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Cognitive Strategies for Parameter Estimation in Model Exploration

Sungeun An (sungeun.an@gatech.edu)
School of Interactive Computing, Georgia Institute of
Technology,

Atlanta, GA 30308 USA

Emily Weigel (emily.weigel@biosci.gatech.edu)
School of Biological Sciences, Georgia Institute of
Technology
Atlanta, GA 30332 USA

Abstract

Virtual laboratories that enable novice scientists to construct,
evaluate and revise models of complex systems heavily involve
parameter estimation tasks. We seek to understand novice
strategies for parameter estimation in model exploration to
design better cognitive supports for them. We conducted a
study of 50 college students for a parameter estimation task in
exploring an ecological model. We identified three types of
behavioral patterns and their underlying cognitive strategies.
Specifically, the students used systematic search, problem
decomposition and reduction, and global search followed by
local search as their cognitive strategies.

Keywords: parameter estimation; model exploration;
modeling and simulation; cognitive strategy; problem-solving

Introduction

Parameter estimation is a common problem for humans and
thus there exists a large literature on addressing it (Brown &
Burton, 1978; Kalp, 1995, Varma & Schwartz, 2011). As a
simple example from arithmetic, consider the subtraction
problem (671 — 28). In early work, Brown & Burton, (1978)
identified several types of errors novices make in calculating
the results of such subtraction problems. Kalp (1995)
described general cognitive strategies for addressing such
problems: problem decomposition that partitions the
subtraction problem into subproblems; sorting that prioritizes
search in the resulting problem spaces; and problem
reduction that solves and eliminates sub-problems. Kalp
(1995) also presents a parameterization technique that
composes the solutions to the subproblems into a solution for
the whole problem under the assumption of piecewise
linearity of the functions in the subproblems.

As an example of more challenging parameter estimation
problem, most humans have difficulty calculating the value
of V5 without the assistance of an electronic device. Yet, most
humans can correctly estimate its value as a real number
between 2 and 3 that is closer to 2 than to 3. One cognitive
strategy is to map the problem into the dual space of a straight
line, imagine integer values on the line, recall that V4 equals
2 and V9 equals 3, use 4 and 9 as anchor points, and recognize
that 5 is closer to 4 than to 9 (Varma & Schwartz, 2011). In
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addressing this problem, people make use of the mono-
tonicity of the \ function, with the straight line acting as a
model of the function.

While these estimation problems in arithmetic deal only
with a small number of parameters (only one in case of the V
problem), where the range of values a parameter can take is
discrete and small (one of ten integers for each column in the
subtraction problem), they illustrate a few points (Ashcraft,
1992; Dehaene, 2011): (i) novices often find parameter
estimation cognitively challenging, (ii) it is important to
understand the cognitive strategies novices use for parameter
estimation tasks, (iii) the cognitive strategies for parameter
estimation can vary from task to task, and (iv) the cognitive
strategies often make assumptions about the linearity or
monotonicity of the functions.

The advent of modern informatics—data visualization,
interactive machine learning, open learning environments,
etc.— often engages humans in parameter estimation tasks in
modeling complex systems with high dimensional parameter
spaces, where the number of parameters can be large (ten or
more) and the range of values a parameter may take can be
large (hundreds, thousands, or more). “Virtual laboratories”
that enable novice scientists to construct, evaluate and revise
models of complex systems in biology and ecology heavily
involve parameter estimation tasks (Basu, Biswas, &
Kinnebrew, 2017; Bridewell, Sa'nchez, Langley, & Billman,
2006; De Jong & Van Joolingen, 1998; Sins, Savelsbergh, &
van Joolingen, 2005). Using a virtual laboratory, a modeler
can examine the influence of a large number of parameters
on the model of an ecological system and conduct “What If?”
experiments by varying the values of the parameter values.
The question then becomes: What are the cognitive strategies
that novice modelers use to estimate the parameter values in
this high-dimensional space? It is important to understand
their cognitive strategies for designing effective cognitive
scaffolds and pedagogical techniques (Joyner & Goel 2015).

