
Auditing a Software-Defined Cross Domain
Solution Architecture

Nathan Daughety∗, Marcus Pendleton∗, Rebeca Perez∗, Shouhuai Xu†, John Franco‡
∗90thCOS, United States Air Force

{nathan.daughety, marcus.pendleton.2, rebeca.perez}@us.af.mil
†University of Colorado Colorado Springs

sxu@uccs.edu
‡University of Cincinnati

franco@ucmail.uc.edu

Abstract—In the context of cybersecurity systems, trust is the
firm belief that a system will behave as expected. Trustwor-
thiness is the proven property of a system that is worthy of
trust. Therefore, trust is ephemeral, i.e. trust can be broken;
trustworthiness is perpetual, i.e. trustworthiness is verified and
cannot be broken. The gap between these two concepts is one
which is, alarmingly, often overlooked. In fact, the pressure to
meet with the pace of operations for mission critical cross domain
solution (CDS) development has resulted in a status quo of high-
risk, ad hoc solutions. Trustworthiness, proven through formal
verification, should be an essential property in any hardware
and/or software security system. We have shown, in “vCDS:
A Virtualized Cross Domain Solution Architecture”, that devel-
oping a formally verified CDS is possible. virtual CDS (vCDS)
additionally comes with security guarantees, i.e. confidentiality,
integrity, and availability, through the use of a formally verified
trusted computing base (TCB). In order for a system, defined
by an architecture description language (ADL), to be considered
trustworthy, the implemented security configuration, i.e. access
control and data protection models, must be verified correct.
In this paper we present the first and only security auditing
tool which seeks to verify the security configuration of a CDS
architecture defined through ADL description. This tool is useful
in mitigating the risk of existing solutions by ensuring proper
security enforcement. Furthermore, when coupled with the agile
nature of vCDS, this tool significantly increases the pace of system
delivery.

Index Terms—Cross Domain Solution, Architecture Descrip-
tion Language, Trustworthiness, Configuration Security, Data
Protection, Access Control, Trusted Systems, Security Analysis

I. INTRODUCTION

In the context of security controls, a leak refers to the
acquisition of authority over an object by a subject that did
not previously have that authority. Authority refers to the
privileges and/or access rights held by a subject over an object.
A system must have proper security configurations in order to
prevent unintended results such as privilege leaks. One critical
goal of any system’s security model should be its trustworthy
implementation. The status quo in CDS implementations rely
on trust rather than trustworthiness. Trust in a system is
the firm belief that the system will perform as expected.
Trustworthiness in a system is the proven property of that
system to perform as expected. One system which seeks
to provide a trustworthy implementation for cross domain
capabilities is vCDS [1].

vCDS is the first CDS built upon a formally verified
trusted computing base (TCB). The TCB has been formally
verified for functional correctness and security guarantees
of confidentiality, integrity, and availability (CIA) [2, 7]. In
one instantiation of vCDS’s trustworthy architecture, the seL4
microkernel/hypervisor was leveraged. seL4 serves as the
lower level component of a system which can be abstracted
by CAmkES, the component architecture for microkernel-
based embedded systems [17]. An important part of vCDS
is the architecture description language (ADL) provided by
CAmkES. The ADL describes the components, interfaces,
connectors, and privileges which make up a system. Given
these combined architectural components, vCDS is a complete,
formally verified CDS and comes with the security guarantees
of CIA which can be verified, through the ADL, to ensure that
the system does not violate any CDS constraints [2].
Problem Statement. Building a system which leverages a
formally verified TCB does not mean that the system is secure
out of the box; the security guarantees provided by the TCB
only hold if the system’s security controls have been config-
ured correctly. The serious nature of security misconfiguration
is underscored by Open Web Application Security Project’s
(OWASP) rating it as number five in the top ten most critical
security concerns in applications in 2021 [15].

