
ar
X

iv
:2

10
1.

01
73

9v
1

 [
cs

.L
G

]
 5

 J
an

 2
02

1

Online Multivalid Learning:

Means, Moments, and Prediction Intervals

Varun Gupta1, Christopher Jung1, Georgy Noarov1, Mallesh M. Pai2, and Aaron Roth1

1University of Pennsylvania Department of Computer and Information Science
2Rice University Department of Economics

January 7, 2021

Abstract

We present a general, efficient technique for providing contextual predictions that are “multivalid” in
various senses, against an online sequence of adversarially chosen examples (x, y). This means that the
resulting estimates correctly predict various statistics of the labels y not just marginally — as averaged
over the sequence of examples — but also conditionally on x ∈ G for any G belonging to an arbitrary
intersecting collection of groups G.

We provide three instantiations of this framework. The first is mean prediction, which corresponds
to an online algorithm satisfying the notion of multicalibration from Hébert-Johnson et al. [2018]. The
second is variance and higher moment prediction, which corresponds to an online algorithm satisfying
the notion of mean-conditioned moment multicalibration from Jung et al. [2020]. Finally, we define a
new notion of prediction interval multivalidity, and give an algorithm for finding prediction intervals
which satisfy it. Because our algorithms handle adversarially chosen examples, they can equally well
be used to predict statistics of the residuals of arbitrary point prediction methods, giving rise to very
general techniques for quantifying the uncertainty of predictions of black box algorithms, even in an
online adversarial setting. When instantiated for prediction intervals, this solves a similar problem as
conformal prediction, but in an adversarial environment and with multivalidity guarantees stronger than
simple marginal coverage guarantees.

http://arxiv.org/abs/2101.01739v1

Contents

1 Introduction 1
1.1 Our Results and Techniques . 2
1.2 Additional Related Work . 5

2 Preliminaries 6
2.1 Notation . 6
2.2 Online Prediction . 6

2.2.1 Types of Predictions, and Notions of Validity . 7
2.3 Zero-sum Games . 10

3 Online Mean Multicalibration 11
3.1 An Outline of Our Approach . 11
3.2 An Existential Derivation of the Algorithm and Multicalibration Bounds 12
3.3 Deriving an Efficient Algorithm via Equilibrium Computation 17

4 Online Moment Multicalibration 19
4.1 An Outline of Our Approach . 19
4.2 An Existential Derivation of the Algorithm and Moment Multicalibration Bounds 20
4.3 Deriving an Efficient Algorithm via Equilibrium Computation 26

5 Online Multivalid Marginal Coverage 31
5.1 An Outline of Our Approach . 31
5.2 An Existential Derivation of the Algorithm and Multicoverage Bounds 31
5.3 Deriving an Efficient Algorithm via Equilibrium Computation 36

6 Augmenting an Existing Learning Algorithm 40

A Batch Prediction 43
A.1 Preliminaries . 43
A.2 Online to Batch Conversion . 45

A.2.1 Mean prediction . 46
A.2.2 (Mean, Moment) Prediction . 47
A.2.3 Interval Prediction . 52

B Unboundedly Many Groups, Bounded Group Membership 53

C Mean Conditioned Moment Multicalibrators Can Randomize Over Small Support 57

D Proofs from Section 3 58

E Proofs from Section 4 60

F Proofs from Section 5 65

1 Introduction

Consider the problem of making predictions about the prognoses of patients with an infectious disease at
the early stages of a pandemic. To be able to guide the allocation of medical interventions, we may want
to predict, from each patient’s observable features x, things such as the expected severity of the disease y
in two days’ time. And since we will be using these predictions to allocate scarce resources, we will want
to be able to quantify the uncertainty of our predictions: perhaps by providing estimates of the variance of
outcomes, or perhaps by providing prediction intervals at a desired level of confidence.

This is an online problem because we must start making predictions before we have much data, and
the predictions are needed immediately upon the arrival of a patient. It is also a problem in which the
environment is rapidly changing: the distribution of patients changes as the disease spreads through different
populations, and the conditional distribution on outcomes given features changes as we learn how to better
treat the disease.

How can we approach this problem? The conformal prediction literature [Shafer and Vovk, 2008] aims to
equip arbitrary regression and classification procedures for making point predictions with prediction intervals
that contain the true label with (say) 95% probability. But for the application in our example, conformal
prediction has two well-known shortcomings:

Marginal Guarantees: Conformal prediction only gives marginal prediction intervals: in other words, it
provides guarantees that (e.g.) 95% of the prediction intervals produced over a sequence of predictions cover
their labels. But these guarantees are averages over what are typically large, heterogeneous populations,
and therefore provide little guidance for making decisions about individuals. For example, it would be
entirely consistent with the guarantee of a 95% marginal prediction interval [ℓt, ut] if for individuals from
some demographic group G making up less than 5% of the population, their labels yt fall outside of [ℓt, ut]
100% of the time.1 One could run many parallel algorithms for different demographic groups Gi, but then
there would be no clear way to interpret the many different predictions one would receive for an individual
belonging to several demographic groups at once (x ∈ Gi for multiple groups Gi); for example, prediction
intervals corresponding to different demographic groups could be disjoint. To see that marginal guarantees
on their own are extremely weak, consider a batch (distributional) setting in which labelled points are drawn
from a fixed distribution D: (x, y) ∼ D. Then we could provide valid 95% marginal prediction intervals by
entirely ignoring the features and giving a fixed prediction interval of [ℓ, u] for every point, where [ℓ, u] is
such that Pr(x,y)∼D[y 6∈ [ℓ, u]] = 0.05.

Distributional Assumptions: The conformal prediction literature almost exclusively assumes that the
data is drawn from an exchangeable distribution (for example, i.i.d. data satisfies this property), and does
not offer any guarantees when the data can quickly change in unanticipated or adversarial ways.

In this paper we give techniques for dealing with both of these problems (and similar issues that arise
for the problem of predicting label means and higher moments) by drawing on ideas from the literature
on calibration Dawid [1982], Foster and Vohra [1998]. Calibration is similar to conformal prediction in
that it aims to give point estimates in nonparametric settings that satisfy marginal rather than conditional
guarantees (i.e. that agree with the true distribution as averaged over the data rather than conditioned on the
features of a particular data point). But calibration is concerned with predicting label expectations, rather
than giving prediction intervals. Informally speaking, calibrated predictions satisfy that when averaging over
all rounds over which the prediction was (approximately) p, the realized labels average to (approximately)
p, for all p. Note that in a distributional setting, if a learner truly was predicting the conditional label
expectations conditional on features px = E(x,y)∼D[y|x], then the forecasts would be calibrated — but just
as with marginal prediction intervals, calibration on its own is a very weak condition in a distributional
setting. For example, a learner could achieve calibration simply by making a single, constant prediction of

1Even more insidious reversals, albeit not in the context of conformal prediction, have been observed on real world data—see
the Wikipedia entry for Simpson’s paradox (https://en.wikipedia.org/wiki/Simpson%27s_paradox) for several examples.

1

https://en.wikipedia.org/wiki/Simpson%27s_paradox

p = E(x,y)∼D[y] for every point, and so calibrated predictions need not convey much information. Thus,
just like the conformal prediction literature, the calibration literature is primarily focused on the online
prediction setting. But from early on, the calibration literature has focused on the adversarial setting in
which no distributional assumptions need to be made at all Foster and Vohra [1998], Fudenberg and Levine
[1999a], Sandroni et al. [2003].

Calibration also suffers from the weaknesses that come with marginal guarantees: namely that calibrated
predictions may have little to do with the conditional label expectations for members of structured sub-
populations. Hébert-Johnson et al. [2018] proposed an elegant solution to this problem in the batch setting,
when predicting expectations, which they termed “multicalibration”. Informally speaking, a guarantee
of multicalibration is parameterized by a large collection of potentially intersecting subsets of the feature
space G (corresponding e.g. to demographic groups or other categories relevant for the prediction task at
hand). Multicalibration asks for predictions that are not just calibrated over the full distribution P , but
are also simultaneously calibrated over all of the induced distributions that are obtained by conditioning on
membership in a set G ∈ G. Moreover, Hébert-Johnson et al. [2018] showed how to obtain multicalibrated
estimators in the batch, distributional setting with sample complexity that depends only logarithmically on
|G|. Jung et al. [2020] showed how to extend the notion of (multi)calibration from expectations to variances
and other higher moments — and derived algorithms for obtaining such estimates in the batch setting.

1.1 Our Results and Techniques

In this paper, we give a general method for obtaining different kinds of “multivalid” predictions in an
online, adversarial setting. This includes mean estimates that satisfy the notion of mean multicalibration
from Hébert-Johnson et al. [2018], moment estimates that satisfy the notion of mean-conditioned moment
multicalibration from Jung et al. [2020], and prediction intervals which satisfy a new notion of multivalidity,
defined in this paper. The latter asks for tight marginal prediction intervals, which are simultaneously valid
over each demographic group G ∈ G. We give a formal definition in Section 2 (and review the definitions of
mean and moment multicalibration), but informally, multivalidity for prediction intervals asks, given a target
coverage probability 1− δ, that for each group G ∈ G there be roughly a 1− δ-fraction of points (xt, yt) with
xt ∈ G whose label is contained within the predicted interval (yt ∈ [ℓt, ut)). In fact, we ask for the stronger
calibration-like guarantee, that these marginal coverage guarantees hold even conditional on the prediction
interval, which (among other things) rules out the trivial solution to marginal coverage that predicts the
full interval with probability 1 − δ and an empty interval with probability δ. Because our algorithms
handle adversarially selected examples, they can equally well be used to augment arbitrary point prediction
procedures which give predictions ft(xt) = ŷt, independently of how they are trained: We can simply feed our
algorithms for multivalid predictions with the residuals ŷt − yt. For example, we can get variance estimates
or prediction intervals for the residuals to endow the predictions of ft with uncertainty estimates. Endowing
point predictors with prediction intervals in this way provides an alternative to conformal prediction that
gives stronger-than-marginal (multivalid) guarantees, under much weaker assumptions (adversarially chosen
examples). In general, for each of our techniques, if we instantiate them with the trivial group structure (i.e.
one group, containing all points), then we recover standard (or slightly stronger) marginal guarantees: i.e.
simple calibrated predictions and simple marginal prediction intervals.2 But as we enrich our collection of
sets G, our guarantees become correspondingly stronger.

The General Strategy We derive our online algorithms using a general strategy that dates back to
Fudenberg and Levine [1999a], who used it to give online algorithms for the problem of simple calibration in
a setting without features (see also the argument by Sergiu Hart, communicated in Foster and Vohra [1998]
and more recently elaborated on in Hart [2020]). In our context, the general strategy proceeds as follows:

2In fact, even with the trivial group structure, our guarantees (with appropriately set parameters) remain stronger than
marginal coverage. This is because our prediction intervals remain valid even conditioning on the prediction that we made. For
example, a prediction interval [ℓ, u) is valid not just as averaged over all rounds t, but also as averaged over all rounds t for
which we made that specific prediction: t : [ℓt, ut) = [ℓ, u).

2

1. Define a surrogate loss function, such that if the surrogate loss is small at the end of T rounds, then
the learner’s predictions satisfy our chosen notion of multivalidity over the empirical distribution of
the history of the interaction.

2. Argue that if at each round t, the adversary’s chosen distribution over labelled examples were known to
the learner, then there would be some prediction that the learner could make that would guarantee that
the expected increase in the surrogate loss function at that round would be small. This step is often
straightforward, because once we fix a known data distribution D, “true distributional quantities” like
conditional label expectations, conditional label variances, conditional label quantiles, etc, generally
satisfy our corresponding multivalidity desideratum by design.

3. Appeal to the minimax theorem to conclude that there must therefore exist a randomized prediction
strategy for the learner that guarantees that the expected increase in the surrogate loss function is
small for any choice of the adversary.

On its own, carrying out this strategy for a particular notion of multivalidity proves the existence of an
algorithm that can obtain the appropriate notion of multivalidity against an adversary; but turning it into
an actual (and efficient) algorithm requires the ability to compute at each round the equilibrium strategy
whose existence is shown in Step 3 above.

We instantiate this general strategy in Section 3 for the case of mean multicalibration, which also serves
as a template for our derivation and analysis of algorithms for moment multicalibration in Section 4 and
prediction interval multivalidity in Section 5. The framework of our analysis is the same in each case, but
the details differ: to carry out Step 2, we must bound the value of a different game, and to carry out Step 3,
we must solve for the equilibrium of a different game. In each case, we obtain efficient online algorithms for
obtaining high probability α-approximate multivalidity bounds (of different flavors), with α scaling roughly
as α ≈

√

log |G|/T , over interactions of length T — but see Sections 3.2, 4.2, and 5.2 for exact theorem
statements. In all cases, our algorithms have per-round runtime that is linear in |G|, and polynomial in the
other parameters of the problem. In fact, both our run-time and our convergence bounds can be improved
if each individual appears in only a bounded number of groups. Our algorithms can at each step t be
implemented in time linear in the number of groups G ∈ G that contain the current example xt. This is
linear in |G| in the worst case, but can be substantially smaller. Similarly, we show in Appendix B that if each
individual appears in at most d groups, then the log |G| term in our convergence bounds can be replaced with
log(d), which gives informative bounds even if G is infinitely large. Without assumptions of this sort, running
time that is polynomial in |G| (rather than logarithmic in |G|, as our convergence bounds are) is necessary
in the worst case, even for mean multicalibration in the offline setting, as shown by Hébert-Johnson et al.
[2018].

Adapting the original approach of Fudenberg and Levine [1999a] runs into several obstacles, stemming
from the fact that the action space of both the learner and the adversary and the number of constraints
defining our calibration desideratum are both much larger in our setting. Consider the case of mean
prediction — in which the goal is to obtain calibrated predictions. In the featureless setting studied by
Fudenberg and Levine [1999a], the action space for the learner corresponds to a discretization of the real
unit interval [0, 1], and the action space of the adversary is binary. In our setting, in which data points are
endowed with features from a large feature space X , the learner’s action space corresponds to the set of all
functions mapping X to [0, 1], and the adversary’s action space corresponds to the set of all labelled examples
X × [0, 1]. Similarly, for simple calibration, the number of constraints is equal to the chosen discretization
granularity of the unit interval [0, 1], whereas in our case, the number of constraints also grows linearly with
|G|, the number of groups over which we want to be able to promise guarantees.

Convergence Rates and Sample Complexity The surrogate loss function used by Fudenberg and Levine
[1999a] bounds the ℓ2 calibration error — i.e. the average squared violation of all of the constraints used to
define calibration. Because all of the notions of multivalidity that we consider consist of a set of constraints
of size scaling linearly with |G|, if we were to attempt to bound the ℓ2 violation of our multivalidity con-
straints, we would necessarily obtain convergence bounds that scale polynomially with |G|. Instead we use

3

a different surrogate loss function — a sign-symmetrized version of an exponential soft-max — that can be
used to bound the ℓ∞ violation of our multivalidity constraints, and allows us to obtain bounds that scale
only logarithmically with |G|. For moment multicalibration, we face the further complication of needing
to define a potential function bounding a linear surrogate for what is ultimately a nonlinear measure of
distributional fidelity. An outline of the specific new ideas needed here can be found in Section 4.1. For
interval multivalidity, we face the further complication that tight prediction intervals need not exist even in
the distributional setting, for worst-case distributions. An outline of the new ideas we need to overcome this
can be found in Section 5.1. Finally, we note that ℓ∞ violation is consistent with how the existing literature
on batch multicalibration [Hébert-Johnson et al., 2018] has quantified approximation guarantees. In fact, by
using standard online-to-offline reductions, we are able to derive new, optimal sample complexity bounds for
mean and moment multicalibration for the batch distributional setting in Appendix A that improve on the
sample complexity bounds given in Hébert-Johnson et al. [2018], Jung et al. [2020]. This is because when
applied to the batch setting, our online algorithms take only a single pass through the data, and avoid issues
related to adaptive data re-use that complicated previous algorithms in the batch setting.

Computation of Equilibrium Strategies To compute equilibria of the large action space games we
define, we do not attempt to directly compute or represent the function that we use at each round t to map
features to labels. Instead, we represent this function implicitly by “lazily” solving a smaller equilibrium
computation problem only after we have observed the adversary’s choice of feature vector x (but before
we have observed the label y) to compute a distribution over predictions. We show in each of our three
settings that this computation is tractable. In the case of mean multicalibration, we are able to analytically
derive a simple algorithm for sampling from this equilibrium strategy, presented in Section 3.3. For mean-
conditioned kth moment multicalibration we show that the equilibrium can be found using a linear program
with polynomially many variables and 2k+1 constraints. For the most interesting cases, k is a small constant
(e.g. for variance, k = 2, and so the linear program has only 5 constraints). Even when k is large, we show
that this linear program has a separation oracle that runs in time O(k), and so it can be solved efficiently via
the Ellipsoid algorithm. We show in Appendix C that there always exists an equilibrium for the learner with
support over at most k+1 many predictions, limiting the extent to which it needs to deploy randomization.
Finally, for prediction interval multivalidity, we show in Section 5.3 that we can express the equilibrium
computation problem as a linear program. Although the linear program is naively defined by infinitely many
constraints, we show that it can ultimately be represented with only finitely many constraints, and that it
has an efficient separation oracle, so can be solved in polynomial time using the Ellipsoid algorithm.

Advantages of Conformal Prediction We have thus far emphasized the advantages that our techniques
have over conformal prediction — but we also want to highlight the strengths of conformal prediction relative
to our work, and directions for future improvement. Conformal prediction aims to obtain marginal coverage
with respect to some (unknown) underlying distribution. As a result of the distributional assumption, it
is able to obtain coverage (over the randomness of the distribution) at a rate of coverage 1 − δ + O(1/T)
[Lei et al., 2018]. In contrast, in our setting, there is no underlying distribution. We therefore give guarantees
on empirical coverage — i.e the fraction of labels that our predicted intervals have covered in the realized
sequence of examples. As a result, our coverage bounds necessarily have error terms that tend to 0 at a rate
of O(1/

√
T), over sequences of length T . We note that conformal prediction methods also obtain empirical

coverage on the order of 1 − δ ± O(1/
√
T), as our methods do [Lei et al., 2018]. Conformal prediction

methods naturally give one sided coverage error on the distribution (i.e. the coverage probability is always
≥ 1 − δ), whereas as we present our bounds, our empirical coverage has two sided error. We note that
there is a simple but inelegant way to use our techniques to obtain one sided coverage: run our algorithms
with coverage parameter 1 − δ′ = 1 − δ/2, and predict trivial coverage intervals until our error bounds
are ≤ δ/23. Techniques from the conformal prediction literature also can be applied to very general label
domains Y, and can be used to produce very general kinds of prediction sets. In our paper, we restrict
attention to real-valued labels Y = [0, 1] and prediction intervals. We do not believe that there are any

3Restarting periodically with δ′ closer to δ if we want to asymptotically converge to exact coverage

4

fundamental obstacles to generalizing our techniques to other label domains and prediction sets, and this
is an interesting direction for future work. Finally, the conformal prediction literature has developed a
number of very simple, practical techniques. In this paper, we give polynomial time algorithms, of varying
complexity. Our algorithm for mean multicalibration in Section 3 is very simple to implement, but our
algorithm for multivalid interval prediction in Section 5 requires solving a linear program with a separation
oracle. Another important direction for future work is reducing the complexity of our techniques, and doing
empirical evaluations.

1.2 Additional Related Work

Work on calibrated mean prediction dates back to Dawid [1982]. Foster and Vohra [1998] were the first
to show that in the online setting without features, it is possible to obtain asymptotic calibration even
against an adversary. Once this initial result was proven, a number of proofs of it were given using different
techniques, including Blackwell’s approachability theorem [Foster, 1999] and a non-constructive minimax
argument (originally communicated verbally by Sergiu Hart, appearing first in Foster and Vohra [1998], and
more recently formalized in Hart [2020]). This argument was “non-constructive” because it was a minimax
argument over the entire algorithm design space. Fudenberg and Levine [1999a] gave a more tractable per-
round minimax argument, which we adapt to our work — although they were satisfied with an existential
argument, and do not derive a concrete algorithm. The algorithm we give for online multicalibration is
similar to the algorithm given by Foster and Hart [2019] for the simple calibration problem in the special
case of a featureless setting and the trivial group structure. Lehrer [2001], Sandroni et al. [2003] (and in a
slightly different context, Fudenberg and Levine [1999b]) generalized this literature and showed that it was
possible to extend these ideas in order to satisfy dramatically more demanding notions of calibration (e.g.
calibration on all computable subsequences of rounds). This line of work primarily gives limit results via
non-constructive arguments without establishing rates. There are two notable exceptions. Foster et al. [2011]

give a non-constructive argument establishing that it is possible to obtain mean calibration loss Õ(
√

logK
T)

with respect to a set of K “checking rules” which define subsequences over which the algorithm must be
calibrated. These results are derived in a setting without features x, but we believe their techniques could

be used to establish the same convergence bounds that we do, for mean multicalibration: α = Õ(
√

log |G|
T).

Foster and Kakade [2006] give an efficient algorithm based on ridge-regression which can be used to achieve

what we call mean consistency4 on a collection of sets G with error rates converging as α = Õ(
√

|G|
T).

Their algorithm is deterministic, which in particular means it cannot be used to achieve the standard notion
of calibration, which can only be achieved by randomized algorithms in adversarial environments [Oakes,
1985]. It can be used to achieve what is called “weak calibration” by Kakade and Foster [2004] and “smooth
calibration” by Foster and Hart [2018] — a relaxation that can be obtained by deterministic algorithms.
In comparison, our algorithm for mean multicalibration achieves the standard notion of calibration with
the optimal sample complexity dependence on log |G|, while simultaneously being explicitly defined and
computationally efficient.

There has also been a recent resurgence of interest in calibration in the computer science community,
in part motivated by fairness concerns [Kleinberg et al., 2016, Chouldechova, 2017, Pleiss et al., 2017]. It
is from this literature that the original proposal for multicalibration arose [Hébert-Johnson et al., 2018],
as well as the related notion of multiaccuracy [Hébert-Johnson et al., 2018, Kim et al., 2019]. Shabat et al.
[2020] prove uniform convergence bounds for multicalibrated predictors, Dwork et al. [2019] draw connections
between multicalibrated predictors and notions of fair rankings, and Dwork et al. [2020] define a notion of
outcome indistinguishability related to distribution testing, and show close connections to multicalibration.
Jung et al. [2020] extend the notion of mean calibration to variances and higher moments, and give efficient
algorithms for learning moment multicalibrated predictors. Jung et al. [2020] also show that their moment
predictors can be used to derive conservative multivalid prediction intervals, using Chebyshev’s inequality
and generalizations to higher moments. In general, however, these moment-based inequalities give intervals

4This is also what is known as multi-accuracy in [Hébert-Johnson et al., 2018, Kim et al., 2019].

5

that may cover their label much more frequently than the target 1 − δ coverage probability, and cannot
achieve the kinds of tight multicoverage guarantees that we obtain in this work. All of this work operates
in the batch, distributional setting. Recently, Qiao and Valiant [2020] proved lower bounds for simple mean
calibration in the online setting, showing that no algorithm can obtain rates better than O(T−0.472) against
an adversary. At first blush, our upper bounds appear to contradict these lower bounds — but they do not,
because we study convergence in the ℓ∞ sense, whereas they study it in the ℓ1 sense.

Conformal prediction is motivated similarly to calibration, but aims to produce marginal prediction
intervals rather than mean estimates — see Shafer and Vovk [2008] for an overview. The problems that we
highlight — namely, that marginal guarantees are weak, and that this literature relies on strong distributional
assumptions — have been noted before. For example, Foygel Barber et al. [2020] prove that even in the
distributional setting, conditional prediction intervals are impossible to provide, and aim instead for a goal
that is similar to ours: providing marginal prediction intervals that are valid as averaged over a large number
of subgroups G. They take a conservative approach, by using a holdout set to estimate empirical prediction
intervals separately for each group, and then taking the union of all of these prediction intervals over the
demographic groups of a new individual. The result is that their prediction intervals — unlike ours — do
not become tight, even in the limit. Chernozhukov et al. [2018] consider the problem of conformal prediction
for time series data, for which the exchangeability assumption may not hold. They show that if the data
comes from a rapidly mixing process (so that, in particular, points that are well separated in the sequence
are approximately independent) then it is still possible to obtain approximate marginal coverage guarantees.
Tibshirani et al. [2019] consider the problem of conformal prediction under covariate shift, in which the
marginal distribution on features X differs between the training and test distributions, but the conditional
distribution on labels Y|X remains the same. They show how to adapt techniques from conformal prediction
when the likelihood ratio between the training and test distribution is known. In the distributional setting,
Gupta et al. [2020] have proven close relationships between calibration, confidence intervals, and prediction
intervals.

Finally, the notion of multicalibration is related to subgroup fairness notions [Kearns et al., 2018, 2019,
Kim et al., 2018] that ask for statistical “fairness” constraints of various sorts (beyond calibration) to hold
across all subgroups defined by some rich class G. See Chouldechova and Roth [2020] for a survey.

2 Preliminaries

2.1 Notation

We write X to denote a feature domain and Y = [0, 1] to denote a label domain. We write G ⊆ 2X to
denote a collection of subsets of X . Given any x ∈ X , we write G(x) for the set of groups that contain x, i.e.
G(x) = {G ∈ G : x ∈ G}. Given an integer T we write [T] to denote the set of integers [T] = {1, . . . , T }. In
general, we denote our random variables with tildes (e.g. X̃ , Ỹ) to distinguish them from their realizations
(denoted e.g. X , Y). Given a finite set A, we write ∆A for the probability simplex over the elements in A.

2.2 Online Prediction

Online (contextual) prediction proceeds in rounds that we index by t ∈ [T], for a given finite horizon T . In
each round, an interaction between a learner and an adversary proceeds as follows. In each round t:

1. The adversary chooses a joint distribution over feature vectors xt ∈ X and labels yt ∈ Y. The learner
receives xt (a realized feature vector), but no information about yt is revealed.

2. The learner chooses a distribution over predictions pt ∈ P . (We will consider several different kinds of
predictions in this paper, and so are agnostic to the domain of the prediction for now — we use P as
a generic domain).

3. The learner observes yt (a realized label).

6

For an index s ∈ [T], we denote by πs the transcript of the interaction in rounds t = 1 through s:
πs = ((xt, pt, yt))

s
t=1. We write Π∗ as the domain of all transcripts.

Formally, the adversary is modelled as a probabilistic mapping Adv : Π∗ → ∆(X × Y) from transcripts
to distributions over labelled data points, and the learner is modeled as a mapping Learn : Π∗ → (X →
∆P) from transcripts to a probabilistic mapping from feature vectors to distributions over predictions. An
adversary may be either unconstrained (free to play any point in ∆(X × Y)) or constrained to choose from
some specified subset of ∆(X ×Y). Fixing both a learner and an adversary induces a probability distribution
over transcripts. Our goal is to derive particular learning algorithms, and to prove that various kinds of
bounds hold either in expectation, or with high probability over the randomness of the transcript, in the
worst case over transcript distributions, where we quantify over all possible adversaries.

Given a transcript πT , a group G ∈ G and a set of rounds S ⊆ [T], we write

GS = {t ∈ S : xt ∈ G}.

In words, this is the set of rounds in S in which the realized feature vectors in the transcript belonged to G.
When it is clear from context, we sometimes overload notation, and for a group G ∈ G, and a period s ≤ T ,
write Gs to denote the set of data points (indexed by their rounds) in a transcript πs that are members of
the group G:

Gs = {t ∈ [s] : xt ∈ G}.

2.2.1 Types of Predictions, and Notions of Validity

We consider three types of predictions in this paper: Mean predictions, pairs of mean and higher moment
predictions (e.g. variance), and prediction intervals.

Mean Predictions For mean predictions, the prediction domain will be the unit interval: Pmean = [0, 1].
The learner will select pt ≡ µt ∈ Pmean in each round t, with the goal of predicting the conditional label
expectation E[yt|xt]. For any subset of days S ⊆ [T], we write

µ(S) =
1

|S|
∑

t∈S
yt, µ(S) =

1

|S|
∑

t∈S
µt

to denote the true label population mean conditional on t ∈ S and the average of our mean estimates
over days t ∈ S, respectively. We will ask for our predictions to satisfy large numbers of mean consistency
constraints: that the conditional label averages be (approximately) equal to conditional prediction averages
over different sets S.

Definition 2.1 (Mean Consistency). Given a transcript πT , we say that the mean predictions {µt}Tt=1 are
α-mean consistent on S ⊆ [T] , if

|µ(S)− µ(S)| ≤ α T

|S| .

