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Abstract

Bootstrapping has been a primary tool for ensemble and uncertainty quantifica-
tion in machine learning and statistics. However, due to its nature of multiple
training and resampling, bootstrapping deep neural networks is computationally
burdensome; hence it has difficulties in practical application to the uncertainty
estimation and related tasks. To overcome this computational bottleneck, we pro-
pose a novel approach called Neural Bootstrapper (NeuBoots), which learns to
generate bootstrapped neural networks through single model training. NeuBoots
injects the bootstrap weights into the high-level feature layers of the backbone
network and outputs the bootstrapped predictions of the target, without additional
parameters and the repetitive computations from scratch. We apply NeuBoots
to various machine learning tasks related to uncertainty quantification, including
prediction calibrations in image classification and semantic segmentation, active
learning, and detection of out-of-distribution samples. Our empirical results show
that NeuBoots outperforms other bagging based methods under a much lower
computational cost without losing the validity of bootstrapping.

1 Introduction

Bootstrapping [7] or bagging [3] procedures have been commonly used as a primary tool in quantify-
ing uncertainty lying on statistical inference, e.g. evaluations of standard errors, confidence intervals,
and hypothetical null distribution. Despite its success in statistics and machine learning field, the
naive use of bootstrap procedures in deep neural network applications has been less practical due to
its computational intensity. Bootstrap procedures require evaluating a number of models; however,
training multiple deep neural networks are infeasible in practice in terms of computational cost.

To utilize bootstrap for deep neural networks, we propose a novel bootstrapping procedure called
Neural Bootstrapper (NeuBoots). The proposed method is mainly motivated by Generative Bootstrap
Sampler (GBS) [38], which trains a bootstrap generator by model parameterization based on Random
Weight Bootstrapping (RWB, [37]) framework. For many statistical models, the idea of GBS is more
theoretically valid than amortized bootstrap [31], which trains an implicit model to approximate
the bootstrap distribution over model parameters. However, GBS is hardly scalable to modern deep
neural networks containing millions of parameters.

Contrary to the previous method, the proposed method is effortlessly scalable and universally
applicable to the various architectures. The key idea of NeuBoots is simple; multiplying bootstrap
weights to the final layer of the backbone network and instead of model parameterization. Hence it
outputs the bootstrapped predictions of the target without additional parameters and the repetitive
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\ Standard Bootstrap [7] MCDrop [13] DeepEnsemble [24] NeuBoots

Memory Efficiency X < X 4
Fast Training D=4 V4 P-4 <
Fast Prediction D4 X X 4

Table 1.1. Computational comparison between bagging based uncertainty estimation methods in the view of
memory efficiency and computational speed during the training and prediction step.

computations from scratch. NeuBoots outperforms the previous sampling-based methods [13, 24, 31]
on the various uncertainty quantification related tasks with deep convolutional networks [17, 20, 22].
Throughout this paper, we show that NeuBoots has multiple advantages over the existing uncertainty
quantification procedures in terms of memory efficiency and computational speed (see Table 1.1).

To verify the empirical power of the proposed method, we apply NeuBoots to a wide range of
experiments related to uncertainty quantification and bagging. We apply the NeuBoots to prediction
calibration, active learning, out-of-distribution (OOD) detection, semantic segmentation, and learning
on imbalanced datasets. Notably, we test the proposed method on biomedical data of high-resolution,
NIH3T3 data [5]. In Section 4, our results show that NeuBoots achieves at least comparable or better
performance than the state-of-the-art methods in the considered applications.

