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ABSTRACT
The Homotopy Continuation (HC) method is known as a prevailing
and robust approach for solving numerically complicated polyno-
mial systems with guarantees of a global solution. In recent years
we are witnessing tremendous advances in the theoretical and al-
gorithmic foundations of HC. Furthermore, there are very efficient
implementations of several variants of HC that solve large polyno-
mial systems that we could not even imagine some years ago. The
success of HC has motivated approaching even larger problems
or gaining real-time performance. We propose to accelerate the
HC computation significantly through a parallel implementation
of path tracker in both straight line coefficient HC and parameter
HC on a Graphical Processing Unit (GPU). The implementation
involves computing independent tracks to convergence simulta-
neously, as well as a parallel linear system solver and a parallel
evaluation of Jacobian matrices and vectors. We evaluate the per-
formance of our implementation using both popular benchmarking
polynomial systems as well as polynomial systems of computer vi-
sion applications. The experiments demonstrate that our GPU-HC
provides as high as 28× and 20× faster than the multi-core Julia
in polynomial benchmark problems and polynomial systems for
computer vision applications, respectively. Code is made publicly
available in https://rb.gy/cvcwgq.
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1 INTRODUCTION
Algorithms and efficient implementations for solving systems of
polynomial equations (with finite number of solutions) is one of
the most important problems in computational algebra. Even more,
polynomial systems appear in the whole spectrum of science and
engineering [7, 13, 38]. The pervasiveness of polynomial systems
demans effective algorithms, and more importantly efficient im-
plementations that can solve systems with many variables and a
large number of solutions possibly in real-time, have a significant
impact.

There are various approaches for solving polynomial systems.
The symbolic, also called exact, relies on elimination of variables
and mainly exploits resultant as well as Gröbner basis computa-
tions [12, 13, 17, 19, 36]. There are various effective implementations
of symbolic methods, either standalone or integrated, in computer
algebra systems. They are quite efficient for moderate size problems.
However, their use in large problems is not practical. In addition,
they perform calculations with rationals and so they are not, in
general, amenable to floating point calculations and inexact input.

On the opposite side of the symbolic approach lies the world
of numerical algorithms [7, 15, 27, 38, 39] which can perform com-
putations with floating point numbers and their main ingredient
is a variant of the Newton operator. The most prominent variant
is the homotopy continuations approach [7, 38, 43] that is the fo-
cus of our study. We should also mention the inclusion-exclusion
subdivision-based algorithms [8, 14, 29, 33, 48] that try to mimic
the procedure of the binary search algorithm. They rely on oracles
that certify (or not) the presence of roots in a domain. Different
realizations of the oracle lead to different algorithmic variants and
implementations. These algorithms are particularly efficient for a
moderate number of variables.

In addition to these two classes of approaches, there are also
hybrid symbolic-numeric algorithms, e.g., [15, 32, 49], that combine
the advantages of both the symbolic and numerical algorithms. The
main idea is to perform as many computations as possible with low
precision. They gradually increase (actually double) the precision
when it is not possible to conclude for certain operations and/or
certify their results, e.g., [23, 47]. This is an active area of research,
with promising results.
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We warn the reader that a review on relevant work on polyno-
mial system solvers is enormous and, regretfully, it is not possible
to mention all the relevant references here in.

Software for Homotopy Continuation:We focus on one of
the most commonly used and highly successful numerical algo-
rithms in practice to solve system of polynomials with a finite
number of solutions, namely, Homotopcy Continuation (HC). Ho-
motopy continuation algorithms rely on the simple idea to solve
another, easier system, which we call a start system, instead of the
polynomial system at hand, which we call the target system. The
key is to observe that the solution changes continuously as the coef-
ficients of the start system are continuously morphed to that of the
target system. Each attempt to morph a solution from a start system
to a target system creates a track of a curve in the coefficient space;
this curve is a solution of an ordinary differential equation. We
follow it, or in other words track it, numerically using techniques
from numerical algorithms for solving differential equations. We
refer the reader to Section 2 for further technical details. One of
the main potential advantages of Homotopy Continuation that is
exploited in this paper is that it is easily parallelizable. Evidently,
we can follow each track independently and in an implementation
we can assign it to a different processor or thread.

Currently, there are several efficient and publicly available im-
plementations of (variants of) homotopy continuation algorithms.
For example, PHCpack [43] is a complete software package for
solving numerically polynomial systems using HC. The core of
the library is written in Ada, but it provides interfaces to various
environments. It supports various variants of HC and also provide
several functionalities besides solving systems with a finite number
of solutions; such as mixed volume computations and root counting,
numerical irreducible decomposition, and verification. It also sup-
ports parallelism in the multicore setting and there is even partial
support for GPU computation for evaluating polynomials [44]. As
an another example, Bertini [7] is a general purpose solver based
on HC that is implemented in C. It supports total-degree and multi-
homogeneous-degree start systems and it also provides several
functionalities and multiprecision computations. It was used suc-
cessfully in various problems coming from robotics, for instance.
Another example of HC implementation is HOM4PS [11, 27] which
is implemented in C++ and provides interfaces to other program-
ming languages and mathematical software. It exploits parallelism
through the multicore architecture or distributed environments.
HomotopyContinuation.jl [9] is probably the most recent addition
in our arsenal of HC implementations. It is a software package
developed in Julia which runs efficiently, incorporating various
advanced algorithmic and programming techniques such as adap-
tive step size and robust path tracking, and supports inherently
(multicore) parallelism.