Remark 2.1. Note the scaling with both T and |S|. If S = [T], then this condition simply asks for the true
label mean and the average prediction to be within α of one another, as averaged over the entire transcript.

For smaller sets, the allowable error grows with the inverse of |S|
T — i.e. the measure of S within the uniform

distribution over the transcript. Even in a distributional setting, estimates inevitably degrade with the size of
the set we are conditioning on, and our formulation corresponds exactly to how mean consistency is defined
in Jung et al. [2020]. Our definitions are also consistent with how the literature on online calibration quan-
tifies calibration error with respect to subsequences. Hébert-Johnson et al. [2018] handle this issue slightly
differently, by asking for uniform bounds, but in the end proving bounds only for sets S that have sufficient
mass γ in the underlying probability distribution. In the batch setting, our formulation can recover bounds
that are strictly stronger than those of Hébert-Johnson et al. [2018] after a reparametrization α← γα.

7

Next, we define multicalibration in our setting. Informally, a sequence of mean predictions is calibrated
if the average realized label yt on all days for which µt is (roughly) p is (roughly) p. The need to consider
days in which the prediction was roughly p arises from the fact that a learning algorithm will not necessarily
ever make the same prediction twice. More generally, by bucketing predictions at a fixed granularity, we can
guarantee that the average number of predictions within each bucket grows linearly with T .

To collect mean predictions µt that are approximately equal to p for each p, we group real-valued pre-
dictions into n buckets of width 1

n . Here n is a parameter controlling the coarseness of our calibration

guarantee. For any coarseness parameter n and bucket index i ∈ [n − 1], we write Bn(i) =
[
i−1
n , in

)
and

Bn(n) =
[
n−1
n , 1

]
so that these buckets partition the unit interval. Conversely, given a µ ∈ [0, 1], define

B−1
n (µ) ∈ [n] in the obvious way i.e. B−1

n (µ) = i where i is such that µ ∈ Bn(i). When clear from the
context, we elide the subscript n and write B(i) and B−1(µ).

For any S ⊆ [T] and i ∈ [n], we write

S(i) = {t ∈ S : µt ∈ Bn(i)} .

In words, S(i) corresponds to the subset of rounds in S where the mean prediction falls in the ith bucket.
(Simple) calibration asks for the sequence of predictions to be α-mean-consistent on all sets [T](i) for

i ∈ [n] — i.e. for the subset of rounds in which the prediction fell into the ith bucket, for all i. Multicalibration
asks for the predictions to be calibrated not just on the overall sequence, but also simultaneously on all the
subsequences corresponding to each group G ∈ G. In our notation, it asks for mean consistency on each set
G(i), for every group G ∈ G and i ∈ [n].

Definition 2.2 (Mean-Multicalibration). Given a transcript πT , we say that the mean predictions {µt}Tt=1

are (α, n)-mean multicalibrated with respect to G if we have that for every G ∈ G and i ∈ [n], the mean-
predictions are α-mean consistent on GT (i):

|µ(GT (i))− µ(GT (i))| ≤ α
T

|GT (i)|
.

Remark 2.2. Note that we define mean multicalibration (and our other notions of multivalidity, shortly)
to have two parameters: n, which controls the coarseness of the guarantee, and α, which controls the error
of the guarantee. These parameters can be set independently — in the sense that we will be able to achieve
(α, n) mean multicalibration for any pair (α, n) — but they should be interpreted together. For example, to
avoid the trivial solution in which the learner simply selects uniformly at random at each iteration (thereby
guaranteeing that |GT (i)| ≤ T/n for all G, i), we should set α≪ 1

n .

(Mean, Moment) Predictions In this case, the prediction domain is the product of the unit interval
with itself: P(mean,moment) = [0, 1] × [0, 1]. In each round t, the learner selects pt = (µt,m

k
t) with the

goal of matching E[yt|xt] and E[(yt −E[yt|xt])k|xt] respectively — the conditional label expectation, and its
conditional kth central moment. For simplicity, we assume throughout that k is even, so the kth moment
has nonnegative range, but there is no obstacle other than notation to handling odd moments as well.

We group continuous predictions (µ,mk) into a finite set of discrete buckets—again, defined with respect
to a pair of discretization parameters n and n′. Recall our bucketing notation for mean prediction: for any
i ∈ [n− 1], we wrote Bn(i) =

[
i−1
n , in

)
and Bn(n) =

[
n−1
n , 1

]
. Here we generalize this notation to pairs, and

write for any i ∈ [n] and j ∈ [n′]:

Bn,n′(i, j) = {(a, b) ∈ [0, 1]× [0, 1] : a ∈ Bn(i), b ∈ Bn′(j)} .

If n = n′, we will write Bn(i, j). Once again, when n and n′ are clear from the context, we may elide the
subscript (n, n′) entirely.

Analogously to our notation for mean prediction, for any S ⊆ [T] we write

mk(S) =
1

|S|
∑

t∈S
(yt − µ(S))k, mk(S) =

1

|S|
∑

t∈S
mk
t

8

for the empirical kth central moment of the label distribution on the subsequence S, and for the average
of the moment prediction on S, respectively. Just as with mean consistency, moment consistency asks that
these two quantities be approximately equal on a set S.

Definition 2.3 (Moment Consistency). Given a transcript πT , we say that moment predictions {mk
t }Tt=1

are α-moment consistent on set S ⊆ [T] if

|mk(S)−mk(S)| ≤ α T

|S| .

It is not sensible to ask for moment consistency on arbitrary sets S, because higher central moments are
not linear, and so even true conditional label moments would not satisfy moment consistency conditions on
arbitrary sets S. True conditional label moments do satisfy moment consistency on sets of points x that
share the same label mean, however, and so this is what we will ask of our predictions as well (See Jung et al.
[2020] for an extensive discussion of this condition and its applications). To that end, for any S ⊆ [T] and
i ∈ [n], j ∈ [n′], we write

S(i, j) =
{
t ∈ S : (µt,m

k
t) ∈ Bn,n′(i, j)

}
.

In words, S(i, j) corresponds to the subset of rounds in S in which our predicted mean and moment fall into
the bucket Bn,n′(i, j).

Definition 2.4 (Mean-Conditioned Moment Multicalibration). Given a transcript πT , we say that the
(mean, moment) predictions {(µt,mk

t)}Tt=1 are (α, β, n, n′)-mean-conditioned moment multicalibrated with
respect to G, if for every i ∈ [n], j ∈ [n′] and G ∈ G, we have that the mean predictions are α-mean consistent
on GT (i, j) and the moment predictions are β-moment consistent on GT (i, j):

|µ(GT (i, j))− µ(GT (i, j))| ≤ α
T

|GT (i, j)|
,

|mk(GT (i, j))−mk(GT (i, j))| ≤ β
T

|GT (i, j)|
.

Interval Predictions In this case, the prediction domain is the set of ordered pairs of endpoints in the
unit interval: Pinterval = {(ℓ, u) : ℓ ≤ u, u, ℓ ∈ [0, 1]}. Given a pair (ℓ, u) ∈ Pinterval, we say that it covers a
label y ∈ [0, 1] if y falls between ℓ and u, which we write as Cover((ℓ, u), y) = 1. To avoid issues of “double
counting”, we define coverage in the same manner as we defined our bucketing, using intervals that are closed
on the left but open on the right, with the exception of u = 1:

Cover((ℓ, u), y) =

{

1(y ∈ [ℓ, u)) if u < 1,

1(y ∈ [ℓ, u]) if u = 1.

In each round t, we will predict an interval pt = (ℓt, ut) with the goal of achieving E[Cover((ℓt, ut), y)|xt] =
1 − δ for some target coverage probability 1 − δ ∈ [0, 1]. We again bucket our coverage intervals using a
discretization parameter n, using the same notation as for moment predictions.

For any S ⊆ [T] and i ≤ j ∈ [n], we write

S(i, j) =
{
t ∈ S : (ℓt, ut) ∈ Bn(i, j)

}
.

In words, S(i, j) corresponds to the subset of rounds in S in which our predicted interval’s endpoints are in
buckets i and j, respectively. We can now define multivalidity analogously to how we defined multicalibration.

For any S ⊆ [T], we write

H(S) =
1

|S|
∑

t∈S
Cover((ℓt, ut), yt).

9

Definition 2.5. We say that interval predictions {(ℓt, ut)}Tt=1 are α-consistent on set S with respect to
failure probability δ ∈ (0, 1), if the following holds:

|H(S)− (1 − δ)| ≤ α T

|S| .

Definition 2.6. Given a transcript πT , we say that the interval predictions are (α, n)-multivalid with respect
to δ and G, if for every i ≤ j ∈ [n] and G ∈ G, we have that the interval predictions are α-consistent on
GT (i, j) with respect to coverage probability 1− δ:

|H(GT (i, j))− (1 − δ)| ≤ α T

|GT (i, j)|
.

2.3 Zero-sum Games

Our analysis will hinge on properties of zero-sum games, and in particular on the minimax theorem.

Definition 2.7. A zero-sum game is defined by:

1. A minimization player with a convex and compact strategy space Q1 ⊆ R
d1 for some d1 ∈ (0,∞).

2. A maximization player with a convex and compact strategy space Q2 ⊆ R
d2 for some d2 ∈ (0,∞).

3. An objective function u : Q1×Q2 → R, concave in its first argument and convex in its second argument.

Zero-sum games are often defined by endowing each player with a finite set of pure strategies X1, X2.
The convex compact strategy sets Q1 and Q2 are then formed by allowing players to randomize over their
pure strategies and taking Q1 = ∆X1, Q2 = ∆X2 to be the probability simplices over the pure strategies of
each player. An objective function u : X1 ×X2 → R can be linearly extended to Q1 and Q2 in the natural
way (i.e. by taking expectations over the randomized strategies of each player) – i.e. for any Q1 ∈ Q1 and
Q2 ∈ Q2, we write u(Q1, Q2) = Ex1∼Q1,x2∼Q2

[u(x1, x2)].
In a zero-sum game, the minimization player chooses some action Q1 ∈ Q1 and the maximization player

chooses some action Q2 ∈ Q2, resulting in objective value u(Q1, Q2). The goal of the minimization player
is to minimize the objective value, and the goal of the maximization player is to maximize it. The key
property of zero-sum games, first proved by von Neumann for the case of games with finite sets of pure
strategies and generalized to general zero-sum games of the form considered in Definition 2.7 by Sion, is that
the order of play does not affect the objective value that each player can guarantee. This is captured in the
minimax theorem, which says that whether the minimization player first gets to observe the strategy of the
maximization player, and then best respond, or whether she must first announce her strategy and allow the
maximization player to best respond, she is able to guarantee herself the same value.

Theorem 2.1 (Sion’s Minimax Theorem). For any zero-sum game (Q1,Q2, u):

min
Q1∈Q1

max
Q2∈Q2

u(Q1, Q2) = max
Q2∈Q2

min
Q1∈Q1

u(Q1, Q2).

The minimax theorem justifies the following definitions:

Definition 2.8 (Value, Equilibrium, and Best Response). The value of a zero-sum game (Q1,Q2, u) is the
unique v ∈ R such that

min
Q1∈Q1

max
Q2∈Q2

u(Q1, Q2) = max
Q2∈Q2

min
Q1∈Q1

u(Q1, Q2) = v.

We say that a strategy for the minimization player Q∗
1 ∈ Q1 is a (minimax) equilibrium strategy if it

guarantees that the objective value is at most the value of the game, for any strategy Q2 ∈ Q2 of the
maximization player:

max
Q2∈Q2

u(Q∗
1, Q2) = v.

We say that Q2 is a best response for the maximization player in response to Q∗
1 if it realizes the above

maximum.

10

In our analysis, we will identify the Learner with the minimization player and the Adversary with the
maximization player, and so will denote their strategy spaces as QL and QA respectively.

3 Online Mean Multicalibration

In this section, we show how to obtain mean multicalibrated estimators in an online adversarial setting.
Our derivation also serves as a warm up example of our general technique, which we also instantiate (in
somewhat more involved settings) in Sections 4 and 5 to derive online algorithms for mean-conditioned
moment multicalibrated estimators and for multivalid prediction intervals respectively.

3.1 An Outline of Our Approach

At a high level, the derivation of our algorithm and its proof of correctness proceeds as follows:

1. For each group G ∈ G, i ∈ [n], and transcript πs up to period s, we define an empirical quantity V G,is

(Definition 3.1) which represents the calibration error that our algorithm has incurred with respect to
group G over those of the rounds 1 through s when the ith bucket was predicted. These quantities are
defined so that if for each G and i, |V G,iT | is small, then our algorithm is approximately multicalibrated
with respect to G across T rounds.

The premise of our algorithm will be to greedily make decisions at each round s so as to minimize the
maximum possible increase of these quantities (maxG,i |V G,is+1| −maxG,i |V G,is |), in the worst case over
the choices of the adversary. If we could bound this quantity at every round, then by telescoping, we
would have a bound on maxG,i |V G,iT | at the end of the interaction, and therefore a guarantee of mean
multicalibration.

2. The increase in the maximum value of |V G,is+1| is inconvenient to work with, and so we instead define
a smooth potential function Ls (Definition 3.2) corresponding to a soft-max function which upper
bounds maxG,i |V G,is |. Our design goal instead becomes to upper bound the increase in our potential
function from round to round: ∆s+1 = Ls+1−Ls. We view this as defining a zero-sum game, in which
the learner’s goal is to minimize this increase, and the adversary’s goal is to maximize it.

3. We show that for each fixed distribution that the adversary could employ at each round s + 1, there
is a prediction the learner could employ (if only she knew the adversary’s distribution) that would
guarantee that the increase in potential ∆s+1 is small. Intuitively, this is because if we knew the true
joint distribution over feature label pairs, then we could predict the true conditional expectations,
µs+1 = E[ys+1|xs+1], which would be perfectly calibrated on all groups. Of course, the learner does
not have the luxury of knowing the adversary’s distribution before choosing her own. But this thought
experiment establishes the value of the game, and so we can conclude via the minimax theorem that
there must be some fixed distribution over prediction rules that the learner can play that will guarantee
∆s+1 being small against all actions of the adversary.

4. Step 3 suffices to argue for the existence of an algorithm obtaining multicalibration guarantees (Algo-
rithm 1). However, to actually derive an implementable algorithm we need to find a way to compute
the equilibrium strategy at each round, whose existence was argued in Step 3. A priori, this seems
daunting because the learner’s strategy space consists of all randomized mappings between X and Y,
and the adversary’s strategy space consists of all joint distributions on X × Y. However, we derive
a simple algorithm in Section 3.3 that implements the optimal equilibrium strategy needed to realize
Step 3. Informally, we are able to do so by representing the mapping between X and Y only implicitly,
and delaying all computation until xt has been chosen. We then show that the equilibrium strategy for
the learner has a simple structure and randomizes over only at most 2 predictions. Our final algorithm
(Algorithm 2) simply computes the relevant portion of the equilibrium strategy at each round and then
samples from it.

11

5. To apply the minimax theorem, and to derive a concrete algorithm, we need to restrict our algorithm
to making predictions in [0, 1] that are discretized at units of 1/rn for some r > 1. This parameter
r appears in our final bounds, but neither the runtime of our algorithm nor our convergence rate has
any dependence on r, and so it can be imagined to be arbitrarily small. Taking it to be r = 1/

√
T

causes it to become a low order term in our final bounds.

Finally, in Appendix A, we give a standard online-to-offline conversion to show how to use our Algorithm 2
to solve offline (batch) multicalibration problems. This gives optimal sample complexity bounds for the offline
problem, yielding an improvement over those proven in Hébert-Johnson et al. [2018], Jung et al. [2020]. The
crux of the improvement is that unlike the algorithms given in Hébert-Johnson et al. [2018], Jung et al.
[2020], our algorithm takes only a single pass over the data, and so avoids complications that arise from
data re-use. However, unlike previous batch algorithms which make deterministic predictions, the batch
algorithm that we obtain through this reduction makes randomized predictions.

3.2 An Existential Derivation of the Algorithm and Multicalibration Bounds

We begin by defining notation V G,is for the (unnormalized) portion of the mean calibration error correspond-
ing to each group G ∈ G and bucket i ∈ [n]:

Definition 3.1. Given a transcript πs = ((xt, µt, yt))
s
t=1, we define the mean calibration error for a group

G ∈ G and bucket i ∈ [n] at time s to be:

V G,is (πs) = |Gs(i)| (µ (Gs(i))− µ (Gs(i))) =
s∑

t=1

1[µt ∈ B(i), xt ∈ G] (yt − µt) (1)

When the transcript is clear from context we will sometimes simply write V G,is .

Observe that our definition of mean multicalibration (Definition 2.2) corresponds to asking that |V G,is |
be small for all i, G.

Observation 3.1. Fix a transcript πT . If for all G ∈ G, i ∈ [n], we have that:

∣
∣
∣V

G,i
T

∣
∣
∣ ≤ αT,

then the corresponding sequence of predictions is (α, n)-mean multicalibrated with respect to G.

We next define a surrogate loss function that we can use to bound our calibration error.

Definition 3.2 (Surrogate loss function). Fixing a transcript πs ∈ Π∗ and a parameter η ∈ [0, 12], define a
surrogate calibration loss function at day s as:

Ls(πs) =
∑

G∈G,
i∈[n]

(
exp(ηV G,is) + exp(−ηV G,is)

)
.

When the transcript πs is clear from context, we will sometimes simply write Ls.

We will leave η unspecified for now, and choose it later to optimize our bounds. Observe that this
“soft-max style” function allows us to tightly upper bound our calibration loss:

Observation 3.2. For any transcript πT , and any η ∈ [0, 12], we have that:

max
G∈G,i∈[n]

∣
∣
∣V

G,i
T

∣
∣
∣ ≤ 1

η
ln(LT) ≤ max

G∈G,i∈[n]

∣
∣
∣V

G,i
T

∣
∣
∣+

ln (2|G|n)
η

.

12

Part of our analysis will depend on viewing the transcript as a random variable: in this case, in keeping
with our convention for random variables, we refer to it as π̃. The associated random variables tracking
calibration and surrogate loss are denoted Ṽ and L̃ respectively.

Our goal is to find a strategy for the learner that guarantees that our surrogate loss LT remains small.
Towards this end, we define ∆s+1(πs, xs+1, µs+1) to be the expected increase in the surrogate loss function
in the event that the adversary plays feature vector xs+1 and the learner plays prediction µs+1. Here the
expectation is over the only remaining source of randomness after the conditioning — the distribution over
labels ys+1 (which we observe is determined, once we fix πs and xs+1).

Definition 3.3 (Conditional Change in Surrogate Loss).

∆s+1(πs, xs+1, µs+1) = E
ỹs+1

[

L̃s+1 − Ls
∣
∣
∣xs+1, µs+1, πs

]

.

We begin with a simple bound on ∆s+1(πs, xs+1, µs+1):

Lemma 3.1. For any transcript πs ∈ Π∗, any xs+1 ∈ X , and any µs+1 ∈ Pmean such that µs+1 ∈ B(i) for
some i ∈ [n]:

∆s+1(πs, xs+1, µs+1) ≤ η
(

E
ỹs+1

[ỹs+1]− µs+1

)

Cis(xs+1) + 2η2Ls,

where for each i ∈ [n]:

Cis(xs+1) ≡
∑

G(xs+1)

exp(ηV G,is)− exp(−ηV G,is). (2)

Proof. Fix any transcript πs ∈ Π∗ (which defines Ls), feature vector xs+1 ∈ X , and µs+1 such that µs+1 ∈
B(i) for some i ∈ [n]. By direct calculation, we obtain:

∆s+1(πs, xs+1, µs+1)

= E
ỹs+1




∑

G∈G(xs+1)

exp(ηV G,is)
(
exp(η(ỹs+1 − µs+1))− 1

)
+ exp(−ηV G,is)

(
exp(−η(ỹs+1 − µs+1))− 1

)



 ,

≤ E
ỹs+1




∑

G∈G(xs+1)

exp(ηV G,is)
(
η(ỹs+1 − µs+1) + 2η2

)
+ exp(−ηV G,is)

(
−η(ỹs+1 − µs+1) + 2η2

)



 ,

=η

(

E
ỹs+1

[ỹs+1]− µs+1

)
∑

G∈G(xs+1)

(
exp(ηV G,is)−exp(−ηV G,is)

)
+ 2η2

∑

G∈G(xs+1)

(
exp(ηV G,is) + exp(−ηV G,is)

)
,

≤η
(

E
ỹs+1

[ỹs+1]− µs+1

)



∑

G∈G(xs+1)

exp(ηV G,is)− exp(−ηV G,is)



+ 2η2Ls,

=η

(

E
ỹs+1

[ỹs+1]− µs+1

)

Cis(xs+1) + 2η2Ls.

Here, the first inequality follows from the fact that for 0 < |x| < 1
2 , exp(x) ≤ 1 + x+ 2x2.

Using this bound, we define a zero-sum game between the learner and the adversary and use the minimax
theorem to conclude that the learner always has a strategy that guarantees that the per-round increase in
surrogate loss can be bounded. To satisfy the convexity and compactness requirements of the minimax
theorem, it will be convenient for us to imagine that the learner’s pure strategy space is a finite, discrete
subset of Pmean = [0, 1]. To this end, we define the following discretization for any r ∈ N (here n is the
discretization parameter we use to define the coarseness of our bucketing):

Prn =

{

0,
1

rn
,
2

rn
, . . . , 1

}

.

13

We use this discretization also in our algorithm in Section 3.3 — but we remark at the outset that the
need to discretize is only for technical reasons, and our algorithm will have no dependence — neither in
runtime nor in its convergence rate — on the value of r that we choose, so we can imagine the discretization
to be arbitrarily fine.

To simplify notation, for each µ ∈ Prn, define Cµs ≡ Cis where i ∈ [n] s.t. µ ∈ Bn(i).

Lemma 3.2. For any transcript πs ∈ Π∗, any xs+1 ∈ X , and any r ∈ N there exists a distribution over
predictions for the learner QLs+1 ∈ ∆Prn, such that regardless of the adversary’s choice of distribution of
ys+1 over ∆Y, we have that:

E
µ∼QL

s+1

[∆s+1(πs, xs+1, µ)] ≤ Ls
(η

rn
+ 2η2

)

.

Proof. We define a zero-sum game played between the learner (the minimization player) and the adversary
(the maximization player). The learner’s pure strategy space is the set of discrete predictions X1 = Prn.
The adversary’s pure strategy space is (a priori) the set of all distributions over labels in [0, 1]. However, we
will observe in a moment that the objective function of our game depends only on the expected value of the
label, and so without loss of generality, we will be able to take the adversary’s full strategy space to be the
set of all pure strategies, i.e., QA = [0, 1] (which is closed and convex), because it already spans the set of
realizable expectations. As usual, we take the learner’s full strategy space to be the set of distributions over
pure strategies: QL = ∆Prn.

Fix the transcript πs and the feature vector xs+1. We define the objective of this game to be the upper
bound we proved on ∆s+1(πs, xs+1, µ) in Lemma 3.1. For each µ ∈ Prn and each y ∈ [0, 1], we let:

u(µ, y) = η (y − µ)Cµs (xs+1) + 2η2Ls.

Note that for any distribution over labels y of the adversary, the expected objective value depends on his
strategy only through E[ỹ] because the above objective function is linear in y: that is, Eỹ[u(µ, ỹ)] = u(µ,E[ỹ]).
Thus we are justified in our reduced-form representation of the adversary’s full strategy as choosing E[ỹ] in
the interval [0, 1].

We now establish the value of this game. Observe that for any strategy of the adversary (which fixes

E[ỹ]), the learner can respond by playing µ∗ = argminµ∈Prn |E[ỹ]−µ|, and that because of our discretization,

min |E[ỹ]− µ∗| ≤ 1
rn . Therefore, the value of the game is at most:

max
y∈[0,1]

min
µ∗∈Prn

u(µ∗, y) ≤ max
µ∈Prn

η

rn

∣
∣Cµs (xs+1)

∣
∣+ 2η2Ls,

≤ Ls

(η

rn
+ 2η2

)

.

Here the latter inequality follows since Cµs (xs+1) ≤ Ls for all µ ∈ Prn, by observation. We can now apply
the minimax theorem (Theorem 2.1) to conclude that there exists a fixed distribution QLs+1 ∈ QL for the
learner that guarantees that simultaneously for every label y ∈ [0, 1] that might be chosen by the adversary:

E
µ∼QL

s+1

[u(µ, y)] ≤ Ls
(η

rn
+ 2η2

)

,

as desired.

Corollary 3.1. For every r ∈ N, s ∈ [T], πs ∈ Π∗, and xs+1 ∈ X (which fixes Ls and QLs+1), and any
distribution over Y:

E
µs+1∼QL

s+1

[L̃s+1|πs] = Ls + E
µs+1∼QL

s+1

[∆s+1(πs, xs+1, µs+1)] ≤ Ls
(

1 +
η

rn
+ 2η2

)

.

14

Lemma 3.2 defines (existentially) an algorithm that the learner can use to make predictions—Algorithm 1.
We will now show that Algorithm 1 (if we could compute the distributions QLt) results in multicalibrated
predictions. In Section 3.3 we show a simple and efficient method for sampling from QLt .

Algorithm 1: A Generic Multicalibrator

for t = 1, . . . , T do
Observe xt. Given πt−1 and xt, let Q

L
t ∈ QLt be the distribution over predictions whose existence

is established in Lemma 3.2.
Sample µ ∼ QLt and predict µt = µ

We now prove two convergence bounds for Algorithm 1. The first will bound its multicalibration error
in expectation, and the other will provide a high probability bound. To show these bounds, we first state a
helper theorem that will be useful not just in this section, but also in deriving the final convergence bounds
for the algorithms presented in Sections 4 and 5. The proof is in Appendix D.

Theorem 3.1. Consider a nonnegative random process X̃t adapted to the filtration Ft = σ(πt), where X̃0

is constant a.s. Suppose we have that for any period t, and any πt−1, E[X̃t|πt−1] ≤ Xt−1(1 + ηc + 2η2) for
some η ∈ [0, 12], c ∈ [0, 1]. Then we have that:

E
π̃T

[X̃T] ≤ X0 exp
(
Tηc+ 2Tη2

)
. (3)

Further, define a process Z̃t adapted to the same filtration by Z̃t = Zt−1 + ln X̃t − E[ln(X̃t)|πt−1]. Suppose
that |Zt − Zt−1| ≤ 2η, where Z0 = 0 a.s. Then, with probability 1− λ,

ln(XT (πT)) ≤ ln(X0) + T
(
ηc+ 2η2

)
+ η

√

8T ln

(
1

λ

)

. (4)

We are now ready to bound our multicalibration error. As a straightforward consequence of Corollary 3.1
and the first part of Theorem 3.1, we have the following Corollary.

Corollary 3.2. Against any adversary, Algorithm 1 instantiated with discretization parameter r results in
surrogate loss satisfying:

E
π̃T

[L̃T] ≤ 2|G|n exp
(
Tη

rn
+ 2Tη2

)

.

Proof. Note that the first part of Theorem 3.1 applies to the process L with L0 = 2|G|n and c = 1
rn . The

bound follows by plugging these values into (3).

Next, we can convert this into a bound on Algorithm 1’s expected calibration error:

Theorem 3.2. When Algorithm 1 is run using n buckets for calibration, discretization r ∈ N, and η =
√

ln(2|G|n)
2T ∈ (0, 1/2), then against any adversary, its sequence of mean predictions is (α, n)-multicalibrated

with respect to G, where:

E[α] ≤
1

rn
+ 2

√

2 ln(2|G|n)
T

.

For r =
√
T

ǫn
√

2 ln(2|G|n)
this gives:

E[α] ≤ (2 + ǫ)

√

2

T
ln (2|G|n).

Here the expectation is taken over the randomness of the transcript πT .

15

Proof. From Observation 3.1, it suffices to show that

1

T
E
π̃T

[

max
G∈G,i∈[n]

|Ṽ G,iT |
]

≤ 1

rn
+ 2

√

2 ln(2|G|n)
T

.

We begin by computing a bound on the (exponential of) the expectation of this quantity:

exp

(

η E
π̃T

[

max
G,i
|Ṽ G,iT |

])

≤ E
π̃T

[

exp

(

ηmax
G,i
|Ṽ G,iT |

)]

,

= E
π̃T

[

max
G,i

exp
(

η|Ṽ G,iT |
)]

,

≤ E
π̃T

[

max
G,i

(

exp
(

ηṼ G,iT

)

+ exp
(

−ηṼ G,iT

))]

,

≤ E
π̃T




∑

G,i

(

exp
(

ηṼ G,iT

)

+ exp
(

−ηṼ G,iT

))



 ,

= E
π̃T

[L̃T],

≤ 2|G|n exp
(
Tη

rn
+ 2Tη2

)

.