2 Preliminaries

As preliminaries, we briefly review the standard bootstrapping [7] and introduce an idea of Generative
Bootstrap Sampler (GBS, [38]), which is the primary motivation of the proposed method. Let
[m] :={1,...,m} and denote a given training data by D = {(X;,y;) : ¢ € [n]}, where each feature
X; € X C RP and its response y; € R%. We denote the class of models f : R? — R¢ by M. For
the standard bootstrapping, we sample B sets of bootstrap data D) = {(Xi(b), ygb)) : i € [n]} with
replacement for b € [B]. For each bootstrap data D(b) we define a loss functional L on f € M:

where ¢ : R x RY — R is an arbitrary loss function. Then we minimize (2.1) with respect to f € M
to obtain bootstrapped models: for b € [B],

F® = argmin L(f, D®). (2.2)
fem

Random Weight Bootstrapping It is well-known that the standard bootstrap uses only (approx-
imately) 63% of observations for each bootstrap evaluation [24]. To resolve this problem, we use
Random Weight Bootstrapping (RWB, [37]), which reformulates (2.2) as a sampling of bootstrapping
weights for a weighted loss functional. Let W = {w € R’} : > |, w; = n} be a dilated standard
(n — 1)-simplex. For w = (w1,...,w,) € W and the original training data D, we define the
Weighted Bootstrapping Loss (WBL) functional on f € M as follows:

L(f,w,D) Zwe Yi).- (2.3)

Then for any resampled dataset D®) there exists a unique w € W such that (2.1) matches to (2.3).
This reformulation provides a relaxation method to consider full data set without any omission in
bootstrapping. Precisely, as a continuous relaxation of the standard bootstrap, we use Dirichlet
distribution [32]; Py, = n x Dirichlet(1,...,1), where Py, is a probability distribution on the
simplex YW. Hence RWB fully utilizes the observed data points, since sampled bootstrap weights
w ~ Py, are strictly positive. Also, [34] showed that RWB achieves the same theoretical properties
with these of the standard bootstrap i.e. Py, = Multinomial(n;1/n,...,1/n) in (2.3).

Bootstrap Distribution Generator Although RWB resolves the data discard problem, training

multiple networks f(l), cee f(B ) remains a computational problem, and one has to store the parame-
ters of every network for prediction. To reduce the computational bottlenecks, GBS [38] proposes a



procedure to train a generator function of bootstrapped estimators for parametric statistical models.
The main idea of GBS is to parameterize the model parameter with bootstrap weight w € W.
When the GBS is applied to bootstrapping neural networks, it considers a bootstrap generator
g : R? x W — R9 with parameter (w), where d is the total number of neural net parameters in g,
so that g(X, W) = gg(w)(X). Based on (2.3), we define a new WBL functional:

[’(g’D) = ]EWN]P’W [L(nga,D)L L g,w D sz Xz,W ) 24

Note that we use the Dirichlet distribution for IP)y; hence the functional £(g, D) includes RWB
procedure itself. Analogous to (2.2), we obtain the bootstrap generator g by optimizing £(g, D):

g =argmin L(g, D) (2.5)
geEM

Then learned g can generate bootstrap samples for given target data X, by plugging an arbitrary
w € Winto g(X., -). We refer to [38, Section 2] for detailed theoretical results on GBS.

Block Bootstrapping The above bootstrap generator g receives a bootstrap weight vector w of
dimension n; hence its optimization via (2.5) would be hurdled when the number of data n is large.
Hence we utilize a block bootstrapping procedure to reduce the dimension of bootstrap weight vector.
We allocate the index set [n] to S number of blocks. Let u : [n] — [S] denotes the assignment
function. Then we impose the same value of weight on all elements in a block such as, w; = a for
u(i) = s € [S], where @ = (a1,...,ag) ~ S x Dirichlet(1, ..., 1). Instead of w, we plug « in
9(X,-) = go(.)(X) to generate bootstrap samples and compute the weighted loss function in (2.4):

E(g, D) = anSXDmchlet Z au(z Xza 0{) ) (2.6)

The above procedure asymptotically converges to the same target distribution where the conventional
non-block bootstrap converges. See appendix A for more detailed procedure and proofs.

3 Neural Bootstrapper

Now we propose Neural Bootstrapper (NeuBoots), which reduces computational complexity and
memory requirement of the networks in the learning of bootstrapped distribution to being suitable for
deep neural networks.