Our Approach and Contributions: The implementations of
HC algorithms have been very successful in practice. However,
some practical applications feature systems of polynomials with a
large number of variables and appear in high degree so that they
are not practical to solve. Furthermore, real-time constraints in
applications such as computer vision [10, 21, 34], require solutions
in the order of a few milliseconds to be useful in practice. Thus, an
efficient method for solving polynomial systems is of paramount

importance. Note that the procedure of solving polynomial systems
often appears in an inner loop of an iterative method [22, 35].

A central idea for accelerating HC is to execute multiple tracks
in parallel. Allison et al [6] used distinct computers as compute
nodes, each of which executed one track independently and in
parallel. They also considered a variant where a central computer
prepared an “inner part" corresponding to track following, which
was executed on many computers in parallel.

A second central idea is to parallelize the “inner part" itself. Ver-
schelde and Yu [44–46] proposed parallel strategies for evaluating
polynomials and polynomial derivatives. These two ideas in con-
junction, namely, parallel execution of tracks and parallelization of
portion of each track, lead to considerable speed-up. Note that [44]
only focuses on speeding up the computation of one relatively
small component, namely, polynomial evaluation. Thus, the overall
speed-up is reduced when considering the entire procedure and
not as significant as what we propose here. On the other hand, [45]
considers multiple tracks in parallel but it is a hybrid approach and
requires GPU-CPU cooperation where data transfer between CPU
and GPU needed in each HC iteration easily becomes an overhead
for the entire HC process.

Glabe and McCarthy [18] noted that a fixed-step size in the
context of conditional branching in [44–46] leads to diversification:
one delayed process delays all others. They propose a strategy
where a track is assigned to a single thread with a common step
size and a common number of steps. This leads to some tracks
converging but not all. The remaining unconverged tracks are then
re-run with a smaller step size. This approach leads to significant
speed-up, but also admittedly to a reduction in tracking accuracy.
They conclude that “further research is needed to increase speed
using aGPU andmaintain accuracy". Indeed, this is one contribution
of our paper as described below.

Our approach combines the above central ideas of (i) execut-
ing HC tracks in parallel, and (ii) parallelizing the computations
within each track. Observe that beyond the polynomial evaluations
proposed in [45], there remains ample opportunities to execute
computations in parallel. Specifically, this paper designs and im-
plements methods for all components of the prediction-correction
steps of HC, namely, (i) evaluating the homotopy Jacobian matrix
and vector in parallel, and (ii) solving a linear system in parallel.
Moreover, our GPU-HC can execute both straight-line HC and pa-
rameter HC. In particular, we found that the MAGMA linear solver
of CUDA was deficient and proposed a kernel merging solution
which has led to at least 3× speed-up over vendor design; this de-
velopment in the form of a modified open source MAGMA is now
available for public use.

The performances of the proposed GPU-HC is evaluated us-
ing several polynomial benchmark problems and polynomial sys-
tems of computer vision applications. Experiment show significant
speed-up over the latest HC solver running on multi-core CPUs,
as high as 28× and 20× faster than the multi-core Julia in polyno-
mial benchmark problems and polynomial systems for computer
vision applications, respectively. Code is made publicly available
in https://rb.gy/cvcwgq. The speed-up is not only an attractive
performance gain; it is an enabling gain that renders previously
impractical-to-solve polynomial systems efficiently solvable. It also

https://rb.gy/cvcwgq
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enables real-time implementation in problem applications requiring
a real-time solution.

Structure of the Paper: In Section 2, we give an overview of
the Homotopy Continuation method, and its variant method used
in this paper. In Section 3, we introduced the special architecture of
a typical GPU that we have to take into account when we design al-
gorithms. In Section 4, we present the implementation details of our
GPU-based HC method. Finally, Section 5 reports the performance
of our method compared to other state-of-the-art implementation
of homotopy continuation methods.

2 HOMOTOPY CONTINUATION
In this section, we present a brief overview of some of the variants
of homotopy continuation algorithms implemented on GPU in this
paper; we refer to [5, 7, 38] for a thorough introduction on homotopy
continuation techniques. Let 𝐹 (𝒙) = 0 be a polynomial system of
𝑛 equations in 𝑛 unknowns we wish to solve. The algorithmic
approach of Straight-line Homotopy is based on a very simple
idea. Let 𝐺 (𝒙) = 0 be another polynomial system for which the
solutions are “easily" found or already known. Assume that the
number of solutions of the two systems are the same. Then, a
homotopy is constructed from 𝐹 (𝒙) and 𝐺 (𝒙) via a linear segment,
in the space of polynomial systems, as

𝐻𝑡 (𝒙) = 𝛾 (1 − 𝑡)𝐺 (𝒙) + 𝑡𝐹 (𝒙), for 𝑡 ∈ (0, 1), (1)

where 𝛾 ∈ C is a random (or sufficiently generic) number. As 𝑡 goes
from 0 to 1, the numerical Homotopy Continuation algorithm traces
paths, or curves, emanating from the roots of𝐺 (𝒙) = 0 to the roots
of 𝐹 (𝒙) = 0, Figure 1. Note that it is guaranteed that the solution
set of 𝐻 (𝒙, 𝑡) = 0 is a set of smooth curves for all 𝑡 ∈ [0, 1] [38];
we can reach all the isolated solutions of 𝐻 (𝒙, 1) = 𝐹 (𝒙) = 0 by
following some path starting from 𝑡 = 0 if the starting and target
system have the same number of solutions. Also, for almost all
choices of complex constant 𝛾 , all solution paths defined by the
homotopy are regular, i.e., for all 𝑡 ∈ [0, 1), the Jacobian matrix of
𝐻 (𝒙, 𝑡) is regular and no path diverges [30].

