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ABSTRACT 
 

The objective of this paper is to discuss the capability of an Artificial Neural Network to classify the 
thermal conductivity of glycol concentrations in water. This was done by creating a COMSOL model of a 
micropipette thermal sensor in an infinite media and simulating a 500 µs laser pulse at the tip. Parameter 
approximation of the 2nd order heat transfer PDE permits concentration classification. The temperature 
profile dataset generated would then be fed into a trained ANN to classify the thermal conductivity, 
whose value would be used to distinguish the glycol concentration difference of up to 10%. Training of 
the ANN yielded an overall classification accuracy of 99.99% after 108 epochs.  
 
KEY WORDS: Artificial Neural Networks, Classification, Temperature Profiles, Thermal Conductivity, Fluid 
Simulation, Heat Transfer 
  

1. INTRODUCTION: 
With the advancement of high heat flux devises there arises a need for more advanced thermal 
management techniques, including the utilization of micro and nano particles in fluids to dramatically 
increase the thermal conductivity [1]. With these methods for measuring and characterizing these nano 
fluids must be developed [2]. It has been shown that thermal conductivity of fluids can be optioned using 
a micropipette sensor. However, the process of obtaining the thermal conductivity based on a measured 
temperature profile was revealed as costly due to large computational time and limited computer 
resources [5]. Machine learning serves as an efficient alternative to numerical analysis [6]. 

Machine learning makes it possible to process large amounts of data to accomplish specific tasks, namely, 
to recognize patterns in the dataset [7]. This is useful in applications such as computer vision, speech 
processing, and game playing. [8] Artificial Neural Networks (ANN) work on pattern recognition and are 
trained with large data sets of known solutions [9]. Once the training is completed, the trained ANN can 
solve complex problems instantaneously with high accuracy [10]. This is based upon the concept of 
neurons in the brain, where nodes are connected to synapses with weighted values to make decisions [11]. 
Many ANN’s use supervised training where the error from the known solutions is backpropagated 
through the system of neurons and the weights are adjusted by the errors between ground truth and ANN 
outcomes [12]. This process is iterated until an acceptable level of error is achieved [13].  

Machine learning, especially artificial neural networks (ANN) have been used for various thermal 
prediction related tasks, including hybrid nanofluid thermal conductivity predictions and characterization 
of connective heat transfer rates [14] [15]. Artificial neural networks have also been used for an efficient 
prediction of supercritical CO2 heat transfer [16]. The use of artificial neural networks for thermal 
predictions is widespread and efficient in various tasks. 



TFEC-2022- 40940 
 
 
Therefore, an ANN trained with the temperature profiles of known thermal conductivities can be 
proposed to predict parameters (i.e., thermal conductivity) of a model system including liquid or even a 
biological cell. Once trained, classification is instantaneous thereby solving the issues of computation 
time.  

In order to obtain a large enough data set for training, a simulation model can be created in COMSOL to 
create transient temperature profiles of liquids with varying thermal properties. When training is 
complete, the ANN can be verified with real liquids. This is known as a sim-to-real approach, whereby 
the network is trained with a simulation dataset from a model and tested with experimental data [17].  

2. METHODS 
This section will cover the preparation of the training data, details of the simulation, as well as the method 
used to structure and train the neural network.  

2.1 Training Data Preparation Training data was generated using a Partial Differential Equation 
(PDE) solver. COMSOL Multiphysics was chosen to calculate transient temperature profiles given a 
parameter – thermal conductivity for a model shown in Figure 1. Thermal conductivity (k) of the PDE in 
equation (1) below is the only parameter we used to evaluate the proposed ANN in terms of viability in 
the prediction of thermal conductivity:  
                                                              𝜌𝑐𝑝

𝜕𝑇

𝜕𝑡
+ ∇ ∙ (−𝑘∇𝑇) = 𝑄             (1) 

The model represents a micropipette thermal sensor (MTS) subjected to laser heating at the tip of the 
sensor. A section diagram of the MTS can be seen in figure 1B. The junction of the thermocouple was the 
inner core of bismuth, and a thin outer coating of nickel. The evolution of temperature depends upon 
thermal conductivity of the surrounding liquid – water and glycol mixture in the current study. A heat 
point source with a gaussian profile and a 500 µs pulse duration was set on the center of the MTS tip. The 
temperature profile was taken from the liquid 2.5 µm from the tip and saved for the training data set.  