Here the first step is by Jensen’s inequality and the last one follows from Corollary 3.2. Taking the logarithm
of both sides and dividing by ηT , we have

1

T
E
π̃T

[

max
G,i
|Ṽ G,iT |

]

≤ ln(2|G|n)
ηT

+
1

rn
+ 2η.

Choosing η =
√

ln(2|G|n)
2T , we thus obtain the desired inequality

1

T
E
π̃T

[

max
G,i
|Ṽ G,iT |

]

≤ 1

rn
+ 2

√

2 ln(2|G|n)
T

.

Now, given L̃, let us define its associated martingale process Z̃ as in the second part of Theorem 3.1.
The next lemma shows that the increments of Z̃ are uniformly bounded over all rounds t. The proof is in
Appendix D.

Lemma 3.3. At any round t ∈ [T] and for any realized transcript πt, |Zt − Zt−1| ≤ 2η.

We can now use the second part of Theorem 3.1 to prove a high probability bound on the multicalibration
error of Algorithm 1.

Theorem 3.3. When Algorithm 1 is run using n calibration buckets, discretization r ∈ N and η =
√

ln(2|G|n)
2T ∈ (0, 1/2), then against any adversary, its sequence of mean predictions is α-multicalibrated,

with respect to G with probability 1− λ over the randomness of the transcript πT , for

α ≤ 1

rn
+ 4

√

2

T
ln

(
2|G|n
λ

)

.

Choosing r =
√
T

ǫn
√

2 ln(2|G|n/λ)
, this gives:

α ≤ (4 + ǫ)

√

2

T
ln

(
2|G|n
λ

)

.

16

Proof. By Lemma 3.3, the second part of Theorem 3.1 applies; plugging in L0 = 2|G|n and c = 1
rn , we have:

ln(LT (πT)) ≤ ln(2|G|n) + T
(η

rn
+ 2η2

)

+ η

√

8T ln

(
1

λ

)

.

Now, note that

exp

(

ηmax
G,i
|V G,iT |

)

= max
G,i

exp
(

η|V G,iT |
)

,

≤ max
G,i

(

exp
(

ηV G,iT

)

+ exp
(

−ηV G,iT

))

,

≤
∑

G,i

(

exp
(

ηV G,iT

)

+ exp
(

−ηV G,iT

))

,

= LT (πT).

Taking log on both sides and dividing both sides by ηT , we get

1

T
max
G,i
|V G,iT | ≤ 1

ηT
ln(LT (πT)) ≤

ln(2|G|n)
ηT

+
1

rn
+ 2η +

√

8 ln
(
1
λ

)

T
.

Choosing η =
√

ln(2|G|n)
2T , we thus obtain the desired inequality

1

T
max
G,i
|V G,iT | ≤ 1

rn
+ 2

√

2 ln(2|G|n)
T

+

√

8 ln
(
1
λ

)

T
≤ 1

rn
+ 4

√

2

T
ln

(
2|G|n
λ

)

.

Remark 3.1. In both Theorems 3.2 and 3.3, the dependence on log(|G|) can be replaced with a dependence
on log(d) under the assumption that |G(xt)| ≤ d for all t — i.e. that each observed data point is contained
in only boundedly many groups. This gives us non-trivial guarantees even when G is infinitely large. See
Appendix B for details.

3.3 Deriving an Efficient Algorithm via Equilibrium Computation

Algorithm 2: Von Neumann’s Mean Multicalibrator(η, n, r)

for t = 1, . . . , T do
Observe xt and compute for each i ∈ [n] Cit−1(xt) as defined in (2).
if Cit−1(xt) > 0 for all i ∈ [n] then
Predict µt = 1.

else if Cit−1(xt) < 0 for all i ∈ [n] then
Predict µt = 0.

else
Find i∗ ∈ [n− 1] such that Ci

∗

t−1(xt) · Ci
∗+1
t−1 (xt) ≤ 0

Define 0 ≤ qt ≤ 1 such that qtC
i∗

t−1(xt) + (1− qt)Ci
∗+1
t−1 (xt) = 0. In other words, define it as follows

(using the convention that 0/0 = 1):

qt =
|Ci∗+1
t−1 (xt)|

|Ci∗+1
t−1 (xt)|+ |Ci∗t−1(xt)|

.

Predict µt =
i∗

n − 1
rn with probability qt and µt =

i∗

n with probability 1− qt.

17

In Section 3.2, we derived Algorithm 1 and proved that it results in mean multicalibrated predictions.
However, Algorithm 1 was not defined explicitly: it relies on the distributions QLt , whose existence we showed
in Lemma 3.2 but which we did not explicitly construct. In this section, we derive a scheme for sampling from
these distributions QLt , which leads to Algorithm 2 — an explicit, efficient implementation of Algorithm 1.

Theorem 3.4. Algorithm 2 implements Algorithm 1. In particular it obtains the multicalibration guarantees
proven in Theorems 3.2 and 3.3.

Proof. Recall that Algorithm 1 samples at every round s + 1 from a distribution QLs+1 that is a minimax
equilibrium strategy of a game between the learner and the adversary, with objective function

u(µ, y) = η (y − µ)Cµs (xs+1) + 2η2Ls.

The equilibrium structure of the game is preserved under positive affine transformations, so instead we
consider

u(µ, y) = (y − µ)Cµs (xs+1).

We wish to find a distribution QLs+1 ∈ QL that guarantees — against any strategy of the adversary —
an objective value that is at most the bound on the value of the game we proved in Lemma 3.2. For the
transformed game, this bound is:

max
y∈[0,1]

E
µ∼Qs+1

[u(µ, y)] ≤ 1

rn
Ls.

We can start by characterizing the best response of the adversary.

Observation 3.3. For any QL ∈ QL:

max
y∈[0,1]

E
µ∼QL

[u(µ, y)] =

(

E
µ∼QL

[Cµs (xs+1)]

)+

− E
µ∼QL

[
µCµs (xs+1)

]
,

where (x)
+
= max(x, 0).

Proof. Note that:

u(µ, y) = (y − µ)Cµs (xs+1)

= yCµs (xs+1)− µCµs (xs+1).

Observe that only the first term depends on y. Therefore, if the learner plays according to QL, then the
adversary will choose y so as to maximize the linear expression y Eµ∼QL [Cµs (xs+1)]. This is always maximized
either at y = 0 or y = 1. It is maximized at y = 1 when Eµ∼QL [Cµs (xs+1)] > 0, and at y = 0 otherwise.

Finally, we can reduce the analysis to three disjoint cases:

1. Cis(xs+1) > 0 for all i ∈ [n]: Then for any distribution QL, by Observation 3.3 we have:

max
y∈[0,1]

E
µ∼QL

[u(µ, y)] = E
µ∼QL

[Cµs (xs+1)]− E
µ∼QL

[
µCµs (xs+1)

]
.

In this case, letting QL be a point mass on µ = 1 achieves a value of 0 < 1
rnLs.

2. Cis(xs+1) < 0 for all i ∈ [n]: Then for any distribution QL, by Observation 3.3 we have:

max
y∈[0,1]

E
µ∼QL

[u(µ, y)] = − E
µ∼QL

[
µCµs (xs+1)

]

In this case, letting QL be a point mass on µ = 0 achieves a value of 0 < 1
rnLs.

18

3. In the remaining case, there must exist some index i∗ ∈ [n − 1] such that either Ci
∗

s (xs+1) and
Ci

∗+1
s (xs+1) have opposite signs, or such that at least one of them takes value exactly zero. Random-

izing as in the algorithm results in:

max
y∈[0,1]

E
µ∼QL

s+1

[u(µ, y)]

=

(

E
µ∼QL

s+1

[
Cµs (xs+1)

]

)+

− Eµ∼QL
s+1

[
µCµs (xs+1)

]

=
(

qs+1C
i∗

s (xs+1) + (1− qs+1)C
i∗+1
s (xs+1)

)+

−
(

qs+1

(
i∗

n − 1
rn

)

Ci
∗

s (xs+1) + (1 − qs+1)
i∗

n C
i∗+1
s (xs+1)

)

=
1

rn
Ci

∗

s (xs+1)

≤ 1

rn
Ls.

Algorithm 2 plays according to this distribution QLs+1 at every round, which completes the proof.

Running Time Our algorithm is elementary, and given values for Cit−1(xt), it runs in time per iteration
which is linear in the number of buckets n. For large collections of groups G, the bulk of the computational
cost is due to the first step of Algorithm 2, in which we compute the quantities Cit−1(xt) as in Equation 2:

Cit−1(xt) ≡
∑

G(xt)

exp(ηV G,it−1)− exp(−ηV G,it−1)

These quantities are a sum over every group G ∈ G such that xt ∈ G. In the worst case, we can compute
this by enumerating over all such groups, and we obtain runtime that is linear in |G|. However, for any class
G such that we can efficiently enumerate the set of groups containing xt (i.e. G(xt)), our per-round runtime
is only linear in |G(xt)|, which may be substantially smaller than |G|. For example, this property holds for
collections G of groups induced by conjunctions or disjunctions of binary features. Finally, we observe that
our runtime is entirely independent of the choice of the discretization parameter r.

4 Online Moment Multicalibration

4.1 An Outline of Our Approach

In this section, we derive an online algorithm for supplying mean and kth-moment predictions that are
mean-conditioned moment multicalibrated with respect to some collection of groups G, as defined in Def-
inition 2.4. We follow the same basic strategy that we developed in Section 3 for making multicalibrated
mean predictions. In particular, the first few steps of our approach exactly mirror the approach in Section 3:
Analogously to Steps 1 and 2 of Section 3.1 we define calibration losses and a convenient soft-max style
surrogate loss function and bound the increase to that surrogate loss function at each round. However, we
make a couple of important deviations.

1. The first complication that arises is that moment consistency is not a linearly separable constraint
across rounds (because moments are nonlinear). However, we are able to define linearly separable
“pseudo-moment” consistency losses M and prove in Lemma 4.1 that if both our pseudo-moment
consistency losses M and our mean consistency losses V are small then our predictions are mean-
conditioned moment multicalibrated.

2. The next complication arises when we attempt to define a zero-sum game using our bound on the
per-round increase of the surrogate loss. The bound on the loss that we obtain for mean-conditioned

19

moment multicalibration is nonlinear in both the learner’s (mean) prediction and the adversary’s choice
of label y. We cannot directly apply a minimax theorem because the necessary concavity and convexity
conditions are not satisfied. Our argument instead requires a change of variables: we show that in
the game we define, the adversary’s payoff, fixing the strategy of the learner, is linear in the first k
(uncentered) moments of the distribution over the labels chosen by the adversary. We also expand the
strategy space of the adversary to allow him to pick k arbitrary real numbers, representing the first k
centered moments of his label distribution, unencumbered by the requirement that these chosen values
actually correspond to the moments of any real label distribution. Enlarging the adversary’s strategy
space in this way can only increase the value of the game, and so the upper bounds we prove on the
value of this simplified game continue to hold for the original game. Moreover, a minimax theorem
applies to this transformed game, and therefore guarantees the existence of a prediction strategy for
the learner that is approximately mean-conditioned moment multicalibrated.

3. In order to implement this strategy with an explicit efficient prediction algorithm, we need to solve a
game in which the learner has r2nn′ pure strategies. Doing this naively would inherit a running time
dependence on r, a discretization parameter that we want to take to be very small. However, we prove
a “structure theorem” about the enlarged game described above: that without loss of generality, the
learner need only randomize over a support of at most 4nn′ pure strategies. With this structure theorem
in hand, we show that the equilibrium computation problem can be cast as a linear program with 4nn′

variables and 2k+1 constraints. If k is a small constant (e.g. k = 2 for variance multicalibration), then
this linear program can be explicitly described and solved. But even when k is too large to enumerate
all 2k constraints, we show that there is a separation oracle that runs in time O(k), allowing us to
efficiently solve this linear program using the Ellipsoid algorithm. In Appendix C, we show that there
exist solutions to the learner’s problem that have small support—in which the learner mixes over at
most k + 1 strategies.

4.2 An Existential Derivation of the Algorithm and Moment Multicalibration

Bounds

We will calibrate our mean predictions {µt}Tt=1 over n buckets, and kth moment predictions {mk}Tt=1 over
n′ < n buckets. As before, we introduce notation to denote the portion of the mean calibration error
corresponding to each pair of buckets (i, j) and group G, and consider a similar quantity that serves as a
proxy for the portion of the moment calibration error corresponding to each group G ∈ G and buckets i ∈ [n],
j ∈ [n′]. We will need an extra piece of notation: for any i ∈ [n], define µ̂i ≡ 2i−1

2n . For any i ∈ [n] and
µ ∈ Bn(i), we abuse notation and write µ̂µ = µ̂i.

Definition 4.1. Given a transcript πs = ((xt, (µt,m
k
t), yt))

s
t=1, for each group G ∈ G and buckets i ∈ [n], j ∈

[n′] at time s, we write

V G,i,js (πs) =
s∑

t=1

1[µt ∈ Bn(i),mk
t ∈ Bn(j), xt ∈ G] (yt − µt) ,

MG,i,j
s (πs) =

s∑

t=1

1[µt ∈ Bn(i),mk
t ∈ Bn(j), xt ∈ G]

(

(yt − µ̂i)k −mk
t

)

.

When the transcript πs is clear from context we will simply write V G,i,js ,MG,i,j
s .

In words, V G,i,js calculates the difference between the true mean and the mean of our predictions over
the subset of periods up to s in which the realized feature vector was in group G and the learner predicted
a mean µ ∈ Bn(i) and a moment mk ∈ Bn′(j). MG,i,j

s defines a similar quantity for moments — but not
exactly. Instead of calculating the empirical moment around the empirical mean (i.e. (yt−µ(Gs(i, j)))k), we
center around µ̂i, i.e. the middle of the bucket Bn(i). We do this to make MG,i,j

s linearly separable across
rounds.

20

We show, using an argument similar5 to Jung et al. [2020], that if our mean predictions are sufficiently
calibrated — which ensures µ̂i ≈ µ(GT (i, j)) — then we can still bound the mean-conditioned moment
multicalibration error through our proxy quantity MG,i,j

s .

Lemma 4.1. For a given i ∈ [n], j ∈ [n′] and G ∈ G, if 1
T |V

G,i,j
T | ≤ α, 1

T |M
G,i,j
T | ≤ β, then we have

|µ(GT (i, j))− µ(GT (i, j))| ≤
αT

|GT (i, j)|
, (Mean Consistency)

∣
∣mk(GT (i, j))−mk(GT (i, j))

∣
∣ ≤ (β + kα+ k

2n)T

|GT (i, j)|
. (Moment Consistency)

Proof. It is easy to see mean-consistency:

|GT (i, j)|
T

|µ(GT (i, j))− µ(GT (i, j))| =
1

T

∣
∣
∣
∣
∣
∣

∑

t∈GT (i,j)

(µt − yt)

∣
∣
∣
∣
∣
∣

=
1

T
|V G,i,jT | ≤ α.

Now, we show that we achieve mean-conditioned moment consistency. First note that

1

T
|MG,i,j

T | = 1

T

∣
∣
∣
∣
∣
∣

∑

t∈GT (i,j)

mk
t − (µ̂i − yt)k

∣
∣
∣
∣
∣
∣

≤ β.

Now,

∣
∣
∣
∣
∣
∣

mk(GT (i, j))−
1

|GT (i, j)|
∑

t∈GT (i,j)

(yt − µ̂i)k
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

1

|GT (i, j)|
∑

t∈GT (i,j)

((yt − µ̂i) + (µ̂i − µ(GT (i, j))))k − (yt − µ̂i)k
∣
∣
∣
∣
∣
∣

,

≤ k

|GT (i, j)|
∑

t∈GT (i,j)

|µ̂i − µ(GT (i, j))| ,

=
k

|GT (i, j)|
∑

t∈GT (i,j)

|µ̂i − µ(GT (i, j)) + µ(GT (i, j))− µ(GT (i, j))| ,

≤ k

|GT (i, j)|
∑

t∈GT (i,j)

|µ̂i − µ(GT (i, j))|+ |µ(GT (i, j))− µ(GT (i, j))| ,

≤Tk(α+ 1
2n)

|GT (i, j)|
,

where the first inequality follows from the fact that |ak − bk| ≤ k|a − b| for any a, b ∈ [0, 1] with a =
(yt − µ̂i) + (µ̂i − µ(GT (i, j))) and b = yt − µ̂i. The last inequality follows from the guarantee of mean
consistency as shown above in the proof and the fact that µ(GT (i, j)) ∈ Bn(i) and |µ̂i − x| ≤ 1

2n for any
x ∈ Bn(i).

5(yt − µ̂i)
k roughly corresponds to what is referred to as a pseudo-moment in Jung et al. [2020].

21

Therefore, we can invoke the triangle inequality to conclude
∣
∣mk(GT (i, j))−mk(GT (i, j))

∣
∣

≤

∣
∣
∣
∣
∣
∣

mk(GT (i, j))−
1

|GT (i, j)|
∑

t∈GT (i,j)

(yt − µ̂i)k
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

1

|GT (i, j)|
∑

t∈GT (i,j)

(yt − µ̂i)k −mk(GT (i, j))

∣
∣
∣
∣
∣
∣

≤ (β + kα+ k
2n)T

|GT (i, j)|
.

This lemma implies that if we can force each term V G,i,js ,MG,i,j
s to be small, then we will have achieved

our desired goal of mean-conditioned moment multicalibration (Definition 2.4).

Observation 4.1. Suppose a transcript πT is such that for all i ∈ [n], j ∈ [n′] and G ∈ G, we have that

|V G,i,jT |, |MG,i,j
T | ≤ αT . Then the predictions are (α, β, n, n′)-mean-conditioned moment multicalibrated in

the sense of Definition 2.4 for β = (k + 1)α+ k
2n .

Remark 4.1. Note that with this parametrization, we can take α as small as we like relative to n, and by
choosing an appropriately large value of n, we can take β = (k + 1)α+ k

2n as small as we like relative to n′.

As before, we define a surrogate loss function at each round s.

Definition 4.2 (Surrogate Loss). Fixing a transcript πs ∈ Π∗ and a parameter η ∈ [0, 12], define:

Ls(πs) =
∑

G∈G,
i∈[n],j∈[n′]

(
exp(ηV G,i,js) + exp(−ηV G,i,js) + exp(ηMG,i,j

s) + exp(−ηMG,i,j
s)

)
,

where V and M are functions of πs as defined in Definition 4.1. When the transcript πs is clear from context
we will sometimes simply write Ls.

As before, our goal is to find a strategy for the learner that guarantees that our surrogate loss LT remains
small. Towards this end, we define ∆s+1(πs, xs+1, µ,m

k) to be the expected increase in the surrogate loss
function in the event that the adversary plays feature vector xs+1 and the learner predicts (µ,mk). Here
the expectation is over the only remaining source of randomness after the conditioning — the distribution
over labels ys+1, which for any adversary is defined once we fix πs and xs+1.

Definition 4.3 (Conditional Change in Surrogate Loss).

∆s+1(πs, xs+1, µ,m
k) = E

ỹs+1

[

L̃s+1 − Ls
∣
∣
∣πs, xs+1, µ,m

k
]

.

We again show a simple bound on ∆s+1(πs, xs+1, µ,m
k):

Lemma 4.2. For any transcript πs ∈ Π∗, any xs+1 ∈ X , and any predictions µ,mk ∈ [0, 1] such that
µ ∈ Bn(i) and mk ∈ Bn′(j) for some i ∈ [n] and j ∈ [n′]:

∆s+1(πs, xs+1, µ,m
k) ≤ η

(

E
ỹs+1

[ỹs+1]− µ
)

Cµ,m
k

s (xs+1) + η

(

E
ỹ
(ỹs+1 − µ̂µ)k −mk

)

Dµ,mk

s (xs+1) + 2η2Ls,

where

Cµ,m
k

s (xs+1) = Ci,js (xs+1) =
∑

G∈G(xs+1)

exp(ηV G,i,js)− exp(−ηV G,i,js), (5)

Dµ,mk

s (xs+1) = Di,j
s (xs+1) =

∑

G∈G(xs+1)

exp(ηMG,i,j
s)− exp(−ηMG,i,j

s). (6)

For economy of notation, we will generally elide the dependence on xs+1 for the C and D quantities and
simply write Ci,js , Di,j

s when the feature vector is clear from context.

22

Proof. To see this, observe that by definition:

∆s+1(πs, xs+1, µ,m
k)

= E
ỹs+1

[
∑

G(xs+1)

exp(ηV G,i,js) (exp (η (ỹs+1 − µ))− 1) + exp(−ηV G,i,js) (exp (−η (ỹs+1 − µ))− 1)
︸ ︷︷ ︸

∗

+ exp(ηMG,i,j
s) exp

(

η
(

(ỹs+1 − µ̂µ)k −mk
)

− 1
)

+ exp(−ηMG,i,j
s) exp

(

−η
(

(ỹs+1 − µ̂µ)k −mk
)

− 1
)

︸ ︷︷ ︸
∗∗

]

.

Using the fact that for 0 < |x| < 1
2 , exp(x) ≤ 1 + x+ 2x2, we have that

∗ ≤ exp(ηV G,i,js)
(
η (ys+1 − µ) + 2η2

)
+ exp(−ηV G,i,js)

(
−η (ys+1 − µ) + 2η2

)
,

∗∗ ≤ exp(ηMG,i,j
s)

(

η
(

(ys+1 − µ̂µ)k −mk
)

+ 2η2
)

+ exp(−ηMG,i,j
s)

(

−η
(

(ỹs+1 − µ̂µ)k −mk
)

+ 2η2
)

.

Now, using the linearity of expectation and distributing the outer expectation to each relevant term where
ỹs+1 appears, we get

∆s+1(πs, xs+1, µ,m
k)

≤
∑

G(xs+1)

exp(ηV G,i,js)
(
η (E[ỹs+1]− µ) + 2η2

)
+ exp(−ηV G,i,js)

(
−η (E[ỹs+1]− µ) + 2η2

)

+ exp(ηMG,i,j
s)

(

η
(

E

[

(ỹs+1 − µ̂µ)k
]

−mk
)

+ 2η2
)

+ exp(−ηMG,i,j
s)

(

−η
(

E

[

(ỹs+1 − µ̂µ)k
]

−mk
)

+ 2η2
)

.

Collecting terms appropriately and observing that

∑

G(xs+1)

(
exp(ηV G,i,js) + exp(−ηV G,i,js) + exp(ηMG,i,j

s) + exp(−ηMG,i,j
s)

)
≤ Ls,

we have the desired bound.

As before, we proceed by defining a zero-sum game between the learner and the adversary and using the
minimax theorem to conclude that the learner always has a strategy that guarantees a bounded per-round
increase in surrogate loss. To satisfy the convexity and compactness requirements of the minimax theorem,
we will again consider a game where the learner’s pure strategy space is a finite subset of P(mean,moment).
To this end, we define the following grids for any r ∈ N (n and n′ are the coarseness parameters of our
bucketings from above):

Prn =

{

0,
1

rn
,
2

rn
, . . . , 1

}

,

Prn′

=

{

0,
1

rn′ ,
2

rn′ , . . . , 1

}

.

As in the previous section, the need to discretize is only for technical reasons, and our algorithm has no
dependence — neither in runtime nor in its convergence rate — on the value of r that we choose, so we can
imagine the discretization to be arbitrarily fine.

Lemma 4.3. For any transcript πs ∈ Π∗ and any xs+1 ∈ X , there exists a distribution over predictions for
the learner QLs+1 ∈ ∆(Prn×Prn′

), such that regardless of the adversary’s choice of distribution of ys+1 over
∆Y, we have that:

E
(µ,mk)∼QL

s+1

[
∆s+1(πs, xs+1, µ,m

k)
]
≤ Ls

(η

rn
+

η

rn′ + 2η2
)

.

23

Proof. Fix the transcript πs and the feature vector xs+1. As before, we define a zero-sum game played
between the learner (the minimization player) and the adversary (the maximization player), where the
objective function of the game equals the upper bound on ∆s+1(πs, xs+1, µ,m

k) from Lemma 4.2. Then, we
again show that for every strategy of the adversary (i.e. distribution over y), there exists a best response for
the learner that guarantees the objective function of the game is small. Finally, we appeal to the minimax
theorem to conclude that there always exists a strategy for the learner that guarantees small objective value
against any strategy of the adversary.

More precisely, consider the following objective function for the game:

u((µ,mk), y) = η (y − µ)Cµ,mk

s + η
(

(y − µ̂µ)k −mk
)

Dµ,mk

s + 2η2Ls

= η (y − µ)Cµ,mk

s + η

((
k∑

ℓ=0

(
k

ℓ

)

(−µ̂µ)k−ℓyℓ
)

−mk

)

Dµ,mk

s + 2η2Ls

where the pure strategy space for the learner is X1 = Prn ×Prn′

and that of the adversary is (a priori) the
set of all distributions over [0, 1]. However, we observe that the expected value of the objective for any label
distribution over [0, 1] is linear in E[y], . . . ,E[yk]. So the payoff for any mixed strategy of the adversary is
determined only by the associated k terms: E[y], . . . ,E[yk].

With this observation in mind, we perform a change of variables and define a new game with an enlarged
strategy space for the adversary. In the new game, the strategy space for the learner remains QL = ∆(Prn×
Prn′

). The strategy space for the adversary becomes QA = [0, 1]k, representing a choice for each of the
values E[y], . . .E[yk]. Note that this strategy space for the adversary is unencumbered by the requirement
that these chosen values actually correspond to any feasible label distribution over [0, 1]. The objective
function of the game is obtained by replacing each term E[yℓ] from our previous objective function with ψℓ:

u((µ,mk), ψ) = η (ψ1 − µ)Cµ,m
k

s + η

((

µ̂kµ +

k∑

ℓ=1

(
k

ℓ

)

(−µ̂µ)k−ℓψℓ
)

−mk

)

Dµ,mk

s + 2η2Ls.

As we have noted, in the original game, the set of achievable moments E[y], . . . ,E[yk] is a strict subset of
[0, 1]k. However, enlarging the strategy space of the maximization player can only increase the (maxmin)
value of the game, so the upper bound we are about to prove on the game value against this more pow-
erful adversary also applies to the adversary who is implicitly choosing moments E[y], . . . ,E[yk] via some
distribution over [0, 1].

Note that u thus defined is linear in both players’ strategies, and the strategy spaces for both players
QL and QA are compact and convex. Hence, Sion’s minimax theorem (Theorem 2.1) applies to this game.
We now establish (a bound on) the value of this game. Observe that for any strategy of the adversary,
the learner can pick µ ∈ Prn as close as possible to ψ1, and then pick mk ∈ Prn′

as close as possible to

µ̂kµ +
∑k

ℓ=1

(
k
ℓ

)
(−µ̂µ)k−ℓψℓ. Therefore, since Cµ,m

k

s , Dµ,mk

s ≤ Ls by definition, we have that:

∀ψ ∈ [0, 1]k, ∃(µ,mk) ∈ (Prn × Prn′

) s.t. u((µ,mk), ψ) ≤ Ls
(η

rn
+

η

rn′ + 2η2
)

.

We can now apply the minimax theorem (Theorem 2.1) to conclude that there exists a fixed distribution
QLs+1 ∈ QL for the learner that guarantees objective value that is at most the above bound for every choice
of the adversary, i.e.

∃QLs+1 ∈ QL s.t. ∀ψ ∈ [0, 1]k : u(QLs+1, ψ) ≤ Ls
(η

rn
+

η

rn′ + 2η2
)

,

as desired.

Corollary 4.1. For every s ∈ [T], πs ∈ Π∗, xs+1 ∈ X (which fixes Ls and QLs+1), and every adversary
(which fixes a distribution over Y):

E
QL

s+1

[L̃s+1|πs] = Ls + E
QL

s+1

[∆s+1(πs, xs+1, µ,m
k)|πs] ≤ Ls

(

1 +
η

rn
+

η

rn′ + 2η2
)

.

24

Lemma 4.3 defines (existentially) an algorithm that the learner can use to make predictions—Algorithm 3.
We will now show that Algorithm 3 (if we could compute the distributions QLt) results in mean-conditioned
moment multicalibrated predictions. In Section 4.3 we show how to compute QLt .

