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Abstract

In the design and analysis of political redistricting maps, it is often useful to be able to
sample from the space of all partitions of the graph of census blocks into connected subgraphs
of equal population. There are influential Markov chain Monte Carlo methods for doing so
that are based on sampling and splitting random spanning trees. Empirical evidence suggests
that the distributions such algorithms sample from place higher weight on more “compact”
redistricting plans, which is a practically useful and desirable property. In this paper, we
confirm these observations analytically, establishing an inverse exponential relationship between
the total length of the boundaries separating districts and the probability that such a map
will be sampled. This result provides theoretical underpinnings for algorithms that are already
making a significant real-world impact.



1 Introduction

In April 2021, the US Census Bureau released the 2020 apportionment counts: the tally of residents
of the 50 states, which determines the number of seats each state is entitled to in the House
of Representatives for the next decade. This kicks off the complicated and contentious process
of redrawing the states’ congressional districts, which, we expect, will prove to be a historically
impactful application of algorithms to societal questions.

Although this process of redistricting is mandated by the US Constitution and further spelled
out by the states, the law allows significant flexibility and —even in small states—an astronom-
ical number of possible plans. Since the early 19th Century, partisan actors have exploited this
flexibility to engineer plans that give their parties an unfair advantage, a phenomenon known as
gerrymandering.

From the viewpoint of computer science, “good” redistricting is a natural algorithmic problem,
and indeed there is a longstanding interest in algorithms for redistricting [15]. However, it is only
in the last few years that computer scientists and mathematicians have joined the fight against
gerrymandering in earnest [11, 23].

The algorithmic approach that has been most successful in terms of policy impact is that of
sampling a distribution over all feasible plans by running a Markov chain Monte Carlo (MCMC)
algorithm, thereby generating an ensemble of “representative” plans. Such ensembles have been
used —including in a number of successful legal challenges to state redistricting plans in Pennsyl-
vania, North Carolina, Michigan, Wisconsin and Ohio—to determine whether implemented plans
are statistical outliers, which suggests that they resulted from gerrymandering [12, 6, 17, 8]. This
method has the advantage of being able to discern whether proposed plans are fair in light of each
state’s unique political geography.

In our view, the most influential MCMC method is ReCom (shorthand for “Recombination”) [10].
For the upcoming cycle, at least two redistricting commissions will rely on ReCom to evaluate re-
districting plans [7]: the Michigan Independent Citizens Redistricting Commission (which is vested
with the authority to adopt redistricting plans for the state) and the Wisconsin People’s Maps
Commission (which was appointed by the governor to prepare plans for consideration by the state
legislature).

ReCom starts from an arbitrary plan represented as a partition of a graph where the vertices
are census blocks, which form the building blocks of districts,! and there is an edge between two
vertices if the corresponding census blocks are adjacent. In each step, ReCom randomly selects a
pair of adjacent districts, merges them together, then re-partitions the merged region into two new
districts. The algorithm accomplishes the re-partitioning step by uniformly sampling a spanning
tree of the merged region from the set of all such spanning trees. It then attempts to cut an edge of
the spanning tree so that the two subtrees induce two new districts with roughly equal populations
(which is a constitutional requirement); if there are multiple such edges it selects uniformly at
random among them, and if there are none it samples a new spanning tree. The Markov chain is
run for a fixed number of steps and the final plan is returned.

The case for ReCom rests on its ability to generate plans consisting of compact districts with
regular shapes. A practical and well-studied measure for compactness in the graph partitioning
setting is to count the total number of cut edges —the edges whose endpoints lie in different
districts; plans with fewer cut edges are more compact [10, 22]. Empirically, ReCom does generate
compact plans according to this measure.

By contrast, a theoretical compactness result had been out of reach. It is known that, with some

'Some states use precincts or counties instead.



slight technical modifications to the recombination step, the stationary distribution of the ReCom
chain is the spanning tree distribution, where the probability of a plan is proportional to the number
of forests that span its districts or, equivalently, the product over districts of the number of spanning
trees of each district [3]. The compactness of ReCom-generated plans (assuming sufficient mixing),
therefore, depends on the relation between the number of spanning trees and the number of cut
edges of a plan. It is perhaps intuitive that such a relation exists; for example, a rectangular district
with few cut edges has many spanning trees, whereas a snaky district that consists of the same
number of census blocks has many cut edges and few spanning trees (see Figure 1).