The tracing of 𝒙 (𝑡) from each solution of 𝐻 (𝒙, 0), i.e., 𝐺 (𝒙), can
be achieved iteratively. The path can be approximated locally by
the solutions of an ordinary differential equation

𝜕𝐻

𝜕𝒙

𝑑𝒙

𝑑𝑡
+ 𝜕𝐻

𝜕𝑡
= 0 −→ 𝑑𝒙

𝑑𝑡
= −

( 𝜕𝐻
𝜕𝒙

)−1 𝜕𝐻
𝜕𝑡
. (2)

Figure 1: A track (curve) of a Homotopy Continuation algo-
rithm showing 𝐻 (𝒙, 𝑡) in black, along with one prediction
(red) and one correction (blue).

This operation is known as prediction step in which we follow
each path numerically and locally by solving the ODE. Within each
iteration, we advance, say by the Euler method, to advance as much
as possible and then we use, for example, Newton’s Method, to
minimize the error of our prediction which is so-called correction
step. An illustrative concept of prediction and correction steps are
shown in Figure 1.

In most of the real-world applications, the polynomial systems
depend on a set of parameters, i.e., the coefficients of the polynomial
are the function of these parameters. In this case, almost always, the
number of solutions is (much) smaller that what Bézout predicts.
In addition, we might want to solve the system repeatedly, that
is for various specializations of the parameters. Assume that we
have a polynomial system 𝐹 (𝒒, 𝒙) = 0 that depends on a number
of parameters 𝒒 = (𝑞1, . . . , 𝑞𝑠 ). To exploit homotopy continuation,
we first solve the system 𝐹 (𝒒0, 𝒙) = 0 for a random specialization
𝒒 = 𝒒0. Then we have the following homotopy

𝐻 (𝒙, 𝑡) = 𝐹 (𝛾 (1 − 𝑡)𝒒0 + 𝑡𝒒1, 𝒙) = 0. (3)

This homotopy, is known as Parameter Homotopy [26, 28, 31].
In this way, starting from the isolated solution of 𝐻 (𝒙, 𝛾, 0) =

𝐹 (𝒙, 𝒒0) = 0 we obtain the isolated solutions of 𝐻 (𝒙, 𝛾, 1) =

𝐹 (𝒙, 𝒒1) = 0.
This technique allows us to pick an arbitrary and not generic 𝒒0

as along as 𝐹 (𝒒0, 𝒙) has the same number of solutions as 𝐹 (𝒒, 𝒙),
for a generic 𝒒. This allows us to pick an easy starting system. The
tracing of the parameter homotopy can also be achieved by the
forementioned prediction-correction scheme.

Our Assumptions: In this paper, we mainly focus on the par-
allelization of the HC path tracking and assume the start systems
𝐺 (𝑥) and their solutions are known to us on each polynomial sys-
tem. Moreover, in this work we do not consider about endgames:
all our paths track from 𝑡 = 0 to 𝑡 = 1 normally.

3 AN OVERVIEW OF GPU ARCHITECTURE
In this section, we will briefly introduce an overview of a typical
GPU architecture and its applications in numerical algorithms in
order to give more insights in deploying more numerical algorithms
onto GPU. In general, a CPU core is much faster than a GPU core
and provides a wider instruction sets. However, GPUs have many
more cores; for example, an NVIDIA Tesla V100 GPU has 5,120
cores. Thus, the key to unlock the computational power of the GPU
is to design algorithms that are highly parallel and use efficiently
as many cores as possible.

Figure 2 shows the Volta architecture used in a Tesla V100 GPU.
The CUDA GPU cores are organized into Streaming Multiproces-
sors (SMs). Each SM has a number of processing blocks with each
processing block consisting of a number of CUDA cores. The GPU
work is organized into kernels that have two levels of nested paral-
lelism: a coarse level that is data parallel and is spread across the
SMs, and a fine level within each SM. The parallelism is organized
in terms of thread blocks (TBs). A TB is scheduled for execution
on one of the SMs and is data parallel with respect to the other
TBs. Each TB is composed of multiple threads running in groups of
32 called warps. Threads in a TB can share data through a shared
memory module. Private variables that have the scope of one thread
are usually stored in the register file. Algorithms must be designed
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Figure 2: The NVIDIA’s GPU architecture and memory hier-
archy. In the Tesla V100 GPU using Volta architecture, there
are 80 SMs, each partitioned into four processing blocks, each
having 16 cores. The register files per SM, shared memory/L1
cache per SM, L2 cache, and global memory are respectively
256KB, 96KB, 6,144KB and 16GB, with hit latencies of 3 𝑛𝑠,
22.68 𝑛𝑠, 156.33 𝑛𝑠, and roughly 366 𝑛𝑠, respectively [25].

to support this type of parallelism in order to grasp the parallel
computation power from GPUs.

The memory hierarchy of GPUs, i.e., register file, shared memory,
L1 and L2 caches, as well as global memory, allows algorithms to
reach the compute peak if a certain amount of data is frequently
reused. For example, if the data is used only once, the 900 GB/s
transfer rate limits the peak performance to 112.5 GFlop/s in double-
precision (8 bytes per element). Thus, to reach 7 TFlop/s, an algo-
rithm would need about 64 times data reuse, i.e., each 8 bytes loaded
into fast memory must be used in 64 FLOPs. Furthermore, each
memory type in GPUs has a distinct data transfer rate, Figure 2.
Thus, maximizing data reuse is possible by caching data entirely
in the fast memories such as register file or shared memory, which
enables GPUs to outperform multicore CPUs.

