In This Apportionment Lottery, the House Always Wins

PAUL GOLZ, DOMINIK PETERS, AND ARIEL D. PROCACCIA

Apportionment is the problem of distributing h indivisible seats across states in proportion to the states’
populations. In the context of the US House of Representatives, this problem has a rich history and is a prime
example of interactions between mathematical analysis and political practice. Grimmett [22] suggested to
apportion seats in a randomized way such that each state receives exactly their proportional share g; of seats in
expectation (ex ante proportionality) and receives either | g; | or [g; ] many seats ex post (quota). However, there
is a vast space of randomized apportionment methods satisfying these two axioms, and so we additionally
consider prominent axioms from the apportionment literature. Our main result is a randomized method
satisfying quota, ex ante proportionality and house monotonicity — a property that prevents paradoxes when
the number of seats changes and which we require to hold ex post. This result is based on a generalization of
dependent rounding on bipartite graphs, which we call cumulative rounding and which might be of independent
interest, as we demonstrate via applications beyond apportionment.



Paul Golz, Dominik Peters, and Ariel D. Procaccia 1

1 INTRODUCTION
The Constitution of the United States says that

“Representatives [in the US House of Representatives] shall be apportioned among the
several States according to their respective numbers, counting the whole number of
persons in each State ...”

These “respective numbers,” or populations, of the states are determined every decade through
the census. For example, on April 1, 2020, the population of the United States was 331,108,434, and
the state of New York had a population of 20,215,751. New York therefore deserves 6.105% of the
435 seats in the House, which is 26.56 seats, for the next ten years.

The puzzle of apportionment is what to do about New York’s 0.56 seat — in this round of ap-
portionment it was rounded down to 0, and New York lost its 27th seat — or, more generally,
how to allocate fractional seats. This mathematical question has riveted the American political
establishment since the country’s founding [36].

In 1792, Congress approved a bill that would enact an apportionment method proposed by
Alexander Hamilton,! the first secretary of the treasury and star of the eponymous musical. If we
denote the standard quota of state i by q; (q; = 26.56 in the case of New York in 2020), Hamilton’s
method allocates to each state its lower quota | g;| (26 for NY). Then, Hamilton’s method goes
through the states in order of decreasing residue q; — | ¢;] (0.56 for NY) and allocates an additional
seat to each state until all house seats are allocated.

As sensible as Hamilton’s method appears, it repeatedly led to bizarre results, which became
known as apportionment paradoxes.

The Alabama paradox: Using the 1880 census results, the chief clerk of the Census Office
calculated the apportionment according to Hamilton’s method for all House sizes between
275 and 350, and discovered that, as the size increased from 299 to 300, Alabama lost a seat.
In 1900, the Alabama paradox reappeared, this time affecting Colorado and Maine.

The population paradox: In 1900, the populations of Virginia and Maine were 1,854,184
and 694,466, respectively. Over the following year, the populations of the two states grew
by 19,767 and 4,649, respectively. Even though Virginia’s growth was larger even relative to
its population, Hamilton’s method would have transferred a seat from Virginia to Maine.

Past occurrences of these paradoxes invited partisan strife, which is only natural since a state’s
representatives have a strong personal stake in their state not losing seats. Both in Congress and the
courts, this strife took the form of a tug-of-war over the choice of apportionment method, the size of
the House,? and the census numbers, driven by the states’, parties’, and individual representatives’
self-interest rather than the public good.

This state of affairs improved in 1941 when Congress adopted an apportionment method that
provably avoids the Alabama and population paradoxes, which had been developed by Edward
Huntington, a Harvard mathematician, and Joseph Hill, the chief statistician of the Census Bureau.
While the Huntington-Hill method is house monotone (i.e., it avoids the Alabama paradox) and
population monotone (i.e., it avoids the population paradox), it has a different, equally bizarre
weakness: it does not satisfy quota, that is, the allocation of some states may be different from | g; |
or [g;]. A striking impossibility result by Balinski and Young [6] shows that this tension is inevitable:
no apportionment method can simultaneously satisfy quota and be population monotone.>

In fact, the bill was vetoed by George Washington and Hamilton’s method was only adopted in 1850.

For a long time, the House kept growing such that no state ever lost a seat, even though the influence of each seat
diminished.