Our goal is to formalize this intuition and quantify it. We aim to provide theoretical under-
pinnings for the observed compactness of ReCom-generated plans, further justifying the important
role of this algorithm in redistricting.

1.1 Main Result and Technique

Our main result, Theorem 3.1, is best understood through a corollary. To state it informally,
consider two partitions P; and P2 of the census block graph (which is planar) into m districts of
equal size, and let |0P;| and |0P2| denote their discrete perimeters (total number of cut edges). In
addition, denote the spanning tree distribution by p*.

Corollary 3.3 (informal version). For any pair of m-partitions Py and P2 of a planar graph G
such that the second-largest degrees of G and its dual are upper-bounded by a constant,

Pr, [P1]
PI‘M* [PQ]
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In words, the corollary establishes an asymptotic exponential relationship between the ratio of
probabilities under p* of the two partitions and the inverse ratio of their discrete perimeters. It
is reassuring that the relationship is exponential (rather than, say, linear): As noted by DeFord
et al. [10], the space of all redistricting plans is generally dominated by non-compact plans, so a
significant skew towards compact plans is required for it to be likely that such a plan would be
sampled.

Theorem 3.1 itself is not asymptotic; rather, it gives a precise relationship between the prob-
abilities under p* and the discrete perimeters of different partitions. This relationship, in turn,
depends on degree bounds that we formalize in Section 2.2. For example, for large grid graphs the
theorem implies that if |0P2| > 7.23 x |0P1| then Pr,+[P1] > Pr[Ps]; the bounds are quite similar
for planar graphs corresponding to real redistricting instances.

The basic idea behind the proof of the theorem is to take an arbitrary partition P of G into
m districts and add m — 1 edges to connect the subgraphs of each district together into a single
connected graph H (see Figure 4). It is not too hard to see that the number of cut edges of P is
precisely |E(G)|—|E(H)|+ (m—1), and the likelihood of sampling P is proportional to the number
of spanning trees of H. Thus, it suffices to establish a relationship between the number of edges in
H and the number of spanning trees in H.

Our approach is to imagine iteratively removing edges from G until we are left with H and
compute upper and lower bounds for the average factor by which the number of spanning trees
decreases at each iteration, (Lemma 3.2). Specifically, we are interested in bounding the probability
that a given edge is contained in a uniformly random spanning tree of the current graph. This
quantity is known as the effective resistance of the edge due to an alternative, equivalent definition
in terms of the electrical resistance across the edge in a network of resistors (see Section 2.3). We
use the electrical formulation of the problem to derive useful bounds for counting spanning trees



in our particular setting. While these bounds do not imply that the effective resistance of each
edge deleted from G is upper and lower bounded by fixed constants at every iteration (as this is
generally not true), we argue that the geometric mean of the effective resistances is. For this, we
use a potential function to amortize the extremely high and low factors over the less extreme factors
accumulated over previous iterations.

1.2 Related Work

The ReCom Markov chain is one of many Markov chains on the space of graph partitions that have
been studied in the context of redistricting [10, 16, 13, 8, 4]. Most of the predecessors of ReCom
are based on the “Flip” chain, whereby a single census block on the boundary of a district is
reassigned at each step. While computing the transition function is easier for Flip than for ReCom,
random walks using the Flip chain mix extremely slowly, and produce non-compact districts by
any reasonable metric. Empirically speaking, ReCom is a great improvement over Flip.