The literature on parameter estimation is very large,
including techniques such as genetic algorithms, neural
networks, reinforcement learning, and Bayesian
parameterization, etc. Here we will note two points. First,
while digital libraries such as the Smithsonian Institution’s
Encyclopedia of Life (EOL; eol.org) contain knowledge



about the parameters of more than a million biological
species, they contain little information about the probability
distributions of the parameter values of any species (Parr et
al., 2016). It is also unlikely that most novice modelers have
much background knowledge of the probability distributions
of the parameter values for even a small number of biological
species. Second, as MacLeod & Nersessian (2018) recently
pointed out, our understanding of what cognitive strategies
humans use in navigating parameter spaces in modeling
complex biological systems is limited (MacLeod &
Nersessian, 2018). The present work seeks to add to this
modest understanding so that we can build interactive
learning environments that can provide cognitive support to
novice modelers.

We describe an experimental study using a web-based
virtual laboratory in which 50 college-level biology students
engaged in the parameterization task for modeling an
ecological system in a classroom setting. In this study, the
task was deliberately limited to estimating the value of only
one parameter, though the value could vary from 1 to 1000.
An analysis of students’ parameter estimation behaviors
showed three different behavioral patterns. The three patterns
use differing combinations of systematic search, problem
decomposition/reduction, and global/local search. We also
related the patterns with successful outcomes on the
parameterization task.

Experiment

In Fall 2019, we conducted an in situ experiment in a physical
classroom of an undergraduate Introduction to Biology class
at a large public R1 institution in the southeastern US.

Participants

A total of 50 students who attended a 50-minute period of the
introductory biology class participated in the study (N=50).
Given the nature of the course and the students’ self-
assessments, the students were novice biologists as well as
naive modelers, who had limited biology knowledge or
experience in modeling. On a 1-5 Likert scale, the average
self-perceived familiarity with biology was 2.80 and the
average self-perceived familiarity with modeling was 2.22.
The study was conducted as part of the course following an
approved IRB protocol, and the students did not receive any
monetary compensation or additional course credit for their
time.

Materials

A freely and publicly available web-based virtual laboratory
called VERA was used for modeling complex systems during
the experiment (https://vera.cc.gatech.edu/; An et al., 2020;
An et al., 2021). VERA evolves from earlier work on the
ACT (Vattam et al., 2011), EMT (Joyner et al., 2011) and
MILA (Joyner, Goel & Papin, 2014) learning environments.

VERA enables a user to interactively build conceptual
models of ecological phenomena. Conceptual models of
ecological phenomena in VERA are expressed in the
Component Mechanism Phenomenon (CMP) language
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Figure 1: The conceptual model, the simulation
parameters of kudzu, and the simulation output generated
based on the conceptual model and its parameters. X axis:
Time (months). Y axis: Population. The color of lines
represents the biotic and abiotic components in the
conceptual model.

(Joyner et al., 2011) that derive from the Structure-Behavior-
Function theory of modeling complex systems (Goel et al.,
2009). A CMP model consists of components and
relationships between components. A component can be
either biotic or abiotic. A relationship connects one
component to another in a directed manner. In Figure 1, the
top image shows a conceptual model of the kudzu plant
showing interactions among kudzu (biotic), kudzu bug
(biotic), American hornbeam (biotic), and sunlight (abiotic).

VERA uses several Al technologies to help users construct,
evaluate, and revise their models. First, an Al compiler
(Joyner, Goel & Papin, 2014) automatically spawns an agent-
based  simulation in  the  NetLogo  platform
(https://ccl.northwestern.edi/netlogo/; Wilensky & Rand,
2015) directly from the visual syntax and operational
semantics of the conceptual model. The bottom image in
Figure 1 shows the results of running the NetLogo simulation
of the conceptual model shown in the top image. The virtual
experimentation through running simulations enables a user
to observe the evolution of the system variables over time and
iterate through the model generate-evaluate-revise cycles.