In order for a vCDS instantiation to be proven trustworthy,
the system must be audited to verify that no CDS informa-
tion flow properties are violated. In other words, the ADL
specification of the vCDS system security properties must be
verified against the specification for the vCDS implementation.
The problem of description verification often stems from
poorly modeled system security properties. Another issue that
arises is that current CDS solution components are either
not described in an ADL, or component descriptions are not
properly expressed in such a way as to differentiate between
the levels of protection necessitated by the sensitivity of the
components.
Our Contributions. In this paper, (i) we address the need to
verify the implementation of a CDS system security model.
(ii) We present a tool which, to the best of our knowledge, is
the first to analyze and audit CDS security control implemen-
tations. The implementation of the algorithm parses the system
description and verifies that no CDS constraints are violated

DISTRIBUTION A. Approved for public release. Distribution unlimited. Case Number 67CW-220301. Dated 01 Mar 2022.
978-1-6654-9952-1/22/$31.00 ©2022 IEEE

such that there are no operations which will lead to a leak
of rights or data. Furthermore, to the best of our knowledge,
(iii) we are the first to develop a tool to audit a CDS described
via an ADL, and the first to (iv) tailor an ADL for describing
a CDS system with the ability to tag components with proper
labels which propagate down through the ADL, allowing our
algorithm to check the constraints. (v) We extend the use of
the ADL to include labels and key words which trigger the
appropriate protection models and information flow constraints
in vCDS to determine whether or not to encrypt the data. This
capability is not only important for auditing a CDS system and
allowing for proper labelling but (vi) we extend it to provide
system security modeling that is far beyond the status quo.

II. RELATED WORK

Harrison et al., in [5], present a model of protection mech-
anisms to determine whether or not a subject in a given state
can acquire authority over an object. Additionally, they proved
that safety is undecidable in general. In this paper, safety
and decidability is further discussed in Section III-B. Several
other protection models, such as take-grant, described in this
work, have been designed and proven to be decidable in more
restrictive cases [12, 13, 14, 16]. However, due to the nature
of vCDS, seL4, and CAmkES which are being analyzed, this
work is most closely related to the work in [1, 2].

III. BACKGROUND

A. Security Models

1) Capability Model: The capability protection model sup-
ports data security by using access tokens. A capability is an
access token, or key, which grants a subject specific authorita-
tive rights to a particular object. Shown in Fig. 1, the capability
is implemented as a data structure which encapsulates an
object reference and the rights conveyed to that object [11].

Fig. 1. A capability is an immutable object reference which encapsulates an
object reference and the access rights conveyed to the object

A capability is an immutable reference that enforces the
principle of least privilege (POLP) by ensuring that the only
way an operation can be performed on a component is by
invoking the capability which is pointing to that object; thus
restricting the granted rights to the absolute minimum required
to perform the operation [7]. “Capabilities are the basis for
object protection; a program cannot access an object unless
its capability list contains a suitably privileged capability for
the object” [11]. In other words, when a process is invoked, it
must be handed a capability which defines the object and the
operation permitted to take place on the object. This ensures
that the system disallows any direct modification of access
rights in the capability and that “invoking a capability is the
one and only way of performing an operation on a system
object” [7].

2) Take-Grant Model: The classical take and grant scheme
(a.k.a. take-grant security model) utilizes a directed graph with
rules to express the conditions under which a subject can
acquire authority over another object within a system. Each
node in the directed graph represents a subject or object,
depending on their relationship to one another. This system
can be formulated as a graph with ni ∈ N , where ni is a node
representing a particular subject or object, and N is the non-
empty set of nodes in a graph, i.e. the set of all subjects and
objects in the system. The labelled, directed edges represent
one node’s possession of authority over another node that is
being pointed to by the edge which is formulated as α ⊆ R
where R is the non-empty set of all access rights in the system,
e.g. α ⊆ {r = read,w = write}. As defined by [2, 12],
the classical take-grant model employs four rules for state
transitions which are as follows:

(i) Take: Let n1, n2, n3 be three distinct nodes in the pro-
tection graph. Let there be an edge from n1 to n2 with
a label γ such that take ∈ γ, and from n2 to n3 labelled
α ⊆ R. The take rule then defines a new graph by adding
an edge from n1 to n3 with the label β ⊆ α. Therefore,
n1 takes from n2 the ability to execute β operations on
n3.

Fig. 2. Take Rule

(ii) Grant: Let n1, n2, n3 be three distinct nodes in the
protection graph. Let there be an edge from n1 to n2
with a label γ such that grant ∈ γ, and from n1 to n3
labelled α ⊆ R. The grant rule then defines a new graph
by adding an edge from n2 to n3 with the label β ⊆ α.
Therefore, n1 grants the ability to execute β operations
on n3 to n2.

Fig. 3. Grant Rule

(iii) Create: Let n1 be a node in the protection graph. The
create rule then defines a new graph by adding a new
object, n2, and an edge from n1 to n2 with a label α ⊆ R.
Therefore, n1 creates a new object, n2, which it can
execute α operations on.