From a theoretical perspective, very little is known about the properties of the spanning tree
distribution from which ReCom samples. DeFord et al. [10] give some informal, intuitive arguments
for why we should expect it to favor compact partitions — for example, it is easy to see that adjoining
a long “tentacle” to one of the districts in an otherwise compact partition will reduce the number
of spanning trees by a large factor. It is conjectured that, among all grid subgraphs of the same
number of vertices, square subgrids (which have minimal perimeter) have the most number of
spanning trees. Kenyon [18] provides an encouraging result to this end, asymptotically counting
spanning trees in finer and finer grids approximating a rectilinear polygon in R2.

There is a large body of work on approximately counting spanning trees in graphs of bounded
degree (see, for example, [1, 19, 21, 14]). Given two subgraphs H; and Hs of G as in Section
1.1, a natural line of attack for our main result is to apply these bounds to each H;. However,
these bounds are insufficient for our purposes since they have a multiplicative error term which is
exponential in the number of vertices of H;. For example, if we assume G is 3-regular, it is known
that the number of spanning trees in H; is bounded between 1.62!V (#)l and 2.311V(H)l [19, 21]. Our
result requires the error to be on the order of 20UE(GI-IEMH)) which can be significantly smaller
than 29UVH)D  Our alternative analysis based on effective resistances overcomes this difficulty,
since it does not accumulate error for each edge in E(H;), but instead for the edges in E(G)\ E(H;).

Connections between effective resistance and discrete perimeters have been studied before. A
well-known example is the Nash-Williams Inequality [20, (2.13)], which yields a lower bound for
effective resistance in terms of sets of edges that separate the graph. Benjamini and Kozma [2]
give an upper bound for effective resistance via sums of isoperimetric quantities for connected sets
containing the two vertices. These results are largely orthogonal to our work, with the exception
of Footnote 3.

2 Preliminaries

All graphs we consider are undirected and unweighted, but may have multiple edges and/or self-
loops. For any connected, planar embedded graph G, we write G* for the dual of G, which is the
graph whose vertex set consists of the faces of G with respect to the embedding, where there is an
edge in G* between two faces whenever they share a common edge on their boundaries in G. For
any face f € V(G*), we overload the notation deg(f) to mean the degree of f as a vertex in G*,
i.e., the number of edges/vertices on the boundary of f in G.



2.1 Graph Partitions

Our central object of study is the census block graph, in which the vertices represent census blocks,
and there is an edge between two vertices if the census blocks share a border of nonzero length (or
are legally considered adjacent for other reasons, e.g., in the case of islands). See Figure 1 for an
example of a census block graph.

Figure 1: In center, 12 counties in the Southeast corner of lowa and the corresponding census block
graph (in Iowa, counties are actually the atomic units for redistricting, not census blocks). On the
left and right, two potential 3-partitions into connected districts of 4 counties each, where the red
dashed lines are cut edges.

For simplicity, we consider an idealized redistricting setting where all census blocks have equal
population and districts must be exactly population-balanced. Thus, we define an m-partition of a
graph G to be a partition P = {D1,Da,...,Dp,} of the vertex set of G such that each D;, which we
call a district, has exactly WT(niG)‘ vertices and induces a connected subgraph. Given an m-partition
P of G, we write G/P to denote the graph obtained by contracting the induced subgraphs of all
the districts. A cut edge of an m-partition P is an edge with endpoints in different districts. For
example, the 3-partition on the left of Figure 1 has 13 cut edges, while the 3-partition on the right
only has 8. We write 9P for the set of cut edges of P.

The spanning tree score of a graph G, written sp(G), is the number of spanning trees of G. The
spanning tree score of an m-partition P, written sp(P), is defined as the product of the spanning
tree scores of the induced subgraphs of each of the districts in P. The spanning tree score of the
3-partition on the left of Figure 1is 1 x 1 x 1 = 1, whereas the spanning tree score of the 3-partition
on the right is 8 x 3 x 8 = 192.

2.2 Planar Graphs With Bounded Vertex and Face Degrees

Typical instances to the graph partitioning problem that arise in redistricting have several addi-
tional properties:

e The census block graph is connected, planar, and does not contain any self-loops, leaves, or
bridges.?

e All census blocks have low degree.

