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Abstract

Systems of polynomial equations arise frequently in com-

puter vision, especially in multiview geometry problems.

Traditional methods for solving these systems typically aim

to eliminate variables to reach a univariate polynomial,

e.g., a tenth-order polynomial for 5-point pose estimation,

using clever manipulations, or more generally using Grob-

ner basis, resultants, and elimination templates, leading

to successful algorithms for multiview geometry and other

problems. However, these methods do not work when the

problem is complex and when they do, they face efficiency

and stability issues. Homotopy Continuation (HC) can

solve more complex problems without the stability issues,

and with guarantees of a global solution, but they are known

to be slow. In this paper we show that HC can be paral-

lelized on a GPU, showing significant speedups up to 56

times on polynomial benchmarks. We also show that GPU-

HC can be generically applied to a range of computer vi-

sion problems, including 4-view triangulation and trifocal

pose estimation with unknown focal length, which cannot be

solved with elimination template but they can be efficiently

solved with HC. GPU-HC opens the door to easy formula-

tion and solution of a range of computer vision problems.

1. Introduction

Systems of polynomial equations arise frequently in

computer vision, especially in multiview geometry prob-

lems, because perspective projection is an algebraic model.

Examples abound including absolute pose estimation [35,

92, 5], relative pose estimation [75, 86, 52], homography

estimation [54, 14], PnP [94, 95], 3-view triangulation [17],

rolling shutter camera absolute pose estimation [4], as well

as many others. The challenge has been how to solve these

polynomial systems efficiently and in a stable way.

The classic 5-point algorithm for relative pose estima-

tion [78, 75] is a case in point. Its formulation begins with

15 equations in 15 unknowns, namely, 10 depths and 5

pose parameters. The traditional approach is to eliminate

depths and end up with the epipolar equation which with 5

points results in a 10th-degree univariate polynomial from

which pose is determined. A more formal approach to elim-

inating variables is the Gröbner basis [21, 22] or resultants

[21, 22]. Elimination Templates were developed as an auto-

matic solver generator [59] where the Gröbner-based elim-

ination strategy obtained from one input is “remembered”

for future inputs. These methods are reviewed in Section 2.

The challenge with the above methods is that they are

limited to problems with small number of solutions. They

are slow for larger problems whose elimination template

can be computed. For even larger problems the computation

of elimination template exceeds practical resources, render-

ing the problem unsolvable. In addition, stability issues

might arise in the process of converting a system of poly-

nomials to a single univariate polynomial, e.g., [71, 70].

Homotopy Continuation methods, in contrast, can solve

very complex polynomial systems. The basic idea is to find

all the solutions of a start system and then to continuously

evolve them to the solutions of the target system. They can

ensure, with probability 1, to find all solutions [84, 91], pro-

vided a “good” starting system. They also avoid the stability

issues of symbolic methods as they do not manipulate the



input polynomials. Their complexity depends on the num-

ber of solutions (tracks) they follow. In this lies the idea to

use a GPU to speed up the computation.

GPUs have been used in computer graphics and com-

puter vision to accelerate massively parallel operations. The

key is whether HC can be parallelized to take advantage

of many processors in a GPU while avoiding data trans-

fer delays among memories. The HC process consists of

prediction and correction steps in the continuation from the

start system to the target system. This is done by computing

the Jacobian to predict where to go next, and subsequently

Newton’s method to correct the solution. We show that by

parallelizing the computations in the prediction and correc-

tion steps, a track can be implemented on a warp of a GPU.

This is made possible in part by instituting kernel fusion in

the MAGMA library for solving batch linear systems. In

addition, expressions of homotopy Jacobians are homoge-

nized so their evaluations can be parallelized in a single in-

struction multiple threads (SIMT) fashion.

Computer vision problems involving polynomial sys-

tems fit these requirements. We have applied GPU-HC to

a variety of problems, and found that for moderately com-

plex systems and beyond GPU-HC offers significant sav-

ings (with implied stability). We have also explored so-

lutions to two problems, namely, 4-view triangulation and

trifocal pose estimation with unknown focal length which

have not been explored in the literature. These are intro-

duced as example cases where elimination template fails to

produce solutions but GPU-HC solves efficiently. Thus, the

basic thesis of this paper is that GPU-HC can be applied

to all computer vision problems formulated as polynomial

systems and produce efficient and stable solutions.