Numerical algorithms such as homotopy continuation intro-
duced in Section 2, involve many independent computations on
relatively small matrices. These algorithms are limited by the mem-
ory bandwidth, but have a high degree of parallelism, which is
suitable for GPUs. Nevertheless, operations that can not be mapped
efficiently to GPU have been left in general for the CPUs [46].
This usually involves irregular computations or computations with
significant data dependencies. Still, techniques like batching com-
putations to increase parallelism and developments in numerical
linear algebra libraries for GPUs [1, 20], have laid the groundwork
for many more algorithms to be easily ported and benefit from the
use of GPUs. Algorithms that have been avoided before due to their
computational cost can become feasible when current advances

make their GPU mapping very efficient. This is the case for HC as
described below.

4 GPU IMPLEMENTATION OF HOMOTOPY
CONTINUATION

In this work, we present the GPU implementation of two HC meth-
ods, straight-line HC and parameter HC. They share the same
prediction-correction algorithmic structure and the tracking of each
solution in both methods is independent from other solutions.

4.1 Parallelization of Each Track
A natural parallel intuition is to use one thread per track. How-
ever, two issues are required to be considered for efficient GPU
processing: (i) number of threads used to process many tracks in
parallel, and (ii) the costly data transfer rates from the register
files, L1 caches, L2 cache, and global memory, Figure 2. In a typical
homotopy continuation algorithm, each track requires a few Kbytes
storing track solutions, start and target coefficients, etc. If we use
one thread per track, the available memory in a Volta V100 GPU
is 125, 46, 37, and 97K bytes for register file, L1 cache, L2 cache,
and global memory, respectively. Therefore, any process requiring
memory more than 125 + 46 + 37 = 208 bytes in one track is forward
to use global memory which has a very low data transfer rate. As
a result, each track must make use of many threads, and not only
the processing must be parallelized, but so must the use of memory
such that data is kept in memory with fast data transfer rate, i.e.,
register file, shared memory, or at least L1 cache.

On the other hand, consider an extreme of using numerously
many threads per track starts. Although one track access large
memory capacity, it is however counterproductive as the synchro-
nization of threads requires the slower shared memory (2 clock
cycles per 32 threads) so that if one track occupies 2048 threads, 128
clock cycles (∼104 ns) times the tens of thousands of their synchro-
nizations are necessary. This becomes an overhead for the whole
HC computation.

To balance the use of the number of threads per track and the
time for synchronizing multiple threads, an optimal choice for the
HC applications is to assign a track to a warp (32 threads) using one
GPU core. Recall that for each SM, at most 64 cores can be employed
simultaneously. Thus it gives one track access to 256𝐾/64 = 4𝐾
very fast register file memory and 96𝐾/64 = 1.5𝐾 of fast L1 cache
(if no shared memory is used), well satisfying the memory require-
ment of the HC application. On the contrary, the cost of thread
synchronization takes only 2 clock cycles.

Given the design of assigning one track to a warp, the algorithm
framework is designed as shown in Figure 3. In each prediction
step, we aim for solving the following linear system( 𝜕𝐻

𝜕𝒙

) 𝑑𝒙
𝑑𝑡

+ 𝜕𝐻

𝜕𝑡
= 0, (4)

for getting the local derivative of the path 𝒙 (𝑡) as

𝑑𝒙

𝑑𝑡
= −

( 𝜕𝐻
𝜕𝒙

)−1 𝜕𝐻
𝜕𝑡

= 𝑔(𝒙, 𝑡) . (5)
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Figure 3: The flow chart of our parallelization scheme.

Then we obtain the prediction by solving the ODE using 4th-order
Runge-Kutta method:

𝒙∗ (𝑡 + Δ𝑡) = 𝒙 (𝑡) + Δ𝑡

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) , (6)

where 
𝑘1 = 𝑔(𝒙, 𝑡)
𝑘2 = 𝑔(𝒙 + 𝑘1

2 Δ𝑡, 𝑡+
1
2Δ𝑡)

𝑘3 = 𝑔(𝒙 + 𝑘2
2 Δ𝑡, 𝑡+

1
2Δ𝑡)

𝑘4 = 𝑔(𝒙 + 𝑘3Δ𝑡, 𝑡+Δ𝑡).

The correction step is trying to correct the initial prediction onto
the solution track 𝒙 (𝑡). Within each iteration, we use Newton’s
method to minimize the error between prediction and the path 𝒙 (𝑡).
Each iteration in Newton’s method is

�̂� = 𝒙∗ (𝑡 + Δ𝑡) − 𝑓 (𝒙∗, 𝑡 + Δ𝑡), (7)

where 𝑓 (𝒙∗, 𝑡) is the solution of the following linear system
𝜕𝐻 (𝒙∗,𝑡+Δ𝑡 )

𝜕𝒙 𝑓 (𝒙∗, 𝑡 + Δ𝑡) = 𝐻 (𝒙∗, 𝑡 + Δ𝑡). (8)

Note that when the step length Δ𝑡 is too large, the correction
step cannot converge in most of the time. In the meantime, when
Δ𝑡 is too small, the whole tracking needs redundant iterations to
converge to 𝑡 = 1. In this work, we use a simple but effective adap-
tive step length control scheme: with an initial Δ𝑡 , if the correction
step converges 20 times, then we double the step length, otherwise,
once the correction step fails, the step length is cut half.

4.2 Parallelization of Linear Solver and Jacobian
Evaluation

The core computation in the path tracking scheme are (i) the solu-
tion of the linear system, Equation 5 and 8; and (ii) the evaluation
of Jacobian 𝜕𝐻

𝜕𝒙 and 𝜕𝐻
𝜕𝑡 . These two operations can further be accel-

erated by parallelization using a GPU core.
(i) Linear System Solver: The vast majority of work on solving

linear systems on GPU is centered around large matrices, normally
the size is more than 1000 × 1000, motivating a hybrid CPU+GPU
approach [41, 42]. However, in our HC application, the linear system
has a smaller size, normally less than 32 × 32 (The size is the same
with the number of unknowns). In this case, some existing software
packages/libraries, such as cuBLAS or MAGMA [2, 3, 24] can be
used.

