )Q

S
t (h

0
t , h1, �

0) + P(h2|h0
t )
⇥
QS

t (h
0
t , h1, �

0)�Bt

⇤
(Lemma 15)

=
X

h 6=h1,h2

P(h|h0
t )Q

S
t (h

0
t , h, �

⇤) + P(h1|h0
t )Q

S
t (h

0
t , h1, �

⇤) + P(h2|h0
t )
⇥
QS

t (h
0
t , h1, �

⇤)�Bt

⇤
(Lemma 14)

=
X

h 6=h1,h2

P(h|h0
t )Q

S
t (h

0
t , h, �

⇤) + P(h1|h0
t )�1 + P(h2|h0

t )(�1 �Bt);

by symmetry

Qt(h
0
t , �

00) �
X

h 6=h1,h2

P(h|h0
t )Q

S
t (h

0
t , h, �

⇤) + P(h1|h0
t )(�2 �Bt) + P(h2|h0

t )�2.

We have

X

h 6=h1,h2

P(h|h0
t )Q

S
t (h

0
t , h, �

⇤) + P(h1|h0
t )�1 + P(h2|h0

t )(�1 �Bt)  Qt(h
0
t , �

0)

 Qt(h
0
t , �

⇤) =
X

h 6=h1,h2

P(h|h0
t )Q

S
t (h

0
t , h, �

⇤) + P(h1|h0
t )�1 + P(h2|h0

t )�2

and

X

h 6=h1,h2

P(h|h0
t )Q

S
t (h

0
t , h, �

⇤) + P(h1|h0
t )(�2 �Bt) + P(h2|h0

t )�2  Qt(h
0
t , �

00)

 Qt(h
0
t , �

⇤) =
X

h 6=h1,h2

P(h|h0
t )Q

S
t (h

0
t , h, �

⇤) + P(h1|h0
t )�1 + P(h2|h0

t )�2.

Canceling and rearranging the terms yield

�Bt  �1 � �2  Bt.

⌅

Proof of Theorem 4: We prove the result by induction. The base case trivially follows from Proposition 13.
Note that the continuation values at T +1 are defined to be 0, i.e. VT+1(h0

T+1) , 0 and bVT+1(h0
T+1) , 0 for any

h0
T+1 2 ⌦(H0

T+1). Hence, for any h0
T 2 ⌦(H0

T ) and �
⇤ 2 ⌦(�t), we have

QT (h
0
T , �

⇤)� ✏p = VT (h
0
T )� ✏p  max

b�2⌦(b⇤T )
QT (h

0
T , �b�,h0

T
) = max

b�2⌦(b⇤T )

bQT (h
0
T , b�) = bVT (h

0
T ).
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In the equation, QT (h0
T , �b�,h0

T
) = bQT (h0

T ,
b�) because there is no continuation value for T . Now for the induction

step, we assume the induction hypothesis, i.e. the claim holds for some t + 1  T so that we have for any
h0
t+1 2 ⌦(H0

t+1),

Vt+1(h
0
t+1)� bVt+1(h

0
t+1) 

(T � t� 1)(T � t)

2
(✏p + TR̄�p) + (T � t)✏p.

Proposition 13 states that for any h0
t 2 ⌦(H0

t ) and optimal prescription �⇤ 2 argmax� Qt(h0
t , �), there exists a

b� 2 ⌦(b⇤t) such that
Qt(h

0
t , �

⇤)�Qt(h
0
t , �b�,h0

t
)  (T � t)(✏p + TR̄�p) + ✏p.

Write Ct , (T � t)(✏p + TR̄�p) + ✏p for shorthand of notation. Then for this b�, we have

Qt(h
0
t , �

⇤)� bQt(h
0
t , b�) = Qt(h

0
t , �

⇤)�Qt(h
0
t , �b�,h0

t
) +Qt(h

0
t , �b�,h0

t
)� bQt(h

0
t , b�)

 Ct + E[Rt + Vt+1(H
0
t+1)|h0

t , �b�,h0
t
]� E[Rt + bVt+1(H

0
t+1)|h0

t , �b�,h0
t
]

= Ct +
X

h0
t+1

P(h0
t+1|h0

t , �b�,h0
t
)
h
Vt+1(h

0
t+1)� bVt+1(h

0
t+1)

i

 Ct +
X

h0
t+1

P(h0
t+1|h0

t , �b�,h0
t
)


(T � t� 1)(T � t)

2
(✏p + TR̄�p) + (T � t)✏p

�

= (T � t)(✏p + TR̄�p) + ✏p +
(T � t� 1)(T � t)

2
(✏p + TR̄�p) + (T � t)✏p

=
(T � t)(T � t+ 1)

2
(✏p + TR̄�p) + (T � t+ 1)✏p.