2. Methods for Solving Polynomial Systems

We partition the algorithms for solving systems of poly-

nomial equations in roughly three categories: (i) Symbolic

methods that rely on algebraic elimination tools, such as

Gröbner basis, resultant, etc.; (ii) Numerical solvers that

are iterative and generally a variant of Newton’s method,

such as homotopy continuation, and, (iii) Hybrid meth-

ods that combine the benefits of the symbolic and numerical

solvers such as elimination templates.

Symbolic solvers “transform”, using algebraic elimination,

the multivariate polynomial system to a univariate polyno-

mial. The roots are then computed using dedicated algo-

rithms like Sturm or Descartes, and are used to recover

system solutions, e.g., [21, 22, 82, 28]. These algorithms

mainly rely on exact computations with rational numbers,

performing elimination using tools such as Gröbner basis

and resultants. Gröbner basis manipulate the polynomials

“incrementaly” (like Gaussian elimination) to deduce the

univariate polynomial, while resultants use all the polyno-

mials right from the beginning (similar to Cramer’s rule).

Symbolic methods are used widely in solving minimal

problems in computer vision [49, 48, 31, 85, 40]. They al-

ways output the exact results, successfully and efficiently

dealing with degeneracies such as multiple roots. However,

efficient implementation of symbolic algorithms is far from

a straightforward task, and systems of more than 5-6 vari-

ables of moderate degrees cannot be easily handled, except

if sparsity and the structure is specifically exploited. More-

over, we are still very far from solving moderate systems in

milliseconds using symbolic solvers. Another major issue,

especially Gröbner basis, is that they are numerically unsta-

ble [50, 70]. This is mainly due to term-ordering that causes

instability when the coefficients of the input polynomials

are floating point numbers or known up to some precision.

To solve such a problem, extra efforts are needed [71].

Numerical solvers are almost exclusively iterative algo-

rithms that exploit a variant of Newton operator, perform-

ing computations in floating point arithmetic [9, 84, 91].

Approaches based on numerical linear algebra techniques,

mainly on eigenvalue computations [11, 16], also belong to

this family. The most prominent representative is Homo-

topy Continuation (HC) algorithm [7, 8, 20, 41, 91, 39]. It

relies on a simple and elegant idea to initially solve a sim-

pler polynomial system (start system) and then deform its

roots to the roots of the system we want to solve (target

system). Some cares are required on choosing an easy-to-

solve start system with at least as many solutions as the

target system. HC can handle very big problems, espe-

cially in the absence of degeneracies, say multiple roots,

and is able to handle systems that are out of the reach

of symbolic solvers. HC is used widely in computer vi-

sion, especially for minimal problems in multiview geome-

try [51, 79, 68, 26, 29, 25]. Nevertheless, HC is compara-

tively slow, a serious bottleneck to their wide adoption.

Numerical problems might also occur in HC algorithms,

especially if the Jacobian of the system is ill-conditioned

and in many cases we need to use double-precision floating

point arithmetic, e.g., [9]. However, HC is an inherit nu-

merical method and does not require an exact input. Also

sometimes it is not easy, if possible at all, to find good, let

alone optimal, start systems, the cardinality of the output is

not always correct, and extra verification steps are needed.

Nevertheless, they are in general easier to be implemented

than symbolic methods, even though in all the cases effi-

cient software requires tremendous amount of time, energy,

and effort to be efficient and solve real life problems.

Hybrid solvers aim to combine the symbolic and numeri-

cal approaches [27, 70, 67], and they have various algorith-

mic variants. A well-known method in the computer vision

community is the elimination template, or automatic solver

generation [55, 56, 60, 64, 59]. The main idea is to book-

keep the steps that an elimination (usually Gröbner basis)

algorithm performs for one input and apply these steps to





eliminating the ten depth variables by taking cross product

of Equation 6 with T̂ and then dot product with γ̄i giv-

ing the classical epipolar relationship, i.e., γ̄T
i Eγi = 0,

i = 1, 2, · · · , 5, where E = [T̂ ]×R. While this is 5 equa-

tions in 5 unknowns , these involve trigonometric equation

unless R is represented by a quaternion giving 6 polynomial

equations in 6 unknowns. Again, this can also be solved

by HC. Still, the classic approach is to treat E as nine un-

knowns and use E = [T̂ ]×R from [74] if and only if

2EETE − trace(EET )E = 0. (7)