In these packages, a linear system is generally solved by an LU
factorization with partial pivoting followed by two triangular solves.
The LU factorization of a matrix typically proceeds by summing
the first row and others to zero out all but the first row in the first
column, then proceed to zero out all but the first two rows in the
second column, etc. The LU factorization of a matrix proceeds one
column at a time. For each column, (i) a pivot is chosen based on
the maximum absolute value, (ii) a row interchange is applied so
that the pivot element is brought on the diagonal, (iii) the current
column is scaled with respect to the pivot, and (iv) a rank-1 update
is applied to the trailing matrix. After an LU factorization, two
triangular solves are in charge of solving the system using L and U
factors to achieve forward and backward substitutions.

The LU factorization in MAGMA is fast, typically 15% to 80%
faster than cuBLAS for small matrices, namely 12`𝑠 and 38`𝑠 for
4 × 4 and 20 × 20 matrices. This is because for matrices less than
32 × 32, original MAGMA routine assigns one row per thread in a
warp, and the factorization proceeds one column at a time in the
register file while inter-thread communication occurs in shared
memory. Nevertheless, in terms of the combined (factorization +
solve) operation, we found out that cuBLAS is faster than MAGMA.
This is mainly due to a slow triangular solver kernel in MAGMA,
which does not take advantage of small matrices.

Our contribution to improving these standard libraries for our
purposes is twofold. First, factorization and solve kernels can be
further fused for maximizing the data reuse when the size of the
matrices are small, preventing from writing the factorized matrix
into the global memory of the GPU and then reading it back in
another kernel. The proposed kernel fusion therefore significantly
speeds up the solution.

Second, in solving a linear system𝐴𝑥 = 𝑏, the LU decomposition
can act on the augmented matrix [𝐴 𝑏], which implicitly carries
out the triangular solve with respect to the 𝐿 factor of 𝐴 so that as
𝐴 is being transferred to the triangular matrix𝑈 , so is 𝑏, effectively
factoring out the 𝐿 portion which is now done in the decomposi-
tion process. The second triangular solve uses the cached𝑈 factor
after the factorization is complete. This saves the time from the
triangular solves step. The proposed fused kernel is now integrated
into the MAGMA library as part of its batch routine.

(ii) Parallel Evaluations of the Jacobian Matrix and Vec-
tor: The main bottleneck to parallel evaluations of the elements
of the Jacobian matrix 𝜕𝐻/𝜕𝑥 and the vectors 𝜕𝐻/𝜕𝑡 and 𝐻 is the
heterogenuity computations of its elements because it prevents
evaluations by many threads requiring a uniform format that en-
ables the GPU to compute in a single instruction multiple threads
fashion. This heterogenuity can be illustrated by a simple example
of a system with two variables 𝑋 = (𝑥1, 𝑥2) where the Jacobian
elements are spanned by monomials, for example, in a straight-line
HC, 𝑓1 = 𝑐1𝑥1 +𝑐2𝑥21 +𝑐3𝑥

2
2 and 𝑓2 = 𝑐4𝑥1𝑥2 +𝑐5𝑥

2
1 , where the coeffi-

cients 𝑐𝑖 are linear interpolation of corresponding monomials in the
start and target systems. The straightforward approach to homoge-
nize these expressions is to write each as a sum over all possible
monomials and associate a scalar zero with those absent from the
Jacobian elements in parallel. However, the extreme sparsity from
all possible monomials in each element prevents the evaluation
process from being computed efficiently.
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As an alternative approach, consider 𝐾 the maximum number
of terms in the Jacobian matrix elements; in the above examples,
𝑓1 has three terms and 𝑓2 has two terms, so that 𝐾 = 3 if these
were the only elements of the Jacobian matrix. In addition, consider
that each term consists of a scalar multiplied with a coefficient
and a number of variables, e.g., the third term of 𝑓1 is a product
of (1, 𝑐3, 𝑥2, 𝑥2) while the first term of 𝑓2 is (1, 𝑐4, 𝑥1, 𝑥2). Note that
the first term of 𝑓1 is a product of (1, 𝑐1, 𝑥1). Thus, to homogenize
the expression, it is written as (1, 𝑐1, 𝑥1, 𝑥3) where the auxiliary
variable 𝑥3 = 1. Likewise, the third term of 𝑓2 is zero, and thus its
homogenized expression is (0, 1, 1, 1). As a result, all terms of both
𝑓1 and 𝑓2 can be written as

𝑄 =
∑︁𝐾

𝑘=1
𝑠𝑘𝑐𝑘,𝑗𝑥𝑘,𝑚1𝑥𝑘,𝑚2 · · · 𝑥𝑘,𝑚𝑀

, (9)

where 𝑠𝑘 is a binary scalar, 𝑐𝑘,𝑗 represents a coefficient, 𝑥𝑘,𝑚𝑖

identifies one of the variables, including 𝑥3 = 1, and 𝑀 is the
maximal number of variables in a term. With this in mind the
only data to be communicated for the parallel evaluation of 𝑄 is
(𝑠𝑘 , 𝑐𝑘,𝑗 , 𝑥𝑘,𝑚1 , 𝑥𝑘,𝑚2 , ..., 𝑥𝑘,𝑚𝑀

) where 𝑐𝑘,𝑗 , 𝑥𝑘,𝑚𝑖
are pointers to

data stored in shared memory and accessed from an array of in-
dices, i.e., 𝑓1 is represented by ((1, 1, 1, 3), (1, 2, 1, 1), (1, 3, 2, 2)) and
𝑓2 is represented by ((1, 4, 1, 2), (1, 5, 1, 1), (0, 1, 1, 1)), respectively.
Note that 𝜕𝐻/𝜕𝑡 and 𝐻 are evaluated in the same way although
the coefficients 𝑐𝑘 are different. This homogeneous form allows for
parallel computation of all elements of 𝜕𝐻/𝜕𝑥 , 𝜕𝐻/𝜕𝑡 , and 𝐻 .