How to implement the bootstrap generator g for deep neural networks? One may consider
directly applying GBS to existing deep neural networks by modeling a neural net 6(-) that outputs
the neural net parameters of g. However, this approach is computationally challenging due to the
high-dimensionality of the output dimension of 6(-) Indeed, [38] proposes an architecture which
concatenates bootstrap weight vector to every layer of a given neural network (Figure 3.1(b)) and
trains it with (2.6). However, the bagging performance of GBS gradually degrades as we applied it to
the deeper neural networks. This may be because the information of bootstrap weights in the earlier
layers less propagate since the target model reduces the parameters of the weights during the training.

3.1 Adaptive Block Bootstrapping

We found that the bootstrap weight in the final layer mainly affects the bootstrap performance of
GBS. This fact motivates us to utilize the following adaptive block bootstrapping, which is the
key idea of NeuBoots. Take a neural network fy € M with parameter 6. Let My, and Fy, be
the single-layer neural network in the final layer and the feature extractor of f, respectively, with
parameter § = (61, 62), so we can decompose fy into My, o Fp,. Set S := dim(Fy, (X)) for the
number of blocks for block bootstrapping. Then, we redefine bootstrap generator as follows:

90(X, @) := g(0,0)(X) = My, (Fy,(X) © ) G.D

where ® denotes an elementwise multiplication. Bootstrap generator (3.1) can also be trained
with (2.6); hence optimized gy (X, -) can generate the bootstrapped prediction as we plug c. This
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Figure. 3.1. A comparison between the bootstrapping procedure of (a) standard bootstrapping [7], (b) GBS [38],
and (c) NeuBoots. This figure is best viewed in color.

modification brings a computational benefit, since we can generate bootstrap samples quickly and
memory-efficiently by reusing a priori computed tensor Fy,(X) without repetitive computation
from scratch. See Figure 3.1 for the comparison between the previous methods and NeuBoots. In
our empirical experience, the bootstrap evaluations over different groupings were consistent for all
examined examples in this article.

Training and Prediction At every epoch, we update the w, = {au(l), R au(n)} randomly, and
the expectation in (2.6) can be approximated by the average over the sampled weights. Considering
the stochastic gradient descent (SGD) algorithms to update the parameter 6 via mini-batch sequence
{Dy: Dy C D}szl, we plug mini-batch size of bootstrap weight vector {c,,;y : X; € Dy} in (2.6)
without changing a. Each element of w,, is not used repeatedly during the epoch, so the sampling
and replacement procedures in Algorithm 1 are conducted once at the beginning of epoch. After we
obtain the optimized network gy, for the prediction, we use the generator g, (-) = go(X, ) for a
given data point X,.. Then we can generate bootstrapped predictions by plugging o), ... a(?) in
the generator g, (-), as described in Algorithm 2.

Algorithm 1: Training step in NeuBoots.

Input :Dataset D; epochs T'; dimension of feature .S; index function u; learning rate p.

1 Initialize neural network parameter ¢(°) and set n := |D)|.

w

wm

fort €{0,...,7T—1}do
Sample a) = {a{” ... o} "X § x Dirichlet(1, ..., 1)
t t t
Replace wii) = {ai()l), . ,ai()n)}

Update (t+1) « () — pVgL(g(g,a),wg),D)IGZG(”.

Algorithm 2: Prediction step in NeuBoots.

Input : Data point X, € R?”; number of bootstrap sampling B.

1 Compute the feed-forward network g.(-) = go (X, -) a priori.
2 forbe{l,...,B}do

w

Generate a(®) "X § x Dirichlet(1, . .., 1) and evaluate 7." = G, (a®).

3.2 Discussion

NeuBoots vs Standard Bootstrap To examine the approximation power of NeuBoots, we have
measured the frequentist’s coverage rate of the confidence bands (Figure 3.2.(a)). We estimate
95% confidence band for nonparametric regression function by using the NeuBoots, and compare
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Figure. 3.2. (a) Frequentist coverage rate of the 95% confidence bands; (b) Curve fitting with different nonlinear
funtions. 95% confidence band of the regression mean from NeuBoots; (c) the standard bootstrap. Each red
dashed line indicates the mean, and the blue dotted lines show the true regression function.

it with credible bands (or confidence bands) evaluated by the standard bootstrap, Gaussian Process
(GP) regression, and MCDrop [13]. We adopt Algorithm 1 to train the NeuBoots generator with
3 hidden-layers with 500 hidden-nodes for each layer. For the standard bootstrap, we train 1000
neural networks. The result shows the confidence band via NeuBoots stably covers the true regression
function on each predictor value with almost 95% of frequency, which is compatible with the standard
bootstrapping. In contrast, the coverage of the MCDrop is unstable and sometimes below 70%.
This result indicates that the NeuBoots performs comparably with the standard bootstrapping in
uncertainty quantification tasks.