Algorithm 3: A Generic Mean Moment Multicalibrator

for t = 1, . . . , T do
Observe xt. Given πt−1 and xt, let Q

L
t ∈ ∆(Prn × Prn′

) be the distribution over predictions whose
existence is established in Lemma 4.3.
Sample µ,mk ∼ QLt and predict (µt,m

k
t) = (µ,mk).

We are now ready to bound our multicalibration error. The results that follow mirror the structure
of Section 3.2: essentially, we apply Theorem 3.1 to the surrogate loss function of this section. As a
straightforward consequence of Corollary 4.1 and the first part of Theorem 3.1, we have the following result.

Corollary 4.2. Against any adversary, Algorithm 3 instantiated with discretization parameter r results in
surrogate loss satisfying:

E
π̃T

[L̃T] ≤ 4|G|n · n′ · exp
(
Tη

rn
+
Tη

rn′ + 2Tη2
)

.

Proof. Note that the first part of Theorem 3.1 applies in this case to the process L, with L0 = 4|G|n ·n′ and
c = 1

rn + 1
rn′ . The bound follows by plugging these values into (3).

Next, we can convert this into a bound on Algorithm 1’s expected calibration error, using Theorem 3.1.
The proof mirrors the argument in Section 3 and can be found in the Appendix.

Theorem 4.1. When Algorithm 3 is run using bucketing coarseness parameters n and n′, discretization

parameter r ∈ N, and η =
√

ln(4|G|n·n′)
2T ∈ (0, 1/2), then against any adversary, its sequence of mean-moment

predictions is (α, β, n, n′)-mean-conditioned moment multicalibrated with respect to G, where β = (k+1)α+ k
2n

and:

E[α] ≤
1

rn
+

1

rn′ + 2

√

2 ln(4|G|n · n′)

T
.

For r =
√
T (n+n′)

εn·n′·
√

2 ln(4|G|n·n′)
, this gives:

E[α] ≤ (2 + ε)

√

2

T
ln (4|G|n · n′).

Here the expectation is taken over the randomness of the transcript πT .

We can similarly use the second part of Theorem 3.1 to prove a high probability bound on the multical-
ibration error of Algorithm 3. The proof is in the Appendix.

Theorem 4.2. When Algorithm 3 is run using bucketing coarseness parameters n and n′, discretization

r ∈ N and η =
√

ln(4|G|n·n′)
2T ∈ (0, 1/2), then against any adversary, with probability 1−λ over the randomness

of the transcript, its sequence of predictions is (α, β, n, n′)-mean-conditioned moment multicalibrated with
respect to G for β = (k + 1)α+ k

2n and:

α ≤ 1

rn
+

1

rn′ + 4

√

2

T
ln

(
4|G|n · n′

λ

)

.

For r =
√
T (n+n′)

ǫn·n′

√
2 ln(4|G|n·n′/λ)

, this gives:

α ≤ (4 + ǫ)

√

2

T
ln

(
4|G|n · n′

λ

)

.

25

4.3 Deriving an Efficient Algorithm via Equilibrium Computation

Previously, we derived Algorithm 3 and proved that it results in mean-conditioned moment multicalibrated
predictions. But Algorithm 3 is not explicitly defined, as it relies on the distributions QLt whose existence we
showed in Lemma 4.3 but which we did not explicitly construct. In this section, we show how to efficiently
solve for this distribution QLt using a linear program with 4n · n′ variables and 2k + 1 constraints. If k is a
small constant (e.g. k = 2 for variance multicalibration), then this linear program can be explicitly described
and solved. But even when k is too large to enumerate all 2k constraints, we show that there is a separation
oracle that runs in time O(k), allowing us to efficiently solve this linear program (i.e. in time polynomial in
n, n′, T, |G|, and k) using the Ellipsoid algorithm.

Recall that in our simplified game, the learner has pure strategies (µ,mk) ∈ Prn×Prn′

, and the adversary
has strategy space QA = [0, 1]k. Since the objective function is linear in the adversary’s action ψ, we can
view this as the set of mixed strategies over the 2k pure strategies ψ ∈ {0, 1}k. We recall the objective
function:

u((µ,mk), ψ) = η (ψ1 − µ)Cµ,m
k

s + η

((

µ̂kµ +

k∑

ℓ=1

(
k

ℓ

)

(−µ̂µ)k−ℓψℓ
)

−mk

)

Dµ,mk

s + 2η2Ls.

Since the equilibrium structure stays the same under positive affine transformations of the objective function,
for the purposes of computing equilibria, we may redefine the objective function to be:

u((µ,mk), ψ) = (ψ1 − µ)Cµ,m
k

s +

((

µ̂kµ +

k∑

ℓ=1

(
k

ℓ

)

(−µ̂µ)k−ℓψℓ
)

−mk

)

Dµ,mk

s . (7)

The specific values of Cµ,m
k

s , µ̂µ and Dµ,mk

s do not matter for the analysis that follows—but what is
relevant is that by definition, they are constant for any two (µ,mk) and (µ′,mk′) both in the same bucket
— in other words, if ∃i ∈ [n], j ∈ [n′] such that (µ,mk), (µ′,mk′) ∈ Bn,n′(i, j). We wish to find a minimax
strategy for the learner in this game, i.e. to find a solution to

argmin
QL∈QL

max
QA∈QA

u(QL, QA).

A priori, the learner has r2n′n pure strategies (i.e. |Prn×Prn′ | = r2n′n), and a minimax strategy could
potentially be supported over all of them (causing our algorithm to have running time depending on r).
However, we prove that we can without loss of generality reduce the size of the learner’s pure strategy space
to 4n′n (Lemma 4.4), which will eliminate any running time dependence on r and allow us to choose as fine
a discretization as we like. We also show in Appendix C that the learner always has a minimax strategy
that randomizes over a support of at most k+1 actions. Thus, as with mean multicalibration, we need only
make limited use of randomness (at least for k small).

We first reduce the space of “relevant” pure strategies for the learner — intuitively, points that are at—or
just barely below—the boundary of a bucket:

P̂r,n =
⋃

i∈[n−1]

{
i− 1

n
,
i

n
− 1

rn

}
⋃
{
n− 1

n
, 1

}

⊂ Prn,

P̂r,n′

=
⋃

i∈[n′−1]

{
i− 1

n′ ,
i

n′ −
1

rn′

}
⋃
{
n′ − 1

n′ , 1

}

⊂ Prn′

.

Given these sets, define Q̂Lr,n,n′ ≡ ∆
(

P̂r,n × P̂r,n′

)

⊂ QL.

Lemma 4.4. In the game with objective function u as defined in (7), the value of the game is unaffected if
the learner is restricted to mixed strategies in Q̂Lr,n,n′ , a set of distributions which in particular have support
over at most 4nn′ actions. In other words:

min
QL∈QL

max
QA∈QA

u(QL, QA) = min
Q̂L∈Q̂L

r,n,n′

max
QA∈QA

u(Q̂L, QA).

26

Proof. Fix any strategy QL ∈ QL. Since Q̂Lr,n,n′ ⊆ QL, it is sufficient to show that there exists a strategy

Q̂L ∈ Q̂Lr,n,n′ such that:

max
QA∈QA

u(QL, QA) ≥ max
QA∈QA

u(Q̂L, QA).

To see this, first observe that we can regroup terms in the objective function (7) and write it as:

u((µ,mk), ψ) = −µCµ,mk

s + µ̂kµD
µ,mk

s −mkDµ,mk

s +

k∑

ℓ=1

ψℓF
µ,mk

ℓ (8)

where Fµ,m
k

1 = Cµ,m
k

s − kµ̂k−1
µ Cµ,m

k

s , (9)

∀ℓ > 1, ℓ ∈ [n] : Fµ,m
k

ℓ =

(
k

ℓ

)

(−µ̂µ)k−ℓDµ,mk

s . (10)

Further, by definition for any µ, µ′ ∈ Bn(i) for some i ∈ [n] and mk,mk′ ∈ Bn′(j), we have, for X = C,D,

Xµ,mk

s = Xµ′,mk′

s = X i,j
s ,

µ̂µ = µ̂µ′ ,

and therefore this equality holds for X = F as well. Against a given strategy QL for the learner, the
adversary’ payoff from pure strategy ψ is:

u(QL, ψ) =
∑

(µ,mk)

QL(µ,mk)

(

−µCµ,mk

s + µ̂kµD
µ,mk

s −mkDµ,mk

s +

k∑

ℓ=1

ψℓF
µ,mk

ℓ

)

,

which, given the previous fact about F , can be rewritten as

u(QL, ψ) =
∑

(µ,mk)

QL(µ,mk)
(

−µCµ,mk

s + µ̂kµD
µ,mk

s −mkDµ,mk

s

)

︸ ︷︷ ︸

(∗)

+

k∑

ℓ=1

ψℓ
∑

i∈[n],
j∈[n′]

F i,jℓ




∑

(µ,mk)∈B(i,j)

QL(µ,mk)





︸ ︷︷ ︸

(∗∗)

.

Observe that term (∗) is independent of ψ. Therefore, fixing a QL, it is equivalent for the adversary to
maximize (∗∗). By observation, for any mixed strategy of the learner QL, the adversary’s incentives are only
affected through the induced distribution over buckets.

So, given QL, the best response of the adversary is preserved for any other strategy Q̂L that maintains

the same mass on each bucket, i.e. for all i ∈ [n] and j ∈ [n′],
∑

(µ,mk)∈B(i,j)

(

QL(µ,mk)− Q̂L(µ,mk)
)

= 0.

Consider the learner’s problem of minimizing the objective value among strategies of this form, i.e. preserving
the mass on each bucket. This reduces to solving, for each i ∈ [n], j ∈ [n′], the optimization problem

min
Q̂L≥0

∑

(µ,mk)∈B(i,j)

Q̂L(µ,mk)
(
−µCi,js + µ̂kiD

i,j
s −mkDi,j

s

)

s.t.
∑

(µ,mk)∈B(i,j)

(

QL(µ,mk)− Q̂L(µ,mk)
)

= 0.

27

Within a bucket, the coefficients
(
−µCi,js + µ̂kiD

i,j
s −mkDi,j

s

)
are linear in µ,mk and therefore there must

exist a solution that puts all mass
∑

(µ,mk)∈B(i,j)Q
L(µ,mk) on an extreme point of the bucket. For example,

if i ∈ [n − 1], j ∈ [n′ − 1]; all mass can be placed without loss of generality on one of the four points in
{
i−1
n , in − 1

rn

}
×
{
j−1
n′ ,

j
n − 1

rn′

}
. If i = n, the corresponding set is {n−1

n , 1}, and if j = n′, the corresponding

set is {n′−1
n′ , 1}. Moving all the mass in each bucket to the optimal corner point, we have that for any strategy

QL of the learner, there exists Q̂L ∈ Q̂Lr,n,n′ such that maxQA∈QA u(QL, QA) ≥ maxQA∈QA u(Q̂L, QA), as
desired. This concludes the proof.

The result is that to compute the equilibrium strategy for the learner, it suffices to solve:

argmin
QL∈Q̂L

r,n,n′

max
ψ∈{0,1}k

u(QL, ψ).

We can directly express this as a linear program with 4nn′ variables and 2k+1 constraints — see Linear
Program 1.

min
QL∈Q̂L

r,n,n′

γ s.t.

∀ψ ∈ {0, 1}k :u(QL, ψ) ≤ γ,
∑

(µ,mk)∈P̂r,n×P̂r,n′
QL((µ,mk)) = 1,

∀ (µ,mk) ∈ P̂r,n × P̂r,n′

: QL((µ,mk)) ≥ 0.

Figure 1: A Linear Program for Computing a Minimax Equilibrium Strategy for the Learner at Round t.

This is a linear program in 4nn′ + 1 variables, with 2k + 1 constraints. If k is a constant, this is a
polynomially sized linear program that can be solved explicitly. If k is superconstant, we will see that we can
still solve the linear program with the Ellipsoid algorithm, because we can efficiently find violated constraints.

Algorithm 4: Von Neumann’s Mean Moment Multicalibrator

INPUT: ǫ > 0.
for t = 1, . . . , T do

Observe xt and compute Cµ,m
k

t−1 (xt), D
µ,mk

t−1 (xt), (F
µ,mk

ℓ,t−1 (xt))
n
ℓ=1 for each (µ,mk) ∈ P̂r,n × P̂r,n′

as in
Equations (5, 6, 9, 10).
Find an ǫ-approximate solution to the linear program from Figure 1, to obtain solution QLt ∈ Q̂Lr,n,n′ .

Predict (µt,m
k
t) = (µ,mk) with probability QLt ((µ,m

k)).

We thus obtain the following theorem:

Theorem 4.3. Algorithm 4 implements Algorithm 3. In particular, it obtains multivalidity guarantees
arbitrarily close to those of Theorems 4.1 and 4.2. Namely, for any desired ǫ > 0, we have the following.

Choosing η =
√

ln(4|G|n·n′+ǫ)
2T ∈ (0, 1/2), against any adversary, over the randomness of the transcript,

the sequence of mean-moment predictions produced by Algorithm 4 is (α, β, n, n′)-mean-conditioned moment
multicalibrated with respect to G where β = (k + 1)α+ k

2n and:

E[α] ≤
1

rn
+

1

rn′ + 2

√

2 ln(4|G|n · n′ + ǫ)

T
.

For r =
√
T (n+n′)

ǫ′n·n′·
√

2 ln(4|G|n·n′+ǫ)
, this gives:

E[α] ≤ (2 + ǫ′)

√

2

T
ln (4|G|n · n′ + ǫ).

28

Moreover, choosing η =
√

ln(4|G|n·n′)+ǫT
2T ∈ (0, 1/2), with probability 1 − λ over the randomness of the

transcript πT we have

α ≤ 1

rn
+

1

rn′ + 4

√

2

T
ln

(
4|G|n · n′

λ

)

+ 2ǫ.

For r = (n+n′)

ǫ′n·n′

√
2
T

ln(4|G|n·n′/λ)+2ǫ
, this gives:

α ≤ (4 + ǫ′)

√

2

T
ln

(
4|G|n · n′

λ

)

+ 2ǫ.

The runtime of Algorithm 6 scales as O(|G|) with the total number of groups |G|, and is polynomial in
n, n′, T, k, and log(1ǫ) (and is independent of r).

Remark 4.2. As before, if |G(xt)| is efficiently enumerable, then the running time dependence on |G| can
be replaced with a dependence on |G(xt)|.

Proof. First consider the running time of the algorithm. The quantities Cµ,m
k

t−1 (xt), D
µ,mk

t−1 (xt), F
µ,mk

ℓ,t−1 (xt) are
simple sums, which can be computed in time linear in |G| (or |G(xt)| if it is efficiently enumerable) and T .
The linear program has 4nn′ + 1 variables, and 2k + 1 constraints. If k is a constant, this is polynomially
sized. Now consider the case in which k is large. In this case we will solve the linear program by applying the
Ellipsoid algorithm to its “rational” modification (see below). The runtime of this approach is polynomial
under several well-known conditions, which are given in the following theorem:

Theorem 4.4 (Schrijver [1986], Corollary 14.1a). For an optimization program of a linear objective with
rational coefficients over a rational polyhedron P in R

q for which we are given a separation oracle, the
Ellipsoid algorithm solves it exactly in time polynomial in the following parameters: the number of variables
q, the largest bit complexity φ of any linear inequality defining P , the bit complexity c of the objective function,
and the runtime of a separation oracle.

Linear Program 1 has finitely many constraints so its feasible region is a polyhedron. However, exponential
terms in the coefficients of the constraints associated with the adversarial best-responses (which are due to
our definition of the soft-max surrogate loss) prevent it from being rational. To fix this, we only keep O(log 1

ǫ)
bits of precision after the integer part of every coefficient of LP 1, resulting in a new LP whose coefficients are
all rational and within ± ǫ

2 from their original values in LP 1. The new LP indeed has a rational polyhedron
as its feasible region. We now pause to see that solving the rational LP achieves value within ǫ of the desired
optimum of LP 1. This is shown more generally in the following technical lemma, which we will reuse in
Section 5.3; its proof is deferred to the Appendix.

Lemma 4.5. Consider a linear program of the following form, with variables x ∈ R
m, γ ∈ R for some m:

Minimize γ, subject to: Ax ≤ γ1m, x · 1m = 1, x ≥ 0.

Here, 1m ∈ R
m is the all-ones vector, and A = (aji) is a finite matrix with real entries.

Take any ǫ > 0. Modify the above linear program by replacing matrix A with matrix Ã = (ãji), where
each ãji is a rational number within ± ǫ

2 from aji, obtained by truncating aji to O(log
1
ǫ) bits of precision.

Then, any optimal solution (x∗,r, γ∗,r) of the resulting rational linear program is an ǫ-approximately optimal
feasible solution of the original linear program.

Linear Program 1 is of the type given in Lemma 4.5, so we have that solving the rational LP gives the
desired ǫ-approximation to the optimum of Linear Program 1. Now we verify that all linear constraints

29

of the rational version of LP 1 have polynomial bit complexity. Recall that the left side of any constraint
bounding the objective function can be written as:

u(QL, ψ) =
∑

(µ,mk)

QL(µ,mk)
(

−µCµ,m
k

t−1 +µ̂kµD
µ,mk

t−1 −mkDµ,mk

t−1

)

︸ ︷︷ ︸

(∗)

+

k∑

ℓ=1

ψℓ
∑

i∈[n],
j∈[n′]

F i,jℓ




∑

(µ,mk)∈B(i,j)

QL(µ,mk)





︸ ︷︷ ︸

(∗∗)

.

There are 4nn′ + 1 variables. We can bound the coefficient in which any QL(µ,mk) appears in (*) by:

max
µ,mk

∑

G

exp(ηV G,i,jt−1)−exp(−ηV G,i,jt−1)+2
(

exp(ηMG,i,j
t−1)−exp(−ηMG,i,j

t−1)
)

≤ |G|(6 exp(η2T)) ≤ 6|G| exp(2T).

The coefficient of any variable QL(µ,mk) in (**) is at most:

k∑

ℓ=1

ψℓ
∑

i∈[n],
j∈[n′]

F i,jℓ ≤ k · (nn′) ·max
i,j

{

2k

(
∑

G

2 exp(ηMG,i,j
T)

)}

≤ 2k+1k|G|nn′ · exp(2T).

Recalling that we are also keeping O(log 1
ǫ) bits of precision for each coefficient, it follows that the maximum

bit complexity of any constraint is bounded by

O

(

2 · 4nn′ ·
(

log
(
2k+1k|G|nn′ · exp(2T)

)
+ log

1

ǫ

))

= poly

(

n, n′, |G|, T, k, log 1

ǫ

)

.

Of course, the objective value, which is simply γ, also has polynomial bit complexity.
Next, we describe an efficient separation oracle for the LP. Consider a candidate solution (QL, γ). The

constraint requiring that QL be a probability distribution can be checked explicitly. Thus, it remains to
either find a violated constraint corresponding to some pure strategy ψ ∈ {0, 1}k of the adversary, or to
assert that none exists. But this reduces to the problem of finding the most violated such constraint, which
corresponds to the adversary’s pure best response problem. Note that only the (**) term of the objective
function (see the formula above) depends on the adversary’s action. Thus, the best response problem of the
adversary corresponds to finding

ψ∗ = arg max
ψ∈{0,1}k

k∑

ℓ=1

ψℓ
∑

i∈[n],j∈[n′]

F i,jℓ

∑

(µ,mk)∈B(i,j)

QL(µ,mk).

The best response for the adversary given a fixed distribution QL can be computed by setting each coordi-

nate ℓ ∈ [k] independently to be either 0 or 1: namely, ψℓ = 1 if
∑

i∈[n],
j∈[n′]

F i,jℓ

(
∑

(µ,mk)∈B(i,j)Q
L(µ,mk)

)

≥ 0

and ψℓ = 0 otherwise. This takes O(k) iterations, at each of which the expression whose sign determines ψℓ
is computed in polynomial time. Once the adversary’s best response has been computed, the oracle simply
outputs the corresponding constraint if it is violated, and otherwise it asserts that the proposed solutions is
feasible. Thus, we have a polynomial-time separation oracle for Linear Program 1.

This completes the proof that Linear Program 1 can be solved, at each round, to precision ǫ > 0 in time
polynomial in n, n′, log |G|, T, k, log 1

ǫ . The runtime of Algorithm 4 is therefore also poly(n, n′, |G|, T, k, log 1
ǫ),

where the dependence on |G| is O(|G|) — since at the beginning of each round t, we precompute the coefficients
of the linear program in time linear in |G|, and the Ellipsoid runs in time polynomial in log |G|.

Finally, we need to demonstrate that the claimed multivalidity guarantees (which are a function of the
chosen ǫ > 0) indeed hold. If we were exactly solving the linear program, this would be immediate from
Lemma 4.4 and the fact that Linear Program 1 is directly solving for:

argmin
QL∈Q̂L

r,n,n′

max
ψ∈{0,1}k

u(QL, ψ).

30

We only need to verify that our approximate guarantees follow from approximately solving the linear program.

Lemma 4.6. Algorithm 4 achieves the multivalidity guarantees specified in Theorem 4.3.

The proof of this lemma involves repeating several calculations from Section 4.2 with an ǫ error term,
and so is deferred to the Appendix.

5 Online Multivalid Marginal Coverage

5.1 An Outline of Our Approach

In this section, we derive an online algorithm for supplying prediction intervals with a coverage target 1− δ
that are multivalid with respect to some collection of groups G. When G = {X}, this corresponds to giving
simple marginal prediction intervals — a similar problem as solved by conformal prediction6, but without
requiring distributional assumptions. For richer classes G, we obtain correspondingly stronger guarantees. We
follow the same basic strategy that we developed in Section 3 for making multicalibrated mean predictions,
with a couple of important deviations.

1. First, we observe that even in the distributional setting, it is not always possible to provide prediction
intervals that have coverage probability exactly 1−δ. Consider, for example, the case in which the label
distribution is a point mass. Then, any prediction interval will have coverage probability either 0 or 1 —
in both cases, bounded away from the target 1− δ. More generally, if we are giving prediction intervals
with endpoints in some discrete set {0, 1/rn, . . . , 1}, in order for there to exist prediction intervals with
approximately the desired coverage probability in the distributional setting, the distribution must not
be overly concentrated on any sub-interval of width 1/rn. We define a sufficient smoothness condition
(Definition 5.2) for appropriately tight prediction intervals to be guaranteed to exist in the distributional
setting — a condition that becomes increasingly mild as we take our discretization parameter r to be
larger. We then derive — existentially, using the minimax theorem — the existence of an online
algorithm that gives prediction intervals that are multivalid at the desired coverage probability when
played against an adversary who is constrained at every round to play smooth label distributions. We
observe (Remark 5.2) that our smoothness condition is very mild, in the sense that we can enforce it
ourselves by adding noise U [−ǫ, ǫ] to the adversary’s labels, rather than making assumptions about
the adversary. When we do this, the intervals we obtain continue to have valid coverage if we widen
both endpoints by ǫ.

2. To instantiate our algorithm, we again need to compute equilibrium strategies for an appropriately
defined game for our learner to sample from. Unlike in the cases of mean and moment multicalibration,
however, the equilibrium strategies in this case do not appear to have any nice structure. We can
still derive an efficient algorithm, however, by solving a linear program at each round to compute an
equilibrium of the corresponding game. Because we assume that our adversary plays label distributions
that are appropriately smooth, the adversary has exponentially many pure strategies in this game, and
so we cannot efficiently enumerate all of the constraints in our equilibrium computation program.
Instead, we show that a simple greedy algorithm is able to implement a separation oracle, which allows
us to solve the linear program efficiently using the Ellipsoid algorithm.

5.2 An Existential Derivation of the Algorithm and Multicoverage Bounds

Our goal in this section is to derive an algorithm which at each round, makes predictions (ℓt, ut) ∈ Pinterval

that are multivalid with respect to some target coverage probability 1− δ.
6In fact, even with G = {X} the guarantees are stronger than the marginal guarantees promised by conformal prediction

techniques, because they remain valid even conditioning on the prediction. This is important and rules out trivial solutions,
like predicting the full interval with probability 1− δ and an empty interval with probability δ.

31

Towards this end, we define the coverage error of a group G and interval (ℓ, u):

Definition 5.1. Given a transcript πs = (xt, (ℓt, ut), yt)
s
t=1, we define the coverage error for a group G ∈ G

and bucket (i, j) ∈ [n]× [n] at time s to be:

V G,(i,j)s =

s∑

t=1

1[xt ∈ G, (ℓt, ut) ∈ Bn(i, j)] · vδ((ℓt, ut), yt),

where vδ((ℓ, u), y) = Cover((ℓ, u), y)− (1− δ).

Just as before, our coverage error serves as a bound on our multicoverage error.

Observation 5.1. Fix a transcript πT . If for all G ∈ G, and buckets (i, j) ∈ [n]× [n], we have that:

∣
∣
∣V

G,(i,j)
T

∣
∣
∣ ≤ αT

then the corresponding sequence of prediction intervals are (α, n)-multivalid with respect to G.

We now pause to observe that even in the easier distributional setting where data are drawn from a
fixed distribution: (x, y) ∼ D — there may not be any interval (ℓ, u) ∈ Pinterval that satisfies the desired
target coverage value, i.e. that guarantees that |E(x,y)∼D[vδ((ℓ, u), y]| is small. Consider for example a label
distribution that places all its mass on a single value y = i ∈ [0, 1]. Then any interval (ℓ, u) covers the
label with probability 1 or probability 0, which for δ 6∈ {0, 1} is bounded away from our target coverage
probability. Of course, if achieving the target coverage is impossible in the easier distributional setting, then
it is also impossible in the more challenging online adversarial setting. With this in mind, we define a class
of smooth distributions for which achieving (approximately) the target coverage is always possible for some
interval (ℓ, u) defined over an appropriately finely discretized range:

Prninterval = {(i, j) ∈ Pinterval : i, j ∈ Prn} ,

where as before, Prn is the uniform grid on [0, 1], {0, 1
rn , . . . , 1}. We show that we can similarly achieve

(approximately) our target coverage goals in the online adversarial setting when the adversary is constrained
to playing smooth distributions.

Definition 5.2. A label distribution Q ∈ ∆Y is (ρ, rn)-smooth if for any 0 ≤ a ≤ b ≤ 1 such that |a−b| ≤ 1
rn ,

Pr
y∼Q

[y ∈ [a, b]] ≤ ρ.

We say that a joint distribution D ∈ ∆(X × Y) is (ρ, rn)-smooth if for every x ∈ X , the marginal label
distribution conditional on x, D|x, is (ρ, rn)-smooth.

Observation 5.2. For any δ ∈ [0, 1] and any fixed (ρ, rn)-smooth label distribution Q, there always exists
some interval (ℓ, u) ∈ Prninterval such that |Pry∼Q[Cover((ℓ, u), y)]− (1− δ)| ≤ ρ.

Remark 5.1. The assumption of (ρ, rn)-smoothness becomes more mild for any ρ as r → ∞. Just as for
mean and moment multicalibration, in which our error bounds inevitably depend on the level of discretization
r that we choose, here our error bounds will depend on the smoothness level ρ of the adversary’s distributions
at the discretization level r that we choose. Finally, observe that smoothness is an extremely mild condition
in that we can enforce it ourselves if we so choose, rather than assuming that the adversary is constrained.
We elaborate on this in Remark 5.2.

Definition 5.3. We write Qρ,rn for the set of all (ρ, rn) smooth distributions over [0, 1]. We write Q̂ρ,rn
for the set of all (ρ, rn)-smooth distributions whose support belongs to the grid Prn = {0, 1

rn , . . . , 1}:

Q̂ρ,rn ≡ ∆Prn ∩ Qρ,rn.

32

We will show (in Lemma 5.3) that when the learner is restricted to selecting intervals from Prninterval,
without loss of generality, rather than considering adversaries that play arbitrary distributions over Qρ,rn,
it suffices to consider adversaries that play discrete distributions from Q̂ρ,rn, which will be more convenient
for us.

To bound the maximum absolute value of our coverage errors across all groups and interval predictions,
we again introduce the same style of surrogate loss function:

Definition 5.4 (Surrogate loss). Fixing a transcript πs ∈ Π∗ and a parameter η ∈ (0, 1/2), define a surrogate
coverage loss function at day s as:

Ls(πs) =
∑

G∈G,
(i,j)∈[n]×[n]

(

exp(ηV G,(i,j)s) + exp(−ηV G,(i,j)s)
)

,

where V
G,(i,j)
s are implicitly functions of πs. When the transcript is clear from context we will sometimes

simply write Ls.

Once again, 0 < η < 1
2 is a parameter that we will set later.