(iv) Remove: Let n1, n2 be nodes in the protection graph. Let
there be an edge from n1 to n2 with a label α ⊆ R. The

Fig. 4. Create Rule

remove rule defines a new graph by deleting a subset, β,
from α. If α−β = ∅, then the edge is removed. Therefore,
n1 removes its ability to execute α operations on n2.

Fig. 5. Remove Rule

While these rules will vary depending on the safety model in
which they are used, the application of these rules determine
whether or not rights will or can leak in a particular safety
model.

B. Safety Model Decidability

When provided with a system S, an initial graph state, s,
and the set of access rules, R, decidability means that an
algorithm exists which can determine whether or not S is safe
with respect to α ⊆ R. A safe system is a system in which
it is impossible for a node ni to acquire α ⊆ R, which it did
not previously possess, in order to reach some new state, s′

[10]. In other words, if α ⊆ R cannot be leaked in system S,
S is considered safe.

C. Analyzing Security Configurations

Now we review the conclusions of Lipton and Snyder [12]
and Elkaduwe et al. [2], which have shown that the take-grant
model, and subsequently, the seL4 security model, is decidable
in linear time and, therefore, object security is decidable in
the take-grant security model. As in the literature, there are
no distinctions between subjects and objects, only references
to both, synonymously, through the following terms: entities,
nodes and vertices. Various states of the system security model
itself are referred to as the following: state, graph, system and
subsystem. Finally, the following terms to denote the use of
an access right are used: authority, rule, label, arc and edge.

1) Take-Grant Decidability: Presented below are the results
of the work in [12] which examines the nonuniform safety
problem; Lipton and Snyder present a concrete example of a
practical protection system, i.e. the classical take-grant model,
and seek to analyze its behavior to determine if a protection
violation is possible [12]. It should also be understood that
the following descriptions have been aggregated from their
original work.
Methodology. Lipton and Snyder begin by presenting two
questions, the answer to which should be known by each user
of a protection system, represented by u ∈ U , where U is
the non-empty set of all system users: (i) What information,
belonging to a user, u, can be accessed by another user,
u′ ∈ U? (ii) What information, belonging to u′, can be
accessed by user, u ∈ U? The questions are simplified by
the following question, given that α ⊆ R where α is a subset

of access rights and R is the set of all access rules: Is it true
that a node, p, can be α by a node, q?

The objective of Lipton and Snider is to show that there
are two conditions which are necessary to answer the stated
question. Each of the predicates is presented below, with the
following definition presented in [12]: Let G be a directed
protection graph and α ⊆ R, then a node, p, and a node, q,
are connected if there exists a path between p and q in G,
independent of directionality or α label.

Condition 1. p and q are connected in G [12].

Condition 2. There exists a node, x in G and an arc from
x to q, with label β ⊆ α [12]. In other words, there exists a
node x that has access to, i.e. α’s, node q.

These conditions determine the safety of a system, S, with
respect to α ⊆ R. In other words, these conditions serve to
prove the decidability of a system, i.e. to determine if one
node could acquire a particular authority over another node
which it did not previously posses.

IV. OVERVIEW OF VCDS SECURITY ARCHITECTURE

Daughety et al. [1] present a layered vCDS architecture
which includes the optional hardware protections, the software
computing base, and the components. At a high level, vCDS
is a baseline system which performs CDS capabilities while
providing the following: (i) trustworthy and proven reliable
execution, (ii) remote deployability, (iii) accessibility to the
commercial sector, and (iv) versatile applicability to a variety
of use-cases and environments.

Fig. 6. vCDS stream processor architecture

Fig. 6 omits the hardware and TEE layers and instead
focuses on the TCB, the component architecture abstraction
layer, and the component layer which depicts three of the com-
ponents employed in the stream processor [1]: (i) Low Side,
(ii) High Side, and (iii) Guard. The Low Side corresponds to
a lower label and functions to retrieve the data and, if the use-
case requires, calculate an integrity tag before writing the data
to the High Side. The High Side corresponds to a higher label
and will read the data from the Low Side and execute any
predefined, trusted operations on the data. The High Side may
then write the data to the Guard which, depending on the use-
case, may function to check the integrity of the data, ensuring
that no modifications to the data have occurred and that no

operational data have been added to the stream. If the data are
cleared, the Guard may pass the data back to the Low Side
component. If the data have been modified, the Guard will
notify the High Side and determine the next course of action.
Guard operations are typically automatic and are implemented
relative to the use-case and environment [4].