Tt does sometimes occur that one precinct will be surrounded by another one on all sides, in which case it is a
leaf. However, this is rare, and can easily be modeled by just merging the two precincts together.



e No large group of census blocks intersect at the same boundary point (e.g., in the graph of
states in the USA, there is a “Four Corners” location between Colorado, Utah, Arizona, and
New Mexico, but there is no “Five Corners” or greater).

This motivates the following definition. For any positive integers k; and ko, we say that G is
(k1, k2)-bounded if G is connected, neither G nor G* have a self loop, and there exists a planar
embedding of G, a vertex v, € V(G), and a face v* € V(G*) such that, for all v € V(G) \ {v.},
deg(v) < ki, and for all v € V(G*) \ {v*}, deg(v) < ka. (Think of v* as the outer face of the census
block graph. It would be impractical to impose a bound on the number of census blocks this face
touches. The vertex v, has no specific meaning in our redistricting context; we allow for such a
vertex merely for generality and symmetry.)

For example, grid graphs are (4, 4)-bounded, the subgraph of counties in Iowa shown in Figure
1 is (5, 3)-bounded, and the entire graph of all Iowa counties happens to be (6, 4)-bounded.

2.3 Effective Resistance

We now briefly review some tools from spectral graph theory that we will need shortly. For more
background, we refer the reader to Chapters 12 and 13 of Spielman [24].

Consider the following physics problem. We are given a graph G and a specific edge e* € E(G).
We place a resistor of unit resistance on every edge (including e*), hook up a power supply between
the endpoints of e* (call them a and b), and adjust the voltage so that 1 unit of current is flowing
into a and out of b. The effective resistance of €*, denoted R, is defined as the voltage differential
between a and b under this setup.

Formally, this voltage difference can be computed by enforcing Ohm’s law “V = IR” (voltage
equals current times resistance) across every edge. Specifically, we wish to find voltages v(c) for
every vertex ¢ and currents i(e) for every oriented edge e such that:

e There is 1 net flow out of a.

e There is 1 net flow into b.

e For all ¢ ¢ {a,b} there is zero net flow in/out of c.

o (Without loss of generality) v(b) = 0.

e For any edge e from vertex ¢ to vertex d, v(c) — v(d) = i(e).

Given any edge e*, and picking the arbitrary orientation of e* from a to b, there is a unique solution
of v(-) and i(-) satisfying these constraints. The effective resistance of e* is Ry, = v(a) = i(e*).

| =

oo | ot

Figure 2: Computing the effective resistance across the edge between a and b.



For example, consider the graph on the left in Figure 2. To determine the effective resistance
between a and b, we compute the unique voltages (brown) and currents (blue) satisfying the con-
straints, as shown on the right. The voltage at a and the current from a to b are both 2, so the
effective resistance is Ry, = %

Our interest in effective resistance stems from the following well-known statement, which gives
an equivalent definition in terms of spanning trees.

Lemma 2.1. For any edge e* € E(G) between two vertices a,b € V(G), the effective resistance
Rap is equal to the probability that e* is in a uniformly chosen spanning tree of G.

For example, one can verify by enumeration that the graph from Figure 2 has 8 spanning trees,
and exactly 5 of them include the edge {a,b}.

To derive useful bounds on effective resistance (and, therefore, on spanning trees) we briefly
consider a more general version of the problem in which there are resistors in the graph with
non-unit resistance. In that case, we simply replace the final condition with

v(e) —v(d) = i(e)r(e),

where r(e) is the resistance of e. It is not too hard to see that deleting an edge is equivalent to
setting its resistance to oo, so that no current can possibly flow through it, while contracting an
edge is equivalent to setting its resistance to 0, so that both endpoints must have the same voltage.

Lemma 2.2 (Rayleigh’s Monotonicity Principle). For any vertices a and b of a graph G, weakly
increasing the resistance of the resistor on any edge in G weakly increases Rgp.

The following lemmas use Rayleigh’s Monotonicity Principle to derive upper and lower bounds
for effective resistances.’
Lemma 2.3. Leta,cy,ca,...,cr_2,b be a simple cycle of length k > 2 in a network of unit resistors.