Second, VERA provides access to Encyclopedia of Life
(EOL; eol.org; Parr et al,, 2016) to help construct the
conceptual model and set initial values of the simulation
parameters. This enables the user to learn domain knowledge
in specific contexts and in relation to other domain
knowledge.

Third, VERA wuses genetic algorithms for parameter
optimization to fit the model to the existing data (Broniec et
al., 2021). This allows the users to conduct “What If?”
experiments with different parameter settings to -either
explain an ecological phenomenon or attempt to predict the
outcome of changes to an ecological system.
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Figure 2: The parameter spaces of kudzu bug population
(KBP) and the simulation output graphs for each
parameter (Kudzu: green; American hornbeam: blue;
Kudzu bug: purple; Sunlight: yellow).

Finally, VERA uses an Al teaching assistant called Jill
Watson (Goel & Polepeddi, 2018) to answer a user’s
questions based on the user guide document. In particular, Jill
Watson in VERA provides explanations about both the
domain vocabulary knowledge used in VERA (e.g., such as
“What is a food web?”) and the mechanics of using VERA
(e.g., “How do I make a model?”) (Goel, 2020).

Procedure

Before the class intervention day, the students completed a
class assignment (“pre-test’) to assess their baseline biology
knowledge. During the intervention, we spent approximately
15 minutes training the students on the concept of scientific
modeling and the use of the system. We walked the students
through one case of building, testing and revising a model.
Next, the students were instructed to spend 25 uninterrupted
minutes to complete a modeling task on a pre-built (kudzu)
model (Figure 1). The experiment instructions were
embedded in a Qualtrics survey. After the exploration,
students completed a class assignment to examine what they
learned (‘post-test’). The questions on the pre-/post-tests
were different but aimed at the same concept. All the students
in the class used the VERA virtual laboratory on their own
laptops during the study.
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Figure 3: Examples of three different patterns (x-axis:
n® attempt; y-axis: the attempted KBP values). For
example, the sequence of attempted KBP values in the first
graph is 0, 100, 500.

Parameterization Task

For the modeling task, the students were given the pre-built
kudzu model in the VERA system created by the researchers
(see Figure 1). The model addresses the invasive species,
kudzu (Pueraria montana), a fast-growing vine originally
from Asia brought to the United States in the late 19th
century. Kudzu competes with a native plant, American
hornbeam (Carpinus caroliniana), for resources like light.
Another Asian import, kudzu bug (Megacopta cribaria),
which feeds on both kudzu and American hornbeam, can
potentially slow down the spread of kudzu vines, but also of
American hornbeam.

As shown in Figure 2 (but not shown to the students in this
study), the size of the kudzu bug population (KBP) on a scale
of from 1 to 1000 can lead to three different outcomes. (1)
When KBP is between 1-10, kudzu grows fast and
outcompetes American hornbeam for the shared resource of
light, and American hornbeam does not survive the
competition with kudzu (indicated as a blue line). (2) When
KBP is between 10- 570, the kudzu population is controlled
while American hornbeam also survives. (3) When KBP is
between 570-1000, the kudzu and the American hornbeam
population both die off due to the large KBP population.

Without knowing the effects of these values, the students
were asked to manipulate the KBP to select the best value for
the ecosystem stability, making sure that kudzu, the kudzu
bug, and American hornbeam all survive, creating a long-



term predator-prey cycle. The students were first asked to
observe the simulation results of the initial model in which
KBP was set to 1 and that manifested a fast-growing kudzu
population. Then they were asked to alter the KBP value be-
tween 1 and 1000 to estimate what they thought to be the
optimal value for the KBP for the ecosystem and to explain
their reason in a short text.