A. vCDS Security Model

The vCDS TCB leverages the previously described capabil-
ity model. At kernel boot time, all physical memory resources,
such as untyped kernel objects, are allocated [3]. Contiguous
memory blocks hold untyped memory objects, some of which
are writable by the kernel [17]. Each untyped object can be
retyped as a capability reference to a specific kernel object.
Invocations can then be made on the object, depending on the
type of the object and the access rights encapsulated in the
capabililty.

The leveraged TCB provides security enforcement proofs as
it employs a protection model inspired by the classical take-
grant model such that when properly configured, the system
“guarantees the classical security properties of confidentiality,
integrity and availability” [7, 8]. The employed security pro-
tection model is essentially the take-grant protection model
with the following modifications as detailed in [2]:

(i) Create: Creating a new object occurs by retyping an
untyped object that was created in memory at boot time.
The create rule only applies if an object has an outgoing
edge representing the create authority.

(ii) Remove: Capabilities are immutable so the remove op-
eration will remove an object’s entire edge as opposed
to a portion of the object’s authority. Therefore, in order
to take away a portion of authority, the TCB’s security
model will remove the more privileged edge and then
create a less privileged edge.

(iii) Revoke: The revoke rule is added in the security protec-
tion model and is a combination of removal operations.
Revoke allows the kernel to remove a set of capabilities
from an object.

(iv) Take: All authority propagations are grant operations and
therefore, the TCB does not employ the take rule. In
this particular case, the take operation is a dangerous
operation. Given n1, n2, n3, from Section III-A2, the take
rule permits the node n1 to take the authority, α, from
n2, to operate on n3. If this operation were permitted, n1
may acquire authority to operate on n3 without explicitly
being granted that authority by n2. This would break the
security proofs of the TCB. Therefore, the take operation
is omitted.

B. Access Control Model Decidability

Elkaduwe et al. [2] show that the seL4 access control
model described in Section IV-A is decidable. Furthermore,
the access control model has been formalized and the security
analysis of the TCB has been machine-checked. Presented
below are the theorems and necessary lemmas which lend
themselves to reasoning about the decidability of the model.

It should also be understood that the following descriptions
have been aggregated from the original work in [2].
Methodology. The goal of the proofs presented by Elkaduwe
et al. [2] is to formalize the seL4 access control model and
show that the security model prevents authority leaks. For
example, in a state s, any ruling that node nx has over another
node ni cannot be exposed in such a way that nx would pass
any authority to ni in s or any future state, s′. In the capability
model, preventing an authority leak means that a subsystem
cannot give any capability references to physical memory or
communication channels to any other subsystem [2].

A sane state as it pertains to the introduction of new vertices,
per Elkaduwe et al., is a formulation of kernel objects, i.e. a
graph with vertices, in which the following three properties
hold: (i) The new vertex being examined must exist in the
graph, (ii) there exist no dangling capability references and
(iii) no newly created vertices overlap with any existing
object’s memory region [2]. Reviewed below are the theorems
presented in the paper which seek to answer the following
question: Is it possible to prevent some node from leaking a
capability to some other node in any future state of the graph?

Theorem 1 ([2]). In any sane state, if two existing entities
are not connected, they will never be able to leak authority to
each other.

Theorem 1 is described as the contrapositive of the fol-
lowing lemma, presented in the paper: in any sane state s, if
one existing node nx can spill a subset of the possible access
rights, i.e. α ⊆ R, to any other existing node ni in some
future state s′, then the nodes nx and ni must be connected
in the current state. Therefore, Theorem 1 states that, in a
sane state, two entities which are not connected will never
be able to leak authority to one another [2]. This theorem
does prove the “standard take-grant non-leakage property for
authority distribution in seL4”, however, Theorem 1 alone does
not completely satisfy the question of whether or not spillage
can occur. The theorem does not account for entities that do
not exist in the current state being analyzed, but may, however,
be created in some future state.

Theorem 2 (Isolation of authority [2]). Given a sane state
s, a non-empty subsystem ns in s, and a capability c with a
target identity n in s, if the authority of the subsystem does
not exceed c in s, then it will not exceed c in any future state
of the system.