As before, we proceed by bounding the conditional change in the surrogate loss function:

Definition 5.5 (Conditional Change in Surrogate Loss). Fixing πs ∈ Π∗, xs+1 ∈ X and an interval (ℓ, u) ∈
Prninterval, define the conditional change in surrogate loss to be:

∆s+1(πs, xs+1, (ℓt+1, ut+1)) = E
ỹs+1

[L̃s+1 − Ls|xs+1, (ℓs+1, us+1), πs].

Lemma 5.1. For every transcript πs ∈ Π∗, every xs+1 ∈ X , and every (ℓs+1, us+1) ∈ Bn(i, j) we have that:

∆s+1(πs, xs+1, (ℓs+1, us+1)) ≤
(

η(E
ỹs+1

[vδ((ℓs+1, us+1), ỹs+1)])

)

Ci,js (xs+1) + 2η2Ls,

where for each i ≤ j ∈ [n], we have defined

Ci,js (xs+1) ≡
∑

G(xs+1)

exp(ηV G,(i,j)s)− exp(−ηV G,(i,j)s).

When xs+1 is clear from context, for notational economy, we will elide it and simply write Ci,js .

As in Section 4, we defer proofs that mirror previous arguments to the Appendix.

Next, we abuse notation and write V
G,(ℓ,u)
s to denote V

G,(i,j)
s for i, j ∈ [n]× [n] such that (ℓ, u) ∈ Bn(i, j).

Given (ℓ, u) ∈ Pinterval such that (ℓ, u) ∈ Bn(i, j), we let Cℓ,us ≡ Ci,js , with the latter defined in the statement
of Lemma 5.1. That is, fixing πs and xs+1, for any (ℓ, u) ∈ Pinterval such that (ℓ, u) ∈ Bn(i, j),

Cℓ,us (xs+1) ≡ Ci,js (xs+1) =
∑

G(xs+1)

exp(ηV G,(i,j)s)− exp(−ηV G,(i,j)s), (11)

where in turn the V ’s are as defined in Definition 5.1.

Lemma 5.2 (Value of the Game). For any xs+1 ∈ X , any adversary restricted to playing (ρ, rn)-smooth
distributions, and any transcript πs ∈ Π∗, there exists a distribution over predictions for the learner QLs+1 ∈
∆Prninterval which guarantees that:

E
(ℓ,u)∼QL

s+1

[
∆s+1(πs, xs+1, (ℓs+1, us+1))

]
≤ Ls

(
ηρ+ 2η2

)
.

33

Proof. We again proceed by defining a zero-sum game with objective function equal to the upper bound on
∆s+1(πs, xs+1, (ℓs+1, us+1)) that we proved in Lemma 5.1:

u((ℓ, u), y) = η · vδ((ℓ, u), y) · Cℓ,us + 2η2Ls.

Here, the strategy space for the learner (the minimization player) is the set of all distributions over Prninterval:
QL = ∆Prninterval. A priori, the strategy space for the adversary is Qρ,rn the set of all (ρ, rn)-smooth distri-

butions, but we show that it suffices to take QA = Q̂ρ,rn, the set of all discrete (ρ, rn)-smooth distributions
(i.e. restricting the adversary in this way does not change the value of the game).

Lemma 5.3. For any strategy QL ∈ ∆Prninterval for the learner, the adversary has a best response amongst
the set of all (ρ, rn)-smooth distributions with support only over the discretization {0, 1/rn, . . . , 1}. In other
words, for any QL ∈ ∆Prninterval, there exists a Q̂A ∈ Q̂ρ,rn such that:

Q̂A ∈ argmax
QA∈Qρ,rn

E
(ℓ,u)∼QL,

y∼QA

[u((ℓ, u), y)].

Proof. Fix any QA
′ ∈ argmaxQA∈Qρ,rn

E(ℓ,u)∼QL,y∼QA [u((ℓ, u), y)] — i.e. an arbitrary (ρ, rn)-smooth best

response for the maximization player. We will construct a discrete (ρ, rn)-smooth Q̂A ∈ Q̂ρ,rn that obtains
the same objective value, as follows. For each i

rn ∈ {0, 1/rn, . . . , 1}, let:

Pr
y∼QA

[
y = i

rn

]
= Pr
y∼QA′

[

y ∈
[i

rn
,
i+ 1

rn

)]

.

Observe first by construction that QA is a discrete probability distribution (because QA
′

is a probability
distribution over [0, 1], and the set of intervals [irn ,

i+1
rn) partition the unit interval), and that QA is (ρ, rn)-

smooth because QA
′

is (ρ, rn)-smooth — we have Pry∼QA [y = i
rn] ≤ ρ for all i. Finally observe that (by

definition) for any (ℓ, u) ∈ Prninterval, ℓ, u ∈ {0, 1/rn, . . . , 1}.
Therefore, we have that for any (ℓ, u) ∈ Prninterval, any i ∈ {0, 1, . . . , n}, and any y, y′ ∈

[
i
rn ,

i+1
rn

)

,

u((ℓ, u), y) = u((ℓ, u), y′). To see this, note that y ≥ ℓ if and only if y′ ≥ ℓ, and y < u if and only if y′ < u.
Since vδ((ℓ, u), y) is a function only of the indicators of the event that ℓ ≤ y < u, this proves the claim.

Recall (from Observation 5.2) that for any (ρ, rn)-smooth label distribution QA, there exists an inter-
val (ℓ, u) ∈ Prninterval such that |Pry∼QA [y ∈ [ℓ, u)] − (1 − δ)| ≤ ρ, meaning there exists (ℓ, u) such that

Eỹs+1
[vδ((ℓ, u), ỹs+1)] ≤ ρ. We can thus bound the value of the game we have defined as follows:

max
QA∈Q̂ρ,rn

min
(ℓ,u)∈Prn

interval

E
y∼QA

[u(ℓ, u), y] ≤
∑

G(xs+1)

exp(ηV G,(ℓ,u)s) (ηρ) + exp(−ηV G,(ℓ,u)s) (ηρ) + 2η2Ls,

≤ Ls(ηρ+ 2η2).

It is easy to verify that ∆Prninterval and Q̂ρ,rn are both compact sets (closed and bounded in a finite dimensional
Euclidean space) and convex. The lemma then follows by applying the minimax theorem (Theorem 2.1).

Corollary 5.1. For every s ∈ [T], πs ∈ Π∗, and xs+1 ∈ X (which fixes Ls and QLs+1), and any distribution
over Y:

E
(ℓ,u)∼QL

s+1

[L̃s+1|πs] ≤ Ls + E
(ℓ,u)∼QL

s+1

[
∆s+1(πs, xs+1, (ℓs+1, us+1))

]
< Ls

(
1 + ηρ+ 2η2

)
.

34

As with mean multicalibration, Lemma 5.2 defines (existentially) an algorithm that the learner can use to
make predictions — Algorithm 5. We will now show that Algorithm 5 (if we could compute the distributions
QLt) results in multivalid prediction intervals.

Algorithm 5: A Generic Multivalid Predictor

for t = 1, . . . , T do
Observe xt. Given πt−1 and xt, let Q

L
t ∈ ∆Prninterval be the distribution over prediction intervals whose

existence is established in Lemma 5.2.
Sample (ℓ, u) ∼ QLt and predict (ℓt, ut) = (ℓ, u)

Lemma 5.4. Against any adversary who is constrained to playing (ρ, rn)-smooth distributions, Algorithm 5
results in surrogate loss satisfying:

E
π̃T

[L̃T] ≤ 2|G|n2 exp
(
Tηρ+ 2Tη2

)
.

Proof. Using Corollary 5.1, the first part of Theorem 3.1 applies in this case to the process L with L0 = 2|G|n2

and c = ρ. The bound follows by plugging these values into (3).

Finally, we can calculate a bound on our expected multivalidity error. The proof (which mirrors similar
claims in previous sections) is in the Appendix.

Theorem 5.1. When Algorithm 5 is run using n buckets, discretization parameter r and η =
√

ln(2|G|n2)
2T ∈

(0, 1/2), then against any adversary constrained to playing (ρ, rn)-smooth distributions, its sequence of in-
terval predictions is α-multivalid with respect to G in expectation over the randomness of the transcript πT ,
where:

E[α] ≤ ρ+ 2

√

2 ln(2|G|n2)

T
.

We can also use the second part of Theorem 3.1 to prove a high probability bound on the multicalibration
error of Algorithm 5. The proof is in the Appendix.

Theorem 5.2. When Algorithm 5 is run using n buckets, discretization parameter r and η =
√

ln(2|G|n2)
2T ∈

(0, 1/2), then against any adversary who is constrained to playing (ρ, rn)-smooth distributions, its sequence
of interval predictions is α-multivalid with respect to G with probability 1 − λ over the randomness of the
transcript πT :

α ≤ ρ+ 4

√

2

T
ln

(
2|G|n2

λ

)

.

Remark 5.2. The hypothesis of our theorems has an assumption: that the adversary is restricted to playing
(ρ, rn)-smooth distributions. This may be reasonable if we are not in a truly adversarial setting, and are
simply concerned with unknown distribution shift. But what if we are truly in an adversarial environment?
It turns out that in order to have a useful algorithm, we need not make any assumptions on the adversary
at all. Observe that if we randomly perturb observed labels with uniform noise: ŷt = yt + U(−ǫ, ǫ), then
the distribution on our perturbed points will be

(
1

2rnǫ , rn
)
-smooth by construction. Now recall that r is a

parameter that we can select. By taking r = 1
2ρnǫ , we obtain that the distribution on the perturbed points is

(ρ, rn)-smooth, for a value of ρ that we can take as small as we like. Taking ρ = 1/
√
T (r =

√
T

2nǫ) makes
the contribution of ρ to the multivalidity error a low order term. If we feed these perturbed labels to our
algorithm, we will obtain prediction intervals that are multivalid for the perturbed labels. But observe that if
we simply widen each of our prediction intervals by ǫ at each end, so that we predict the interval [ℓt−ǫ, ut+ǫ),
then our intervals continue to have coverage probability at least 1 − δ for the original, unperturbed labels.
We can similarly take ǫ as small as we like. Our algorithm in Section 5.3 will have running time depending
polynomially on r, so with this construction obtains a polynomial dependence on 1/ǫ.

35

5.3 Deriving an Efficient Algorithm via Equilibrium Computation

In this section, we show how to implement Algorithm 5 to efficiently sample from the distributions QLt whose
existence we established in Lemma 5.2. We do this by efficiently computing an equilibrium strategy QLt using
the Ellipsoid algorithm by solving the linear program in Figure 2. This linear program has (rn)2+1 variables
and (a priori) an infinite number of constraints. However, as we will show:

1. The number of constraints can in fact be taken to be finite (albeit exponentially large), and

2. We have an efficient separation oracle to identify violated constraints.

Together, this allows us to apply the Ellipsoid algorithm.

min
QL∈Prn

interval

γ s.t.

∀QA ∈ Q̂ρ,rn :
∑

y∈Prn
QA(y)

(
∑

(ℓ,u)∈Prn
interval

QL((ℓ, u))
(

vδ((l, u), y)C
ℓ,u
t−1(xt)

))

≤ γ,
∑

(ℓ,u)∈Prn
interval

QL((ℓ, u)) = 1,

∀ (ℓ, u) ∈ Prninterval : QL((ℓ, u)) ≥ 0.

Figure 2: A Linear Program for Computing a Minimax Equilibrium Strategy for the Learner at Round t.

Algorithm 6: Von Neumann’s Multivalid Predictor

INPUT: ǫ > 0.
for t = 1, . . . , T do
Observe xt and compute Cℓ,ut−1(xt) for each (ℓ, u) ∈ Prninterval as in (11).
Solve the Linear Program from Figure 2 using the Ellipsoid algorithm, with Algorithm 7 as a
separation oracle, to obtain an ǫ-approximate solution QLt ∈ ∆Prninterval.
Predict (ℓt, ut) = (ℓ, u) with probability QLt ((ℓ, u)).

Theorem 5.3. Algorithm 6 implements Algorithm 5. In particular, it obtains multivalidity guarantees
arbitrarily close to those of Theorems 5.1 and 5.2. Namely, for any desired ǫ > 0, we have the following.

Choosing η =
√

ln(2|G|n2+ǫ)
2T ∈ (0, 1/2), we have against any adversary constrained to playing (ρ, rn)-

smooth distributions that the sequence of prediction intervals produced by Algorithm 6 is α-multivalid with
respect to G in expectation over the randomness of the transcript πT , where:

E[α] ≤ ρ+ 2

√

2 ln(2|G|n2 + ǫ)

T
.

Moreover, choosing η =
√

ln(2|G|n2)+ǫT
2T ∈ (0, 1/2), we have, with probability 1 − λ over the randomness

of the transcript πT ,

α ≤ ρ+ 4

√

2

T
ln

(
2|G|n2

λ

)

+ 2ǫ.

The runtime of Algorithm 6 is linear in |G|, and polynomial in r, n, T , and log(1ǫ).

Remark 5.3. As with all of our other algorithms, the dependence on |G| can be replaced at each round with
a possibly substantially smaller dependence on the number of groups which contain xt, |G(xt)|, whenever this
set is efficiently enumerable.

36

Proof. Recall that at each round t we need to find an equilibrium strategy for the learner in the zero-sum
game defined by the objective function:

u((ℓ, u), y) = ηvδ((ℓ, u), y)C
ℓ,u
t−1 + 2η2Lt−1

= η (Cover((ℓ, u), y)− (1− δ))Cℓ,ut−1 + 2η2Lt−1.

In this game, the strategy space for the learner is the set of all distributions over discrete intervals: QL =
∆Prninterval, and (by Lemma 5.3), the action space for the adversary can be taken to be the set of all discrete

smooth distributions: QA = Q̂ρ,rn.
The equilibrium structure of a game is invariant to adding and multiplying the objective function by a

constant. Hence we can proceed to solve the game with the objective function:

u((ℓ, u), y) = (Cover((ℓ, u), y)− (1− δ))Cℓ,ut−1.

To compute an equilibrium of the game, we need to solve for a distribution QL satisfying:

QL ∈ argmin
QL∈∆Prn

interval

max
QA∈Q̂ρ,rn

E
y∼QA,

(ℓ,u)∼QL

[u(ℓ, u), y)].

We can write this as a linear program, over the O((rn)2) variables QL((ℓ, u)): see Figure 2. A priori, this
linear program has infinitely many constraints.7 Nevertheless, we show that we can efficiently implement
a separation oracle, which given a candidate solution (QL, γ), can find a violated constraint whenever one
exists. This is sufficient to efficiently find, using the Ellipsoid algorithm, a feasible solution of the linear
program achieving value within any desired ǫ > 0 of the optimum.

Algorithm 7: A Separation Oracle for Linear Program 2

INPUT: A proposed solution QL, γ for Linear Program 2
OUTPUT: A violated constraint of Linear Program 2 if one exists, or a certification of feasibility.
for i = 0, 1 . . . , rn do
Compute

Wi ≡
∑

(ℓ,u)∈Prn
interval

:Cover((ℓ,u), i
rn

)=1
QL((ℓ, u))Cℓ,ut−1

Let σ : {0, . . . , rn} → {0, . . . , rn} be a permutation such that:

Wσ(0) ≥Wσ(1) ≥ . . . ≥Wσ(rn).

for i = 0, 1 . . . , rn do
Set QA(σ(i)) = min(ρ, 1−∑i−1

j=0Q
A(σ(j))

if
∑

y∈Prn
QA(y)

(
∑

(ℓ,u)∈Prn
interval

QL((ℓ, u))
(

vδ((l, u), y)C
ℓ,u
t−1

))

> γ, or QL not a prob. dist. then

return the violated constraint.
return FEASIBLE

We will identify the output of Algorithm 5 with the distribution QA associated with the constraint it
outputs. Observe that if there is a violation (i.e. the proposed solution QL, γ is infeasible), and there are
ties, i.e. indices i and j such that Wi =Wj , then there are multiple candidate QA’s that could be the output
of Algorithm 7. To that end, note that a solution QA can be output by Algorithm 7 if and only if it is
greed-induced :

Definition 5.6. Let Wi be defined as in Algorithm 7 for i ∈ {0, . . . , rn}. We say that a distribution
QL ∈ Q̂ρ,rn is greed-induced if for every pair of indices i and j such that Wi > Wj :

QA(j) > 0 =⇒ QA(i) = ρ.
7Although in fact, in the proof of Lemma 5.5, we will show that without loss of generality we can equivalently impose only

finitely (but exponentially) many constraints.

37

Lemma 5.5. Algorithm 7 is a separation oracle for the Linear Program in Figure 2. It runs in time
O((rn)3).

Proof. Recall that a separation oracle is given a candidate distribution QL ∈ ∆Prninterval and a value γ ∈ R,

and must determine if there is any QA ∈ Q̂ρ,rn such that:

∑

y∈Prn
QA(y)

(
∑

(ℓ,u)∈Prn
interval

QL((ℓ, u))
(

vδ((l, u), y)C
ℓ,u
t−1

))

> γ.

Suppose the learner is playing a distribution QL ∈ ∆Prninterval over intervals. The adversary will seek to

maximize the objective function over the set of (ρ, rn)-smooth distributions QA ∈ Q̂ρ,rn. Recall that
vδ((ℓ, u), y) = Cov((ℓ, u), y)− (1− δ). Therefore, fixing a distribution QL for the learner, there are terms in
the objective function that are independent of the adversary’s actions (roughly, those corresponding to the
(1 − δ) term), and hence irrelevant to the inner maximization problem (i.e the adversary’s best response).
We define the following quantity ũ which eliminates these y-independent terms:

ũ(QL, QA) =
∑

i∈{0,...,rn}
QA

(
i

rn

)
∑

(ℓ,u)∈Prn
interval

:Cover((ℓ,u), i
rn

)=1
QL((ℓ, u))Cℓ,ut−1,

=
∑

i∈{0,...,rn}
QA

(
i

rn

)

Wi.

Observe that for any QL ∈ ∆Pinterval:

argmax
QA∈Q̂ρ,rn




 E

ỹ∼QA,

(ℓ̃,ũ)∼QL

[u((ℓ̃, ũ), ỹ)]




 = argmax

QA∈Q̂ρ,rn

ũ(QL, QA).

Hence, to derive a separation oracle, it suffices to find an algorithm which maximizes ũ given a fixed
distribution over intervals QL for the learner. This is how we proceed.

Observe that by the argument above, the adversary’s problem is equivalent to solving:

max
QA

∑

i∈{0,...,rn}
QA

(
i

rn

)

Wi,

∑

i∈{0,...,rn}
QA

(
i

rn

)

= 1,

∀ i ∈ {0, . . . , rn} : QA
(
i

rn

)

≤ ρ,

∀ i ∈ {0, . . . , rn} : QA
(
i

rn

)

≥ 0.

By observation, this is a fractional knapsack problem—the value of each item i ∈ {0, . . . , rn} is Wi, the
quantity of each item i is ρ, and the total capacity is 1. Therefore the optimal solution is greed-induced.

To bound the runtime of Algorithm 7, first observe that checking that QL is a probability distribution
takes time O((rn)2 log rn). Now, we focus on the remaining constraints. Since the quantities Cℓ,ut−1 are
precomputed at the beginning of round t, the separation oracle computes Wi for each i ∈ {0, . . . , rn} in time
O((rn)2), and hence we can compute all Wi’s in time O((rn))3 . All that remains is to sort the indices Wi

which takes time O(rn ln rn), which is a low order term. Altogether, this results in a runtime of O((rn)3)
for Algorithm 7.

Now, we verify that Algorithm 6 runs efficiently — to do so, we need to show that the Ellipsoid algorithm
can efficiently (approximately) solve Linear Program 2.

38

Lemma 5.6. Each run of the Ellipsoid algorithm within Algorithm 6 solves the LP to a desired accuracy
ǫ > 0 in runtime poly(rn, log |G|, T, log 1

ǫ). Consequently, Algorithm 6 runs in time poly(rn, |G|, T, log 1
ǫ),

where the dependence on |G| is O(|G|).

Proof. To ensure the Ellipsoid has polynomial runtime, we need to satisfy the conditions of Theorem 4.4.
We first check that the feasible set of Linear Program 2 is a polyhedron, i.e. that it has finitely many

faces. By Lemma 5.5 above, the adversary always has a greed-induced best-response QA constructed by
Algorithm 7. Every distribution QA output by Algorithm 7 corresponds to selecting ⌊ 1ρ⌋ “full” buckets
that will have probability ρ each and one bucket for the remaining probability mass, so there are at most
rn ·

(
rn
⌊ 1
ρ
⌋
)
= O(rn · 2rn) such distributions. The feasible set of Linear Program 2 is thus equivalently given

by the corresponding finitely many (O(rn · 2rn)) constraints.
Thus, the feasible region of LP 2 is indeed a polyhedron; however, exponential terms in the coefficients

of the constraints associated with the adversarial best-responses (which are due to our definition of the
soft-max surrogate loss) prevent it from being rational. To fix this, we only keep O(log 1

ǫ) bits of precision
after the integer part of every coefficient of the original LP, resulting in a new LP whose coefficients are all
rational and within ± ǫ

2 from their original values in LP 2. The new LP indeed has a rational polyhedron as
its feasible region.

We now observe that Linear Program 2 has the form given in Lemma 4.5. This implies that by solving the
just described rational LP corresponding to LP 2 exactly, we will obtain the desired ǫ-approximate solution
to Linear Program 2. With this in mind, it remains to bound the bit complexity of the rational LP.

Consider any constraint of the rational LP. The coefficient of each variable QL((ℓ, u)) has absolute value
at most:

max
(ℓ,u)∈Pinterval

∑

G∈G
exp(ηV

G,(ℓ,u)
t−1)− exp(−ηV G,(ℓ,u)t−1) ≤ |G|2 exp

(

η max
G∈G,(ℓ,u)∈Pinterval

∣
∣
∣V

G,(ℓ,u)
t−1

∣
∣
∣

)

≤ 2|G| exp(ηT)
≤ 2|G| exp(T).

Thus, every constraint in the rational LP has bit complexity at most:

O

(

(rn)2 ·
(

log |G|+ T + log
1

ǫ

))

,

where the log 1
ǫ term reflects the chosen precision. This is polynomial in r, n, T, log |G|, and log 1

ǫ . Also, the
objective function, which is simply γ, takes O((rn)2) bits to write down.

We may now apply Theorem 4.4 with the parameters q = O((rn)2), φ = O
(
(rn)2(log |G|+ T + log 1

ǫ)
)
,

c = O((rn)2). The runtime of the separation oracle (which, we note, applies to the rational LP just as it did
for the original LP) is O((rn)3) by Lemma 5.5. Hence, the Ellipsoid algorithm will solve Linear Program 2
with accuracy ǫ in time poly(rn, log |G|, T, log 1

ǫ).
Hence, Algorithm 6 has time complexity poly(rn, |G|, T, log 1

ǫ) — where the dependence on |G| is linear,
because we precompute the Cℓ,ut−1’s once at the beginning of each round t, taking time linear in |G|, and the
runtime of the Ellipsoid algorithm is polylogarithmic in |G|. (We remark once more that the dependence on
|G| can be reduced to a dependence on |G(xt)| if G(xt) is efficiently enumerable, and that this might be much
smaller.)

Finally, we need to demonstrate that the claimed multivalidity guarantees (which are a function of the
chosen ǫ > 0) indeed hold.

Lemma 5.7. Algorithm 6 achieves the multivalidity guarantees stated in Theorem 5.3.

The proof of this lemma involves repeating several calculations from Section 5.2 with an ǫ error term,
and so is deferred to the Appendix.

39

6 Augmenting an Existing Learning Algorithm

For simplicity of exposition, throughout this paper, we have described our algorithms as predicting properties
of the arriving labels yt directly. But often that is not what we want: instead, we have some procedure
ft : X → Y making point predictions — that is, mapping features to labels — and we are interested in
properties of the residuals ft(xt) − yt. For example, ft may be some complicated (but powerful) learning
procedure — for example, maybe at every round, we train a neural network on the data we have observed
so far to predict the labels of new observations. It may be that the labels y have high variance, but that the
residuals yt − ft(xt) are tightly concentrated around zero (because ft is highly accurate). To quantify the
uncertainty of our predictions, we want to provide prediction intervals related to our predictions ft(xt) —
that is, to compute prediction intervals for the residuals. We may similarly be interested in the variance of
the residuals, etc.

We can easily use the algorithms we have developed in this paper for this. We have no understanding of ft
or the distribution on predictions ft(xt) it induces (say, because ft varies substantially from round to round
because of retraining) — but because our algorithms handle adversarially chosen sequences of examples, they
apply equally well when we feed them the residuals rather than the original labels. We have derived our
algorithms under the scaling that yt ∈ [0, 1], and the residuals yt − ft(xt) may lie in [−1, 1], so to apply the
same bounds we have derived, we need to compute centered residuals y′t =

1
2 + 1

2 (yt − ft(xt)). (This simply
corresponds to a rescaling and a shift so that the residuals again lie in [0, 1]. Thus, the following algorithm
is able to provide prediction intervals around the predictions of an arbitrary sequence of predictors ft (and
similar constructions work for predicting means and variances of the residuals):

Algorithm 8: Endowing Arbitrary Point Predictors with Prediction Intervals

Instantiate A, a copy of Algorithm 6.
for t = 1, . . . , T do
Observe xt, and compute a point prediction ft(xt) (for an arbitrary procedure ft).
Feed xt to A and receive a prediction interval (ℓt, ut).
Output point prediction ft(xt) and prediction interval (ft(xt) + 2ℓt − 1, ft(xt) + 2ut − 1).
Observe yt and feed the centered residual y′t =

1
2 + 1

2 (yt − ft(xt)) to A

We observe that yt ∈ [ft(xt) + 2ℓt− 1, ft(xt) + 2ut− 1) if and only if y′t ∈ [ℓt, ut) by construction, and so
the prediction intervals produced by Algorithm 8 inherit the (α, n)-multivalidity guarantees of Algorithm 6
(Theorems 5.1 and 5.2): that with probability 1− λ:

α ≤ ρ+ 4

√

2

T
ln

(
2|G|n2

λ

)

.

(the bound on expected multivalidity error holds as well). Here ρ is a smoothness parameter that depends
on both the discretization r we choose for our algorithm and the distribution over residuals at each round.
Note that as discussed in Remark 5.2, with an appropriate selection of r, for any ǫ > 0, we can make ρ as
small as we like by perturbing the centered residuals y′t with uniform noise U(−ǫ, ǫ), at the cost of needing
to widen our prediction intervals by ǫ on each end, i.e. predicting at each round:

(ft(xt) + 2ℓt − 1− ǫ, ft(xt) + 2ut − 1 + ǫ).

The computational cost of this is polynomial in 1/ǫ and 1/ρ, and the gain that we get by applying these
perturbations is that we need assume nothing at all about either the adversarial sequence of examples, or
about the properties of our predictors ft.

Acknowledgements

We thank Aaditya Ramdas for helpful discussions about conformal prediction, as well as pointers to the
literature. We thank Sergiu Hart, Dean Foster, Drew Fudenberg, and Rakesh Vohra for helpful discussions

40

about calibration, as well as pointers to the literature. We also thank Ashish Rastogi for discussions about
uncertainty estimation in practice. Gupta, Jung, Noarov, and Roth are supported in part by NSF grants
CCF-1763307 and CCF-1934876, and a grant from the Simons Foundation. Pai is supported in part by NSF
grant CCF-1763349.

References

Victor Chernozhukov, Kaspar Wüthrich, and Zhu Yinchu. Exact and robust conformal inference methods
for predictive machine learning with dependent data. In Conference On Learning Theory, pages 732–749,
2018.

Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism prediction
instruments. Big data, 5(2):153–163, 2017.

Alexandra Chouldechova and Aaron Roth. A snapshot of the frontiers of fairness in machine learning.
Communications of the ACM, 63(5):82–89, 2020.

A Philip Dawid. The well-calibrated bayesian. Journal of the American Statistical Association, 77(379):
605–610, 1982.

Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for the analysis of randomized
algorithms. Cambridge University Press, 2009.

Cynthia Dwork, Michael P Kim, Omer Reingold, Guy N Rothblum, and Gal Yona. Learning from outcomes:
Evidence-based rankings. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science
(FOCS), pages 106–125. IEEE, 2019.

Cynthia Dwork, Michael P Kim, Omer Reingold, Guy N Rothblum, and Gal Yona. Outcome indistinguisha-
bility. arXiv preprint arXiv:2011.13426, 2020.

Dean P Foster. A proof of calibration via blackwell’s approachability theorem. Games and Economic
Behavior, 29(1-2):73–78, 1999.