The participants’ log data was collected through our
logging technology while they interacted with VERA.
Specifically, we collected their activity logs including the
projects and models they created and edited with timestamps.
The collected low-level data is then processed to identify the
KBP values they have tried for this task.

Results

We analyzed the 50 students’ log data and answers. We
identified the three patterns of parameter estimation
behaviors shown in Figure 3. We then inferred the cognitive
strategies used by the students.

Behavior Patterns As shown in Figure 3, three different
parameter estimation behavior patterns were monotonic ups-
lope (Pattern 1), non-monotonic upslope and downslope (Pat-
tern 2), multiple upslopes and downslopes (Pattern 3). In the
following discussion, a segment refers to a section in a pattern
that is either upslope or downslope. In Pattern 1, 14 out of 50
students continuously increased the values to estimate the
optimal value for KBP. The students in this category started
with a relatively small value for KBP and then gradually
increased its value and explored its impact on the ecosystem.
In Pattern 2, 19 students showed an upslope segment
(increasing values of KBP) and a downslope segment
(decreasing KBP values). Lastly, in Pattern 3, 17 students
explored three or more segments of upslope and downslope
segments (corresponding to increasing and decreasing KBP
values, respectively).

The students’ estimate of the optimal value for KBP
determined whether the modeling task was successful or
unsuccessful. If a student’s answer on the optimal value for
KBP was between 10-570, we counted it as successful;
otherwise, we assessed it as unsuccessful. Overall, 39 out of
the 50 students were successful in finding the optimal value
of the kudzu bug whereas 11 students were not. As shown in
Table 1, the students who showed Pattern 2 were more likely
to be successful in finding the optimal parameter value
(89.47%) followed by Pattern 1 (78.57%), and Pattern 3
(64.70%). Within Pattern 3, the students who showed more
than four segments were the least successful in estimating the
optimal value for KBP; only 3 out of 6 succeeded for a
success rate of only 50%.

Cognitive Strategies A detailed analysis of the above data
suggests that the students in our study showed three distinct
cognitive strategies interleaved with one another. The first is
systematic search common in problem-solving and found, for
example, in searching for information on the web (Tabatabai
et al., 2005; White et al., 2007; Aula et al., 2010). Systematic
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Figure 4: The segment sizes of (a) Pattern 1 with one
segment (Top) and (b) Pattern 3 with three segments
(Bottom). Light gray region illustrates upslope; Dark gray
region illustrates downslope. In Pattern 3, the segment
sizes steadily decrease (999, 800, 400).

search takes an initial value and only make monotonic
changes with each attempt. For example, it starts with one
value for a parameter and then iteratively increases or
decreases the value. This is manifested in each linear segment
of Patterns 1, 2, and 3, most evidently in Pattern 1.

The second strategy is problem decomposition and
reduction (Kalp, 1995; Jacobson, 2000; Hogan & Thomas,
2001). Problem decomposition partitions the overall problem
into smaller and simpler subproblems and problem reduction
(which address some subproblems thereby reducing the
overall problem). Figure 4 illustrates the pattern estimation
behavior resulting from this strategy. The top graph in the
figure represents an example of Pattern 1 and the bottom
graph represents an example of Pattern 3. The upslope
segments are illustrated by the blue region whereas the
downslope segment is illustrated by the red region. Pattern 1
consists of one upslope segment, and the segment size is ex-
pressed as the vertical line next to the graph (e.g., 899). The
segment size is defined by the difference between the starting
value and the ending value of the segment. Pattern 3 consists
of three different segments, and the three vertical lines rep-
resent the segment sizes for each segment. For example, the
first segment size is 999; the second is 800; and the third is
400, indicating problem decomposition.