Figure 1: A) 3D cut away COMSOL Multiphysics simulation of MTS with temperature scale [18]. B) Section diagram of MTS 
and surrounding fluid 

The concentration of glycol in water has a direct impact on the mixture’s thermal properties. Specifically 
thermal conductivity decreases with the increase of glycol. Differences in thermal conductivity vs. the 
concentration can be seen in table 1, which separates the data and assigns each thermal conductivity range 
a label. Nine different labels were created for 10% changes in glycol concentrations. Next 100 
temperatures vs. time data sets were generated for each of the classification labels, for a total of 900 sets 

B A 
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to be used for training the ANN. Each data set had 126 data points to correspond to temperature sampling 
every 4 µs for a 500 µs duration. This data was normalized using the min-max method. Normalization 
allows for the data to be set on the same scale. This is important in machine learning when the range for 
the data is different and allows for faster convergence [19]. These normalized profiles can be seen in 
figure 2.  

 
Figure 2: Normalized temperature profiles of propylene glycol concentrations 

 

Table 1: Classification based on thermal conductivity range and glycol concentration 

Glycol % Thermal Conductivity Range Classification Label 
0% - 10% .608 - .542 [1 0 0      0 0 0     0 0 0] 

10% - 20% .541 - .484 [0 1 0     0 0 0     0 0 0] 
20% - 30% .483 - 432 [0 0 1     0 0 0     0 0 0] 
30% - 40% .431 - .385 [0 0 0     1 0 0     0 0 0] 
40% - 50% .384 - .342 [0 0 0     0 1 0     0 0 0] 
50% - 60% .341 - .303 [0 0 0     0 0 1     0 0 0] 
60% - 70% .302 - .268 [0     0 0 0 0 0     1 0 0] 
70% - 80% .267 - .238 [0     0 0 0 0 0     0 1 0] 
80% - 90% .237 - .214 [0     0 0 0 0 0     0 0 1] 

 

2.2 Training ANN with simulated data: Once the training data was prepared, a neural network is 
created and trained. MATLAB has developed a tool for creating single hidden layer ANNs for neural 
pattern recognition (NPR) in the Deep Learning Toolbox. The NPR function was used to generate and 
train the network using the default scaled conjugate gradient method (SCGM). This method is similar to 
he gradient descent method where the gradient of the cost function with respect to weights is calculated 
and subtracted from each weight set to reach a minimum. The difference comes in through the learning 
rate. In SCGM the learning rate is varied based on the slope of the gradient [20]. Therefore, if the gradient 
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is large, the learning rate increases and decreases if the gradient is small. This allows for faster and more 
accurate learning when compared to traditional gradient descent in which the learning rate is constant. 

The cost function used in this is the cross-entropy loss function (CELF) [21]. This loss function is based 
upon the concept of entropy or the uncertainty in possible outcomes. When the probability of the ANN 
classifying the correct output is high the loss of the function is minimized.  

𝐿𝐶𝐸 = − ∑ 𝑡𝑖log (𝑝𝑖)𝑛
𝑖=1             (3) 

A network diagram is shown below in Figure 3. The 126 input nodes correspond to the temperatures at 4 
µs time intervals. The different sized hidden layers were generated from 25 to 150. Next, the output was a 
vector of 9 nodes to represent the different classification labels. 

The normalized data were randomized and separated into 70% training, 15% validation, and 15% testing 
data sets. Training data sets are used with optimization methods such as gradient descent. Validation sets 
provides a way to evaluate the model during training. This prevents overfitting of the data by early 
stopping. The final testing data is used to evaluate the trained model.  

Figure 3: Neural Network Diagram  

2.3 Evaluating the Network: The network can be evaluated by using the respected confusion matrix. This 
matrix is a visual way to view the performance of the network. It shows the number of true positives (TP), 
true negatives (TN), false positives (FP), and false negatives (FN) produced by the network from the 
training, validation, and testing data. Most confusion matrixes are shown from binary machine learning 
models, meaning only two outputs. In this study the confusion matrix generated is from a multiclass 
machine learning model, where there were 9 outputs.  

There are several metrics that can be utilized from the confusion matrix such as: Accuracy, Precision, and 
F1-Score [22].  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                        (3) 

𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
              (4) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = (
2∗𝑇𝑃

2∗𝑇𝑃+𝐹𝑃+𝐹𝑁
)             (5) 
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In the case of the multiclass model, each of the metrics can be found by the individual classification or by 
the total TP, FP, and NP of the model. When the total is taken it is known as the micro F1 or micro 
average F1 score. Since no one output is of more importance the total F1 score will be found and used to 
evaluate the network. In multiclass models the accuracy, precision, and micro F1 score are all equal. 