Theorem 2, also referred to as the Isolation Theorem, is
introduced to correct the limitations of Theorem 1. The Isola-
tion Theorem proves the non-leakage property when authority
confinement can be used to implement isolated subsystems
which can create additional entities in future states. Authority
confinement is a term presented in the paper to describe (i) the
“strong isolation guarantees between components” such that
any unexpected behavior by a particular subsystem is restricted
to that subsystem and (ii) the “isolation of authority” such that
any particular authority cannot be increased in a subsystem
[2]. An isolated subsystem is a graph of connected vertices

with arcs, i.e. access control labels, such that any particular
vertex in one subsystem, may not acquire a capability with
a particular authority over a vertex belonging to another
subsystem, without the prior existence of that authority in that
other subsystem. In other words, arcs within a subsystem’s
graph cannot be exfiltrated to another subsystem and those arcs
within another subsystem cannot infiltrate the graph. Addition-
ally, Elkaduwe et al. show that an already existing authority
cannot be increased in the subsystem. Therefore, Theorem
2 proves the entirety of the non-leakage property such that
“subsystems can neither exceed their authority over physical
memory nor their authority over communication channels to
other subsystems” [2].

C. CAmkES Security Enforcement

CAmkES abstracts low-level kernel mechanisms. The
CAmkES ADL describes the components, interfaces, and con-
nectors which make up a system. Components refer to the data,
code, and processes encapsulated by the microkernel, which, in
the case of vCDS, represent the domains and filters; interfaces
define component invocation; and connectors are one-to-one
links between the interfaces. The CAmkES compiler translates
the ADL into the capability distribution language (capDL): “a
low-level specification of the system’s initial configuration of
kernel objects and capabilities” [9].

CAmkES provides multiple types of connectors, however,
vCDS primarily utilizes Dataports which represent shared
memory regions. These port interfaces provide an avenue
for one component to pass bulk data to another component,
including across the boundaries between domains of differing
labels [6]. One advantage of using CAmkES is the ability to
implement explicit access controls on each of these Dataports.
These access controls form a portion of the inputs which are
processed by the audit tool, presented in Section V.

A further advantage of utilizing this method is the en-
forcement of a data diode. A data diode is a link through
which data may only flow in one explicit direction. Data
diode enforcement ensures that our priority, i.e. preventing
data leakage, is upheld and no leaks can occur over the link
in the opposing direction.

D. vCDS Stream Processor Audit

Now we demonstrate the impact of the audit tool, described
in Section V, by leveraging it to analyze and verify the security
configuration of the vCDS stream processor application. This
analysis requires the security configuration of the application
as well as the system description. Recall that the vCDS
application, described in [1], implements four components for
the stream processor: 1) Low Side, 2) High Side, 3) Guard,
and 4) High Side Management Network.

Lst. 1 shows the definition of these components using the
keywords LowSide and HighSide. These are an example
of the keywords which have been tailored to trigger the
appropriate protection models and information flow constraints
in vCDS. The LowSide keyword specifies a component
which resides in a lower labeled space whereas the HighSide

keyword specifies a component residing in a higher labeled
space. Lst. 1 also shows the pseudocode for a connection
between components. Fig. 7 depicts the connectivity as well
as the security configuration of the vCDS system. Specifically,
the direction of the arrow represents a write operation. The
component pointed to, i.e. on the receiving end of the arrow,
is permitted to perform a read operation.

component LowSide lowDomain;
component HighSide highDomain;
component HighSide guard;
component HighSide managementNetwork;

/* Define Connections Below

connection <connector-type> conn(
from component,
to component

);

*/

Lst. 1. vCDS CAmkES

Fig. 7. vCDS stream processor security configuration

Recall that the central focus of vCDS is data confidentiality.
Therefore, the Low Side must not be permitted to read content
residing at a higher label. The Low Side may only write to the
High Side. The High Side must not be permitted to write to a
lower label. Therefore, the High Side may only read from the
Low Side. The link from the High Side to the Guard, and from
the High Side to the High Side Management Network allow for
both read and write privileges, bidirectionally. This is possible
because all three components have the same label. Finally, the
Guard may be permitted to write to the Low Side. This is
made possible through the service which the Guard provides:
ensuring that no data are leaked from any of the three high-
labeled components back to the Low Side. The Low Side may
read from the Guard only after an integrity check has been
successful and permits the operation. The Low Side may not
read from any other high component under any circumstances.

