ASTFE 7" Thermal and Fluids Engineering Conference (TFEC)

May, 16-18, 2022
American Society Partially Online Virtual and in Las Vegas, NV Conference
of Thermal and Fluids Engineers

TFEC-2022- 40940
Classifying Thermal Conductivity of Fluids with Artificial Neural Networks

Andrew C. Jarrett!, Ashwin Kodibagkar?, Dugan Um?, Tae-Youl Choi'", Denise P. Simmons!

The University of North Texas, Denton, Texas 76207, USA
2School for the Talented and Gifted at Yvonne A. Ewell Townview Center, Dallas, TX 75203, USA
3 Department of Engineering, Texas A&M Corpus Christi, Corpus Christi, TX 78412, USA

ABSTRACT

The objective of this paper is to discuss the capability of an Artificial Neural Network to classify the
thermal conductivity of glycol concentrations in water. This was done by creating a COMSOL model of a
micropipette thermal sensor in an infinite media and simulating a 500 ps laser pulse at the tip. Parameter
approximation of the 2™ order heat transfer PDE permits concentration classification. The temperature
profile dataset generated would then be fed into a trained ANN to classify the thermal conductivity,
whose value would be used to distinguish the glycol concentration difference of up to 10%. Training of
the ANN yielded an overall classification accuracy of 99.99% after 108 epochs.
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1. INTRODUCTION:

With the advancement of high heat flux devises there arises a need for more advanced thermal
management techniques, including the utilization of micro and nano particles in fluids to dramatically
increase the thermal conductivity [1]. With these methods for measuring and characterizing these nano
fluids must be developed [2]. It has been shown that thermal conductivity of fluids can be optioned using
a micropipette sensor. However, the process of obtaining the thermal conductivity based on a measured
temperature profile was revealed as costly due to large computational time and limited computer
resources [5]. Machine learning serves as an efficient alternative to numerical analysis [6].

Machine learning makes it possible to process large amounts of data to accomplish specific tasks, namely,
to recognize patterns in the dataset [7]. This is useful in applications such as computer vision, speech
processing, and game playing. [8] Artificial Neural Networks (ANN) work on pattern recognition and are
trained with large data sets of known solutions [9]. Once the training is completed, the trained ANN can
solve complex problems instantaneously with high accuracy [10]. This is based upon the concept of
neurons in the brain, where nodes are connected to synapses with weighted values to make decisions [11].
Many ANN’s use supervised training where the error from the known solutions is backpropagated
through the system of neurons and the weights are adjusted by the errors between ground truth and ANN
outcomes [12]. This process is iterated until an acceptable level of error is achieved [13].

Machine learning, especially artificial neural networks (ANN) have been used for various thermal
prediction related tasks, including hybrid nanofluid thermal conductivity predictions and characterization
of connective heat transfer rates [14] [15]. Artificial neural networks have also been used for an efficient
prediction of supercritical CO2 heat transfer [16]. The use of artificial neural networks for thermal
predictions is widespread and efficient in various tasks.
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Therefore, an ANN trained with the temperature profiles of known thermal conductivities can be
proposed to predict parameters (i.e., thermal conductivity) of a model system including liquid or even a
biological cell. Once trained, classification is instantaneous thereby solving the issues of computation

time.

In order to obtain a large enough data set for training, a simulation model can be created in COMSOL to
create transient temperature profiles of liquids with varying thermal properties. When training is
complete, the ANN can be verified with real liquids. This is known as a sim-to-real approach, whereby
the network is trained with a simulation dataset from a model and tested with experimental data [17].

2. METHODS
This section will cover the preparation of the training data, details of the simulation, as well as the method
used to structure and train the neural network.

2.1 Training Data Preparation Training data was generated using a Partial Differential Equation
(PDE) solver. COMSOL Multiphysics was chosen to calculate transient temperature profiles given a
parameter — thermal conductivity for a model shown in Figure 1. Thermal conductivity (k) of the PDE in
equation (1) below is the only parameter we used to evaluate the proposed ANN in terms of viability in

the prediction of thermal conductivity:
oT
pep5;+ V- (—kVT) =Q (1)

The model represents a micropipette thermal sensor (MTS) subjected to laser heating at the tip of the
sensor. A section diagram of the MTS can be seen in figure 1B. The junction of the thermocouple was the
inner core of bismuth, and a thin outer coating of nickel. The evolution of temperature depends upon
thermal conductivity of the surrounding liquid — water and glycol mixture in the current study. A heat
point source with a gaussian profile and a 500 ps pulse duration was set on the center of the MTS tip. The
temperature profile was taken from the liquid 2.5 pm from the tip and saved for the training data set.
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Figure 1: A) 3D cut away COMSOL Multiphysics simulation of MTS rwith témpefatufe écale tlS]. B) Slecltion diagran; 0% MTS
and surrounding fluid
The concentration of glycol in water has a direct impact on the mixture’s thermal properties. Specifically
thermal conductivity decreases with the increase of glycol. Differences in thermal conductivity vs. the
concentration can be seen in table 1, which separates the data and assigns each thermal conductivity range

a label. Nine different labels were created for 10% changes in glycol concentrations. Next 100
temperatures vs. time data sets were generated for each of the classification labels, for a total of 900 sets
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to be used for training the ANN. Each data set had 126 data points to correspond to temperature sampling
every 4 ps for a 500 ps duration. This data was normalized using the min-max method. Normalization
allows for the data to be set on the same scale. This is important in machine learning when the range for
the data is different and allows for faster convergence [19]. These normalized profiles can be seen in
figure 2.
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Figure 2: Normalized temperature profiles of propylene glycol concentrations