NeuBoots vs Amortized Bootstrapping We applied NeuBoots to classification and regression
experiments presented by the amortized bootstrap [31]. Indeed, every experiment demonstrates
that NeuBoots outperforms the amortized bootstrap in bagging performance for various tasks: the
rotated MNIST classification (Table 3.1), classification with different data points N (Figure B.1), and
regression on two datasets (Figure B.2). We remark the expected calibration error (ECE, [30]) score
on the rotated MNIST is improved via NeuBoots from 15.00 to 2.98 by increasing the number of
bootstrap sampling B.

Test Error
Methods B—1 B—5 B =95
Traditional Bootstrap 22.57 19.68 18.57
Amortized Bootstrap 17.03 16.82 16.18
NeuBoots 17.94£0.74 14.98+£0.31 14.45+0.31

Table 3.1. Rotated MNIST classification with different bootstrap sampling number B.

NeuBoots vs Dropout At first glance, NeuBoots is similar to Dropout in that the final neurons
are multiplied by random variables. However, random weights imposed by the Dropout are lack of
connection to the loss function nor the working model, while the bootstrap weights of the NeuBoots
appears in the loss function (2.6) have explicit connections to the bootstrapping. We briefly verify the
effect of the loss function on the 3-layers MLP with the different number of hidden variables 50, 100,
and 200 for the image classification task on MNIST datasets. With batch normalization [21], we have
applied Dropout with probability p = 0.1 only to the final layer of MLP. We measure the ECE, the
negative log-likelihood (NLL), and the Brier score for comparisons. NeuBoots and Dropout records
same accuracy. However, Figure B.3 shows that the NeuBoots is more feasible for confidence-aware
learning and clearly outperforms the Dropout in terms of ECE, NLL, and the Brier score.

Computation time and cost As we mentioned earlier, the algorithm evaluates the network from
scratch for only once to store the tensor Fy, (X.), while the standard bootstrapping and MCDrop
[13] need repetitive feed-forward propagations. To check this empirically, we measure the prediction
time by ResNet-34 between NeuBoots and MCDrop on the test set of CIFAR-10 with Nvidia V100
GPUs. NeuBoots predicts B = 100 bootstrapping in 1.9s whereas MCDrop takes 112s to generate
100 outputs. Also, NeuBoots is computationally more efficient than the standard bootstrap and the
sparse GP [40] (Figure 3.3).



Method | Training Time Test Time Memory Usage

DeepEnsemble O(LK) O(LK) OMK +1)

BatchEnsemble O(LK) O(LK) O(M + IK)

MIMO O(L+2K) O(L+2K) O(M +IK)
NeuBoots O(L) O(L+ K) OM+1)

Table 3.2. A comparison of computational costs. We use the following notations: L the number of layers, K the
number of bootstrapping (or ensemble), M the parameter size of a single model, / memory size of input data.

We also compare NeuBoots to MIMO [16] and BatchEnsemble 25 min ]

[42] in terms of training, test, and memory complexities (see T Smpooee
Table 3.2). Since NeuBoots does not require repetitive forward | =" ,
computations, its training and test costs are O(L) and O(L +

K), respectively, less than O(L+2K) of MIMO and O(LK) of ™™ |
BatchEnsemble. Note that MIMO needs to copy input images gmin ] e

3 min - . -
as many as K to supply into input layers. Even though it can B :
compute in a single forward pass, it requires more memories 500 2000 5000 10000 20000 40000
to upload multiple inputs if the input data is high-dimensional "

(e.g., MRI/CT). The memory complexity of BatchEnsemble is  Figure. 3.3. Comparison of computa-
similar to the one of MIMO since the memory usage of fast tional time with different numbers of
weights in BatchEnsemble is proportional to the dimension of training data n for the example in Fig-
input and output. This computational bottleneck is nothing to ure 3.2

sneeze at in the application fields requiring on-device training

or inference; however, the proposed method is free from such a problem since multiple computations
occur only at the final layer. For quantitative comparisons, we refer to Appendix B.2.