The audit tool verifies that the description of the security
configuration, visualized in Fig. 7, is accurate to the goal of
data confidentiality. The results of the audit, excluding the
High Side Management Network rights, are shown in Fig. 8.
Furthermore, the results are sound and no additional channels

or rights can be acquired due to the authority confinement
provided by the formally verified TCB [1].

From Component Access Rights To Component
Low Side Write High Side
Low Side Controlled Read Guard
High Side Read Low Side
High Side Read/Write Guard
Guard Read/Write High Side
Guard Controlled Write Low Side

Fig. 8. vCDS Security Configuration Audit Results

V. SECURITY CONTROL AUDIT TOOL

In this section, we present our methodology and the im-
plementation of an analysis tool which seeks to verify the
correctness of the security configuration of vCDS [1].

A. Application of the Isolation Theorem to capDL

As described in Section IV-C, capDL defines a system’s
configuration of kernel objects and capabilities, which notably
includes access rights. The Isolation Theorem [2], shows that
authority, which currently exists within a system, can never
increase. This theorem can be applied to subsystems described
within capDL to determine if authority leak could occur.
Therefore, the Isolation Theorem serves as a function through
which to input a particular subsystem, from capDL. The output
of the function would be the resulting authority that could be
propagated to a subsystem through the use of the access rights
given to each subject within the system.

B. Implementation

The implementation of the audit tool can be broken down
into five sections: (i) capDL parser, (ii) graph constructor,
(iii) connection generator, (iv) verifier, and (v) visualizer. The
auditor pipeline is depicted in Fig. 9 and is made up of two
phases: (i) Collection and (ii) Audit.

The main entry point begins by retrieving the capDL,
which was constructed by the vCDS build, and sending it as
input to the Collection phase. The Collection phase combines
a set of functions which calculate both the intended solution
as defined by the specification in the capDL and all possible
propagations from each of the connections. The Audit phase
follows the Collection phase where the configuration solution
is compared against all possible connections to determine if
any additional connection or access right propagations can
occur. If the vCDS security configuration passes the audit, the
output is a visualization of the system components and their
respective connections, otherwise, the output provides an alert
which highlights the security control implementation error.
capDL Parser. The parser module contains the parseCapDL
function which reads the vCDS specification from capDL
and filters out unnecessary information. It then retrieves all
information that is pertinent to the algorithm: the components,
the connectors, the connector types, and the access rights for
each of the connectors. The output of the parser is the system

Start

capDL

parseCapDL System
Assembly

constructGraph Graph

getConnections

Solution
Possible

Connections

auditSecurity

visualizeSolution

reportResult

Stop

Collection

Audit

yes

no

Fig. 9. Audit Tool Pipeline

assembly which is the description of each component, their
connectors and corresponding access controls.
Graph Constructor. The graph constructor module takes the
system assembly which was the output from the parser as
input. It matches the connector of one component to the
connector of the component to which the former connects.
This is done for each of the connectors belonging to a single
component, until each component has been collected. The
constructor calls the constructGraph function to create
a graph of the system based on the provided assembly. The
generated system graph is a directed graph which models the
system controls for leakage prevention from higher to lower
labels. The directed graph consists of: (i) a set of nodes, which
correspond to the system components parsed from capDL;
(ii) a set of arcs, which represent the connections from one
component to another; and (iii) a set of labels along the arcs,
where a label corresponds to the rights conveyed to the from
component through the connection on the to component side.
Connection Generator. The connection generator is the core
of the algorithm and is implemented such that the Isolation
Theorem, given by [2], is deemed true. Additionally, imple-

mentations of the conditions given by [12] were added to
emphasize the danger of the take rule, described in Sections
IV-A and VI, and to show the correctness of the verification
mechanism. Recall that [12] presents the take rule which
permits a particular node n1 to take some specified authority
from another node n2, in order to perform an operation on
a node n3 which n1 did not previously have the authority to
perform. This permits an authority propagation and breaks the
security proofs of seL4. The correct implementation of the
auditor relies on the Isolation Theorem, proven formally in
[2].

This module calculates every possible connection and label
which can be propagated to any node in the graph, i.e. every
possible access right propagation that can occur for all possible
connections between components. The algorithm implemented
by the connection generator is given by Algorithm 1.