Then Rqy <1 — .

Proof. Delete all edges (i.e., send resistances to infinity) except for the cycle. A simple calculation
shows that, in the new network, R, = 1— %, with % units of current passing the “long way” around
the cycle and 1 — % units of current passing through the given edge from a to b. By Lemma 2.2,
the effective resistance in the original network must be at most 1 — % O

Lemma 2.4. Let a and b adjacent vertices in a network of unit resistors. Then Rgp > ﬁm).

Proof. Contract all edges (i.e., lower resistances to zero) except for the edges from a. Then add
additional resistors of resistance zero joining each neighbor of a to b if not already adjacent (i.e.,
lower resistances from infinity to zero). A simple calculation shows that, in the new network,

Ry = @, with ﬁw) units of current on every edge from a, and zero current on every other
edge. By Lemma 2.2, the effective resistance in the original network must be at least deg(a). O

3 Main Result

In this section, we prove the following theorem, which shows that, for sufficiently large census block
graphs, the spanning tree distribution —denoted hereinafter by p* — favors partitions with smaller
boundaries.

3We note that Lemma 2.4 can alternatively be derived as a special case of the Nash-Williams Tnequality [20, (2.13)]
with one cutset.



Theorem 3.1. For any positive integers ki1 and kg, any o > 1, and any € > 0, let
log (ﬁ) — log(«)

log (1 — %)

For any two m-partitions Py and Py of a (ki1, ka)-bounded graph, if
0P| = A|OP] (2)

A=Ak, ko, a,€) :=

+e. (1)

and )
m —
oPi > "=, Q

then Pr,«[P1] > aPry[Po].

For example, in grid graphs, where k; = ko = 4, we have

log (1) — log(1)
log (1 3)

(for small €). Thus, our result shows that, for fixed m and sufficiently large grids, an m-partition
whose total boundary length is at least 7.23 times longer than that of another partition is less likely
to be sampled.

A(4,4,1,¢) = tenT.23

> A(n)? + 1 vertices in cycle

A(n)® —

1
_TQ. ) T vertices long
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Figure 3: A family of graphs G,, (for even n) that are almost (4,4)-bounded for which Theorem
3.1 fails. The instance shown is Gs.

Before beginning the proof, we remark that this statement must have some dependence on k;
and ko, that is, there is no uniform bound for A that works for all k; and ko. For example, consider
the family of graphs G, illustrated in Figure 3, where

0 ifn=20
A(n) =<1 ifn=1
4An—1) — A(n—2) forn>2



Note that A(n) is the number of spanning trees of a 2 x n grid graph.* Each G, satisfies all of
the conditions of being (4,4)-bounded, except that there are two bad faces v* instead of only one
(the outer face, and the face inside the large cycle). The 2-partition defined by the curved light
blue line has a spanning tree score of A(n)2A((A(n)? —1)/2), whereas the 2-partition defined by
the horizontal dark red has line has a spanning tree score of (A(n)? + 1)A((A(n)? — 1)/2). Even
though the latter partition has a higher spanning tree score, and thus a higher probability of being
sampled, it has a factor of %" more cut edges.

To prove Theorem 3.1, we first establish upper and lower bounds for the geometric mean of the

p; values on any run of the following sampling algorithm.

Algorithm 1: Samples uniformly from the set of all spanning trees of an input graph G.

11+ 0;
2 T« {}
3 while G s has at least 2 vertices do
4 141+ 1;
5 e; <— arbitrary edge in G}
6 r; < effective resistance of e;;
7 x; < uniform draw from [0, 1];
8 if x; <r; then
9 Pi <= T4
10 T+ TU{e};
11 contract e; in G (keeping multiple edges and self-loops);
12 else
13 p; — 1 —ry;
14 delete e; from G;
15 end
16 end
17 return T}

By Lemma 2.1, at any point in the execution of Algorithm 1, the probability of the computation
path (which is the product of all p; values so far) is equal to the probability that a randomly chosen
spanning tree of the original input graph G includes all of the contracted edges and does not include
any of the deleted edges. In particular, this implies that the order in which the edges are chosen
in the successive executions of line 5 does not affect the probability of the given computation path.
By the time the algorithm terminates, T' is guaranteed to be a uniform sample from the set of all
spanning trees.