Diversity of predictions Diversity of predictions has been a reliable measure to examine over-
fits and performance of uncertainty quantification for ensemble procedures [10, 35, 42]. In the
presence of overfitting, it is expected that the diversity of different ensemble predictions would be
minimal because the resulting ensemble models would produce similar predictions that are over-fitted
towards the training data points. To examine the diversity performance of NeuBoots, we consider
various diversity measures including ratio-error, Q-statistics, correlation coefficient, and prediction
disagreement (see [1, 10, 35]). For the CIFAR-100 along with DenseNet-100, Table 3.3 summarizes
the results. NeuBoots outperforms MCDrop in every metrics of diversity. Furthermore, NeuBoots
shows comparable results with DeepEnsemble.

Method \ Ratio-error (1)  Q-stat (J) Correlation (|) Disagreement (1)
DeepEnsemble 98.00 61.31 78.56 23.41
MCDrop 27.38 96.33 92.00 10.40
NeuBoots 93.79 63.95 76.11 32.20

Table 3.3. A comparison of diversity performances.

4 Empirical Studies

In this section, we conduct the wide range of empirical studies of NeuBoots for uncertainty quan-
tification and bagging performance. We apply NeuBoots to prediction calibration, active learning,
out-of-distribution detection, bagging performance for semantic segmentation, and learning on
imbalanced dataset with various deep convolutional neural networks. Our code is open to the public.

4.1 Prediction Calibration

Setting We evaluate the proposed method on the prediction calibration for image classification
tasks. We apply NeuBoots to image classification tasks on CIFAR and SVHN with ResNet-110
and DenseNet-100. We take k£ = 5 predictions of MCDrop and DeepEnsemble for calibration.

*https://github.com/sungbinlim/NeuBoots
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For fair comparisons, we set the number of bootstrap sampling B = 5 as well, and fix the other
hyperparameters same with baseline models. All models are trained using SGD with a momentum
of 0.9, an initial learning rate of 0.1, and a weight decay of 0.0005 with the mini-batch size of 128.
We use CosineAnnealing for the learning rate scheduler. We implement MCDrop and evaluates its
performance with dropout rate p = 0.2, which is a close setting to the original paper. For Deep
Ensemble, we utilize adversarial training and the Brier loss function [24] and cross-entropy loss
function [2]. For the metric, we evaluate the error rate, ECE, NLL, and Brier score. We also compute
each method’s training and prediction times to compare the relative speed based on the baseline.

Results See Table B.3 and B.4 for empirical results. NeuBoots generally show a comparable
calibration ability compared to MCDrop and DeepEnsemble. Figure 4.1.(a) shows the reliability
diagrams of ResNet-110 and DenseNet-100 on CIFAR-100. We observe that NeuBoots secures accu-
racy and prediction calibration in the image classification tasks with ResNet-110 and DenseNet-100.
NeuBoots is faster in prediction than MCDrop and DeepEnsemble at least three times. Furthermore,
NeuBoots shows faster in training than Deep Ensemble at least nine times. This gap increases as
the number of predictions k increases. It concludes that NeuBoots outperforms MCDrop and is
comparable with DeepEnsemble in calibrating the prediction with the relatively faster prediction.

ResNet-110 CIFAR-100 DenseNet-100 CIFAR-100 CIFAR-10 ResNet-18 CIFAR-100 ResNet-18
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Figure. 4.1. (a) Comparison of reliability diagrams for ResNet-110 and DenseNet-100 on CIFAR-100. Confi-
dence is the value of the maximal softmax output. A dashed black line represents a perfectly calibrated prediction.
Points below this line indicate to under-confident predictions, whereas points above the line mean overconfident
predictions. (b) Actice learning performance on CIFAR-10 (left) and CIFAR-100 (right) with Random, MCDrop,
and NeuBoots. Curves are averaged over five runs and shaded regions denote the confidence intervals.