Dean P Foster and Sergiu Hart. Smooth calibration, leaky forecasts, finite recall, and nash dynamics. Games
and Economic Behavior, 109:271–293, 2018.

Dean P Foster and Sergiu Hart. Forecast-hedging and calibration. 2019.

Dean P Foster and ShamMKakade. Calibration via regression. In 2006 IEEE Information Theory Workshop-
ITW’06 Punta del Este, pages 82–86. IEEE, 2006.

Dean P Foster and Rakesh V Vohra. Asymptotic calibration. Biometrika, 85(2):379–390, 1998.

Dean P Foster, Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Complexity-based approach to
calibration with checking rules. In Proceedings of the 24th Annual Conference on Learning Theory, pages
293–314, 2011.

Rina Foygel Barber, Emmanuel J Candès, Aaditya Ramdas, and Ryan J Tibshirani. The limits of
distribution-free conditional predictive inference. Information and Inference: A Journal of the IMA,
2020.

Drew Fudenberg and David K Levine. An easier way to calibrate. Games and economic behavior, 29(1-2):
131–137, 1999a.

Drew Fudenberg and David K Levine. Conditional universal consistency. Games and Economic Behavior,
29(1-2):104–130, 1999b.

41

Chirag Gupta, Aleksandr Podkopaev, and Aaditya Ramdas. Distribution-free binary classification: predic-
tion sets, confidence intervals and calibration. Advances in Neural Information Processing Systems, 33,
2020.

Sergiu Hart. Calibrated forecasts: The minimax proof. 2020. URL
http://www.ma.huji.ac.il/~hart/papers/calib-minmax.pdf.

Úrsula Hébert-Johnson, Michael Kim, Omer Reingold, and Guy Rothblum. Multicalibration: Calibration
for the (computationally-identifiable) masses. In International Conference on Machine Learning, pages
1939–1948, 2018.

Christopher Jung, Changhwa Lee, Mallesh M Pai, Aaron Roth, and Rakesh Vohra. Moment multicalibration
for uncertainty estimation. arXiv preprint arXiv:2008.08037, 2020.

Sham M Kakade and Dean P Foster. Deterministic calibration and nash equilibrium. In International
Conference on Computational Learning Theory, pages 33–48. Springer, 2004.

Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. Preventing fairness gerrymandering: Audit-
ing and learning for subgroup fairness. In International Conference on Machine Learning, pages 2564–2572,
2018.

Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. An empirical study of rich subgroup fairness
for machine learning. In Proceedings of the Conference on Fairness, Accountability, and Transparency,
pages 100–109, 2019.

Michael Kim, Omer Reingold, and Guy Rothblum. Fairness through computationally-bounded awareness.
In Advances in Neural Information Processing Systems, pages 4842–4852, 2018.

Michael P Kim, Amirata Ghorbani, and James Zou. Multiaccuracy: Black-box post-processing for fairness
in classification. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, pages
247–254, 2019.

Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair determination
of risk scores. arXiv preprint arXiv:1609.05807, 2016.

Ehud Lehrer. Any inspection is manipulable. Econometrica, 69(5):1333–1347, 2001.

Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman. Distribution-free
predictive inference for regression. Journal of the American Statistical Association, 113(523):1094–1111,
2018.

David Oakes. Self-calibrating priors do not exist. Journal of the American Statistical Association, 80(390):
339–339, 1985.

Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q Weinberger. On fairness and cali-
bration. Advances in Neural Information Processing Systems, 30:5680–5689, 2017.

Mingda Qiao and Gregory Valiant. Stronger calibration lower bounds via sidestepping. arXiv preprint
arXiv:2012.03454, 2020.

Alvaro Sandroni, Rann Smorodinsky, and Rakesh V Vohra. Calibration with many checking rules. Mathe-
matics of operations Research, 28(1):141–153, 2003.

Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, Inc., USA, 1986.
ISBN 0471908541.

Eliran Shabat, Lee Cohen, and Yishay Mansour. Sample complexity of uniform convergence for multicali-
bration. arXiv preprint arXiv:2005.01757, 2020.

42

http://www.ma.huji.ac.il/~hart/papers/calib-minmax.pdf

Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. Journal of Machine Learning Research,
9(Mar):371–421, 2008.

Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas. Conformal prediction
under covariate shift. Advances in Neural Information Processing Systems, 32:2530–2540, 2019.

Rakesh V Vohra. Advanced mathematical economics. Routledge, 2004.

A Batch Prediction

A.1 Preliminaries

In the batch setting, there is an (unknown) probability distribution D over X × Y. Let DX refer to the
induced marginal distribution on X and let DY refer to the induced marginal distribution on Y. In the batch
setting, rather than talking about a sequence of predictions, we need to refer to calibration properties of
a single predictor with respect to the data distribution. We here modify the definition of consistency and
calibration accordingly — but we will show how to convert calibration guarantees from the online setting to
calibration guarantees in the offline setting.

Given n independent draws from D, denoted by D = {(xt, yt)}Tt=t the corresponding dataset. Given some
x, our goal is to predict various properties of D|x.

Mean Predictions For mean prediction, we use a (possibly randomized) predictor µ : X → [0, 1] that
tries to predict the conditional mean E[y|x]. Given a set S ⊆ X , we write

µ(S) = E
µ
[E
D
[y|x ∈ S]], µ(S) = E

µ
[E
D
[µ(x)]|x ∈ S]]

for the conditional mean of labels on the distribution conditional on x ∈ S and our conditional mean
prediction. For calibration guarantees, we will be concerned with sets that depend on realizations of the
randomized predictor µ, so it is important that in the above expressions, S appears inside the expectation
over µ. Otherwise, we essentially use the same notation as in the online setting except instead of averaging
over the empirical distribution, we average over the true distribution.

As in the online setting, we “bucket” our real valued predictions into n buckets of width 1
n , which serves

as a measure of granularity of our calibration guarantee. Given a set S ⊆ X and mean predictor µ, we write

S(µ, i) ≡ {x ∈ S : µ(x) ∈ Bn(i)}
to be the set of points in S whose mean predictions fall into the ith bucket. When µ is a randomized
predictor, we think of S(µ, i) as a random set where the randomness is over the random bits of µ.

Definition A.1 (Mean Consistency). Call a mean predictor µ α-mean consistent on a set S over distribution
D if

|µ (S)− µ (S)| ≤ α

Prµ,DX
[x ∈ S] .

We note that we include the randomness of µ when writing the measure of the set S because we will be
interested in random sets S defined as a function of randomized predictors µ.

We are now ready to define calibration, which asks for mean consistency on particular sets defined by
the mean predictor itself:

Definition A.2 (Mean-Multicalibration). Fix a set S ⊆ X and a true distribution D. A mean predictor µ
is (α, n)-mean calibrated on a set S over distribution D if it is α-mean consistent on every set S(µ, i) over
D, i.e. if for each i ∈ [n]:

|µ (S(µ, i))− µ(S(µ, i))| ≤ α

Prµ,DX
[x ∈ S(µ, i)] .

We say that µ is α-mean multicalibrated with respect to (a collection of sets) G over D if it is α-mean
calibrated on every G ∈ G over D.

43

(Mean, Moment) Prediction In this case, we use a (randomized) predictor µ : X → [0, 1] that tries to
predict the conditional label mean E[y|x] and a (randomized) predictor mk : X → [0, 1] that tries to predict
the conditional kth central moment of the label distribution mk(x) = E[(y − E[y|x])k|x]. We again assume
that k is even so that the range of the kth moment remains non-negative, but there is no obstacle other
than notation to handling odd moments as well. Although for notational convenience we write mk and µ as
separate functions, they may use correlated randomness.

Analogously to our notation for mean prediction, we write for any S ⊆ X ,

mk(S) = E
µ,mk

[E
D
[(y − µ(S))k|x ∈ S]] mk(S) = E

µ,mk

[E
D
[mk(x)|x ∈ S]].

to denote the empirical kth central moment of the label distribution on the subsequence S and for the average
of the moment prediction on S, respectively.

Definition A.3 (Moment Consistency). We say that (µ,mk) is α-moment consistent on set S ⊆ X if

|mk(S)−mk(S)| ≤ α

Prµ,mk,DX
[x ∈ S] .

Once again we include the randomness of µ,mk because we will be concerned with sets that are defined in
terms of µ and mk.

For any S ⊆ X and i ∈ [n], j ∈ [n′], we write

S(µ, i,mk, j) =
{
x ∈ S : µ(x) ∈ Bn(i),mk(x) ∈ Bn′(j)

}
.

In words, S(µ, i,mk, j) corresponds to the subset of points in S in which our predicted mean falls in Bn(i)
and Bn′(j).

Definition A.4 (Mean-Conditioned Moment Multicalibration). We say that (µ,mk) is (α, β, n, n′)-mean-
conditioned moment multicalibrated with respect to G over D, if for every i ∈ [n], j ∈ [n′], and G ∈ G, we
have that µ is α-mean consistent on G(µ, i,mk, j) and mk is β-moment consistent on G(µ, i,mk, j):

|µ(G(µ, i,mk, j))− µ(G(µ, i,mk, j))| ≤ α

Prµ,mk,DX
[x ∈ G(µ, i,mk, j)]

,

|mk(G(µ, i,mk, j))−mk(G(µ, i,mk, j))| ≤ β

Prµ,mk,DX
[x ∈ G(µ, i,mk, j)]

.

For convenience, we sometimes combine the mean and moment predictor into a single predictor h : X →
[0, 1]× [0, 1] and write hµ(x) = h(x)[0] to refer to its mean prediction and hm

k

(x) = h(x)[1] to refer to its

moment prediction. Also, we write h(x) ∈ Bn,n′(i, j) if hµ(x) ∈ Bn(i) and hm
k

(x) ∈ Bn′(j). If n and n′ are
clear from the context, we just write h(x) ∈ B(i, j).

Interval Prediction In this case, we want to come up with randomized predictors ℓ : X → [0, 1] and
u : X → [0, 1] such that the probability that y falls between ℓ(x) and u(x) is approximately 1 − δ for some
specified failure probability δ. Although for notational convenience we write ℓ and u as separate functions,
they may use correlated randomness. Using the notation given in Section 2, we wish to devise ℓ, u such that

E[Cover((ℓ(x), u(x)), y)|x] ≈ 1− δ.
For any S ⊆ X , we write

Hℓ,u(S) = E
ℓ,u

[E
D
[Cover((ℓ(x), u(x)), x)|x ∈ S]].

We again bucket our coverage intervals using a discretization parameter n, using the same notation as
we used for moment predictions. For any S ⊆ X and i ≤ j ∈ [n], we write

S(ℓ, i, u, j) =
{
x ∈ S : ℓ(x) ∈ Bn(i), u(x) ∈ Bn(j)

}
.

44

For simplicity, we combine ℓ and u into a single predictor h : X → [0, 1]× [0, 1] and write hℓ(x) = h(x)[0]

and hu(x) = h(x)[1]. We say h(x) ∈ Bn(i, j) if hℓ(x) ∈ Bn(i) and hu(x) ∈ Bn(j). Also, when n is clear from
the context, we just write B(i, j).

We can now define multivalidity in a way analogous to how we have defined multicalibration.

Definition A.5. We say that interval predictor (ℓ, u) is α-consistent on set S with respect to the failure
probability δ ∈ (0, 1), if we have the following

|Hℓ,u(S)− (1− δ)| ≤ α

Prℓ,u,D[x ∈ S]
.

Definition A.6. The interval predictors (ℓ, u) are (α, n)-multivalid with respect to δ and G over D, if for
every i ≤ j ∈ [n] and G ∈ G, we have that the interval predictions are α-consistent on G(ℓ, i, u, j) with
respect to coverage probability 1− δ:

|Hℓ,u(G(ℓ, i, u, j))− (1− δ)| ≤ α

Prℓ,u,D[G(ℓ, i, u, j)]
.

A.2 Online to Batch Conversion

In this section, we show how to use our online algorithms to solve the corresponding batch multicalibration
problems. In doing so we obtain improved sample complexity bounds for mean and mean-conditioned moment
multicalibration for the batch problem, compared to prior work Hébert-Johnson et al. [2018], Jung et al.
[2020]. However, in contrast to prior work which in the batch case solves for deterministic predictors, we
obtain a randomized predictor via our online-to-offline reduction.

Previously, for any sequence of feature and label pairs {(xt, yt)}Tt=1, we have shown how to construct a
sequence of randomized predictors {ht}Tt=1 such that the sequence of predictions made from the predictors
{pt = ht(xt)}Tt=1 is multivalid. We viewed the functions ht(x) only implicitly before, but we consider them
explicitly here: for mean multicalibration, ht(x) is simply the distribution on label predictions µ that would
be made by Algorithm 2 at round t, given as input xt = x after a history defined by the sequence of examples
{(xs, ys)}t−1

s=1.
In this section, we show that if we have a sample D = {(xt, yt)}Tt=1 that is drawn independently from

D, we can feed each element in this sample D one-by-one to our online learning algorithm so as to obtain a
sequence of predictors {ht}Tt=1. From this, we construct a single (randomized) predictor h that is multivalid
over the distribution D. h will simply be the uniform mixture over the set of predictors {ht}Tt=1.

45

A.2.1 Mean prediction

Algorithm 9: Von Neumann’s Batch Mean Multicalibrator

INPUT: Training dataset D = {(xt, yt)}Tt=1

Training: Run Algorithm 2 on the sequence of examples D to generate a transcript πT .
Denote by ht(x) the (randomized) mapping from X to [0, 1] that Algorithm 2 induces as a function of
transcript πt−1 (the prefix of πT of length t− 1).
Prediction: On input x, sample hmean(x) by selecting t ∼ [T] uniformly at random, and then sampling
from ht(x).

More explicitly, select t ∼ [T] uniformly at random and:
Compute for each i ∈ [n] Cit−1(x) as defined in (2) conditioning on πt−1.
if Cit−1(x) > 0 for all i ∈ [n] then
Predict hmean(x) = 1.

else if Cit−1(x) < 0 for all i ∈ [n] then
Predict hmean(x) = 0.

else
Find i∗ ∈ [n− 1] such that Ci

∗

t−1(, x) · Ci
∗+1
t−1 , x) ≤ 0

Define 0 ≤ qt ≤ 1: (using the convention that 0/0 = 1)

qt =
|Ci∗+1
t−1 (x)|

|Ci∗+1
t−1 (x)| + |Ci∗t−1(x)|

Predict hmean(x) = i∗

n − 1
rn with probability qt and h

mean(x) = i∗

n with probability 1− qt.

Theorem A.1. Let D = {(xt, yt)}Tt=1 be a dataset drawn i.i.d. from D, and suppose T is large enough
such that η specified in Theorem 3.3 falls in (0, 1/2). Let ǫ, λ > 0. For an appropriately small choice of the
discretization parameter r, with probability 1−λ, Algorithm 9 produces a predictor hmean that is (α, n)-mean
multicalibrated with respect to G over D where

α = (6 + ǫ)

√

2

T
ln

(
4|G|n
λ

)

Proof. In order to show that hmean is (α, n)-mean multicalibrated with respect to G over D, it is sufficient
to show for all G ∈ G and i ∈ [n]

∣
∣
∣
∣ E
(x,y)∼D,hmean

[1[hmean(x) ∈ B(i), G(x) = 1] · (y − hmean(x))]

∣
∣
∣
∣
≤ α.

We can calculate:

E
(x,y)∼D,hmean

[1[hmean(x) ∈ B(i), G(x) = 1] · (y − hmean(x))]

=
∑

(x,y)

T∑

t=1

D[(x, y)] · Pr[hmean = ht] · Pr[ht(x) ∈ B(i)] · 1[G(x) = 1] · (y − ht(x))

=
1

T

∑

(x,y)

T∑

t=1

D[(x, y)] · Pr[ht(x) ∈ B(i)] · 1[G(x) = 1] · (y − ht(x))

=
1

T

T∑

t=1

E
(x,y)∼D,ht

[1[ht(x) ∈ B(i), G(x) = 1] · (y − ht(x))] (12)

46

Therefore, our goal is to upper bound the absolute value of (12). We will show that if D = {(xt, yt)}Tt=1 is
sampled i.i.d. from D, the empirical calibration error on the transcript πT generated during training serves
as a good estimate for (12). And because we know from Theorem 3.3 that for every sequence of examples,
Algorithm 2 produces predictions that will be empirically calibrated with high probability, our bound will
follow.

In particular, we know from Theorem 3.3 that (for an appropriate choice of r) with probability 1− λ/2
over the randomness of πT produced in training that for all i ∈ [n], G ∈ G:

∣
∣
∣
∣
∣

1

T

T∑

t=1

1 [µt ∈ B(i), G(xt) = 1] · (yt − µt)
∣
∣
∣
∣
∣
≤ (2 + ǫ)

√

2

T
ln

(
4|G|n
λ

)

.

Now, fixing G ∈ G and i ∈ [n], we use the following martingale argument to show that (12) is close to the
empirical calibration error with respect to G and i with high probability. Consider the following martingale
sequence adapted to the filtration Fs = σ({(xt, yt), µt}st=1):

Z̃s = Zs−1 + E
(x,y)∼D,hs

[1 [hs(x) ∈ B(i), G(x) = 1] · (y − hs(x)) |πs−1]− 1 [µs ∈ B(i), G(xs) = 1] · (ys − µs) .

It’s easy to see that the above sequence is a martingale: because

E
(x,y)∼D,hs

[1 [hs(x) ∈ B(i), G(x) = 1] · (y − hs(x)) |πs−1]

= E
(xs,ys)∼D,µs

[1 [µs ∈ B(i), G(xs) = 1] · (ys − µs) |πs−1] ,

and so we have E[Z̃s] = Zs−1.
Therefore, because |Zs − Zs−1| ≤ 2, we can apply Azuma’s inequality (Lemma D.2) to get that with

probability 1− λ/2 over the randomness of πT and D,

∣
∣
∣
∣
∣

T∑

t=1

E
(x,y)∼D,ht

[1 [ht(x) ∈ B(i), G(x) = 1] · (y − ht(x))]−
T∑

t=1

1 [µt ∈ B(i), G(xt) = 1] · (yt − µt)
∣
∣
∣
∣
∣
≤ 2

√

2T ln

(
4

λ

)

.

Therefore, Union bounding the above Azuma’s inequality over all i ∈ [n] and G ∈ G gives us the result: we
have with probability 1− λ over the randomness of D and πT ,

1

T

∣
∣
∣
∣
∣

T∑

t=1

E
(x,y)∼D,ht

[1 [ht(x) ∈ B(i), G(x) = 1] · (y − ht(x))]
∣
∣
∣
∣
∣
,

≤ 1

T

∣
∣
∣
∣
∣

T∑

t=1

1 [µt ∈ B(i), G(xt) = 1] · (yt − µt)
∣
∣
∣
∣
∣
+ 2

√
√
√
√2 ln

(
4|G|n
λ

)

T
,

≤ (6 + ǫ)

√

2

T
ln

(
4|G|n
λ

)

for every i ∈ [n] and G ∈ G.

A.2.2 (Mean, Moment) Prediction

We can use the same argument to show that we can feed D = {(xt, yt)}Tt=1 drawn i.i.d. from D into our
Algorithm 4 to obtain a randomized predictor hmean, moment that is (α, β, n, n′)-mean-conditioned-moment

47

multicalibrated with respect to G over D.
Algorithm 10: Von Neumann’s Batch Mean Moment Multicalibrator

INPUT: Training dataset D = {(xt, yt)}Tt=1

Training: Run Algorithm 4 on the sequence of examples D to generate a transcript πT .
Denote by ht(x) the (randomized) mapping from X to [0, 1]× [0, 1] that Algorithm 4 induces as a
function of transcript πt−1 (the prefix of πT of length t− 1).
Prediction: On input x, sample hmean, moment(x) by selecting t ∼ [T] uniformly at random, and then
sampling from ht(x).

More explicitly, select t ∼ [T] uniformly at random and:

Compute Cµ,m
k

t−1 (x), Dµ,mk

t−1 (x), Fµ,m
k

ℓ,t−1 (x) for each (µ,mk) ∈ P̂r,n× P̂r,n′

as in (5, 6, 9, 10) conditioning on
πt−1.
Find an ǫ-approximate solution to the linear program from Figure 1, to obtain solution QLt ∈ Q̂Lr,n,n′ .

Predict hmean, moment(x) = (µ,mk) with probability QLt ((µ,m
k)).

Theorem A.2. Assume T > 2 ln(8|G|n·n
′

δ) and T is sufficiently large such that η used in Theorem 4.3 is
in (0, 1/2). Let D = {(xt, yt)}Tt=1 be a dataset drawn i.i.d. from D. Let ǫ, δ > 0. For an appropriately
small choice of the discretization parameter r, with probability 1 − 2λ, Algorithm 10 produces a predictor
hmean, moment that is (α, β, n, n′)-mean-conditioned moment multicalibrated with respect to G over D where

α = (6 + ǫ′)

√

2

T
ln

(
8|G|n · n′

λ

)

+ 2ǫ

β = (k + 3)

(

(5 + ǫ′)

√

2

T
ln

(
8|G|n · n′

λ

)

+ 2ǫ

)

+
k

2n

Proof. Note that in order to show that hmean, moment is (α, β, n, n′)-mean-conditioned moment multicali-
brated with respect to G over D, it’s sufficient to prove the following for every i ∈ [n], j ∈ [n′], and G ∈ G:

1. Mean Consistency

∣
∣
∣
∣ E
(x,y)∼D,hmean

[
1[hmean, moment(x) ∈ B(i, j), G(x) = 1] ·

(
y − hmean, moment(x)[0]

)]
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∑

(x,y)

T∑

t=1

D[(x, y)] · Pr[hmean, moment = ht] · Pr
ht

[ht(x) ∈ B(i, j)] · 1[G(x) = 1] ·
(

y − hµt (x)
)

∣
∣
∣
∣
∣
∣

=
1

T

∣
∣
∣
∣
∣
∣

∑

(x,y)

T∑

t=1

D[(x, y)] · Pr
ht

[ht(x) ∈ B(i, j)] · 1[G(x) = 1] ·
(

y − hµt (x)
)

∣
∣
∣
∣
∣
∣

=
1

T

∣
∣
∣
∣
∣

T∑

t=1

E
(x,y)∼D,ht

[

1[ht(x) ∈ B(i, j), G(x) = 1] ·
(

y − hµt (x)
)]
∣
∣
∣
∣
∣

≤ α

48

2. Moment Consistency

∣
∣
∣
∣ E
(x,y)∼D,hmean

[
1[hmean, moment(x) ∈ B(i, j), G(x) = 1] ·

(
(y −AGi,j)k − hmean, moment(x)[1]

)]
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∑

(x,y)

T∑

t=1

D[(x, y)] · Pr[hmean, moment = ht] · Pr
ht

[ht(x) ∈ B(i, j)] · 1[G(x) = 1] ·
(

(y −AGi,j)k − hm
k

t (x)
)

∣
∣
∣
∣
∣
∣

=
1

T

∣
∣
∣
∣
∣
∣

∑

(x,y)

T∑

t=1

D[(x, y)] · Pr
ht

[ht(x) ∈ B(i, j)] · 1[G(x) = 1] ·
(

(y −AGi,j)k − hm
k

t (x)
)

∣
∣
∣
∣
∣
∣

=
1

T

∣
∣
∣
∣
∣

T∑

t=1

E
(x,y)∼D,ht

[

1[ht(x) ∈ B(i, j), G(x) = 1] ·
(

(y −AGi,j)k − hm
k

t (x)
)]
∣
∣
∣
∣
∣

≤ β,

where AGi,j is the true conditional mean for G(µ, i,mk, j):

AGi,j = E
(x,y),hmean, moment

[
1

[
hmean, moment(x) ∈ B(i, j), G(x) = 1

]
· y
]

=
1

T

T∑

t=1

E
(x,y),ht

[1 [ht(x) ∈ B(i, j), G(x) = 1] · y]

As for mean consistency, the same approach works as in the proof of Theorem A.1.

Lemma A.1. With probability 1−λ over the randomness of πT , {(µt,mk
t)}, Algorithm 10 produces {ht}Tt=1

such that for every i ∈ [n], j ∈ [n′], and G ∈ G

1

T

∣
∣
∣
∣
∣

T∑

t=1

E
(x,y)∼D,ht

[

1 [ht(x) ∈ B(i, j), G(x) = 1] ·
(

y − hµt (x)
)]
∣
∣
∣
∣
∣
≤ (4 + ǫ)

√

2

T
ln

(
4|G|n · n′

λ

)

Proof. Fix i ∈ [n], j ∈ [n′] and G ∈ G, and consider the following martingale sequence adapted to the
filtration Fs = σ({(xt, yt), ht}st=1):

Z̃s = Zs−1 + E
(x,y)∼D,ht

[
1 [hs(x) ∈ B(i, j), G(x) = 1] ·

(
y − hµs (x)

)]
− 1 [µs ∈ B(i, j), G(xs) = 1] · (ys − µs) .

Applying Azuma’s inequality (Lemma D.2) gives us that with probability 1 − λ/2 over the randomness of
drawing D from D and πT ,

1

T

∣
∣
∣
∣
∣

T∑

t=1

E
(x,y)∼D

[

1 [ht(x) ∈ B(i, j), G(x) = 1] ·
(

y − hµt (x)
)]
∣
∣
∣
∣
∣

≤ 1

T

∣
∣
∣
∣
∣

T∑

t=1

1

[
(µt,m

k
t) ∈ B(i, j), G(xt) = 1

]
· (yt − µt)

∣
∣
∣
∣
∣
+

√

8 ln
(
4
λ

)

T

Now, applying Theorem 4.3 with failure probability λ
2 and union bounding the above azuma’s inequality

49

over every i ∈ [n], j ∈ [n′] and G ∈ G gives us the result: we have that with probability 1−λ over πT and D,

1

T

∣
∣
∣
∣
∣

T∑

t=1

E
(x,y)∼D,ht

[

1 [ht(x) ∈ B(i, j), G(x) = 1] ·
(

y − hµt (x)
)]
∣
∣
∣
∣
∣

≤ (4 + ǫ′)

√

2

T
ln

(
8|G|n · n′

λ

)

+ 2ǫ+

√
√
√
√8 ln

(
4|G|n·n′

λ

)

T

≤ (6 + ǫ′)

√

2

T
ln

(
8|G|n · n′

λ

)

+ 2ǫ

for every i ∈ [n], j ∈ [n′] and G ∈ G.

As for the moment consistency, due to higher moments’ non-linearity, we need an additional application
of Azuma’s inequality to show that the empirical conditional mean and the true conditional mean, denoted
as A above, must be similar. This is to handle the fact that the empirical moment is centered around the
empirical mean but the true moment is centered around the true mean.

For convenience, we write

A′G
i,j =

1

T

T∑

t=1

1

[
(µt,m

k
t) ∈ B(i, j), G(xt) = 1

]
· yt

to denote the empirical conditional mean.

Lemma A.2. Fix i ∈ [n], j ∈ [n′], and G ∈ G. With probability 1 − λ over the randomness of drawing D
from D and πT , we have

|AGi,j −A′G
i,j | ≤

√

2 ln
(
2
λ

)

T

Proof. Consider the following martingale sequence once again adapted to the filtration Fs = σ({(xt, yt)}st=1):

Z̃s = Zs−1 + 1[(µs,m
k
s) ∈ B(i, j), G(xs) = 1] · ys − E

(x,y),hs

[1[hs(x) ∈ B(i, j), G(x) = 1] · y].

Applying Azuma’s inequality (Lemma D.2) to the above martingale gives us the result.

Finally, we show that the true and empirical conditional moments when centered around AGi,j must be
close through Azuma’s inequality.

Lemma A.3. Fix i ∈ [n], j ∈ [n′], and G ∈ G. With probability 1 − λ over the randomness of drawing D
from D and πT , we have

∣
∣
∣
∣
∣

1

T

T∑

t=1

E
(x,y)∼D,ht

[

1[ht(x) ∈ B(i, j), G(x) = 1] ·
(

(y −AGi,j)k − hm
k

t (x)
)]

− 1

T

T∑

t=1

1[(µt,m
k
t) ∈ B(i, j), G(xt) = 1] ·

(
(yt −AGi,j)k −mk

t

)

∣
∣
∣
∣
∣

≤

√

8 ln
(
2
λ

)

T

50

Proof. Consider the following martingale sequence adapted to the filtration Fs = σ({(xt, yt), ht}st=1):

Z̃s = Zs−1

+ E
(x,y)∼D,hs

[

1 [hs(x) ∈ B(i, j), G(x) = 1] ·
(

(y −A)k − hmk

s (x)
)]

− 1
[
(µs,m

k
s) ∈ B(i, j), G(xs) = 1

]
·
(
(ys −A)k −mk

s

)
.