The idea of parallel evaluations can also be applied to parameter
HC, except that the coefficients 𝑐𝑖 are functions of start and target
parameters. The parallel computation of coefficients 𝑐𝑖 can be illus-
trated by another simple example of a system with the same two
variables𝑋 = (𝑥1, 𝑥2). Let 𝑓1 = 𝑐1𝑥1 +𝑐2𝑥21 +𝑐3𝑥

2
2 = 𝑝1𝑝2𝑥1 +𝑝3𝑥21 +

(𝑝4 + 𝑝5)𝑥22 and 𝑓2 = 𝑐4𝑥1𝑥2 + 𝑐5𝑥
2
1 = (𝑝1 + 𝑝3)𝑥1𝑥2 + (𝑝2 − 𝑝4)𝑥21 ,

where the parameters 𝑝 𝑗 are linear interpolation of corresponding
start and target parameters. To homogenize the computation of
coefficients 𝑐𝑖 from parameters 𝑝 𝑗 , the linear interpolation of param-
eters are expanded and organized such that 𝑐𝑖 becomes a polynomial
of uni-variable 𝑡 , i.e., 𝑐1 = (𝑝𝑡1𝑡 + 𝑝𝑠1 (1 − 𝑡)) (𝑝𝑡2𝑡 + 𝑝𝑠2 (1 − 𝑡)) =
(𝑝𝑡1𝑝𝑡2 +𝑝𝑠1𝑝𝑠2 −𝑝𝑠1𝑝𝑡2 −𝑝𝑡1𝑝𝑠2)𝑡2 + (𝑝𝑠1𝑝𝑡2 +𝑝𝑡1𝑝𝑠2 − 2𝑝𝑠1𝑝𝑠2)𝑡
+ 𝑝𝑠1𝑝𝑡2, where 𝑝𝑠 𝑗 and 𝑝𝑡 𝑗 are start and target parameters, respec-
tively. With this in mind, each 𝑐𝑖 in 𝑓1 and 𝑓2 can be computed in a
homogeneous fashion by

P
[
𝑡2 𝑡 1

]𝑇
=
[
𝑐1 𝑐2 𝑐3 𝑐4 𝑐5

]𝑇
, (10)

where P is

P =



𝑝𝑡1𝑝𝑡2+𝑝𝑠1𝑝𝑠2
−𝑝𝑠1𝑝𝑡2−𝑝𝑡1𝑝𝑠2 𝑝𝑠1𝑝𝑡2 + 𝑝𝑡2𝑝𝑠2 − 2𝑝𝑠1𝑝𝑠2 𝑝𝑠1𝑝𝑠2

0 𝑝𝑡3 − 𝑝𝑠3 𝑝𝑠3
0 𝑝𝑡4 − 𝑝𝑠4 + 𝑝𝑡5 − 𝑝𝑠5 𝑝𝑠4 + 𝑝𝑠5
0 𝑝𝑡1 − 𝑝𝑠1 + 𝑝𝑡3 − 𝑝𝑠3 𝑝𝑠1 + 𝑝𝑠3
0 𝑝𝑡2 − 𝑝𝑠2 + 𝑝𝑡4 − 𝑝𝑠4 𝑝𝑠2 − 𝑝𝑠4


.

(11)

Since 𝑝𝑠 𝑗 and 𝑝𝑡 𝑗 do not change throughout the entire HC process,
the only variable is 𝑡 in equation (10), and thus, P is constant and
can be computed prior to the parameter HC execution. As a result,
before parallel evaluations of the Jacobian matrix and the vector,
each coefficient can be computed simultaneously.

Finally, there is an issue on how to allocate the parallel evalua-
tions of the Jacobian matrix 𝜕𝐻/𝜕𝑥 and the vectors 𝜕𝐻/𝜕𝑡 and 𝐻

per thread. Recall that each HC track is assigned to a warp which
has 32 threads. Since the matrices are generally less than 32 × 32,
and since the subsequent operation of LU decomposition is row-by-
row with one thread per row, it makes sense to assign one row per
thread.

5 EXPERIMENTAL RESULTS
Four experiments are considered in this paper including (i) par-
allel batch linear systems using kernel fusion, (ii) performances
and comparisons of the proposed GPU-HC on selected benchmark
polynomial systems using coefficient HC, (iii) performances and
comparisons of the proposed GPU-HC on the katsura polynomial
systems, and (iv) performances and comparisons of the proposed
GPU-HC on polynomial systems for computer vision applications
using parameter HC. We use an 8-core 2.6GHz Intel Xeon CPU for
all CPU computed solvers and an nVidia Quardro RTX 6000 GPU
for our GPU-HC, unless otherwise specified.

All the performances of our GPU-HC were compared with the
state-of-the-art HC solvers running on 8 cores CPU, including
Julia’s HomotopyContinuation.jl package [40] version 2.6.3, PHC-
pack [43] matlab wrapper version 2.4.72, and Minimial problem
Numerical continuation Solver (MiNuS) [16] version 1.0. Because
the katsura problems has number of solutions equivalent to its total
degree, Bertini [7] which follows only the number of total degree
tracks was employed for comparisons on the katsura problems. To
run Bertini using multiple CPU cores, version 1.6 was used due to
its availability of using MPI processing. Since our GPU-HC acceler-
ates the tracking part of the HC algorithm, only the time used in
the tracking parts of all solvers were compared. In particular, Julia’s
BenchmarkTools package was used to measure Julia solver time, a
matlab timer was employed to measure PHCpack solver time, and
C++ high resolution timer was used for MiNuS and our GPU-HC.
The time measured in each polynomial problem is an average of 100
runs. In addition, the settings of each solver are by default, except
that the tolerance of numerical accuracy of converged tracks for
all solvers is set as 10−8.