4.2 Active Learning

Setting We evaluate the NeuBoots on the active learning with ResNet-18 architecture on CIFAR.
For a comparison, we consider MCDrop and DeepEnsemble with entropy-based sampling and random
sampling. We follow an ordinary process to evaluate the performance of active learning (see [29]).
Initially, a randomly sampled 2,000 labeled images are given, and we train a model. Based on the
uncertainty estimation of each model, we sample 2,000 additional images from the unlabeled dataset
and add to the labeled dataset for the next stage. We continue this process ten times for a single trial
and repeat five trials for each model.

Results Figure 4.1.(b) shows the sequential performance improvement on CIFAR-10 and CIFAR-
100. Note that CIFAR-100 is more challenging dataset than CIFAR-10. Both plots demonstrate
that NeuBoots is superior to the other sampling methods in the active learning task. NeuBoots
records 71.6% accuracy in CIFAR-100 and 2.5% gap with MCDrop and DeepEnsemble. Through
the experiment, we verify that NeuBoots has a significant advantage in active learning.

4.3 Out-of-Distribution Detection

Setting As an important application of uncertainty quantification, we have applied NeuBoots to
detection of out-of-distribution (OOD) samples. The setting for OOD is based on the Mahalanobis
method [26]. At first, we train ResNet-34 for the classification task only using the training set of
the CIFAR-10 (in-distribution). Then, we evaluate the performance of NeuBoots for OOD detection
both in the test sets of in-distribution dataset and the SVHN (out-of-distribution). Using a separate



validation set from the testsets, we train a logistic regression based detector to discriminate OOD
samples from in-distribution dataset. For the input vectors of the OOD detector, we extract the
following four statistics regarding logit vectors: the max of predictive mean vectors, the standard
deviation of logit vectors, expected entropy, and predictive entropy, which can be computed by the
sampled output vectors of NeuBoots. To evaluate the performance of the detector, we measure
the true negative rate (TNR) at 95% true positive rate (TPR), the are under the receiver operating
characteristic curve (AUROC), the area under the precision-recall curve (AUPR), and the detection
accuracy. For comparison, we examine the baseline method [19], MCDrop, DeepEnsemble [24],
DeepEnsemble_CE (trained with cross-entropy loss) [2], ODIN [27], and Mahalanobis [26].

TNR Detection AUPR AUPR

Method at TPR 95% AUROC Accuracy In Out
Baseline 32.47 89.88 85.06 85.4 93.96
MCDrop 51.4 92.01 89.46 86.82 9541
DeepEnsemble [24] 56.7 91.85 88.91 81.66  95.46
DeepEnsemble_CE [2] 48.5 92.29 90.48 86.33 95.49
ODIN 86.55 96.65 91.08 92.54  98.52
Mahalanobis 54.51 93.92 89.13 91.54  98.52

Mabhalanobis + Calibration 96.42 99.14 95.75 98.26 99.6
NeuBoots 89.40 97.26 93.80 93.97 98.86
NeuBoots + Calibration 99.00 99.14 96.52 97.78 99.68

Table 4.1. OOD detection. All values are percantages and the best results are indicated in bold.

Results Table 4.1 shows NeuBoots significantly outperform the baseline method [19], DeepEnsem-
ble [2, 24], and ODIN [27] without any calibration technique in OOD detection. Furthermore, with
the input pre-processing technique studied in [27], NeuBoots is superior to Mahalanobis [26] in most
metrics, which employs both the feature ensemble and the input pre-processing for the calibration
techniques. This validates NeuBoots can discriminate OOD samples effectively. In order to see the
performance change of the OOD detector concerning the bootstrap sample size, we evaluate the
predictive standard deviation estimated by the proposed method for different B € {2, 5, 10, 20, 30}.
Figure B.5 illustrates that the NeuBoots successfully detects the in-distribution samples (top row) and
the out-of-distribution samples (bottom row).