Algorithm 1: getConnections
Input: digraph G = (V,E), where V is the set of

vertices and E is the set of edges; λG labeling
function of E

Output: array M of dimension |V |x |V |
1 foreach p ∈ V do
2 foreach q ∈ V do
3 if p 6= q and (p,q) in E then
4 α = λG((p,q))

/* Isolation Theorem holds,
i.e. p can α q */

5 if hasAuthority(p, q, α) then
6 M[p,q] = α

7 else
8 M[p,q] = NIL

9 return M

Additionally, Algorithm 2 is developed to enforce the Iso-
lation Theorem from [2]. Recall that the Isolation Theorem
ensures that a subject’s authority over an object or communi-
cation channel in a current state cannot be exceeded in any
future state, i.e. authority leakage is prevented.

Algorithm 2: hasAuthority
Input: p, q, α
Output: Boolean

1 if ∃ the authority α, from p to q then
2 return True

3 return False

Verifier. The verifier module implementation is trivial with
respect to the operations on its inputs. The module takes the
output of possible connections from the connection generator
and the output from the Graph Constructor as input. The
verifier audits the graph constructed from the capDL against
the graph of all possible connections and authorities provided

by the connection generator. If the two graphs are congruent,
i.e. each contain the same number and type of nodes and the
same privileges, then authority leaks are nonexistent in the
system described by the capDL. The results of the verification
step are reported.
Visualizer. The visualizer module constructs a visual repre-
sentation of the security model of the system. Essentially,
the visualizer builds and outputs a diagram of the subsystems
within the directed graph, i.e. a diagram of the components,
their respective connections and authorities, much like what is
presented in Fig. 7, is generated.

C. Analysis

The analysis of this tool begins with the analysis of the
take-grant security model. Recall that Lipton and Snyder [12]
show the security model to be decidable in linear time, O(n).
Subsequently, recall that the seL4 security model, which is
based on the take-grant security model, is presented in [2].
Based on the theorems and lemmas explicitly stated, which
lead to the proof of the Isolation Theorem, Elkaduwe et al.
formally prove that this theorem ensures that no authority
propagations may occur in a seL4-based system. Moreover,
Elkaduwe et al. show that the seL4 security model, i.e. object
security, is decidable in linear time, O(n). This audit tool is
based on the theorems and lemmas proven in [2, 12] and can
therefore be trusted to be correct. Further examination to prove
this tool trustworthy is discussed in Section VI.

Fig. 10 shows the worst case execution time (WCET) for
each module of the tool. The overall execution time of the tool
is O(n2). This execution time is realized due to the O(n2)
from the capDL parser, the graph constructor, the connection
generator, and the verifier.

Component WCET
capDL Parser O(n2)
Graph Constructor O(n2)
Connection Generator O(n2)
Verifier O(n2)
Visualizer O(n)

Fig. 10. WCET of Audit Tool Components

VI. DISCUSSION

In this section we discuss the limitations of the audit tool
in addition to intended future efforts concerning this work.
Versatility. One additional property of the auditor is its
versatility to audit systems other than vCDS [1]. With little
to no modification, this tool functions with any system which
leverages the CAmkES framework on the seL4 microkernel.
Therefore, it can be used to analyze and audit the security
configuration of vCDS systems and any other systems which
utilize CAmkES on seL4. The tool may also be used to audit
additional CDS systems described via an ADL with minor
modifications to the parser module.
Theorem Examination. In the context of a vCDS audit,
the take operation permits rule propagations which would

otherwise be prohibited. For example, when auditing the
stream processor application, additional rules, relative to Fig.
8, are permitted. The results in Fig. 11 reflect an error
in the implementation of authority because the Low Side
can read/write to higher components. One might prematurely
conclude that the data diode link between the Low Side and
the High Side has failed. However, this is not the case because
the data diode comes with formal proofs of correctness. These
are the results of the take operation.

From Component Access Rights To Component
Guard Read Low Side
Low Side Write Guard
Low Side Read/Write High Side

Fig. 11. vCDS Audit Results Permitting Take Rule

Limitations. The limitations of this tool are reflections of the
limitations of the capDL which is generated by the CAmkES
compiler from the ADL. Specifically, certain endpoint connec-
tors do not translate to the capDL. This, however, may not pro-
vide the functionality that is desired by other CAmkES/seL4
applications. A second limitation is that, while the Isolation
Theorem has been proven trustworthy, this software is not
formally verified; this needs to be addressed in future work
as discussed below.
Future Work. First and foremost, for this audit tool to be
trustworthy, it must be comprehensively verified for functional
correctness with respect to its specification. Proving this
software correct is the next step in providing the assurance
that all security configurations in vCDS and like systems
are correct. Secondly, as new products evolve from vCDS,
the building blocks of seL4 and CAmkES, and any CDS
described via an ADL, it will be useful to analyze and verify
the respective configurations with this tool to ensure proper
security enforcement and improve the future development of
formally verified security systems.