3. RESULTS 
3.1 Training Results for the ANN: The first part of the study was to determine the number of nodes 
that would yield the lowest error in classification. This was done by finding the average micro F1 score 
for each of the hidden layer configurations, shown in table 2. All the networks performed similar to each 
other with a 99% accuracy or above. The configuration with 100 nodes after training for 109 epochs 
yielded a 100% accuracy for training, validation, and testing data. This training epoch had a validation 
performance of .00852 from the CEF.  

The total confusion matrixes for each of the network configurations are shown in figure 4. The column on 
the far right of the plot shows precision of each class, or the percentage of the classes that were correctly 
identified. While the bottom row shows the recall of the examples or the percentage of examples that 
were correctly identified as positive. The bottom right corner shows the overall accuracy of the ANN, 
which should be noted is equal to the Micro F1 score as discussed in the method.  

 

 

 

Table 2: Hidden layer size and resulting average RMSE 

Hidden Layer Size Average Micro F1 
25 .9988 
50 .9933 
75 .9988 
100 1.00 
125 .9988 
150 .9977 
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Figure 4: Total data confusion matrix for varying hidden layer size. The green diagonal 
represents the data sets the network got correct. The far-right column shows the precision for 
each class, while the bottom row shows the recall. (A) 25 Hidden Nodes (B) 50 Hidden Nodes 
(C) 75 Hidden Nodes (D) 100 Hidden Nodes (E) 125 Hidden Nodes (F) 150 Hidden Nodes 

A B 

C D 

E F 
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4. CONCLUSION: 
In the proposed study, it was found that the Artificial Neural Network can accurately classify the thermal 
conductivity of different glycol concentrations. Training data was created by COMSOL, a PDE solver. 
The model was an MTS in an infinite media where all parameters were held constant except for the 
thermal conductivity. The simulation consisted of heating the tip of the MTS with a 500 µs laser pulse, 
and the temperature profile was collected. MATLAB was used to generate the ANN model and 
randomize the data sets into training, validation, and testing. Different network arrangements were tested 
by varying number of nodes in the hidden layer from 25-150. Training of the network consisted of 
SCGM. Once the network was trained, validation and test sets were fed into the trained ANN. 

The highest accuracy ANN configuration was with a hidden layer of 100 nodes, which attained an overall 
classification accuracy of 100.00% from training, validation, and test data sets. However, these were only 
verified with simulated data. To further prove the method an experimental study must be performed to 
which propylene glycol solutions are tested with a fabricated MTS. The temperature profile measured will 
be fed into the trained ANN for classification. This experiment will the show the ability of the sim to real 
approach for this method. 

   

ACKNOWLEDGMENT 
 

This work was supported by National Science Foundation (award number: 1906553). 

REFERENCES 

 

[1]  S. Murshed, K. Leong and C. Yang, "Enhanced thermal conductivity of TiO2—water based nanofluids," International 
Journal of Thermal Sciences, vol. 44, no. 4, pp. 367-373, 2005.  

[2]  G. Paul, M. Chopkar, I. Manna and P. Dasc, "Techniques for measuring the thermal conductivity of nanofluids: A review," 
Renewable and Sustainable Energy Reviews, vol. 14, no. 7, pp. 1913-1924, 2010.  

[3]  R. Shrestha, R. Atluri, D. Simmons, D. Kim and T. Choi, "Thermal Conductivity of a Jurkat Cell Measured by a Transient 
Laser Point Heating Method," International Journal of Heat and Mass Transfer, vol. 160, p. 120161, 2020.  

[4]  M. Frank, D. Dimitris and C. Vassilis, "Machine-Learning Methods for Computational Science and Engineering," 
Computation, vol. 8, no. 15, 2020.  

[5]  J. Lee, J. Kang, W. Shim, H. Chung and T. Sung, "Pattern Detection Model Using a Deep Learning Algorithm for Power 
Data Analysis in Abnormal Conditions," Electronics, vol. 9, no. 1140, 2020.  

[6]  O. Abiodun, A. Jantan, A. Omolara, K. Dada, A. Mohamed and H. Arshad, "State-of-the-art in artificial neural network 
applications: A survey," Heliyon, vol. 4, no. 11, 2018.  