4.4 Bagging Performance for Semantic Segmentation

Setting To demonstrate the applicability of NeuBoots to different computer vision tasks, we validate
NeuBoots on PASCAL VOC 2012 semantic segmentation benchmark [9] with DeepLab-v3 [4] based
on the backbone architectures of ResNet-50 and ResNet-101. We modify the final 1 x 1 convolution
layer after the Atrous Spatial Pyramid Pooling (ASPP) module by multiplying the channel-wise
bootstrap weights. This is a natural modification of the segmentation architecture analogous to the
fully connected layer of the networks for classification tasks. Additionally, we apply NeuBoots to
real 3D image segmentation task on commercial ODT microscopy NIH3T3 [5] dataset, which is
challenging for not only models but also human due to the 512 x 512 x 64 sized large resolution
and endogenous cellular variability. We use two different U-Net-like models for this 3D image
segmentation task, which are U-ResNet and SCNAS. We simply amend the bottleneck layer in the
same way as the 2D version. Same as an image classification task, we set B = 5 and k = 5. For the
remaining, we follow the usual setting.

Results Table 4.2 shows NeuBoots significantly improves mean loU and ECE compared to the
baseline. Furthermore, similar to the image classification task, NeuBoots records faster prediction
time than MCDrop and DeepEnsemble. This experiment indeed verifies that NeuBoots can be applied
to the wider scope of computer vision tasks beyond image classification.

4.5 Imbalanced Dataset

Setting To validate the efficacy for the imbalanced dataset, we have applied NeuBoots to two
imbalance sets, the imbalanced CIFAR-10 and the white blood cell dataset with ResNet-18. To



Dataset Architecture Method | mIoU(%) ECE(%) Relative Prediction Time
Baseline 84.57+0.72  15.354+0.21 1.0
MCDrop 87.81+1.83 6.610.1 54
ResNet-50 DeepEnsemble [24] 90.09+0.61 17.31£0.74 5.5
DeepEnsemble_CE [2] | 86.95+0.57 12.36+0.53 5.5
D NeuBoots 90.14+2.17 6.00+0.1 2.7
(PASCAL VOC [9]) R
Baseline 85.35+0.23  15.4940.44 1.0
MCDrop 88.08+1.80  6.484+0.08 5.3
ResNet-101 DeepEnsemble [24] 90.40+0.11  17.9440.03 5.3
DeepEnsemble_CE [2] | 87.48+0.09 11.52+0.02 5.3
NeuBoots 90.56+1.71  6.14+0.11 2.5
Baseline 61.54+1.14  1.854+0.19 1.0
MCDrop 64.15+£0.48  1.53+0.09 5.5
U-ResNet DeepEnsemble [24] 59.714+1.82 1.78+0.29 5.5
DeepEnsemble_CE [2] | 65.71+1.69  0.9410.24 5.5
3D NeuBoots 67.78+1.01 1.6740.19 3.5
(NIH3T3 [5])
Baseline 67.52+1.95  1.454+0.19 1.0
MCDrop 65.37+1.13 0.6440.17 5.2
SCNAS [22] DeepEnsemble [24] 60.04+£2.11 1.394+0.05 5.3
DeepEnsemble_CE [2] | 68.66+2.58  0.8310.09 5.3
NeuBoots 70.80+£1.58  0.63+0.16 2.1

Table 4.2. Semantic segmentation. The best results are indicated in bold.
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Figure. 4.2. Comparisons of classification power for imbalance datasets. The minor class refers to the class
with the least number of samples, and the major class refers to the highest number of samples.

conduct an imbalanced CIFAR-10, we randomly sampled from the training dataset of CIFAR-10 to
follow a different distribution for each class, and the distribution is [50, 100, 150, 200, 250, 300, 350,
400, 450, 500] for [airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck]. The white
blood cell dataset was acquired using a commercial ODT microscopy, and each image is a grayscale
of 80 x 80. The dataset comprises four types of white blood cells, and the training distribution is
[144, 281, 2195, 3177] for [eosinophil, monocyte, lymphocyte, neutrophil]. ResNet-18 model and
MCDrop extension are used as a baseline and comparative model with the same settings as Section
4.2, respectively. We measure the F1 Score for each class for evaluation.