The third cognitive strategy is global search followed by
local search (e.g., Goldberg et al., 1999). Global search
estimates the global optimum for the problem, and then local
search helps get closer to the optimum. This strategy is
manifested in the decreasing sizes of the problem spaces
represented here as ‘segment’ sizes in the behavioral patterns.
As Figure 5 illustrates, the segment sizes tend to decrease
gradually for both Pattern 2 and 3, though this is more evident



1000 —_ 1000

800 800 N

600

400

Correlations Table 1 shows the success rate for three
patterns. Briefly, the second pattern resulted in the highest
rate of success.

Table 1: The success rate of each pattern.
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Figure 5: The changes in the segment sizes for the three
patterns. X-axis: n segment, Y-axis: size of the segment.
Each line represents a different student. The segment sizes
tend to decrease gradually for Pattern 2 (two segments)
and 3 (three segments).

in Pattern 2 (two segments) than in Pattern 3 (three or more
segments). The above three cognitive strategies were
interleaved with one another. This is evident in Pattern 2 that
is combining problem decomposition and systematic search.

Statistical analysis was conducted by calculating the slopes
of the trend lines for each graph and the trimmed means and
the standard deviations were calculated for central tendency.
This involves the calculation of the mean after discarding
20% of sample at the high and low ends. As shown in Figure
6, the means of the slopes are negative (Pattern 2 = -150.61,
Pattern 2 with three segments = -120, Pattern 3 with four
segments = -35.43), which means that the segment size tends
to decrease regardless of the patterns.
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Figure 6: Mean, median, and lower and upper quartiles
of the slope sizes of the trend lines for each graph in Figure
5.
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Pattern 1 Pattern 2 Pattern 3
Success rate  78.57% 89.47% 64.70%
(11/14) (17/19) (11/17)

We compared students’ academic performance with their
parameter estimation behaviors. We found no significant
differences among the patterns they used for model
parameterization and their self-assessed familiarity with
biology as determined by one-way ANOVA (p=0.18), or
their self-assessed familiarity with modeling (p=0.42), or
their performance on the biology test (p=0.88) (see Table 2).
We did find a significant correlation between the cumulative
GPA and the parameter estimation behaviors (p <0.05):
Pattern 2 has the highest mean value for the cumulative GPA,
followed by Pattern 1 and then Pattern 3. On one hand, this
follows the success rates of three behavior patterns shown in
Table 1: Pattern 2 was most likely to result in success,
followed by Pattern 1 and then Pattern 3. On the other, it is
difficult to draw strong conclusions about this apparent
correlation from a single study of modest size. Additionally,
it is important to note that correlations do not imply causality
and therefore that no causal claims could be made even with
a larger sample as this experiment does not include
randomization.

Table 2: The means and standard deviations of each pattern
for cumulative GPA, performance on the biology tests, and
self-perceived familiarity with biology, and the success rate
of each pattern.

Pattern 1 Pattern 2 Pattern 3
Cumulative 3.67 3.72 3.27
GPA (.36) (41) (.69)
ANOVA: df =2.0; fvalue = 3.88; *p <.05
Biology Test 56.18 58.45 57.82
Performance (12.33) (10.04) (16.29)
ANOVA: df =2.0; fvalue =.12; p = .88
Familiarity with ~ 2.57 2.73 3.05
Biology (.51) (.80) (.82)
ANOVA: df =2.0; fvalue=1.75; p=.18
Familiarity with ~ 2.14 242 2.05
Modeling (.94) (.96) (.65)

ANOVA: df =2.0; f value = .86; p = .42

We also investigated whether gender was correlated with
parameter estimation behaviors. As Table 3 indicates, 0% of
male students displayed Pattern 1 while 40% of female
students did; 60% of male students followed Pattern 2 while
29% of female students did; the proportion for Pattern 3 was
approximately the same for male students (40%) and female
students (31%). Given the modest size of this study (with
number of male students = 15), it is not clear if these



differences are real or manifestations of sample bias. We did
not try to find correlations with other demographic groupings
because of their small proportions in our sample.

Table 3: The gender distribution. N(M)=15. N(F)=35.