⌅

C Omitted Analysis in Section 3.2

Proposition 18: Assume the reward function R is bounded by R̄. Let h0
1, h

0
2 2 ⌦(H0

t ) be two FCSs. If
bz0 = b#0t (h0

1) = b#0t (h0
2), then for any b� 2 ⌦(b⇤t),

��� bQt(h
0
1, b�)� bQt(h

0
2, b�)

���  2(T � t)(✏c + TR̄�c) + 2✏c. (22)

Proof: We proceed the proof again by mathematical induction. The instantaneous part as well as the base case
t = T trivially follow from (ASCS2)

���E
h
Rt(St, At)|h0

1, b�
i
� E

h
Rt(St, At)|h0

2, b�
i���


���E

h
Rt(St, At)|h0

1, b�
i
� E

h
Rt(St, At)|bz0, b�

i���+
���E

h
Rt(St, At)|bz0, b�

i
� E

h
Rt(St, At)|h0

2, b�
i���

 ✏c + ✏c = 2✏c. ((ASCS2))

For the continuation part in the induction step, we have
���E

h
bVt+1((H

0
t , b⇤t, O

0
t+1))|h0

1, b�
i
� E

h
bVt+1((H

0
t , b⇤t, O

0
t+1))|h0

2, b�
i���

=

������

X

o0t+1

P(o0t+1|h0
1, b�)bVt+1((h

0
1, b�, o0t+1))�

X

o0t+1

P(o0t+1|h0
2, b�)bVt+1((h

0
2, b�, o0t+1))

������



������

X

o0t+1

P(o0t+1|h0
1, b�)bVt+1((h

0
1, b�, o0t+1))�

X

o0t+1

P(o0t+1|bz0, b�)bVt+1((h
0
1, b�, o0t+1))

������

+

������

X

o0t+1

P(o0t+1|bz0, b�)bVt+1((h
0
1, b�, o0t+1))�

X

o0t+1

P(o0t+1|h0
2, b�)bVt+1((h

0
1, b�, o0t+1))

������
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+

������

X

o0t+1

P(o0t+1|h0
2, b�)bVt+1((h

0
1, b�, o0t+1))�

X

o0t+1

P(o0t+1|h0
2, b�)bVt+1((h

0
2, b�, o0t+1))

������

:= 1�+ 2�+ 3�.

For the first two terms, we have
1�, 2�  2kbVt+1k1 · �c/2  TR̄�c

by (ASCS3).

Now consider a fixed realization of o0t+1. We have

b#0t+1((h
0
1, b�, o0t+1))

= b�0t+1(b#0t (h1), b�, o0t+1) ((ASCS1))

= b�0t+1(b#0t (h2), b�, o0t+1) (assumption)

= b#0t+1((h
0
2, b�, o0t+1)), ((ASCS1))

so that the two FCSs (with ASPS-based prescription) (h0
1, b�, o0t+1) and (h0

2, b�, o0t+1) will be mapped to the same
ASCS as well. Hence, by the induction hypothesis, we obtain

���bVt+1((h
0
1, b�, o0t+1))� bVt+1((h

0
2, b�, o0t+1))

���  2(T � t� 1)(✏c + TR̄�c) + 2✏c.

The last term can thus be bounded by

3� 
X

o0t+1

P(o0t+1|h0
2, b�)

���bVt+1((h
0
1, b�, o0t+1))� bVt+1((h

0
2, b�, o0t+1))

���


X

o0t+1

P(o0t+1|h0
2, b�)[2(T � t� 1)(✏c + TR̄�c) + 2✏c] = 2(T � t� 1)(✏c + TR̄�c) + 2✏c.

Combining the three terms plus the instantaneous part, it follows that
��� bQt(h

0
1, b�)� bQt(h

0
2, b�)

���  2✏c + 2 · TR̄�c + 2(T � t� 1)(✏c + TR̄�c) + 2✏c

= 2(T � t)(✏c + TR̄�c) + 2✏c.