5.1 Parallel Linear System Solver
The performances of the parallel batched linear systems using the
proposed kernel fusion and augmented matrix, Section 4, is com-
pared with cuBLAS and MAGMA with separated kernels as shown
in Figure 4. The experiments are conducted on a Tesla V100-PCIe
GPU running over 1,000 matrices simultaneously with sizes ranging
from 4×4 to 20×20. Evidently, the proposed kernel-fused MAGMA
outperforms cuBLAS with speedup of 2.23× to 3.65× and MAGMA
with separated kernels with speedups ranging from 3.11× to 4.91×.

5.2 Evaluations on Selected Benchmark
Polynomial Systems

The performance evaluations of the proposed GPU accelerated coef-
ficient HC and its comparisons with the latest solvers are shown in
Table 1, where nine representative polynomial benchmark systems
were selected for comparisons. The start system of each polynomial
problem was created via Julia with random coefficient inputs, and
for each problem, the start system is the same for all the solvers.
A review of Table 1 which is ordered by the number of unknowns,
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Table 1: Performances of Julia, PHCPACK, MiNuS, and the proposed coefficient GPU-HC on selected benchmark problems.

problems # of
unkns.

# of
sols.

𝜕𝐻/𝜕𝑥 𝜕𝐻/𝜕𝑡 GPU-HC
max steps

time (ms) speedup(
Julia

GPU-HC

)
𝐾 𝑀 𝐾 𝑀 Julia PHCpack MiNuS GPU-HC

alea6 6 387 4 2 6 3 31 25.26 179.64 105.67 2.02 ×12.50
game6two 6 265 16 4 32 5 77 68.33 660.87 93.85 13.18 ×5.49
game7two 7 1854 32 5 64 6 68 1026 9510.68 537.15 153.15 ×10.52
cyclic7 7 924 6 6 7 7 24 17.27 358.96 177.95 4.77 ×4.58
cyclic8 8 1152 7 7 8 8 24 27.24 1029.53 227.03 7.17 ×6.00
cyclic9 9 5994 8 8 9 9 24 166.74 7867.78 1066.7 74.43 ×3.81
d1 12 48 3 2 7 3 29 13.61 131.06 61.72 2.48 ×5.18

eco12 12 1024 11 2 12 3 24 132.39 2182.15 227.54 17.06 ×13.76
pole28sys 16 12862 8 1 73 2 278 50102 439245.99 71387 5354.7 ×9.36
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Figure 4: The performances of parallel linear systems using
MAGMAwith kernel fusion,MAGMAwith separated kernels,
and cuBLAS.

shows that GPU-HC outperforms all the other solvers. Specifically,
when compared to Julia, GPU-HC provides speedup ranging from
around 3.8× to 13.9×.

Numerous factors affect the speedup of GPU-HC over Julia, in-
cluding the number of solutions, the maximal steps among all tracks
in GPU-HC, and the number of terms as well as variables in each
term in the evaluations of 𝜕𝐻/𝜕𝑥 and 𝜕𝐻/𝜕𝑡 , i.e.,𝐾 and𝑀 , equation
(9). Basically, if the number of solutions is larger, the parallelism of
following tracks to convergence is more significant. For example,
d1 v.s. alea6. Meanwhile, the maximal number of steps required
among all tracks in our GPU-HC implies that the GPU execution
has to wait for the slowest track before the overall execution is
finished. Therefore, the smaller the maximal steps, the better for
the GPU-HC. For example, alea6 v.s. game6two. In addition, larger
𝑀 indicates that when evaluating Jacobian matrix and vector, every
thread has to access the variables from shared memory more times
than those with small 𝑀 . In particular, if two threads access the
same variable at the same time, an access conflict happens, so these
two threads has to take turns; thus the evaluation time takes longer.
As a result, faster speed can be obtained for problems with smaller
𝑀 ; for example, eco12 v.s. cyclic8.

Figure 5 shows the numerical accuracy distribution of the bench-
mark polynomial systems with roots found by GPU-HC. Basically,
all the solutions are below 10−7, showing that the speedup is not at
the cost of lower accuracy, i.e., the GPU-HC computed solutions
satisfy the polynomial system with high accuracy.

Figure 5: Numerical accuracy distribution of polynomial
benchmark systems.

5.3 Evaluations on Katusra Polynomial Systems
To show the relationship between the degree of a polynomial system
and the speedup made by the proposed GPU-HC, Table 2 shows the
katsura family benchmark problem including katsura6 to katsura15
as well as katsura20 and 21. The start systems are also generated by
Julia with random coefficients, and are identical for all the solvers. It
is clearly shown in Table 2 that as the number of solutions increases,
the speedup also increases due to the GPU parallelism of indepen-
dent tracks executed to convergence. Evidently, our GPU-HC gives
6.9× to 28.33× speedup over Julia for the katsura problems.