These are 9 cubic polynomial equations but only four are in-

dependent which can be used in conjunction with the clas-

sical epipolar relationship to solve for E. Namely, E is

written in a vector form as Ẽ,







ẼT = [E11, E12, E13, E21, E22, E23, E31, E32, E33]

wT
i Ẽ = 0, i = 1, 2, · · · , 5,

wT = [ξiξ̄i, ηiξ̄i, ξ̄i, ξiη̄i, ηiη̄i, η̄i, ξi, ηi, 1].

(8)

Ẽ is then an arbitrary linear sum of the four matrices repre-

senting the right nullspace, Ẽ = α1E1+α2E2+α3E3+E4,

where the last constant α4 is set to one due to the scale in-

variance of E. The only remaining constraint is the set of

nine cubic Equations 7, where the unknowns (α1, α2, α3)

involve 20 monomials up to order 3, so that they can be

expressed as a 9 × 20 matrix multiplied by a vector of 20

monomials. Then, all monomials can be eliminated except

those involving one variable, say α3. This can be done by

Gauss-Jordan elimination with partial pivoting to make an

upper triangular matrix which can lead to a single tenth-

order polynomial in one variable α3 by manually derived

Gröbner basis, giving 10 roots. The real root of α3 can

solve α1, α2 and E from which R and T can be recovered.

Li and Hartley [65] solve Equation 7 with Ẽ as described

by Equation 8 using the hidden variable technique, a resul-

tant technique for algebraic elimination [21]. They include

det(E) = 0 as a tenth equation and solve equating the de-

terminant of the 10× 10 matrix to zero as a function of α3,

a tenth-order polynomial which can then be solved. The

claimed advantage of this technique over Nister’s is its sim-

plicity and ease of implementation.

Observe that both approaches devise ingenius algorithms

to turn the basic system of polynomial Eqaution 6 into a sin-

gle 10th degree uni-variate polynomial. In contrast, Homo-

topy Continuation can be used immediately to solve 16×16
polynomial system or the reduced 6 × 6 system of Equa-

tion 7. Finally, HC can also be used to solve (α1, α2, α3)

using a 3 × 3 system of cubic polynomials. Note that we

are not advocating to solve the relative pose using HC (the

system is too small to benefit from it). Rather, we are noting

that it can be solved by HC as an illustration.

Perspective-n-Point problem (PnP) estimates the pose of

a calibrated camera (R,T ) using n correspondences be-

tween 3D world coordinate points Γi and their 2D projec-

tions in the image γi. The P3P problem where 3D points

(Γi, Γ2, Γ3) correspond to 2D image points (γ1, γ2, γ3), re-

spectively, has a long history [33, 32, 36, 81] and it has 4

solutions requiring a 4th correspondence to disambiguate.

The basic formulation can be posed using Γi = ρiγi,
where i = 1, 2, 3. This is a set of nine equations in nine

unknowns. At this point, HC can be used to solve for (R,T )

and depths. Using a quaternion representation of R which

involves 4 unknowns and one equation, this becomes a set

of 10× 10 polynomials with 10 unknowns. The traditional

approach eliminates R and T to solve depths from







(Γ2 − Γ1)T (Γ2 − Γ1) = (ρ2γ2 − ρ1γ1)T (ρ2γ2 − ρ1γ1)
(Γ3 − Γ1)T (Γ3 − Γ1) = (ρ3γ3 − ρ1γ1)T (ρ3γ3 − ρ1γ1)
(Γ2 − Γ1)T (Γ3 − Γ1) = (ρ2γ2 − ρ1γ1)T (ρ3γ3 − ρ1γ1)

, (9)

a set of three quadratics in three unknowns (ρ1,ρ2,ρ3).

Again, this reduced form can be easily solved by HC, but

the traditional approach is to apply Silvester’s resultant to

get an 8th degree polynomial, containing even terms so that

it is effectively a quartic [81].