Our main technical lemma consists of two statements, where statement (1) is more general but
statement (2) gives tighter bounds. While we only require (2) for our application, we additionally
prove (1) because we believe it may be of independent interest.

Lemma 3.2. For any positive integers k1 and ko, there exist constants 0 < ¢ < ¢ < 1, such that,
on any run of Algorithm 1 on a (k1,ke)-bounded graph, after any number of iterations t,

t ¢
c1 < pip2ps .- -pr < ¢

(where the p; are as defined on Lines 9 and 13). Specifically, this holds with the following constants:

“See: http://oeis.org/A001353
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1. If the run involves both deletions and contractions,

- 1 ~ (1 1 Z(min{ki,kQ}—l)
“a= 2max{ky, ko}’ 2= max{ky, ko } ’

2. If the run involves only deletions,

1 L]
— cg=1——.
ko’ 2 Ky

c1 =
We remark that it is not true that each p; is always between c¢; and co. It is not too hard to
see that sometimes we may have r; = 0 or r; = 1, in which case p; = 1. Also, after an adversarial
sequence of contractions, it is possible to have r; arbitrarily close to 0 but not equal to 0, and after
an adversarial sequence of deletions, it is possible to have r; arbitrarily close to 1 but not equal to
1. Thus, p; may be arbitrarily close to 0 as well. In these scenarios, however, it can take many
iterations to get to such a case, so we must amortize these bad factors over the iterations where p;
is less extreme.

Proof of Lemma 5.2. Let v, and v* be as in the definition of G being (ki, k2)-bounded. We begin
by proving the upper bounds. Let D be the subset of the first ¢ edges that are ultimately deleted,
and let C' be the subset of the first ¢ edges that are ultimately contracted. For every edge e € C,
choose a face f(e) € V(G*) such that e is on the boundary of f(e) and deg(f(e)) < ko. Note that
this is always possible since the two faces e bounds cannot both be v*, for this would imply G*
has a self-loop, contradicting the definition of G' being (k1, k2)-bounded. Partition C' into C7 U Cy,
where C consists of the edges e such that f(e) does not contain any edges in D. Without loss of
generality, we assume the algorithm first processes the edges in D, then in C}, then in Cs.

By Lemma 2.4, each edge in D has effective resistance at least % when it is deleted from G.
Therefore, on a deletion iteration 7, we have

1
pi:liriglik‘il'
This immediately implies the upper bound in statement (2).

To prove the upper bound in statement (1), we must consider the contractions as well. By
Lemma 2.3 and the way we chose C1, each edge in C] has effective resistance at most 1 — é when
contracted in G, so on an iteration i that contracts an edge from Cf,

1

Pz‘zriﬁl—]g-

We next claim that |D|+ |Cy| > %;7_1 Supposing for contradiction that this were not the case,
we must have |D| < %;7_1 and

t 2k — 1)t

=t—(|D t— =
|Co| (D] + [C1]) > g — 1 2ky —1

so it follows that
|Ca| > 2(kg — 1) |D].

This contradicts the way Cy was defined, since each edge in D can be contained in f(e) for at most
2(ka — 1) edges e € Cy (in the extreme case, the edge in D lies between two faces, each containing
ko — 1 other edges e).



Putting these bounds together, we have

Il »i= II » I » IT =

1<i<t 1<i<t, e;€D 1<i<t, e;€C 1<i<t, e;€Cy

1\ P 1\l
1- — 1-— 1
( k:1> ( k2> o
1 |D]+|Ch
<(1-—
- < max{kl,k2}>
(4 1 D)
=\ max{ky, k}

1 t
. 1 1 2(kg—1)
B << max{kl,k2}> > '

Note that we could make the dual argument, first processing the contractions, in which case we
would be left with the same upper bound, except with a k1 in the exponent instead of ko. The
upper bound in statement (1) follows.