Figure 6 shows the graph of the time used by Julia and GPU-HC
for katsura6 to katsura15. Basically, Julia’s time is exponentially pro-
portional to the polynomial degree, while GPU-HC time is roughly
flat from katsura6 to katsura11, and then after katsura11 the time
goes exponentially proportional to the degree. This is because in
Volta V100, the maximal number of warps that can be run simulta-
neously is 5120. Thus for problems having more than 5120 solutions,
GPU-HC has to compute 5120 solutions in parallel first before the
rest of the solutions can be run. However, when the size of register
file per SM, i.e., 256 KB, is not affordable for all 64 warps where
each warp could occupy at most 256 / 64 = 4 KB, one SM cannot
process 64 warps at the same time. For example, in katsura11, each
warp needs at least 12 unknowns×(12 unknowns×8B (one row of
Jacobian matrix) + 8B (one row of Jacobian vector) + 108×4B (index
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Table 2: Performances of Julia, Bertini, PHCPACK, MiNuS, and the proposed coefficient GPU-HC on katsura problems.

problems # of
unkns.

# of
sols.

𝜕𝐻/𝜕𝑥 𝜕𝐻/𝜕𝑡 GPU-HC
max steps

time (ms) speedup(
Julia

GPU-HC

)
𝐾 𝑀 𝐾 𝑀 Julia Bertini∗ PHCpack MiNuS GPU-HC

katsura6 7 64 3 1 8 2 24 4.56 15.82 64.58 64.88 0.66 ×6.90
katsura7 8 128 3 1 9 2 24 7.67 39.29 93.86 72.23 0.86 ×8.92
katsura8 9 256 3 1 10 2 24 14.66 94.98 140.93 86.93 1.06 ×13.83
katsura9 10 512 3 1 11 2 24 25.89 194.88 259.14 117.38 1.76 ×14.71
katsura10 11 1024 3 1 12 2 24 55.23 457.34 602.29 201.16 3.82 ×14.46
katsura11 12 2048 3 1 13 2 32 120.22 1040.24 1527.54 414.12 7.34 ×16.35
katsura12 13 4096 3 1 14 2 32 267.32 2612.97 3401.12 816.76 15.06 ×17.75
katsura13 14 8192 3 1 15 2 46 635.49 5071.40 8715.36 1617.43 39.04 ×16.28
katsura14 15 16284 3 1 16 2 64 1451 12120.83 18025.23 3330.12 87.02 ×16.67
katsura15 16 32768 3 1 17 2 61 3344 28932.94 43232.96 6455.74 169.14 ×19.77
katsura20 21 1048576 3 1 22 2 247 247837 1810189.57 2697182.41 276131.9 8457.52 ×29.30
katsura21 22 2097152 3 1 23 2 217 497211 4163436.01 6202435.75 557492.90 17550.16 ×28.33
∗: The time used by Bertini contains the time it takes to write data into files.

array size per row for evaluating the Jacobian matrix) + 52×4B
(index array size per row for evaluating the Jacobian vector)) + in-
termediate variables > 8.9KB which is greater than 4KB. As a result,
not all 2048 tracks can be computed concurrently for the katsura11
problem, making the GPU-HC time start to increase exponentially.

The numerical accuracy distribution of the katsura problems
solved by GPU-HC can be found in Figure 7. Similar to the bench-
mark problems, all the solutions are below 10−7, well showing that
GPU-HC obtains both satisfying efficiency and accuracy.

5.4 Evaluations on Polynomial Systems for
Computer Vision Applications

We select a set of computer vision problems to evaluate the per-
formances of the accelerated parameter HC on GPU, and compare
it with the tracking part of the parameter HC in Julia and MiNuS.
Table 3 shows the problems covering multi-view triangulation and
camera pose estimation. The parameters of the start systems are
randomly generated, while the target parameters are generated
from the multi-view dataset [16], except for the 6-point rolling
shutter absolute pose estimation where its target parameters are
given by the source code of [4].

In Table 3, the row and column sizes of P indicate the number of
coefficients and the degree of 𝑡 , equation (10), respectively. Thus if
the degree of 𝑡 is large, our GPU parameter HC can benefit from
the parallelism of computing coefficients from parameters even if
the number of solutions is small, and thus give significant speedup
over Julia. For example, the 6-point rolling shutter absolute pose
estimation problem. Another factor that affects the speedup is the
maximal steps. For example, compared with refractive P6P, relaxed
3-view triangulation has similar number of solutions with smaller
𝐾 and 𝑀 , but the maximal steps is the double of what refractive
P6P has. Thus, GPU-HC requires more time in order to wait for the
slowest track to converge. Nevertheless, it is clear from Table 3 that
GPU-HC is able to provide speedup ranging from 1.51× to 21.44×.

Figure 8 shows the numerical accuracy distribution of the com-
puter vision problems. Not only all the solutions are below 10−7, it

is more importantly that one true solution can be found from all
converged tracks. Computer vision problem often requires solving
a polynomial system in an iterative loop; for example, a pose esti-
mation problem like refractive P5P, GPU-HC is able to estimate a
pose within 1 second using 500 loops. Therefore, GPU-HC enables
the HC algorithm to be used in practice.

6 CONCLUSION
This paper designs, develops, and implements GPU-HC, an efficient
HC solver implemented on a GPU that accurately solves a system
of polynomial equations. The parallelism of the HC algorithm is
achieved at two levels: (i) a coarse level that follows all the tracks to
convergence simultaneously, and (ii) a fine level that solves a linear
system and also evaluates the Jacobian matrix and related vector
within each track in parallel. Both straight-line HC and parameter
HC are implemented, where the performances of the straight-line
HC is evaluated through a set of benchmark polynomial systems,
while the parameter HC is evaluated using polynomial systems
arising in computer vision problems. These experiments show
a remarkable speedup in both cases. It demonstrates that it is
possible to have real-time applications which requires solving a
polynomial system in an inner loop of an iterative method such as
RANSAC in computer vision. In this sense, GPU-HC is an enabling
developments rending problems that were impractical to solve
practically.
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