Pattern 1 Pattern 2 Pattern 3
Gender M 0% (0.15) M 60% (9/15) M 40% (6/15)
F 40% (14/35) F 29% (10/35) F 31% (11/35)

Discussion

Modeling complex systems is cognitively challenging in part
because it involves a high dimensional parameter space. Prior
studies have found that students typically struggle with
defining and manipulating the variables in a system model
and with deciding what values to assign to the variables
(VanLehn, 2013). Students also have difficulty
understanding the indirect effects of manipulating a variable
(Hogan & Thomas, 2001). Consequently, students tend to
focus on individual variables separately instead of
understanding the direct and indirect interactions among the
components of a system as a whole (Hogan & Thomas, 2001;
Sins, Savelsbergh, & van Joolingen, 2005).

Further, most novices have a strong focus on adjusting
model parameters to fit the empirical data without deeply
thinking about the system (Sins, Savelsbergh, & van
Joolingen, 2005). Similarly, students often fail to adequately
evaluate and revise their models because they spend their
effort trying to match their model output to some desired
output (VanLehn, 2013). Such model-fitting behavior
typically results in the generation of low-quality models.
When building a model of a large system, modelers often do
not include entire sets of interactions due to their limited
working memory for model construction and model- based
inferencing. Instead, they start from small models that
represent a subset of the problem and then build outwards
with those. This cognitive strategy makes modelers build less
accurate models, but it makes modeling more tractable
(Noble, 2008).

While these prior studies examined novices’ difficulties in
modeling due to the high dimensionality of the parameter
search space, they do not investigate why such difficulties
emerge or how novices explore the parameter space. The
present study investigates how learners manipulate the
parameter values and how they use the simulation outputs to
guide adjustments to their estimates of parameter values. In
addition, previous studies typically used directed
observations and verbal protocols to identify the difficulties
of novices while working on a modeling task. In this study,
we used students’ interaction log data for detailed analysis.

Our analysis indicates that students navigate the parameter
space in three different patterns that involve differing
numbers of linear segments: one segment (Pattern 1), two
segments (Pattern 2), and three or more segments (Pattern 3).
Students who explore more than four segments were
wandering in the problem space. Our analysis also suggests
that novices use three distinct but interleaved cognitive
strategies for searching the parameter space: (1) systematic
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search, (2) problem decomposition followed by problem
reduction, and (3) global search followed by local search.

Based on the correlation results we have from this limited
study (see Table 2 and 3), the cognitive strategies the students
used for the model parameterization task appear to be general
constructs. It seems plausible that many students have
acquired the strategies of systematic search, problem decom-
position/reduction and global/local search from previous
experiences and are transferring and applying them to the
new context of parameter estimation. This suggests many
ways for designing pedagogical techniques, instructional
materials, and virtual laboratories. For example, pedagogy
can help make these strategies explicit so that more students
are successful in using them and fewer students are lost
wandering in a large parameter space.

Conclusion

The use of modern informatics in modeling complex systems
poses the cognitive challenge of navigating large parameter
spaces. While cognitive science has developed a good
understanding of cognitive strategies for estimating a small
number of parameters in a small range of values, cognitive
science research on parameter estimation in modeling
complex systems is still at an early stage. In this paper, we
examined the parameter estimation task in the context of
ecological modeling in which undergraduate biology students
were asked to estimate the value of one parameter for making
an ecosystem stable.

We found that the students exhibited three patterns of
parameter estimation behavior that appear to be arising due
to three cognitive strategies: systematic search, problem
decomposition/reduction and global/local search. We also
found a correlation between the behavior patterns and the
outcomes on the parameter estimation task.

This work is an early step in understanding learners’
parameterization search patterns and leaves many exciting
questions to be answered with further research. Having
students explore a more complex space (many components
and many parameters) may give us different insights into
parameter search strategies. Also, we expect that results can
vary by the complexity of the task, for example, a well-
defined task as in our study vs. a more open-ended sense-
making task.
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