Table 1: Classification based on thermal conductivity range and glycol concentration

Glycol % Thermal Conductivity Range Classification Label
0% - 10% .608 - .542 [t 00 00 0 0 0 0]
10% - 20% 541 - 484 [0 1.0 000 0 0 0]
20% - 30% 483 - 432 [0 01 000 0 0 0]
30% - 40% 431 - .385 [0 001 00 0 0 0]
40% - 50% 384 - .342 [0 00 O1T 0 0 0 0]
50% - 60% 341 -.303 [0 0 00O0O 1 0 0 0]
60% - 70% 302 - .268 [0 0 00 00 1 0 0]
70% - 80% 267 - .238 [0 0 00 00O 0 1 0]
80% - 90% 237 - 214 [0 0 00 0O 0 0 1]

2.2 Training ANN with simulated data: Once the training data was prepared, a neural network is
created and trained. MATLAB has developed a tool for creating single hidden layer ANNs for neural
pattern recognition (NPR) in the Deep Learning Toolbox. The NPR function was used to generate and
train the network using the default scaled conjugate gradient method (SCGM). This method is similar to
he gradient descent method where the gradient of the cost function with respect to weights is calculated
and subtracted from each weight set to reach a minimum. The difference comes in through the learning
rate. In SCGM the learning rate is varied based on the slope of the gradient [20]. Therefore, if the gradient
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is large, the learning rate increases and decreases if the gradient is small. This allows for faster and more
accurate learning when compared to traditional gradient descent in which the learning rate is constant.

The cost function used in this is the cross-entropy loss function (CELF) [21]. This loss function is based
upon the concept of entropy or the uncertainty in possible outcomes. When the probability of the ANN
classifying the correct output is high the loss of the function is minimized.

Leg = — Xiz tilog (p;) 3)

A network diagram is shown below in Figure 3. The 126 input nodes correspond to the temperatures at 4
us time intervals. The different sized hidden layers were generated from 25 to 150. Next, the output was a
vector of 9 nodes to represent the different classification labels.

The normalized data were randomized and separated into 70% training, 15% validation, and 15% testing
data sets. Training data sets are used with optimization methods such as gradient descent. Validation sets
provides a way to evaluate the model during training. This prevents overfitting of the data by early
stopping. The final testing data is used to evaluate the trained model.

Artificial Neural Network Diagram

Temp @ time =

S

° — K

™ (thermal conductivity)

126 temperature inputs

9 Output Nodes

Temp @ time =
500 ms

150 Hidden Nodes
Figure 3: Neural Network Diagram

2.3 Evaluating the Network: The network can be evaluated by using the respected confusion matrix. This
matrix is a visual way to view the performance of the network. It shows the number of true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN) produced by the network from the
training, validation, and testing data. Most confusion matrixes are shown from binary machine learning
models, meaning only two outputs. In this study the confusion matrix generated is from a multiclass
machine learning model, where there were 9 outputs.

There are several metrics that can be utilized from the confusion matrix such as: Accuracy, Precision, and
F1-Score [22].

TP+TN
Accuracy = ——————— (3)
TP+TN+FP+FN
.. TP
Percision = —— (@)
TP+FP

F1 Score = (L) ®)

2xTP+FP+FN
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In the case of the multiclass model, each of the metrics can be found by the individual classification or by
the total TP, FP, and NP of the model. When the total is taken it is known as the micro F1 or micro
average F1 score. Since no one output is of more importance the total F1 score will be found and used to
evaluate the network. In multiclass models the accuracy, precision, and micro F1 score are all equal.

3. RESULTS

3.1 Training Results for the ANN: The first part of the study was to determine the number of nodes
that would yield the lowest error in classification. This was done by finding the average micro F1 score
for each of the hidden layer configurations, shown in table 2. All the networks performed similar to each
other with a 99% accuracy or above. The configuration with 100 nodes after training for 109 epochs
yielded a 100% accuracy for training, validation, and testing data. This training epoch had a validation
performance of .00852 from the CEF.

The total confusion matrixes for each of the network configurations are shown in figure 4. The column on
the far right of the plot shows precision of each class, or the percentage of the classes that were correctly
identified. While the bottom row shows the recall of the examples or the percentage of examples that
were correctly identified as positive. The bottom right corner shows the overall accuracy of the ANN,
which should be noted is equal to the Micro F1 score as discussed in the method.

Table 2: Hidden layer size and resulting average RMSE

Hidden Layer Size Average Micro F1
25 9988
50 9933
75 9988
100 1.00
125 9988
150 9977
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4. CONCLUSION:

In the proposed study, it was found that the Artificial Neural Network can accurately classify the thermal
conductivity of different glycol concentrations. Training data was created by COMSOL, a PDE solver.
The model was an MTS in an infinite media where all parameters were held constant except for the
thermal conductivity. The simulation consisted of heating the tip of the MTS with a 500 us laser pulse,
and the temperature profile was collected. MATLAB was used to generate the ANN model and
randomize the data sets into training, validation, and testing. Different network arrangements were tested
by varying number of nodes in the hidden layer from 25-150. Training of the network consisted of
SCGM. Once the network was trained, validation and test sets were fed into the trained ANN.

The highest accuracy ANN configuration was with a hidden layer of 100 nodes, which attained an overall
classification accuracy of 100.00% from training, validation, and test data sets. However, these were only
verified with simulated data. To further prove the method an experimental study must be performed to
which propylene glycol solutions are tested with a fabricated MTS. The temperature profile measured will
be fed into the trained ANN for classification. This experiment will the show the ability of the sim to real
approach for this method.
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