The general PnP problem relies on n correspondences

between 3D points Γi and 2D image points γi, i =
1, 2, ..., n. A direct minimization of the algebraic recon-

struction error [94] uses a non-unit quaternion representing

of R and explicitly optimize for R. This gives four polyno-

mials of degree three in four variables, which are solved by

Gröbner bases, from which an elimination template is con-

structed using the automatic generator in [55]. This gives at

most 81 solutions with an 575×656 elimination template

and 81×81 action matrix. Alternatively, these equations

can be solved using HC without any further processing with

around a factor of 5 times speedup on a GPU, Table 2. In

this larger case, HC features both simplicity and efficiency.

N-view Triangulation aims to find the 3D world point Γ
that is most consistent with a set of projection, γ1, · · · , γN
from N views, given relative pose of all cameras in the form

of the pairwise essential matrix Eij between views i and j.

Due to noise, the projection rays from corresponding points

do not necessarily meet in space. For two views, using mid-

point between the closest points on the projection rays [10]

could be erroneous, especially with large calibration error.

Rather than minimizing the latent 3D error, reprojection er-

ror can be minimized [37, 38, 46]. Let γi = γ̂i+∆γi where

γ̂i is the true 2D observation and ∆γi is the error introduced

by noise, i.e.,

γ̂T
j Eij γ̂i = 0, (γj −∆γj)

TEij(γi −∆γi) = 0. (10)

Minimizing reprojection errors ∆γi and ∆γj solves

(∆γ∗

i ,∆γ∗

j ) = argmin
(γj−∆γj)TEij(γi−∆γi)=0

(||∆γi||
2 + ||∆γj ||

2).



Using Lagrange multipliers and notation ∆γT
i = (ui, vi, 0)

the problem becomes

(u∗

i , v
∗

i , u
∗

j , v
∗

j , λ
∗) = argmin

ui,vi,uj ,vj ,λ∗

(u2
i + v2i + u2

j + v2j )

+ λ(γT
j − [uj , vj , 0])Eij(γi −

[

ui vi 0
]T

).

Setting the first derivative w.r.t the five variables gives a

5 × 5 polynomial system. This system can be solved us-

ing HC with ease effort. Traditionally, however, the system

is solved by eliminating four of five variables, gives a sin-

gle 6-th order polynomial [38]. This gives excellent results

but it is slow prompting [46, 66] to use an iterative method

which is faster but is prone to being stuck in local minima.

The N-view triangulation is not as well-explored despite

the formulation of minimizing reprojection error is identical

(∆γ∗

1 ,∆γ∗

2 , · · · ,∆γ∗

N ) = (11)

argmin
∆γ1,∆γ2, ...,∆γN

such that ∀i, j(γj −∆γj)
TEij(γi −∆γi) = 0

N
∑

k=1

|∆γk|
2,

or (u∗

1, v
∗

1 , u
∗

2, v
∗

2 , · · · , u
∗

N , v∗N ) = (12)

argmin
u∗

1
,v∗

1
,u∗

2
,v∗

2
,··· ,u∗

N
,v∗

N
,λk

N
∑

k=1

[(u2
k + v2k)+

N
∑

i=1

N
∑

j=i+1

λk(γ
T
j − [uj , vj , 0])Eij(γi −





ui

vi
0



).

Note that there are 2N+ N(N−1)
2 = N2+3N

2 unknowns and

setting first derivatives to zero gives 5×5, 9×9 and 14×14,

for two, three, and four views, respectively, becoming expo-

nentially more difficult to use with Gröbner basis and other

traditional methods. [58] restricts the consideration of all

sequential pairwise essential matrices to these with the pre-

vious view, i.e., E12, E23, etc. and uses the elimination tem-

plate method with a 274 × 305 template; [59] reduces the

size of the elimination template to 239× 290. Note that the

full problem gives an elimination template of 1866 × 1975
which is impractical to solve. Similarly, the 4-view triangu-

lation gives improved error but it leads to large polynomial

systems. Homotopy Continuation, however, can solve these

problems and with improved efficiency, Table 2.

Trifocal relative pose estimation with unknown focal

length aims to estimate the relative poses between three

views as well as the focal length. Trifocal pose estimation

has drawn attentions recently [63, 18, 45, 47, 30]. These ap-

proaches often assume that the intrinsic matrix is available.