VII. CONCLUSION

In this paper, we have addressed the need for verifying the
implementation of a CDS. We have reviewed the contributions
of Elkaduwe et al. to the problem of decidable object security
and how their conclusions provide an important function in
this work. Additionally, we have presented an algorithm and
implementation in the form of a security audit tool which can
be leveraged to analyze and audit the security configurations
of the above listed systems. Once again, this is, to the best
of our knowledge, the only algorithm which seeks to verify
the correctness of a CDS. The presented tool is also the first
tool which audits a CDS described by an ADL. Furthermore,
we present an ADL which we have tailored for describing a
CDS system with the ability to tag components in such a way
as to check the system constraints and trigger the appropriate
protection models and information flow constraints in vCDS
to determine whether or not to encrypt the data. Finally, we
have extended this tool to generate a system security model
to improve the status quo in system security modelling. Our

hope is that this work inspires the further development of
provably secure and trustworthy security computing systems
with verified security controls.
Acknowledgement. This work was supported in part by
ARO Grant #W911NF-17-1-0566, NSF Grants #2122631
(#1814825) and #2115134, and Colorado State Bill 18-086.

REFERENCES

[1] Nathan Daughety et al. “vCDS: A Virtualized Cross
Domain Solution Architecture”. In: IEEE MILCOM
(2021).

[2] Dhammika Elkaduwe, Gerwin Klein, and Kevin Elphin-
stone. “Verified Protection Model of the seL4 Micro-
kernel”. In: University of New South Wales Sydney,
Australia, 2008.

[3] Nicholas Evancich. seL4 Overview and Tutorial. 2020.
URL: http://secdev.ieee.org/wp-content/uploads/2020/
11/t1-03-evancich.pdf.

[4] Michael Hanspach and Jorg Keller. “In Guards We
Trust: Security and Privacy in Operating Systems Re-
visited”. In: 2013 International Conference on Social
Computing. IEEE, Sept. 2013.

[5] Michael Harrison, Walter Ruzzo, and Jeffrey Ullman.
“Protection in Operating Systems.” In: Communications
of the ACM (Aug. 1976).

[6] Gernot Heiser. How to (and how not to) use seL4 IPC.
https : / /microkerneldude.wordpress .com/2019/03/07/
how-to-and-how-not-to-use-sel4-ipc/. Mar. 2019.

[7] Gernot Heiser. “The seL4 Microkernel – An Introduc-
tion”. In: The seL4 Foundation. LF Projects, LLC. June
2020.

[8] Gerwin Klein et al. “Comprehensive Formal Verifica-
tion of an OS Microkernel”. In: ACM Transactions on
Computer Systems (TOCS) (Feb. 2014).

[9] Gerwin Klein et al. “Formally Verified Software in the
Real World”. In: Commun. ACM (Sept. 2018).

[10] Manuel Koch, Luigi Mancini, and Francesco Parisi
Presicce. “Decidability of Safety in Graph-Based Mod-
els for Access Control”. In: Oct. 2002.

[11] Henry M. Levy. Capability-Based Computer Systems.
USA: Butterworth-Heinemann, 1984.

[12] R. J. Lipton and L. Snyder. “A Linear Time Algorithm
for Deciding Subject Security”. In: J. ACM (July 1977).

[13] A. Lockman and N. Minsky. “Unidirectional Transport
of Rights and Take–Grant Control”. In: IEEE Transac-
tions on Software Engineering (1982).

[14] Naftaly H. Minsky. “Selective and Locally Controlled
Transport of Privileges”. In: ACM Trans. Program.
Lang. Syst. (Oct. 1984).

[15] OWASP Top 10. 2021. URL: https://owasp.org/Top10/.
[16] R.S. Sandhu. “The typed access matrix model”. In:

Proceedings 1992 IEEE Computer Society Symposium
on Research in Security and Privacy. 1992.

[17] seL4 Docs. 2020. URL: https : / / docs . sel4 . systems /
projects/camkes/manual.html.