⌅

Proof of Theorem 6: We proceed the proof again by mathematical induction. The base case t = T trivially
follows from (ASCS2). For the induction step, we have

bQt(h
0
t , b�)�Q

V

t(b#0t (h0
t ), b�)

= E
h
Rt(St, At)|h0

t , b�
i
� E

h
Rt(St, At)|b#0t (h0

t ), b�
i
+ E

h
bVt+1(H

0
t+1)|h0

t , b�
i
� E

h
V

V

t+1(b#0t+1(H
0
t+1))|b#0t (h0

t ), b�
i

 ✏c + E
h
bVt+1(H

0
t+1)|h0

t , b�
i
� E

h
V

V

t+1(b#0t+1(H
0
t+1))|b#0t (h0

t ), b�
i

((ASCS2))

= ✏c + E
h
bVt+1(H

0
t+1)|h0

t , b�
i
� E

h
bVt+1(H

0
t+1)|b#0t (h0

t ), b�
i

+ E
h
bVt+1(H

0
t+1)|b#0t (h0

t ), b�
i
� E

h
V

V

t+1(b#0t+1(H
0
t+1))|b#0t (h0

t ), b�
i

= ✏c +
X

h0
t+1

h
P(h0

t+1|h0
t , b�)� P(h0

t+1|b#0t (h0
t ), b�)

i
bVt+1(h

0
t+1)

+
X

h0
t+1

P(h0
t+1|b#0t (h0

t ), b�)
h
bVt+1(h

0
t+1)� V

V

t+1(b#0t+1(h
0
t+1))

i

:= ✏c + 1�+ 2�.
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The first term is bounded by (ASCS3)

1� =
X

o0t+1

h
P(o0t+1|h0

t , b�)� P(o0t+1|b#0t (h0
t ), b�)

i
bVt+1((h

0
t , b�, o0t+1))

 2kbVt+1k1 · �c/2  TR̄�c,

while the second term can be bounded by the induction hypothesis

2� 
X

h0
t+1

P(h0
t+1|b#0t (h0

t ), b�)
⇥
(T � t� 1)(✏c + TR̄�c) + ✏c

⇤

= (T � t� 1)(✏c + TR̄�c) + ✏c.

Combining the terms, it follows that

bQt(h
0
t , b�)�Q

V

t(b#0t (h0
t ), b�)  ✏c + TR̄�c + (T � t� 1)(✏c + TR̄�c) + ✏c

= (T � t)(✏c + TR̄�c) + ✏c.

The V part of the claim can be obtained by considering an optimal prescription b�⇤ 2 argmaxb�2⌦(b⇤t)
bQt(h0

t , b�)
in the Q part. ⌅

D Omitted Analysis in Section 3.4

As mentioned in Section 3.4, when considering ✏c = �c = ✏p = �p = 0, we use SCS and SPS to refer to the common
and private representations. Moreover, we use Z and # to denote the compressed state and the compression
mapping when the error parameters are 0, instead of bZ and b#.

Proof of Proposition 8: For (SCS1), BCSs can be updated recursively through Bayesian updates (Nayyar
et al., 2013). For (SCS2), notice that

E[Rt(St, At)|h0
t ,�t] =

X

st,h1:N
t

P(st, h1:N
t |h0

t )R(st, �t(h
1:N
t )),

and the ensemble of P(st, h1:N
t |h0

t ) through their spaces is exactly ⇧t(h0
t ) = P(St, H1:N

t |h0
t ). Similarly, it satisfies

(SCS3) as well, since

P(O0
t+1|h0

t , �t) =
X

st,h1:N
t

P(st, h1:N
t |h0

t ) ·
X

st+1

P(st+1|st, �t(h1:N
t )) · P(O0

t+1|st+1).

The quantity ⇧t(h0
t ) = P(St, H1:N

t |h0
t ) again exactly encapsulates what is needed to compute P(O0

t+1|h0
t , �t). ⌅

Proof of Proposition 9:

P(z1:Nt+1 , o
0
t+1|h0

t , h
1:N
t , �t, at) =

X

o0:Nt+1

X

st+1

P(z1:Nt+1 , o
0:N
t+1, st+1|h0

t , h
1:N
t , �t, at)

=
X

o0:Nt+1

X

st+1

P(st+1|h0
t , h

1:N
t , �t, at) · P(o0:Nt+1|h0

t , h
1:N
t , �t, at, st+1) · P(z1:Nt+1 |h0

t , h
1:N
t , �t, at, st+1, o

0:N
t+1)

=
X

o0:Nt+1

X

st+1

P(st+1|h0
t , h

1:N
t , �t) · P(o0:Nt+1|st+1) · P(z1:Nt+1 |h0

t , h
1:N
t , �t, st+1, o

0:N
t+1)

(redundancy of at and PO specifies Ot+1 given St+1)

=
X

o0:Nt+1

X

st+1

P(st+1|h0
t , h

1:N
t , at) · P(o0:Nt+1|st+1) · P(z1:Nt+1 |h0

t , h
1:N
t , �t, st+1, o

0:N
t+1) (Lemma 17)

=
X

o0:Nt+1

X

st+1

P(st+1, o
0:N
t+1|h0

t , h
1:N
t , at) · I{z1:Nt+1 = �1:Nt+1(#t(h

0
t , h

1:N
t ), �t, o

0:N
t+1)} ((SPS1))
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=
X

o0:Nt+1

P(o0:Nt+1|h0
t , h

1:N
t , at) · I{z1:Nt+1 = �1:Nt+1(z

1:N
t , �t, o

0:N
t+1)}

=
X

o0:Nt+1

P(o0:Nt+1|h0
t , z

1:N
t , at) · I{z1:Nt+1 = �1:Nt+1(z

1:N
t , �t, o

0:N
t+1)} ((SPS3))

= P(z1:Nt+1 , o
0
t+1|h0

t , z
1:N
t , �t, at).