To prove the lower bounds, we define a potential function on the graph as follows. Initially,
place one pebble on every vertex and face of G except v, and v*, which receive piles of deg(v,)
and deg(v*) pebbles, respectively. Throughout the execution of Algorithm 1, whenever an edge is
deleted from G (and its dual edge is contracted in G*), combine the piles on the faces on either
side of the deleted edge into a new pile on the new face, and whenever an edge is contracted in G
(and its dual edge is deleted from G*), combine the piles on the endpoints of the contracted edge
into a new pile on the new vertex. After each iteration 0 < i < ¢, let P; denote the product of the
numbers of pebbles in each pile. When ¢ = 0, before any edges have been deleted or contracted,
Py = deg(v,) deg(v*).

We claim that, after any deletion iteration 1 < i <,

IN

P4 1
Pivp 2 g (4)

and after any contraction iteration 1 <17 <,

> (5)

The proofs of these two statements are completely dual, so we will only discuss the deletion case.
Suppose that the deleted edge on round i lies between faces fi; and fs. Suppose there are x
pebbles on f1 and y pebbles on fs, and, without loss of generality, assume x < y. Let z be the
product of the number of pebbles in all of the other piles before the edge is deleted from G. By
Lemma 2.3, we know p;, = 1—1r; > deg%. Observe that, before any edges are deleted, the degree of
every face is at most ko times the number of pebbles on that face. This is because, initially, either
the degree is at most ks or, in the case of v*, the number of pebbles is equal to the degree. It is
not too hard to see that this property is preserved under contracting edges (which can only lower
degrees) and deleting edges (which simultaneously combines face degrees and pebble pile sizes).

10



Thus, this property holds of f; before deletion on round i, i.e., deg(f1) < kox. Therefore,

P4 1 Py
Di >
P, T deg(f1) P
> i . Fi1
~ kox P,
L e
o kox (x4 y)z
1 TYZ .

> . <
Z ot @) (since x < y)
_ 1
2k’

as desired.

If I is the set of deletion iterations and I is the set of contraction iterations, it follows from
Equations (4) and (5) that

1 P, 1 b
P> Py 2%,
pip2-- Pt = H <2k2 Pi—l) ZH <2k1 Pi—l)

i€lp elo
R m () ()
B P A A \ak) L e

1 \Hpl /1 \ el
> a1 a1 7
— \ 2ky 2k

where the final inequality holds since the initial piles of pebbles placed on v, and v* can only
grow and cannot merge, so P, > deg(vs) deg(v*) = Fy. The lower bound for statement (1) follows
since |Ip| + |Ic| = t, while the lower bound for statement (2) follows by specializing |Ip| = ¢ and
|Ic| = 0. ]

We are now ready to prove our main result and its corollary.

Proof of Theorem 3.1. Letting ¢; and ¢y be as in Lemma 3.2 (2), observe that

log(c1) — log(cv) log(c1) log(c1) log,., (a0)
A= +e= +e—log,. (o) > s A
log(c2) log(c2) g, () 2 log(c2) |OP |
Rearranging, we have
N—e log,., (at) > log(cl)’
|OP; | log(cg)
so
ac|28731|()\—6) é C|28P1‘~(10g(81)/10g(62)). (6)

For each i € {1,2}, let T; be a spanning tree of G/P;, and let S; C OP; be a set of edges of size
|S| = |0Pi| — (m — 1) obtained by removing from 9P; one cut edge between districts D, D’ € P;
for every pair of adjacent districts {D, D’} € E(T;), as shown in Figure 4. The probability of
the partial computation path of Algorithm 1 which deletes all edges in S; is the probability of
drawing from the uniform distribution a tree with no edges in 5;. By construction, the number of
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such trees is equal to the spanning tree score of P;. Therefore, applying Lemma 3.2, there exist
0 < ¢1 < ¢ < 1 such that, for each i € {1,2},

JOPil=mt sp(P;) < doPil-mt1,
sp(G)

T

Figure 4: Illustration of the proof of Theorem 3.1, where we approximately compute the spanning
tree score of the partition on the left by linking the districts together with additional edges. The
S; set consists of all the dashed red edges in the graph on the right. After removing these edges,
the number of spanning trees of the graph on the right is precisely the spanning tree score of the
original partition (which in this case is 192).