Recently, [62] estimates trifocal tensor with radial distor-

tion, a minimal problem of one pinhole camera and two ra-

dial cameras. We consider another minimal problem with

three pinhole cameras and one common focal length, which

needs only 4 points correspondences across three views. Let

the calibration matrix be K = diag(f, f, 1), where f is the

focal length. Consider three corresponding points (γ1, γ2,

γ3) in image (1,2,3), respectively, with unknown depth (ρ1,

ρ2, ρ3) respectively. Then, denoting (R12, T12) and (R13,

T13) the relative pose of the second and third cameras w.r.t

the first, respectively, we have

{

ρ2K
−1γ2 = ρ1K

−1R12γ1 + T̂12

ρ3K
−1γ3 = ρ1K

−1R13γ1 + T13,
(13)

where T̂12 is taken to have unit length. Thus, there are 11

poses and 3 depth unknowns. Since there are four sets of

correspondences, there is a total of 24 unknowns including

one f , 11 from poses and 12 depths. There are also four

sets of vector, Equation 13, which each gives 6 equations.

If R12 and R13 are represented by quaternions, we have 26

equations in 26 unknowns which can be solve by HC.

Alternatively, ρ2 and ρ3 can be written in terms of ρ1 as

{

ρ2e
T
3 K

−1γ2 = eT3 ρ1K
−1R12γ1 + eT3 K

−1T12

ρ3e
T
3 K

−1γ3 = eT3 ρ1K
−1R13γ1 + eT3 K

−1T13.
(14)

Substituting these back into Equation 13 gives 4 equations

for each triplet of correspondings for a total of 16 equations.

The unknowns are 1 focal length, 11 pose and 4 depths for

a total of 16 unknowns. If R is represented as a quaternion,

one additional unknown and one additional equations are

introduced per rotation matrix, giving a total of 18 polyno-

mial equations in 18 unknowns. This minimal problem can-

not be solved by elimination template since it requires out

of bounds memory even on a high performance computing

machine. However, our HC implementation can solve this

system with 3326 ms in CPU and 388 ms in GPU, Table 2.

5. GPUs and Computer Vision

GPUs are often preferred over CPUs because of their su-

perior computational power, memory bandwidth, and en-

ergy efficiency. For example, a V100 GPU provides an

FP64 compute peak of 7 TFlop/s and memory bandwidth

of 900 GB/s at 250 Watts. While one CPU core is faster

and provides wider instruction sets, GPUs have many more

cores, e.g., 5,120 in the V100. The key to unlocking the

computational power of the GPU is to design algorithms

that are highly parallel and use efficiently all the cores.

Figure 2 shows the GPU architecture. The CUDA cores

are organized into Streaming Multiprocessors (SMs) where

each SM has a number of CUDA cores. The GPU work is

organized into kernels that have two levels of nested par-

allelism - a coarse level that is data parallel and is spread

across the SMs, and a fine level within each SM. The paral-

lelism is organized in terms of thread blocks (TBs). A TB is

scheduled for execution on one of the SMs and is data par-

allel with respect to the other TBs. Each TB is composed

of multiple threads running in groups of 32 called warps.





angular solves. The LU factorization in MAGMA is fast,

typically 15% to 80% faster than cuBLAS for small ma-

trices. However, we found out that cuBLAS is faster than

MAGMA for the combined (factorization + solve) opera-

tion. This is mainly due to a slow triangular solver kernel in

MAGMA, which does not take advantage of small matrices.

Our contribution to improving these standard libraries

for our purposes is twofold. First, solving the linear system

as two separate GPU kernels causes redundant global mem-

ory traffic. The two kernels can be fused into one if the ma-

trices are small, thus maximizing data reuse in the register

file. The proposed kernel fusion significantly speeds up the

solution. Second, in solving a linear system Ax = b, the de-

composition can act on the augmented matrix [A b], which

implicitly carries out the triangular solve with respect to the

L factor of A. The second triangular solve uses the cached

U factor after the factorization is complete. The proposed

fused kernel is now integrated into the MAGMA library.