[7]  M. Najafabadi, F. Villanustre, T. Khoshgoftaar, N. Seliya, R. Wald and E. Muharemagic, "Deep Learning Applications and 
Challenges in Big Data Analytics," Journal of Big Data, vol. 2, no. 1, 2015.  

[8]  C. Carmichael, "A Study of the Accuracy, Completeness, and Efficiency of Artificial Neural Networks and Related 
Inductive Learning Techniques," Iowa State University Digital Repository, 2001.  

[9]  M. Fauth, F. Wörgötter and C. Tetzlaff, "The Formation of Multi-synaptic Connections by the Interaction of Synaptic and 
Structural Plasticity and Their Functional Consequences," PLOS Computational Biology, 2015.  



TFEC-2022- 40940 
 
 
[10]  P. Cunningham, M. Cord and S. Delany, "Supervised Learning," in Machine Learning Techniques for Multimedia.  

[11]  N. Christiansen, P. Voie, O. Winther and J. Høgsberg, "Comparison of Neural Network Error Measures for Simulation of 
Slender Marine Structures," Journal of Applied Mathematics, 2014.  

[12]  H. Adun, I. Wole-Osho, E. Okonkwo, O. Bamisile, M. Dagbasi and S. Abbasoglu, "A Neural Network-Based Predictive 
Model for the Thermal Conductivity of Hybrid Nanofluids," International Communications in Heat and Mass Transfer, 
vol. 119, 2020.  

[13]  R. Romero-Méndez, P. Lara-Vázquez, F. Oviedo-Tolentino, F. P.-G. H. Durán-García and A. Pacheco-Vega, "Use of 
Artificial Neural Networks for Prediction of the Connective Heat Transfer Coefficient in Evaporative Mini-Tubes," 
Ingeniería, Investigación y Tecnología, vol. 17, no. 1, 2016.  

[14]  B. Zhu, X. Zhu, J. Xie, J. Xu and H. Liu, "Heat Transfer Prediction of Supercritical Carbon Dioxide in Vertical Tube Based 
on Artificial Neural Networks," Journal of Thermal Science, vol. 30, p. 1751–1767, 2021.  

[15]  W. Zhao, J. Queralta and W. T, "Sim-to-Real Transfer in Deep Reinforcement," IEEE Symposium Series on Computational 
Intelligence, pp. 737-744, 2020.  

[16]  A. Jarrett, T.-Y. Choi and D. Um, "Artificial Neural Network for Real-Time Characterization of Cancer Cell Thermal 
Properites," in UKC 2020, 2020.  

[17]  J.-M. Jo, "Effectiveness of Normalization Pre-Processing of Big Data to the Machine Learning Performance," The Journal 
of the Korea institute of electronic communication sciences, vol. 14, no. 3, pp. 547-552, 2019.  

[18]  L. Bottou, "Large-Scale Machine Learning with Stochastic Gradient Descent," in COMPSTAT, Paris, 2010.  

[19]  K. Murphy, Machine Learning, Cambridge: MIT, A Probabilistic Perspective.  

[20]  I. Markoulidakis, I. Rallis, I. Georgoulas, G. Kopsiaftis, A. Doulamis and N. Doulamis, "Multiclass Confusion Matrix 
Reduction Method and Its Application on Net Promoter Score Classification Problem," Technologies, vol. 9, no. 81, 2021.  

[21]  H. Kurt and M. Kayfeci, "Prediction of thermal conductivity of ethylene glycol–water solutions by using artificial neural 
networks," Applied Energy, vol. 86, no. 10, pp. 2244-2248, 2009.  

[22]  S. S. Sablani, O.-D. Baik and M. Marcotte, "Neural networks for predicting thermal conductivity of bakery products," 
Journal of Food Engineering, vol. 52, no. 3, pp. 299-304, 2002.  

[23]  K. Kasza, A. Rowat, J. Liu, T. Angelini, C. Brangwynne, G. Koenderink and D. Weitz, "The cell as a material," Curent 
Opinion in Cell biology, vol. 19, no. 1, pp. 101-107, 2007.  

[24]  R. Shrestha, R. Atluri, D. P. Simmons, D. S. Kim and T. Y. Choi, "A micro-pipette thermal sensing technique for 
measuring the thermal conductivity of non-volatile fluids," Review of Scientific Instruments, vol. 89, 2018.  

[25]  L. Huang, J. Qin, Y. Zhou, L. Liu and L. Shao, "Normalization Techniques in Training DNNs: Methodology, Analysis and 
Application," 2020. 

 

 