(7)

Whenever P; and P; satisfy Equations (2) and (3), we derive that

sp(P1)
Pr[Py] =
P sp(G)
> C|18731\7m+1 (from Equation (7))
> CIIBPH
— (JOP1]-(log(e1)/log(c2))
=&
> ozcé"apl‘fda7>1| (from Equation (6))
> oac‘ga%l_s‘apll (from Equation (2))
> ozc‘f%'*mJrl (from Equation (3))
sp(P2) :
> from Equation (7
2P ™)
=« P* [Pa]. ]
%

As we mentioned in Section 1.1, Theorem 3.1 is more easily understood through a corollary that
shows an inverse exponential relationship between the ratio of probabilities (under the spanning
tree distribution) and ratio of discrete perimeters of any two m-partitions. Here we state and prove
a more formal version of the corollary.

Corollary 3.3. On any class of graphs that are (ki, ka)-bounded for constants ki,ks € N, and for
any pair of m-partitions P1 and Pa,

Pro-[P\] o 50 (i5met).
Pry«[Po] —
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Proof. Given any pair of m-partitions P; and Ps of a (k1, k2)-bounded graph G (for any m), let

0Py
1 - 1 (1572 -1)
“T ok e — 1

and € := 1. Observe that we may equivalently write

L
2ks

(12 )(Siil—s)’

R

Cop (L) _ (1072l _ _ 1
log(a)—log<2k2> <\6731| 5>log<1 k1>'

Plugging this into Equation (1), we have

log () — 1o (k) + (372 — <) toe (1~ &) L. lom]
log (1—%) =T |OP|’

o=

SO

A(]{717 k27 «, E) =

so Equation (2) holds. Furthermore, Equation (3) must always hold for ¢ = 1, for otherwise G

would have to be disconnected. As long as Ig?l is sufficiently large, we have o > 1 as well, and

thus we meet all of the hypotheses of Theorem 3.1, concluding that

Pro[P] 1 <1+ 1 )(333?—1)
PI"M* [732] - 2ko ki —1 '
This shows that
Pry-[P1l S po(f572) 0
Pry«[Pa] —

4 Conclusion

Typically, for a heuristic sampling algorithm to be useful in practice it is not necessary to have
theoretical guarantees; it merely has to “just work.” Unfortunately, this is clearly not the case for
a problem so hotly contentious as political redistricting. One can imagine a plethora of creative
ways to efficiently construct an ensemble of random graph partitions, but unless one is able to
understand the distribution from which the samples are drawn, the properties of the ensemble may
be meaningless from a statistical standpoint, and possibly from a legal standpoint as well.

For example, the 2017 gerrymandering court case League of Women Voters of Pennsylvania
v. Commonwealth of Pennsylvania heard expert testimony from multiple mathematicians and
political scientists using similar ensemble-based algorithms. In rebutting the use of an algorithm
by Professor Jowei Chen [5] to statistically conclude that the current map was gerrymandered,
Professor Wendy K. Tam Cho [9] writes, “Chen purports to have an algorithm that randomly
generates maps. He has never evaluated this claim in any rigorous way. In my assessment of this
‘random’ framework algorithm on a very small toy redistricting data set, I found that the strategy
generated a biased set of maps that oversamples some maps while undersampling other maps.”

The ReCom algorithm is remarkable in that it simultaneously runs quickly and samples from a
distribution that can be explicitly described. However, the description in terms of spanning trees
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still leaves much to be desired, and while we are not legal experts, we believe that trying to explain
the concept to a court would be a nontrivial task. Our result provides the first known link between
the spanning tree score and a more intuitive measure of compactness. We believe that understanding
such relationships from a theoretical perspective is of great importance, especially given the fact that
theorems have increasingly been playing a major role in the legal debate surrounding redistricting.
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