Note the last equality follows as in (SPS3) it is implicitly assumed that z1:Nt = #t(h0
t , h

1:N
t ). ⌅

Proof of Proposition 10:
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n
t )
X

h�n
t

P(h�n
t |h0

t , h
n
t , z

�n
t ) · P(st|h0

t , h
n
t , h

�n
t ) (z�n

t = #�n
t (h0

t , h
�n
t ))

=
X

z�n
t

P(z�n
t |h0

t , h
n
t )
X

h�n
t

P(h�n
t |h0

t , h
n
t , z

�n
t )

X
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P(st, z�n
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X
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t ) = E[R(St, At)|h0

t , z
n
t , at].

Note that the superscript �n only contains [N ] \ {n} and does not contain 0. ⌅

E Algorithmic Framework

In this section we propose an MARL algorithmic framework using the theory developed in Section 3; the designing
detail is left as future work. The framework adopts the “centralized learning distributed execution” scheme, i.e.,
the agents assume the omniscient supervisor’s view when they learn the compressions and policies.

There are three types of functions within: the state networks ⇢0:N modeled by recurrent neural networks (RNNs),
the policy networks '0:N modeled by deep neural networks (DNNs), and the prediction networks  C and  S also

modeled by DNNs. The state networks ⇢0:N serve the purpose of the compression mappings b�0:Nt in Definition 3
and Definition 5, and their recursive evolution structures suggest an RNN modeling. The common policy network
'0 takes bZ0

t as input and gives the prescription b⇤t as suggested by Section 3.2; the private policy network 'n



Hsu Kao, Vijay Subramanian

Algorithm 6 Deep-MARL Framework

1 Common part: coordinator computes (done in each agent in execution phase) bZ0
t = ⇢0(O0

t , b⇤t�1), b⇤t = '0( bZ0
t ).

2 Private part: agent n computes bZn
t = ⇢n(On

t , A
n
t�1), A

n
t = 'n( bZn

t , b⇤n
t ).

3 if in learning phase then

4 Coordinator computes (R̂t, Ô0
t+1) =  C( bZ0

t , b⇤t).

5 (R̂t, Ô0
t+1) is compared with ground truth (Rt, O0

t+1) and loss is back-propagated to (⇢0, C).

6 Supervisor computes (R̂t, Ô0:N
t+1) =  S( bZ0:N

t , A1:N
t ).

7 (R̂t, Ô0:N
t+1) is compared with ground truth (Rt, O0:N

t+1) and loss is back-propagated to (⇢0:N , S).

8 Coordinator computes
Pt

⌧=t�W R⌧ and performs policy gradient on '0:N .

takes bZn
t and b⇤n

t and outputs An
t . Here, we have to use a variable to represent the prescription function; hence, it

cannot be directly applied to bZn
t . E↵ective design of representing prescription function is left as future work, even

though Lemma 14 provides a nice decomposition. Finally, the policy networks  C and  S are used to produce
the predicted reward and new observations. In the learning phase, the predictions are compared with the ground
truth and errors are back-propagated through the state and prediction networks. This requires full knowledge
of bZ1:N

t and O1:N
t ; consequently, the learning has to be centralized. A windowed (with length W ) cumulative

reward is summed for the computation of the loss in policy gradient methods (Sutton and Barto, 2018), which is
back-propagated through the policy networks; actor-critic methods can also be employed here. In the execution
phase, only state and policy networks are required, and everything can be performed in a decentralized fashion.
Note that in our proof of Theorem 4 only the fact that bZ1:N

t can be updated from bZ1:N
t�1 is needed.

To design a fully decentralized learning scheme, one needs conditions similar to (ASPS2) and (ASPS3) but only
involving ont , h

n
t and bznt instead of the whole o1:Nt , h1:N

t and bz1:Nt so that individual prediction networks that
does not require supervisor’s view can be designed. This might demand a “consistency condition” similarly to
(SPI4), and it is likely that this is only possible through agents communicating through some signal space or
directly sending their parameters (Zhang et al., 2019). Further, the required expectations over the realizations
of the private information conditioned on the common information could be hard to estimate. This is also left
as future work.
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