Applying Azuma’s to the above martingale gives us the result.

Note that because {µt,mk
t }Tt=1 is (α, β, n, n′)-mean-conditioned-moment mutlticalibrated with respect to

G, we have

∣
∣
∣
∣
∣

1

T

T∑

t=1

1[(µt,m
k
t) ∈ B(i, j), G(xt) = 1] ·

(

(yt −A′G
i,j)

k −mk
t

)
∣
∣
∣
∣
∣
≤ β.

Therefore, by union bounding over every i ∈ [n], j ∈ [n′] and G ∈ [G], we can show with probability 1−λ
that for every i, j, and G

1

T

∣
∣
∣
∣
∣

T∑

t=1

E
(x,y)∼D,ht

[

1[ht(x) ∈ B(i, j), G(x) = 1] ·
(

(y −AGi,j)k − hm
k

t (x)
)]
∣
∣
∣
∣
∣

≤ 1

T

∣
∣
∣
∣
∣

T∑

t=1

1[(µt,m
k
t) ∈ B(i, j), G(xt) = 1] ·

(
(yt −AGi,j)k −mk

t

)

∣
∣
∣
∣
∣
+

√
√
√
√8 ln

(
8|G|nn′

λ

)

T

(with probability 1− λ/4 Lemma A.3)

≤ 1

T

∣
∣
∣
∣
∣

T∑

t=1

1[(µt,m
k
t) ∈ B(i, j), G(xt) = 1] ·

(

(yt −A′G
i,j)

k −mk
t

)
∣
∣
∣
∣
∣
+ k

√
√
√
√2 ln

(
8|G|nn′

λ

)

T
+

√
√
√
√8 ln

(
8|G|nn′

λ

)

T

(with probability 1− λ/4 Lemma A.2)

≤ (k + 2)

(

(4 + ǫ′)

√

2

T
ln

(
8|G|n · n′

λ

)

+ 2ǫ

)

+
k

2n
+ k

√
√
√
√2 ln

(
8|G|nn′

δ

)

T
+

√
√
√
√8 ln

(
8|G|nn′

δ

)

T

(with probability 1− λ/2 Theorem 4.3)

≤ (k + 3)

(

(5 + ǫ′)

√

2

T
ln

(
8|G|n · n′

λ

)

+ 2ǫ

)

+
k

2n
,

where the second inequality holds because |ak − bk| ≤ k|a− b| for any a, b ∈ [0, 1] and T > 2 ln(8|G|n·n
′

λ).
Because the mean consistency holds with probability 1 − λ and the moment consistency holds with

probability 1 − λ, hmean, moment is (α, β, n, n′)-mean-conditioned-moment multicalibrated with respect to G
over D with probability 1− 2λ.

51

A.2.3 Interval Prediction

Algorithm 11: Von Neumann’s Batch Multivalid Predictor

INPUT: Training dataset D = {(xt, yt)}Tt=1

Training: Run Algorithm 6 on the sequence of examples D to generate a transcript πT .
Denote by ht(x) the (randomized) mapping from X to [0, 1]× [0, 1] that Algorithm 4 induces as a
function of transcript πt−1 (the prefix of πT of length t− 1).
Prediction: On input x, sample hinterval(x) by selecting t ∼ [T] uniformly at random, and then
sampling from ht(x).

More explicitly, select t ∼ [T] uniformly at random and:

Observe xt and compute Cℓ,ut−1(xt) for each (ℓ, u) ∈ Prninterval as in (11) conditioning on πt−1.
Solve the Linear Program from Figure 2 using the Ellipsoid algorithm, with Algorithm 7 as a separation
oracle, to obtain a solution QLt ∈ ∆Prninterval.
Predict hinterval(x) = (ℓ, u) with probability QLt ((ℓ, u)).

Theorem A.3. Assume that D is a (ρ, rn)-smooth distribution. Let D = {(xt, yt)}Tt=1 be a dataset drawn
i.i.d. from D. Let δ, λ > 0. With probability 1 − λ, Algorithm 11 produces a predictor hinterval that is
(α, n)-multivalid with respect to δ and G over D where

α = ρ+ 6

√

2

T
ln

(
4|G|n2

λ

)

+ 2ǫ.

Proof. In order to show that hinterval is (α, n)-multivalid with respect to δ and G over D, it is sufficient to
show for all G ∈ G and i ≤ j ∈ [n]

∣
∣
∣
∣
∣

E
(x,y)∼D,hinterval

[
1[hinterval(x) ∈ B(i, j), G(x) = 1] ·

(
Cover(hinterval(x), x) − (1− δ)

)]

∣
∣
∣
∣
∣
≤ α.

We can calculate:

E
(x,y)∼D,hinterval

[
1[hinterval(x) ∈ B(i, j), G(x) = 1] ·

(
Cover(hinterval(x), y)− (1− δ)

)]

=
∑

(x,y)

T∑

t=1

D[(x, y)] · Pr[hinterval = ht] · Pr
ht

[ht(x) ∈ B(i, j)] · 1[G(x) = 1] · (Cover(ht(x), y) − (1− δ))

=
1

T

∑

(x,y)

T∑

t=1

D[(x, y)] · Pr
ht

[ht(x) ∈ B(i, j)] · 1[G(x) = 1] · (Cover(ht(x), y)− (1− δ))

=
1

T

T∑

t=1

E
(x,y)∼D,ht

[1[ht(x) ∈ B(i, j), G(x) = 1] · (Cover(ht(x), y) − (1− δ))]

Consider the following martingale sequence adapted to the filtration Fs = σ({(xt, yt), µt}st=1):

Z̃s = Zs−1 + E
(x,y)∼D,ht

[1[hs(x) ∈ B(i, j), G(x) = 1] · (Cover(hs(x), y) − (1− δ)) |πs−1]

− 1[(ℓs, us) ∈ B(i, j), G(xs) = 1] ·
(
Cover((ℓs, us), ys)− (1 − δ)

)
.

Because |Zs−Zs−1| ≤ 2, we can apply Azuma’s inequality (Lemma D.2) to get that with probability 1−λ/2

52

over the randomness of πT and D,
∣
∣
∣
∣
∣

T∑

t=1

E
(x,y)∼D,ht

[1[ht(x) ∈ B(i, j), G(x) = 1] · (Cover(ht(x), y) − (1− δ))]

−
T∑

t=1

1[(ℓt, ut) ∈ B(i, j), G(xt) = 1] ·
(
Cover((ℓt, ut), yt)− (1 − δ)

)

∣
∣
∣
∣
∣

≤ 2

√

2T ln

(
4

λ

)

.

Note that from Theorem 5.3 that with probability 1−λ/2 over the randomness of πT produced in training
that for all i ≤ j ∈ [n], G ∈ G:

∣
∣
∣
∣
∣

1

T

T∑

t=1

1[(ℓt, ut) ∈ B(i, j), G(xt) = 1] ·
(
Cover((ℓt, ut), yt)− (1− δ)

)

∣
∣
∣
∣
∣
≤ ρ+ 4

√

2

T
ln

(
4|G|n2

λ

)

+ 2ǫ.

Therefore, taking the union bound for the above Azuma’s inequality over all i ≤ j ∈ [n], G ∈ G, we have
that with probability 1− λ,
∣
∣
∣
∣
∣

1

T

T∑

t=1

E
(x,y)∼D,ht

[1[ht(x) ∈ B(i, j), G(x) = 1] · (Cover(ht(x), y) − (1− δ))]
∣
∣
∣
∣
∣
≤ ρ+ 6

√

2

T
ln

(
4|G|n2

λ

)

+ 2ǫ

for every i ≤ j ∈ [n], G ∈ G.

B Unboundedly Many Groups, Bounded Group Membership

In this section, we briefly sketch how we can modify our results so that we can handle the case that there are
a “large number” of groups (i.e. |G| is infinite or larger than 2T — a range in which the bounds we prove in
the main body are vacuous). In this scenario, we maintain the assumption that any given x ∈ X appears in
at most d groups, i.e. that |G(x)| ≤ d for all x ∈ X . As we have already noted, in this scenario, our running
time dependence on |G| can be replaced with d — here we show that we can do the same in our convergence
bounds.

The first step is to redefine our surrogate loss function L. The way it was previously defined, L0 was
already a quantity at the scale of |G|, and so it would be hopeless to use it for infinite collections of groups.
But a small modification solves this problem:

Definition B.1 (Surrogate loss function). Fixing a transcript πs ∈ Π∗ and a parameter η ∈ [0, 12], define a
surrogate calibration loss function at day s as:

Ls(πs) = 1 +
∑

G∈G,
i∈[n]

(
exp(ηV G,is) + exp(−ηV G,is)− 2

)
.

When the transcript πs is clear from context, we will sometimes simply write Ls.

Observe that this modified function satisfies L0 = 1, independently of the size of |G|, and still allows us
to tightly upper bound our calibration loss:

Observation B.1. For any transcript πT , and any η ∈ [0, 12], we have that:

max
G∈G,i∈[n]

∣
∣
∣V

G,i
T

∣
∣
∣ ≤ 1

η
ln(LT + 2dT) ≤ max

G∈G,i∈[n]

∣
∣
∣V

G,i
T

∣
∣
∣+

ln (dT)

η
.

53

This observation uses the fact that because (by assumption) |G(xt)| ≤ d for all t, after T time steps,

there are at most dT quantities V G,iT that are non-zero.
We can now provide a modified bound on ∆s+1(πs, xs+1, µs+1):

Lemma B.1. For any transcript πs ∈ Π∗, any xs+1 ∈ X , and any µs+1 ∈ Pmean such that µs+1 ∈ B(i) for
some i ∈ [n]:

∆s+1(πs, xs+1, µs+1) ≤ η
(

E
ỹs+1

[ỹs+1]− µs+1

)

Cis(xs+1) + 2η2Ls + 4dη2,

where for each i ∈ [n]:

Cis(xs+1) ≡
∑

G(xs+1)

exp(ηV G,is)− exp(−ηV G,is).

Proof. Fix any transcript πs ∈ Π∗ (which defines Ls), feature vector xs+1 ∈ X , and µs+1 such that µs+1 ∈
B(i) for some i ∈ [n]. By direct calculation, we obtain:

∆s+1(πs, xs+1, µs+1)

= E
ỹs+1




∑

G∈G(xs+1)

exp(ηV G,is)
(
exp(η(ỹs+1 − µs+1))− 1

)
+ exp(−ηV G,is)

(
exp(−η(ỹs+1 − µs+1))− 1

)



 ,

≤ E
ỹs+1




∑

G∈G(xs+1)

exp(ηV G,is)
(
η(ỹs+1 − µs+1) + 2η2

)
+ exp(−ηV G,is)

(
−η(ỹs+1 − µs+1) + 2η2

)



 ,

=η

(

E
ỹs+1

[ỹs+1]− µs+1

)
∑

G∈G(xs+1)

(
exp(ηV G,is)−exp(−ηV G,is)

)
+ 2η2

∑

G∈G(xs+1)

(
exp(ηV G,is) + exp(−ηV G,is)

)
,

≤η
(

E
ỹs+1

[ỹs+1]− µs+1

)



∑

G∈G(xs+1)

exp(ηV G,is)− exp(−ηV G,is)



+ 2η2Ls + 4dη2,

=η

(

E
ỹs+1

[ỹs+1]− µs+1

)

Cis(xs+1) + 2η2Ls + 4dη2.

Here, the first inequality follows from the fact that for 0 < |x| < 1
2 , exp(x) ≤ 1 + x+ 2x2.

We can use this to provide a modified bound to Lemma 3.2.

Lemma B.2. For any transcript πs ∈ Π∗, any xs+1 ∈ X , and any r ∈ N there exists a distribution over
predictions for the learner QLs+1 ∈ ∆Prn, such that regardless of the adversary’s choice of distribution of
ys+1 over ∆Y, we have that:

E
µ∼QL

s+1

[∆s+1(πs, xs+1, µ)] ≤ Ls
(η

rn
+ 2η2

)

+ 2d.

Proof. As in the proof of Lemma 3.2, we construct a zero-sum game between the learner and the adversary.
Fix the transcript πs and the feature vector xs+1. We define the utility of this game to be the upper bound
we proved on ∆s+1(πs, xs+1, µ) in Lemma B.1. For each µ ∈ Prn and each y ∈ [0, 1], we let:

u(µ, y) = η (y − µ)Cµs (xs+1) + 2η2Ls + 4dη2.

We now establish the value of this game. Observe that for any strategy of the adversary (which fixes

E[ỹ]), the learner can respond by playing µ∗ = argminµ∈Prn |E[ỹ]−µ|, and that because of our discretization,

54

min |E[ỹ]− µ∗| ≤ 1
rn . Therefore, the value of the game is at most:

max
y∈[0,1]

min
µ∗∈Prn

u(µ∗, y) ≤ max
µ∈Prn

η

rn

∣
∣Cµs (xs+1)

∣
∣+ 2η2Ls + 4dη2,

≤ Ls

(η

rn
+ 2η2

)

+ 2d.

Here the latter inequality follows since Cµs (xs+1) ≤ Ls + 2d for all µ ∈ Prn, by observation, and then since
η ∈ (0, 12) we have the bound. We can now apply the minimax theorem (Theorem 2.1) to conclude that
there exists a fixed distribution QLs+1 ∈ QL for the learner that guarantees that simultaneously for every
label y ∈ [0, 1] that might be chosen by the adversary:

E
µ∼QL

s+1

[u(µ, y)] ≤ Ls
(η

rn
+ 2η2

)

+ 2d,

as desired.

Corollary B.1. For every r ∈ N, s ∈ [T], πs ∈ Π∗, and xs+1 ∈ X (which fixes Ls and QLs+1), and any
distribution over Y:

E
µL
s+1

∼Qs+1

[L̃s+1|πs] = Ls + E
µs+1∼QL

s+1

[∆s+1(πs+1, xs+1, µs+1)] ≤ Ls
(

1 +
η

rn
+ 2η2

)

+ 2d.

Lemma B.2 shows that playing the minimax strategy of this zero-sum game (Algorithm 1) continues to
provide a low value to the learner. We now show the counterpart of the first part of Theorem 3.1 for these
modified bounds:

Theorem B.1. Consider a nonnegative random process X̃t adapted to the filtration Ft = σ(πt), where X̃0

is constant a.s. Suppose we have that for any period t, and any πt−1, E[X̃t|πt−1] ≤ Xt−1(1 + ηc+ 2η2) + 2d
for some η ∈ [0, 12], c ∈ [0, 1], d > 0. Then we have that:

E
π̃T

[X̃T] ≤ (X0 + 2dT) exp
(
Tηc+ 2Tη2

)
. (13)

Proof. First, observe that:

E
π̃T

[X̃T] = E
π̃T−1

[

E[X̃T |πT−1]
]

,

≤ E
π̃T−1

[

E[
(
1 + ηc+ 2η2

)
XT−1 + 2d|πT−1]

]

=
(
1 + ηc+ 2η2

)

E
π̃T−1

[

X̃T−1

]

+ 2d,

...

≤X0

(
1 + ηc+ 2η2

)T
+ 2d

T−1∑

t=0

(1 + cη + 2η2)t,

≤X0

(
1 + ηc+ 2η2

)T
+ 2dT (1 + cη + 2η2)T ,

=(X0 + 2dT) exp
(
T ln

(
1 + ηc+ 2η2

))
,

≤(X0 + 2dT) exp
(
Tηc+ 2Tη2

)
,

where the last inequality holds because ln(1 + x) ≤ x for any x > −1. This concludes the proof of (13).

We are now ready to bound our multicalibration error. As a straightforward consequence of Corollary B.1
and Theorem B.1, we have the following Corollary.

55

Corollary B.2. Against any adversary, Algorithm 1 instantiated with discretization parameter r results in
surrogate loss satisfying:

E
π̃T

[L̃T] ≤ (1 + 2dT) exp

(
Tη

rn
+ 2Tη2

)

.

Proof. Note that the first part of Theorem B.1 applies to the process L with L0 = 1 and c = 1
rn . The bound

follows by plugging these values into (13).

Next, we can convert this into a bound on Algorithm 1’s expected calibration error:

Theorem B.2. When Algorithm 1 is run using n buckets for calibration, discretization r ∈ N, and η =
√

ln(1+2dT)
2T , then against any adversary, its sequence of mean predictions are (α, n)-multicalibrated with

respect to G, where:

E[α] ≤
1

rn
+ 2

√

2 ln(1 + 4dT)

T
.

For r =
√
T

ǫn
√

2 ln(1+4dT)
this gives:

E[α] ≤ (2 + ǫ)

√

2

T
ln (1 + 4dT).

Here the expectation is taken over the randomness of the transcript πT .

Proof. From Observation 3.1, it suffices to show that

1

T
E
π̃T

[

max
G∈G,i∈[n]

|Ṽ G,iT |
]

≤ 1

rn
+ 2

√

2 ln(1 + 4dT)

T
.

We begin by computing a bound on the (exponential of) the expectation of this quantity:

exp

(

η E
π̃T

[

max
G,i
|Ṽ G,iT |

])

≤ E
π̃T

[

exp

(

ηmax
G,i
|Ṽ G,iT |

)]

,

= E
π̃T

[

max
G,i

exp
(

η|Ṽ G,iT |
)]

,

≤ E
π̃T

[

max
G,i

(

exp
(

ηṼ G,iT

)

+ exp
(

−ηṼ G,iT

))]

,

≤ E
π̃T







∑

G,i
GT (i) 6=φ

(

exp
(

ηṼ G,iT

)

+ exp
(

−ηṼ G,iT

))






,

= E
π̃T

[L̃T + 2dT],

≤ (1 + 2dT) exp

(
Tη

rn
+ 2Tη2

)

+ 2dT,

≤ (1 + 4dT) exp

(
Tη

rn
+ 2Tη2

)

.

Here the first step is by Jensen’s inequality and the second last one follows from Corollary B.2. Taking the
logarithm of both sides and dividing by ηT , we have

1

T
E
π̃T

[

max
G,i
|Ṽ G,iT |

]

≤ ln(1 + 4dT)

ηT
+

1

rn
+ 2η.

56

Choosing η =
√

ln(1+4dT)
2T , we thus obtain the desired inequality

1

T
E
π̃T

[

max
G,i
|Ṽ G,iT |

]

≤ 1

rn
+ 2

√

2 ln(1 + 4dT)

T
.

The corresponding high-probability bounds are omitted for brevity. They have the analogous dependence
on dT replacing |G|. Similar bounds can be obtained for the case of moment-multicalibration and multivalid
intervals with the same approach.

C Mean Conditioned Moment Multicalibrators Can Randomize

Over Small Support

In Section 4.3, we derived a linear programming based algorithm for making mean conditioned moment
multicalibrated predictors. Although we proved that we could reduce the pure strategy space of the learner
from (r2nn′) to 4nn′, a priori, the solutions we find via linear programming could have full support. Here
we prove that this need not be the case — there always exists a basic feasible solution of the linear program
that we solve that has support only over k + 1 pure strategies for the learner.

Lemma C.1. For any game with objective function (7), there exists a minimax strategy for the learner
Q̂L ∈ Q̂Lr,n,n′ , such that |support(Q̂L)| ≤ k + 1.

Proof. Suppose that Q∗ is a minimax strategy for the learner.
Observe that the adversary’s best response in this problem is straightforward: we have that ψℓ = 1 if

∑

µ,mk F
µ,mk

ℓ Q∗(µ,mk) > 0, that ψℓ = 0 if
∑

µ,mk F
µ,mk

ℓ Q∗(µ,mk) < 0, and otherwise the adversary is
indifferent. Define

L+ = {ℓ ∈ [k] :
∑

µ,mk

Fµ,m
k

ℓ Q∗(µ,mk) > 0},

L− = {ℓ ∈ [k] :
∑

µ,mk

Fµ,m
k

ℓ Q∗(µ,mk) < 0},

L= = {ℓ ∈ [k] :
∑

µ,mk

Fµ,m
k

ℓ Q∗(µ,mk) = 0}.

Note that L+ ∪ L− ∪ L= = [k].
Since Q∗ is a minimax strategy, it must solve the following linear program, which corresponds to min-

imizing the learner’s objective value over all strategies Q which engender the same best response for the

57

adversary as Q∗:

min
Q∈Q̂L

r,n,n′

∑

µ,mk

Q(µ,mk)
(

µCµ,m
k

s +mkDµ,mk

s − µ̂kiDµ,mk

s

)

subject to:

∀ℓ ∈ L+ :
∑

µ,mk

Fµ,m
k

ℓ Q(µ,mk) ≥ 0,

∀ℓ ∈ L− :
∑

µ,mk

Fµ,m
k

ℓ Q(µ,mk) ≤ 0,

∀ℓ ∈ L= :
∑

µ,mk

Fµ,m
k

ℓ Q(µ,mk) = 0,

∑

µ,mk

Q(µ,mk) = 1,

Q ≥ 0.

Further, any solution to this LP must also be a minimax strategy for the learner. Observe that this has
k+1 linear constraints. Any such linear program has a basic feasible solution: so there exists a solution Q̂L

(viewed as a vector) with exactly the number of non-zero entries as the number of binding constraints, i.e.
≤ k + 1, as desired.8 This is exactly the statement of the Lemma.

D Proofs from Section 3

Theorem 3.1. Consider a nonnegative random process X̃t adapted to the filtration Ft = σ(πt), where X̃0

is constant a.s. Suppose we have that for any period t, and any πt−1, E[X̃t|πt−1] ≤ Xt−1(1 + ηc + 2η2) for
some η ∈ [0, 12], c ∈ [0, 1]. Then we have that:

E
π̃T

[X̃T] ≤ X0 exp
(
Tηc+ 2Tη2

)
. (3)

Further, define a process Z̃t adapted to the same filtration by Z̃t = Zt−1 + ln X̃t − E[ln(X̃t)|πt−1]. Suppose
that |Zt − Zt−1| ≤ 2η, where Z0 = 0 a.s. Then, with probability 1− λ,

ln(XT (πT)) ≤ ln(X0) + T
(
ηc+ 2η2

)
+ η

√

8T ln

(
1

λ

)

. (4)

8As an aside, we point out that this also implies the square submatrix with rows corresponding to binding constraints and
corresponding to non-zero variables is of full rank. Textbook treatments that we are aware of consider either LPs with all
inequality constraints or all equality constraints. So for completeness we include the following argument. Convert the LP above
into a LP in standard form min cTx s.t. Ax = b, x ≥ 0 by adding/subtracting non-negative slack variables to the inequality
constraints L+, L−. This is a system of k + 1 linear equality constraints in 4nn′ + |L−| + |L+| + 1 variables. We know that
there exists an optimal of this LP that is a Basic feasible solution (BFS) (see e.g. Theorem 4.7 of Vohra [2004]), i.e. an optimal

solution with exactly k+1 non-zero variable with the corresponding (k+1)×(k+1) sub-matrix of A, denoted Â, of full rank. By
observation, the number of non-zero Q’s in this BFS must equal the number of constraints that bind at equality in the original
LP (any non-zero slack variable will correspond to a slack constraint in the original). The sub-matrix of Ā corresponding to
the non-zero Q’s as columns and binding constraints of the original LP as rows must be of full rank, because these rows have
all 0’s in the columns corresponding to the slack variables in Ā.

58

Proof. First, observe that:

E
π̃T

[X̃T] = E
π̃T−1

[

E[X̃T |πT−1]
]

,

≤ E
π̃T−1

[

E[
(
1 + ηc+ 2η2

)
XT−1|πT−1]

]

=
(
1 + ηc+ 2η2

)

E
π̃T−1

[

X̃T−1

]

,

...

≤X0

(
1 + ηc+ 2η2

)T
,

=X0 exp
(
T ln

(
1 + ηc+ 2η2

))
,

≤X0 exp
(
Tηc+ 2Tη2

)
,

where the last inequality holds because ln(1 + x) ≤ x for any x > −1. This concludes the proof of (3).
Towards demonstrating the high-probability bound 4, we first show the following statement.

Lemma D.1. For any πT , we have

T∑

t=1

(

E
π̃t

[

ln(X̃t)
∣
∣
∣πt−1

]

− ln(Xt−1(πt−1))

)

≤ T
(
ηc+ 2η2

)
.

Proof. Fixing πT and taking any t ≤ T , we have

E
π̃t

[

ln(X̃t)|πt−1

]

≤ ln

(

E
π̃t

[X̃t|πt−1]

)

, (Jensen’s inequality)

≤ ln(Xt−1(πt−1)) + ln
(
1 + cη + 2η2

)
, (by assumption)

≤ ln(Xt−1(πt−1)) +
(
cη + 2η2

)
. (ln(1 + x) ≤ x for any x > −1)

Summing over every round t ∈ [T] gives us the result.

Now observe that for any πt−1, we have E[Z̃t|πt−1] = Zt−1, so the process Z̃t is a martingale. Further, its
increments are bounded by assumption. Recall Azuma’s inequality for martingales with bounded increments
(see e.g. Dubhashi and Panconesi [2009]):

Lemma D.2 (Azuma’s Inequality). For any martingale {Z̃t}Tt=1 with |Zt−Zt−1| ≤ c a.s., for all T it holds

Pr
[

Z̃T − Z̃0 ≥ ǫ
]

≤ exp

(

− ǫ2

2c2T

)

.

By assumption, we may apply Azuma’s inequality with c = 2η, and we obtain

Pr
π̃T

[
T∑

t=1

(

ln(Xt(πt))− E
π̃t

[lnXt(π̃t)|πt−1]

)

≥ ǫ
]

≤ exp

(

− ǫ2

8η2T

)

.

So, with probability 1− λ, it holds that
T∑

t=1

(

ln(Xt(πt))− E
π̃t

[lnXt(π̃t)|πt−1]

)

≤ η
√

8T ln

(
1

λ

)

=⇒ ln(XT (πT)) ≤ ln(X0) +

(
T∑

t=1

E
π̃t

[ln(Xt(π̃t))|πt−1]− ln(Xt−1(πt−1))

)

+ η

√

8T ln

(
1

λ

)

=⇒ ln(XT (πT)) ≤ ln(X0) + T
(
ηc+ 2η2

)
+ η

√

8T ln

(
1

λ

)

,

where the last inequality follows from Lemma D.1.

59

Lemma 3.3. At any round t ∈ [T] and for any realized transcript πt, |Zt − Zt−1| ≤ 2η.

Proof. Observe that

|Zt − Zt−1| = |ln(Lt(πt))− E [ln(Lt(π̃t))|πt−1]|

=

∣
∣
∣
∣E

[

ln

(
Lt(πt)

Lt(π̃t)

)∣
∣
∣
∣
πt−1

]∣
∣
∣
∣

Note that for any πt,
Lt(πt) = Lt−1(πt−1) + ∆t(πt−1, xt, yt, µt)

where:

∆t(πt−1, xt, yt, µt)=
∑

G(xt)

exp(ηV
G,B−1(µt)
t−1) (exp(η(yt − µt))−1)+exp(−ηV G,B

−1(µt)
t−1) (exp(−η(yt − µt))− 1) .

Since yt − µt must lie in [−1, 1], we have that:

(exp(−η)− 1)Lt−1(πt−1) ≤ ∆t(πt−1, xt, yt, µt) ≤ (exp(η)− 1)Lt−1(πt−1)

which implies:
exp(−η)Lt−1(πt−1) ≤ Lt(πt) ≤ exp(η)Lt−1(πt−1).

Hence, for any two transcripts πt, π
′
t which are equal over the first t− 1 periods, we have

∣
∣
∣
∣
ln

(
Lt(πt)

Lt(π′
t)

)∣
∣
∣
∣
≤ ln

(
exp(η)

exp(−η)

)

= 2η.

Therefore,
∣
∣
∣E

[

ln
(
Lt(πt)
Lt(π̃t)

)∣
∣
∣πt−1

]∣
∣
∣ ≤ 2η as desired.

E Proofs from Section 4

Theorem 4.1. When Algorithm 3 is run using bucketing coarseness parameters n and n′, discretization

parameter r ∈ N, and η =
√

ln(4|G|n·n′)
2T ∈ (0, 1/2), then against any adversary, its sequence of mean-moment

predictions is (α, β, n, n′)-mean-conditioned moment multicalibrated with respect to G, where β = (k+1)α+ k
2n

and:

E[α] ≤
1

rn
+

1

rn′ + 2

√

2 ln(4|G|n · n′)

T
.