Parallel Evaluations of the Jacobian and Vectors: The

main bottleneck to parallel evaluations of the elements of

the Jacobian matrix ∂H/∂x and the vectors ∂H/∂t and H
is the heterogenuity of its elements which prevents evalu-

ation by many threads requiring a uniform format. This

heterogenuity can be illustrated by a simple example of a

system with two variables X = (x1, x2) where the Jaco-

bian elements are spanned by monomials, for example, A

= a1x1 + a2x1x2 + a3x
2
2 or B = a4x1x2 + a5x

2
2, where

the coefficients ai are linear interpolation of corresponding

elements in the start and target systems. A straightforward

approach to homogenize these expressions is to write each

as a sum over all possible monomials and associate a scalar

zero with those absent from the Jacobian elements. How-

ever, due to the extreme sparsity, the process is inefficient.

Alternatively, consider K the maximum number of terms

in the Jacobian matrix elements; in the above examples, A

has three terms and B has two terms, so that K = 3 if these

were the only elements of the Jacobian matrix. Further-

more, consider that each term consists of a scalar multiplied

with a coefficient and a number of variables, e.g., the third

term of A is a product of (1, a3, x3, x3) while the first term

of B is (1, a4, x1, x2). Note that the first term of A is a

product of (1, a1, x1). Thus, to homogenize the expression,

it is written as (1, a1, x1, x3) where the auxiliary variable

x3 = 1. Now all terms of both A and B can be written as

U =
∑K

k=1
skak,jxk,m1

xk,m2
· · ·xk,mM

,

where sk is a scalar, ak,j identifies a coefficient, xk,mi

identifies one of the variables, including x3 = 1, and M
is the maximal number of variables in a term. With this

in mind the only data to be communicated for the paral-

lel computation of U is (sk, ak,j , xk,m1
, xk,m2

, ..., xk,mM
)

where ak,j , xk,mi
are pointers to data stored in shared mem-

ory and accessed by an index, i.e., A is represented by

((1, 1, 1, 3), (1, 2, 1, 2), (1, 3, 2, 2)) and B is represented by

((1, 4, 1, 2), (1, 5, 2, 2), (0, 1, 1, 1)). Note that ∂H/∂t and

H are evaluated in the same way although the coefficients

ak are different. This homogeneous form allows for parallel

computation of all elements of the Jacobian matrix ∂H/∂x
and the vectors ∂H/∂t and H .

Finally, there is an issue on how to allocate the parallel

computations per thread. Recall that each track is assigned

to a warp which has 32 threads. Since the matrices are gen-

erally less than 32 × 32, and since the subsequent opera-

tion of LU decomposition is row-by-row with one thread

per row, it makes sense to assign one row per thread.

7. Experiments

The experiments aim at testing kernel fusion for batch

linear systems, and measuring performances on polynomial

system benchmarks as well as computer vision problems.

We use an 8-core 2.6GHz Intel Xeon CPU and an nVidia

Quardro RTX 6000 GPU, unless otherwise specified.

Kernel-Fused Batch Linear Systems: The performance

of the batched linear systems with kernel fusion and aug-

mented matrix, Section 6, is compared with cuBLAS and

MAGMA in Figure 3 on a Tesla V100-PCIe GPU for 1000

matrices with sizes ranging from 4 × 4 to 20 × 20. Ev-

idently, kernel-fused MAGMA outperforms cuBLAS with

speedup of 2.23× to 3.65× and MAGMA with speedups

ranging from 3.11× to 4.91×.
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Figure 3: The performances of the batch linear systems of

MAGMA with kernel fusion, MAGMA, and cuBLAS.

Problems
# of

Unkns.

# of

Sols.

CPU

(ms)

GPU

(ms)
CPU
GPU

alea6 [76] 6 387 105.67 2.02 52.31×

cyclic7 [12] 7 924 177.95 4.77 37.31×

katsura10 [42] 11 1024 414.12 7.34 56.42×

eco12 [69] 12 1024 227.54 17.06 13.34×

Table 1: Performance of GPU-HC on benchmark problems.

Polynomial System Benchmarks: We selected four rep-

resentative benchmark polynomial systems [76, 12, 42, 69]

to evaluate our GPU-HC. Table 1 shows GPU-HC signifi-

cant speedup ranging from 13× to 56×. Figure 4 (a) shows

the residual of evaluating each polynomial system averaged
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