Results Comparing the performance of Baseline, MCDrop, and DeepEmsenble, NeuBoots performs
better on both imbalanced CIFAR-10 and the white blood cell dataset, as shown in Figure 4.2.
Especially, NeuBoots outperforms for eosinophil identification, the class with the lowest number of
samples in the white blood cell dataset, with low variance. This result shows that the NeuBoots boosts
the prediction power for the fewer sampled classes with high stability via simple implementation.



5 Related Work

Bootstrapping Neural Network Since [7] first proposed the nonparametric bootstrapping to quan-
tify uncertainty in general settings, there has been a rich amount of literature that investigate theoretical
advantages of using bootstrap procedures for parametric models [8, 14, 15]. For nerural networks,
[12] investigated bootstrap consistency of one-layered MLP under some strong regularity conditions.
[36] considered using a conventional nonparametric bootstrapping to robustify classifiers under noisy
labeling. However, due to the nature of repetitive computations, its practical application to large-sized
data sets is not trivial. [31] proposed an approximation of bootstrapping for neural network by
applying amortized variational Bayes. Despite its computational efficiency, the armortized bootstrap
does not induce the exact target bootstrap distribution, and its theoretical justification is lacking.
Recently, [25] proposes a bootstrapping method for neural processes. They utilized residual bootstrap
to resolve the data discard problem, but their approach is not scalable since it requires multiple
encoder computations.

Ensemble Methods Various advances of neural net ensembles have been made to improve compu-
tational efficiency and uncertainty quantification performance. Havasi et al. [16] introduces Multiple
Input Multiple Output (MIMO), that approximates independent neural nets by imposing multiple
inputs and outputs, and Wen et al. [42] proposes a low-rank approximation of ensemble networks,
called BatchEnsemble. Latent Posterior Bayes NN (LP-BNN, [11]) extends the BatchEnsemble to a
Bayesian paradigm imposing a VAE structure on the individual low-rank factors, and the LP-BNN
outperforms the MIMO and the BatchEnsemble in prediction calibration and OOD detection, but
its computational burden is heavier than that of the BatchEnsemble. Stochastic Weight Averaging
Gaussian (SWAG, [28]) computes the posterior of the base neural net via a low-rank approximation
with a batch sampling. Even though these strategies reduces the computational cost to train each
ensemble network, unlike NeuBoots, they still demand multiple optimizations, and its computational
cost linearly increases as the ensemble size grows up.

Uncertainty Estimation There are numerous approaches to quantify the uncertainty in predictions
of NNs. Deep Confidence [6] proposes a framework to compute confidence intervals for individual
predictions using snapshot ensembling and conformal prediction. Also, a calibration procedure to
approximate a confidence interval is proposed based on Bayesain neural networks [23]. Gal and
Ghahramani [13] proposes MCDrop which captures model uncertainty casting dropout training in
neural networks as an approximation of variational Bayes. Smith and Gal [39] examines various
measures of uncertainty for adversarial example detection. Lakshminarayanan et al. [24] proposes a
non-Bayesian approach, called DeepEnsemble, to estimate predictive uncertainty based on ensembles
and adversarial training. Compared to DeepEnsemble, NeuBoots does not require adversarial training
nor learning multiple models.

6 Conclusion

We introduced a novel and scalable bootstrapping method, NeuBoots, for neural networks. We
applied it to the wide range of machine learning tasks related to uncertainty quantification; prediction
calibration, active learning, out-of-distribution detection, and imbalanced datasets. NeuBoots also
demonstrates superior bagging performance over semantic segmentation. Our empirical studies show
that NeuBoots attains significant potential in quantifying uncertainty for large-sized applications,
such as biomedical data analysis with high-resolution. As a future research, one can apply NeuBoots
to natural language processing tasks using Transformor [41].
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