For r =
√
T (n+n′)

εn·n′·
√

2 ln(4|G|n·n′)
, this gives:

E[α] ≤ (2 + ε)

√

2

T
ln (4|G|n · n′).

Here the expectation is taken over the randomness of the transcript πT .

Proof. From Observation 4.1, it suffices to show that:

1

T
E
π̃T

[

max
G∈G,i∈[n],j∈[n′]

|Ṽ G,i,jT |
]

≤ 1

rn
+

1

rn′ + 2

√

2 ln(4|G|n · n′)

T
,

1

T
E
π̃T

[

max
G∈G,i∈[n],j∈[n′]

|M̃G,i,j
T |

]

≤ 1

rn
+

1

rn′ + 2

√

2 ln(4|G|n · n′)

T
.

60

We begin by computing a bound on the (exponential of) the expectation of the first quantity:

exp

(

η E
π̃T

[max
G,i,j
|Ṽ G,i,jT |]

)

≤ E
π̃T

[

exp

(

ηmax
G,i,j
|Ṽ G,i,jT |

)]

,

= E
π̃T

[

max
G,i,j

exp
(

η|Ṽ G,i,jT |
)]

,

≤ E
π̃T

[

max
G,i,j

(

exp
(

ηṼ G,i,jT

)

+ exp
(

−ηṼ G,i,jT

))]

,

≤ E
π̃T




∑

G,i,j

(

exp
(

ηṼ G,i,jT

)

+ exp
(

−ηṼ G,i,jT

)

+ exp
(

ηM̃G,i,j
T

)

+ exp
(

−ηM̃G,i,j
T

))



 ,

= E
π̃T

[L̃T],

≤ 4|G|n · n′ · exp
(
Tη

rn
+
Tη

rn′ + 2Tη2
)

.

Here the first inequality follows from Jensen’s inequality and the last one follows from Corollary 4.2. Taking
the log of both sides and dividing by ηT we obtain

1

T
E
π̃T

[max
G,i
|Ṽ G,iT |] ≤ ln(4|G|n · n′)

ηT
+

1

rn
+

1

rn′ + 2η.

Choosing η =
√

ln(4|G|n·n′)
2T , we have

1

T
E
π̃T

[max
G,i
|Ṽ G,iT |] ≤ 1

rn
+

1

rn′ + 2

√

2 ln(4|G|n · n′)

T
.

Repeating the same steps, we get an identical bound for 1
T Eπ̃T

[maxG∈G,i∈[n],j∈[n′] |M̃G,i,j
T |].

Now, given L̃, define Z̃ analogously to the second part of Theorem 3.1. Next, we can show that the
increments of Z̃ thus defined, at any round t, can be bounded.

Lemma E.1. At any round t ∈ [T] and for any realized transcript πt, |Zt − Zt−1| ≤ 2η.

Proof. Observe that

|Zt − Zt−1| = |ln(Lt(πt))− E [ln(Lt(π̃t))|πt−1]|

=

∣
∣
∣
∣E

[

ln

(
Lt(πt)

Lt(π̃t)

)∣
∣
∣
∣
πt−1

]∣
∣
∣
∣

Note that for any πt,
Lt(πt) = Lt−1(πt−1) + ∆t(πt−1, xt, yt, µt,m

k
t)

where:

∆t(πt−1, xt, yt, µt,m
k
t)

=
∑

G(xt)

exp(ηV
G,B−1(µt),B

−1(mk
t)

t−1) (exp(η(yt − µt))− 1) + exp(−ηV G,B
−1(µt),B

−1(mk
t)

t−1) (exp(−η(yt − µt))− 1) ,

+
∑

G(xt)

exp(ηM
G,B−1(µt),B

−1(mk
t)

t−1)
(
exp(η((yt − µ̂µt

)k −mk
t))− 1

)

+ exp(−ηMG,B−1(µt),B
−1(mk

t)
t−1)

(
exp(−η((yt − µ̂µt

)k −mk
t))− 1

)
.

61

Since (yt − µt) and ((yt − µ̂µt
)k −mk

t) must lie in [−1, 1], we have that:

(exp(−η)− 1)Lt−1(πt−1) ≤ ∆t(πt−1, xt, yt, µt,m
k
t) ≤ (exp(η)− 1)Lt−1(πt−1)

which implies:
exp(−η)Lt−1(πt−1) ≤ Lt(πt) ≤ exp(η)Lt−1(πt−1).

Therefore, for any two πt, π
′
t such that the corresponding transcripts for the first t− 1 periods is the same,

we have
∣
∣
∣
∣
ln

(
Lt(πt)

Lt(π′
t)

)∣
∣
∣
∣
≤ ln

(
exp(η)

exp(−η)

)

= 2η.

Therefore we have
∣
∣
∣E

[

ln
(
Lt(πt)
Lt(π̃t)

)∣
∣
∣πt−1

]∣
∣
∣ ≤ 2η as desired.

Theorem 4.2. When Algorithm 3 is run using bucketing coarseness parameters n and n′, discretization

r ∈ N and η =
√

ln(4|G|n·n′)
2T ∈ (0, 1/2), then against any adversary, with probability 1−λ over the randomness

of the transcript, its sequence of predictions is (α, β, n, n′)-mean-conditioned moment multicalibrated with
respect to G for β = (k + 1)α+ k

2n and:

α ≤ 1

rn
+

1

rn′ + 4

√

2

T
ln

(
4|G|n · n′

λ

)

.

For r =
√
T (n+n′)

ǫn·n′

√
2 ln(4|G|n·n′/λ)

, this gives:

α ≤ (4 + ǫ)

√

2

T
ln

(
4|G|n · n′

λ

)

.

Proof. By Lemma E.1, the second part of Theorem 3.1 applies, and plugging in L0 = 4|G|n · n′ and c =
1
rn + 1

rn′ , we have that, with probability (1− λ) over the randomness of the transcript:

ln(LT (πT)) ≤ ln(4|G|n · n) + T
(η

rn
+

η

rn′ + 2η2
)

+ η

√

8T ln

(
1

λ

)

.

Now, note that

exp

(

ηmax
G,i,j
|V G,i,jT |

)

= max
G,i,j

exp
(

η|V G,i,jT |
)

,

≤ max
G,i,j

(

exp
(

ηV G,i,jT

)

+ exp
(

−ηV G,i,jT

))

,

≤
∑

G,i,j

(

exp
(

ηV G,i,jT

)

+ exp
(

−ηV G,i,jT

)

+ exp
(

ηMG,i,j
T

)

+ exp
(

−ηMG,i,j
T

))

,

= LT (πT).

By an analogous argument we have that exp
(

ηmaxG,i,j |MG,i,j
T |

)

≤ LT (πT).Taking log on both sides and

dividing both sides by ηT , we get

1

T
max
G,i
|V G,i,jT | ≤ 1

ηT
ln(LT (πT)) ≤

ln(4|G|n · n′)

ηT
+

1

rn
+

1

rn′ + 2η +

√

8 ln
(
1
λ

)

T
.

62

Choosing η =
√

ln(4|G|n·n′)
2T , we obtain:

1

T
max
G,i,j
|V G,i,jT | ≤ 1

rn
+

1

rn′ + 2

√

2 ln(4|G|n · n′)

T
+

√

8 ln
(
1
λ

)

T

≤ 1

rn
+

1

rn′ + 4

√

2

T
ln

(
4|G|n · n′

λ

)

,

and, by an analogous argument,

1

T
max
G,i,j
|MG,i,j

T | ≤ 1

rn
+

1

rn′ + 4

√

2

T
ln

(
4|G|n · n′

λ

)

,

as desired.

Lemma 4.5. Consider a linear program of the following form, with variables x ∈ R
m, γ ∈ R for some m:

Minimize γ, subject to: Ax ≤ γ1m, x · 1m = 1, x ≥ 0.

Here, 1m ∈ R
m is the all-ones vector, and A = (aji) is a finite matrix with real entries.

Take any ǫ > 0. Modify the above linear program by replacing matrix A with matrix Ã = (ãji), where
each ãji is a rational number within ± ǫ

2 from aji, obtained by truncating aji to O(log
1
ǫ) bits of precision.

Then, any optimal solution (x∗,r, γ∗,r) of the resulting rational linear program is an ǫ-approximately optimal
feasible solution of the original linear program.

Proof. Let (x∗, γ∗) be the optimal solution of the original LP. Consider the constraint of the original (resp.
rational) LP associated with any row j of matrix A (resp. Ã). This constraint is written as

∑

i ajixi ≤ γ in
the original LP, and

∑

i ãjixi ≤ γ in the rational LP. Here and below, i ranges over [m]. Now, we have that

∑

i

ãjix
∗
i ≤

∑

i

(

aji +
ǫ

2

)

x∗i =
∑

i

ajix
∗
i +

ǫ

2

∑

i

x∗i ≤ γ∗ +
ǫ

2

∑

i

x∗i = γ∗ +
ǫ

2
.

Since this holds for any row j of the matrix, then setting x = x∗ achieves value at most γ∗ + ǫ
2 with respect

to the rational LP.
Conversely, consider an optimal solution (x∗,r, γ∗,r) of the rational LP — by the above, we immediately

have γ∗,r ≤ γ∗ + ǫ
2 . We claim it achieves value at most γ∗ + ǫ with respect to the original LP. Indeed, for

any matrix row j,

∑

i

ajix
∗,r
i ≤

∑

i

(

ãji+
ǫ

2

)

x∗,ri =
∑

i

ãjix
∗,r
i +

ǫ

2

∑

i

x∗,ri =
∑

i

ãjix
∗,r
i +

ǫ

2
≤ γ∗,r+ ǫ

2
≤
(

γ∗ +
ǫ

2

)

+
ǫ

2
= γ∗+ǫ.

Therefore, by solving the rational LP, we obtain an ǫ-approximate solution to the original LP, as desired.

Lemma 4.6. Algorithm 4 achieves the multivalidity guarantees specified in Theorem 4.3.

Proof. We briefly argue that the additive ǫ-approximation to the (shifted and rescaled) value of the game
results in the claimed dependence of the multivalidity guarantees on ǫ. When the learner achieves an ǫ
approximation to the value of the game at each round, the statement of Corollary 4.1 becomes:

E
QL

s+1

[L̃s+1|πs] ≤ Ls
(

1 +
η

rn
+

η

rn′ + 2η2
)

+ ηǫ ≤ Ls
(

1 +
η

rn
+

η

rn′ + 2η2
)

+ ǫ.

Indeed, recall that the linear program that we solve at each round solves for the value of the game that has
been shifted by 2η2Ls and divided by η. For the second inequality, recall that η < 1.

63

Now, using the telescoping argument from the first part of the proof of Theorem 3.1, we obtain

exp

(

η E
π̃T

[max
G,(i,j)

|Ṽ G,(i,j)T |]
)

≤4|G|n · n′
(

(1 +
η

rn
+

η

rn′ + 2η2
)T

+ ǫ
T−1∑

t=0

(

1 +
η

rn
+

η

rn′ + 2η2
)t

,

≤4|G|n · n′
(

(1 +
η

rn
+

η

rn′ + 2η2
)T

+ ǫT
(

1 +
η

rn
+

η

rn′ + 2η2
)T

,

=(4|G|n · n′ + ǫT) exp
(

T ln
(

1 +
η

rn
+

η

rn′ + 2η2
))

,

≤(4|G|n · n′ + ǫT) exp

(
Tη

rn
+
Tη

rn′ + 2Tη2
)

,

Taking logs and dividing by ηT , we get

1

T
E
π̃T

[max
G,(i,j)

|Ṽ G,(i,j)T |] ≤ ln(4|G|n · n′ + ǫT)

ηT
+

1

rn
+

1

rn′ + 2η.

Setting the two terms involving η equal, we have:

η =

√

ln(4|G|n · n′ + ǫT)

2T
.

For this choice of η, we obtain the following in-expectation multivalidity guarantee (and the same guarantee
for the M ’s):

1

T
E
π̃T

[max
G,(i,j)

|Ṽ G,(i,j)T |] ≤ 1

rn
+

1

rn′ + 2

√

2 ln(4|G|n · n′ + ǫT)

T
.

Now, setting ǫ = ǫ′

T for any desired ǫ′ > 0, we obtain the guarantee (and same for the M ’s) that

1

T
E
π̃T

[max
G,(i,j)

|Ṽ G,(i,j)T |] ≤ 1

rn
+

1

rn′ + 2

√

2 ln(4|G|n · n′ + ǫ′)

T
if we set η =

√

ln(4|G|n · n′ + ǫ′)

2T
,

and the resulting runtime will be polynomial in T and log 1
ǫ and thus polynomial in T and log 1

ǫ′ .
Now, we show the high-probability multivalidity guarantee. In the proof of Theorem 3.1, the statement

of Lemma D.1 changes to:

Lemma E.2. For any πT , we have

T∑

t=1

(

E
π̃t

[

ln(X̃t)
∣
∣
∣πt−1

]

− ln(Xt−1(πt−1))

)

≤ T
(
ηc+ 2η2 + ǫ

)
.

Proof. Fixing πT and taking any t ≤ T , we have

E
π̃t

[

ln(X̃t)|πt−1

]

≤ ln

(

E
π̃t

[X̃t|πt−1]

)

, (Jensen’s inequality)

≤ ln
(
Xt−1(πt−1) ·

(
1 + cη + 2η2

)
+ ǫ
)
, (since we computed an ǫ-approximation)

≤ ln
(
Xt−1(πt−1) ·

(
1 + cη + 2η2

))
+

ǫ

Xt−1(πt−1) · (1 + cη + 2η2)
, (ln(x+ y) ≤ ln(x) +

y

x
for x, y ≥ 0)

≤ ln(Xt−1(πt−1)) + ln
(
1 + cη + 2η2

)
+ ǫ, (since the loss satisfies Xt−1(πt−1) ≥ 1)

≤ ln(Xt−1(πt−1)) +
(
cη + 2η2 + ǫ

)
. (ln(1 + x) ≤ x for any x > −1)

Summing over every round t ∈ [T] gives us the result.

64

Thus, the statement of the second part of Theorem 3.1 becomes that with probability 1− λ,

ln(XT (πT)) ≤ ln(X0) + T
(
ηc+ 2η2 + ǫ

)
+ η

√

8T ln

(
1

λ

)

.

Now, applying it to the setting at hand, we obtain:

ln(LT (πT)) ≤ ln(4|G|n · n′) + T

(

η

(
1

rn
+

1

rn′

)

+ 2η2 + ǫ

)

+ η

√

8T ln

(
1

λ

)

.

Thus, taking log on both sides and dividing both sides by ηT , we get

1

T
max
G,i,j
|V G,(i,j)T | ≤ 1

ηT
ln(LT (πT)) ≤

ln(4|G|n · n′)

ηT
+

1

rn
+

1

rn′ + 2η +
ǫ

η
+

√

8 ln
(
1
λ

)

T
.

Choosing η =
√

ln(4|G|n·n′)+ǫT
2T , we obtain (and the same holds for the M ’s):

1

T
max
G,i,j
|V G,i,jT | ≤ 1

rn
+

1

rn′ + 2

√

2(ln(4|G|n · n′) + ǫT)

T
+

√

8 ln
(
1
λ

)

T

≤ 1

rn
+

1

rn′ + 4

√

2

T
ln

(
4|G|n · n′

λ

)

+ 2ǫ,

as desired.

F Proofs from Section 5

Lemma 5.1. For every transcript πs ∈ Π∗, every xs+1 ∈ X , and every (ℓs+1, us+1) ∈ Bn(i, j) we have that:

∆s+1(πs, xs+1, (ℓs+1, us+1)) ≤
(

η(E
ỹs+1

[vδ((ℓs+1, us+1), ỹs+1)])

)

Ci,js (xs+1) + 2η2Ls,

where for each i ≤ j ∈ [n], we have defined

Ci,js (xs+1) ≡
∑

G(xs+1)

exp(ηV G,(i,j)s)− exp(−ηV G,(i,j)s).

When xs+1 is clear from context, for notational economy, we will elide it and simply write Ci,js .

Proof. We calculate:

∆s+1(πs, xs+1, (ℓs+1, us+1))

= E
ỹs+1




∑

G(xs+1)

exp(ηV G,(i,j)s)
(
exp(ηvδ((ℓs+1, us+1), ỹs+1))− 1

)
+ exp(−ηV G,(i,j)s)

(
exp(−ηvδ((ℓs+1, us+1), ỹs+1)− 1

)





≤ E
ỹs+1




∑

G(xs+1)

exp(ηV G,(i,j)s)
(
ηvδ((ℓs+1, us+1), ỹs+1) + 2η2

)
+ exp(−ηV G,(i,j)s)

(
−ηvδ((ℓs+1, us+1), ỹs+1) + 2η2

)





= η(E
ỹs+1

[vδ((ℓs+1, us+1), ỹs+1)])C
i,j
s + 2η2

∑

G(xs+1)

exp(ηV G,(i,j)s) + exp(−ηV G,(i,j)s)

≤ η(E
ỹs+1

[vδ((ℓs+1, us+1), ỹs+1)])C
i,j
s + 2η2Ls,

65

as desired. Here the first inequality follows from the fact that for 0 < |x| < 1
2 , exp(x) ≤ 1 + x + 2x2, the

following equality from organizing terms and the final inequality by noting that
∑

G(xs+1)
exp(ηV

G,(i,j)
s) +

exp(−ηV G,(i,j)s) ≤ Ls by definition of L.

Theorem 5.1. When Algorithm 5 is run using n buckets, discretization parameter r and η =
√

ln(2|G|n2)
2T ∈

(0, 1/2), then against any adversary constrained to playing (ρ, rn)-smooth distributions, its sequence of in-
terval predictions is α-multivalid with respect to G in expectation over the randomness of the transcript πT ,
where:

E[α] ≤ ρ+ 2

√

2 ln(2|G|n2)

T
.

Proof. From Observation 5.1, it suffices to show that 1
T EπT

[max |V G,(i,j)T |] ≤ α.
We begin by computing a bound on the (exponential of) the expectation of this quantity:

exp

(

η E
π̃T

[max
G,(i,j)

|Ṽ G,(i,j)T |]
)

≤ E
π̃T

[

exp

(

η max
G,(i,j)

|Ṽ G,(i,j)T |
)]

= E
π̃T

[

max
G,(i,j)

exp
(

η|Ṽ G,(i,j)T |
)]

≤ E
π̃T

[

max
G,(i,j)

(

exp
(

ηṼ
G,(i,j)
T

)

+ exp
(

−ηV G,(i,j)T

))]

≤ E
π̃T




∑

G,(i,j)

(

exp
(

ηṼ
G,(i,j)
T

)

+ exp
(

−ηṼ G,(i,j)T

))





= E
π̃T

[L̃T (π̃T)]

≤ 2|G|n2 exp
(
Tηρ+ 2Tη2

)
.

Here the first inequality follows from Jensen’s inequality and the last one follows from Lemma 5.4. Taking
the log of both sides and dividing by ηT we obtain:

1

T
E
π̃T

[max
G,(i,j)

|Ṽ G,(i,j)T |] ≤ ln(2|G|n2)

ηT
+ ρ+ 2η.

Choosing η =
√

ln(2|G|n2)
2T we obtain:

1

T
E
π̃T

[max
G,(i,j)

|Ṽ G,(i,j)T |] ≤ ρ+ 2

√

2 ln(2|G|n2)

T
,

as desired.

Now, given L̃, define Z̃ analogously to the second part of Theorem 3.1. Next, we can show that the
increments of Z̃ thusly defined, at any round t, can be bounded.

Lemma F.1. At any round t ∈ [T] and for any realized transcript πt, |Zt − Zt−1| ≤ 2η.

Proof. Observe that

|Zt − Zt−1| = |ln(Lt(πt))− E [ln(Lt(π̃t))|πt−1]|

=

∣
∣
∣
∣E

[

ln

(
Lt(πt)

Lt(π̃t)

)∣
∣
∣
∣
πt−1

]∣
∣
∣
∣

66

Note that for any πt,
Lt(πt) = Lt−1(πt−1) + ∆t(πt−1, xt, yt, (ℓt, µt))

where:

∆t(πt−1, xt, yt, (ℓt, ut))

=
∑

G(xt)

exp(ηV
G,B−1

n (ℓt,ut)
t−1) (exp(ηvδ((ℓt, ut), yt))− 1) + exp(−ηV G,B

−1
n (ℓt,ut)

t−1) (exp(−ηvδ((ℓt, ut), yt)− 1) .

Since vδ((ℓt, ut), yt) must lie in [−1, 1] (actually [−(1− δ), δ]), we have that:

(exp(−η)− 1)Lt−1(πt−1) ≤ ∆t(πt−1, xt, yt, (ℓt, ut)) ≤ (exp(η)− 1)Lt−1(πt−1)

which implies:
exp(−η)Lt−1(πt−1) ≤ Lt(πt) ≤ exp(η)Lt−1(πt−1).

Therefore, for any two πt, π
′
t such that the corresponding transcripts for the first t− 1 periods are the same,

we have
∣
∣
∣
∣
ln

(
Lt(πt)

Lt(π′
t)

)∣
∣
∣
∣
≤ ln

(
exp(η)

exp(−η)

)

= 2η.

Therefore we have
∣
∣
∣E

[

ln
(
Lt(πt)
Lt(π̃t)

)∣
∣
∣πt−1

]∣
∣
∣ ≤ 2η as desired.

Theorem 5.2. When Algorithm 5 is run using n buckets, discretization parameter r and η =
√

ln(2|G|n2)
2T ∈

(0, 1/2), then against any adversary who is constrained to playing (ρ, rn)-smooth distributions, its sequence
of interval predictions is α-multivalid with respect to G with probability 1 − λ over the randomness of the
transcript πT :

α ≤ ρ+ 4

√

2

T
ln

(
2|G|n2

λ

)

.

Proof. By Lemma F.1, the second part of Theorem 3.1 applies, and plugging in L0 = 2|G|n2 and c = ρ, we
have that, with probability (1− λ) over the randomness of the transcript:

ln(LT (πT)) ≤ ln(2|G|n2) + T
(
ηρ+ 2η2

)
+ η

√

8T ln

(
1

λ

)

.

Now, note that

exp

(

ηmax
G,i,j
|V G,(i,j)T |

)

= max
G,i,j

exp
(

η|V G,(i,j)T |
)

,

≤ max
G,i,j

(

exp
(

ηV
G,(i,j)
T

)

+ exp
(

−ηV G,(i,j)T

))

,

≤
∑

G,i,j

(

exp
(

ηV
G,(i,j)
T

)

+ exp
(

−ηV G,(i,j)T

))

,

= LT (πT).

Taking log on both sides and dividing both sides by ηT , we get

1

T
max
G,i,j
|V G,(i,j)T | ≤ 1

ηT
ln(LT (πT)) ≤

ln(2|G|n2)

ηT
+ ρ+ 2η +

√

8 ln
(
1
λ

)

T
.

67

Choosing η =
√

ln(2|G|n2)
2T , we obtain

1

T
max
G,i,j
|V G,i,jT | ≤ ρ+ 2

√

2 ln(2|G|n2)

T
+

√

8 ln
(
1
λ

)

T

≤ ρ+ 4

√

2

T
ln

(
2|G|n2

λ

)

,

as desired.

Lemma 5.7. Algorithm 6 achieves the multivalidity guarantees stated in Theorem 5.3.

Proof. We briefly argue that the additive ǫ-approximation to the (shifted and rescaled) value of the game
results in the claimed dependence of the multivalidity guarantees on ǫ. When the learner achieves an ǫ
approximation to the value of the game at each round, the statement of Corollary 5.1 becomes:

E
(ℓ,u)∼QL

s+1

[L̃s+1|πs] ≤ Ls
(
1 + ηρ+ 2η2

)
+ ηǫ ≤ Ls

(
1 + ηρ+ 2η2

)
+ ǫ.

Indeed, recall that the linear program that we solve at each round solves for the value of the game that has
been shifted by 2η2Ls and divided by η. For the second inequality, recall that η < 1.

Now, using the telescoping argument from the first part of the proof of Theorem 3.1, we obtain

exp

(

η E
π̃T

[max
G,(i,j)

|Ṽ G,(i,j)T |]
)

≤2|G|n2
(
1 + ηρ+ 2η2

)T
+ ǫ

T−1∑

t=0

(1 + ηρ+ 2η2)t,

≤2|G|n2
(
1 + ηρ+ 2η2

)T
+ ǫT (1 + ηρ+ 2η2)T ,

=(2|G|n2 + ǫT) exp
(
T ln

(
1 + ηρ+ 2η2

))
,

≤(2|G|n2 + ǫT) exp
(
Tηρ+ 2Tη2

)
,

Taking logs and dividing by ηT , we get

1

T
E
π̃T

[max
G,(i,j)

|Ṽ G,(i,j)T |] ≤ ln(2|G|n2 + ǫT)

ηT
+ ρ+ 2η.

Setting the two terms involving η equal, we have:

η =

√

ln(2|G|n2 + ǫT)

2T
.

For this choice of η, we obtain the following in-expectation multivalidity guarantee:

1

T
E
π̃T

[max
G,(i,j)

|Ṽ G,(i,j)T |] ≤ ρ+ 2

√

2 ln(2|G|n2 + ǫT)

T
.

Now, setting ǫ = ǫ′

T for any desired ǫ′ > 0, we obtain the guarantee that

1

T
E
π̃T

[max
G,(i,j)

|Ṽ G,(i,j)T |] ≤ ρ+ 2

√

2 ln(2|G|n2 + ǫ′)

T
if we set η =

√

ln(2|G|n2 + ǫ′)

2T
,

and the resulting runtime will be polynomial in T and log 1
ǫ and thus polynomial in T and log 1

ǫ′ .
Now, we show the high-probability multivalidity guarantee. In the proof of Theorem 3.1, the statement

of Lemma D.1 changes to:

68

Lemma E.2. For any πT , we have

T∑

t=1

(

E
π̃t

[

ln(X̃t)
∣
∣
∣πt−1

]

− ln(Xt−1(πt−1))

)

≤ T
(
ηc+ 2η2 + ǫ

)
.

We show this updated claim in the proof of Lemma 4.6 of Section 4.3.
Thus, the statement of the second part of Theorem 3.1 becomes that with probability 1− λ,

ln(XT (πT)) ≤ ln(X0) + T
(
ηc+ 2η2 + ǫ

)
+ η

√

8T ln

(
1

λ

)

.

Now, applying it to the setting at hand, we obtain:

ln(LT (πT)) ≤ ln(2|G|n2) + T
(
ηρ+ 2η2 + ǫ

)
+ η

√

8T ln

(
1

λ

)

.

Thus, taking log on both sides and dividing both sides by ηT , we get

1

T
max
G,i,j
|V G,(i,j)T | ≤ 1

ηT
ln(LT (πT)) ≤

ln(2|G|n2)

ηT
+ ρ+ 2η +

ǫ

η
+

√

8 ln
(
1
λ

)

T
.

Choosing η =
√

ln(2|G|n2)+ǫT
2T , we obtain:

1

T
max
G,i,j
|V G,i,jT | ≤ ρ+ 2

√

2(ln(2|G|n2) + ǫT)

T
+

√

8 ln
(
1
λ

)

T

≤ ρ+ 4

√

2

T
ln

(
2|G|n2

λ

)

+ 2ǫ,

as desired.

69

	1 Introduction
	1.1 Our Results and Techniques
	1.2 Additional Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Online Prediction
	2.2.1 Types of Predictions, and Notions of Validity

	2.3 Zero-sum Games

	3 Online Mean Multicalibration
	3.1 An Outline of Our Approach
	3.2 An Existential Derivation of the Algorithm and Multicalibration Bounds
	3.3 Deriving an Efficient Algorithm via Equilibrium Computation

	4 Online Moment Multicalibration
	4.1 An Outline of Our Approach
	4.2 An Existential Derivation of the Algorithm and Moment Multicalibration Bounds
	4.3 Deriving an Efficient Algorithm via Equilibrium Computation

	5 Online Multivalid Marginal Coverage
	5.1 An Outline of Our Approach
	5.2 An Existential Derivation of the Algorithm and Multicoverage Bounds
	5.3 Deriving an Efficient Algorithm via Equilibrium Computation

	6 Augmenting an Existing Learning Algorithm
	A Batch Prediction
	A.1 Preliminaries
	A.2 Online to Batch Conversion
	A.2.1 Mean prediction
	A.2.2 (Mean, Moment) Prediction
	A.2.3 Interval Prediction

	B Unboundedly Many Groups, Bounded Group Membership
	C Mean Conditioned Moment Multicalibrators Can Randomize Over Small Support
	D Proofs from Section 3
	E Proofs from Section 4
	F Proofs from Section 5