3We will revisit this result in Section 3 and show that, while Balinski and Young’s theorem makes additional implicit
assumptions, the incompatibility between quota and population monotonicity continues to hold without these assumptions.
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While the Balinski-Young impossibility is troubling, in our view there is an even larger source of
unfairness that plagues apportionment methods, which is rooted in their determinism. In addition to
introducing bias (the Huntington-Hill method disadvantages larger states), deterministic methods
often lead to situations where small counting errors can change the outcome.* For example, based
on the 2020 census, New York lost its 27th House seat, but it would have kept it had its population
count been higher by 89 residents! Indeed, current projections suggest that New York would have
kept its seat were it not for distortions in census response rates [18, p. 20]. After the 1990 and 2000
censuses, similar circumstances were the basis for lawsuits brought by Massachusetts and Utah.

To address these issues, an obvious solution is to use randomization in order to realize the standard
quota of each state in expectation, as Grimmett proposed in 2004 [22]. If such a randomized method
was used, 89 additional residents would have shifted New York’s expected number of seats by a
negligible 0.0001, and the decision between 26 or 27 seats would have been made by an impartial
random process, which is less accessible to political maneuvering than, say, the census [35].

Grimmett’s proposed apportionment method is easy to describe. First, we choose a random
permutation of the states; without loss of generality, that permutation is identity. Second, we draw
U uniformly at random from [0, 1], and let Q; == U + 2;:1 qi. Finally, we allocate to each state i
one seat for each integer contained in the interval [Q;_1, Q;). (In particular, this implies that the
allocation will satisfy quota.)

Why this particular method? Grimmett writes [22, p. 302]:

“We offer no justification for this scheme apart from fairness and ease of implementation.”

Grimmett’s method is easy to implement for sure, and what he refers to as “fairness” — realizing
the fractional quotas in expectation —is arguably a minimal requirement for any randomized
apportionment method. But his two axioms, “fairness” and quota, allow for a vast number of
randomized methods: Indeed, after allocating | g;| seats to each agent, the problem of determining
which states to round up reduces to so-called “zps sampling” (“inclusion probability proportional to
size”), and dozens of such schemes have been proposed in the literature [11]. We believe, therefore,
that additional criteria are needed to guide the design of randomized apportionment methods. To
identify such criteria, we return to the classics: house and population monotonicity.

1.1 Our Approach and Results

In this paper, we seek randomized apportionment methods that satisfy natural extensions of house
and population monotonicity to the randomized setting. We want these monotonicity axioms to
hold even ex post, i.e., after the randomization has been realized. We find such methods by taking a
parameterized class of deterministic methods all of which satisfy the desired ex post axioms (in our
case, subsets of population monotonicity, house monotonicity, and quota), and to then randomize
over the choice of parameters such that ex ante properties hold (here: ex ante proportionality).>
Guaranteeing monotonicity axioms ex post is helpful for preventing certain kinds of manipulation
in the apportionment process. For instance, say that the census concludes and a randomized
apportionment is determined, and only then does a state credibly contest that its population was
undercounted (in the courts or in Congress with the support of a majority). Using an apportionment
method without population monotonicity, states might strategically undercount their population in
the census and only reveal the true count in case this turns out to be beneficial once the randomness

4 A second shortcoming of deterministic apportionment methods is a lack of fairness over time: For example, if the states’
populations remain static, a state with a standard quota of, say, 1.5 might receive a single seat in every single apportionment
and therefore only receive 2/3 of its deserved representation. Using randomized apportionment, the long-term average of a
state’s number of seats is proportional to the state’s average share of the total population.

5In mechanism design, a similar approach extends strategyproofness to universal strategyproofness [28].
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Fig. 1. [llustration of cumulative rounding. Dashed lines indicate edges e € E in the bipartite graph (V, E),
which are labeled with weights w’. The red lines indicate a possible random outcome of cumulative rounding.

is revealed. When using a population monotone method, by contrast, any revised apportionment
would be made using the same deterministic and population monotone method, which implies that
immediately revealing the full population count is a dominant strategy, even for coalitions of states.

In Section 3, we first show that no such randomized methods exist for population monotonicity.
This impossibility is not due to randomization or ex ante proportionality, but due to the fact that
population monotonicity and quota are outright incompatible. Thus, there do not exist suitable
deterministic apportionment methods that a randomized apportionment method could randomize
over. That population monotonicity and quota are incompatible is well-known from the Balinski-
Young impossibility theorem [6], but their proof uses some “mild” background conditions (notably
neutrality), which are not mild for our randomized purposes. We are able to prove a stronger version
of their theorem, which derives the impossibility with no assumptions other than population
monotonicity and quota. The deterministic apportionment methods that are most commonly used
in practice (so called divisor methods, including the Huntington-Hill method) satisfy population
monotonicity but fail quota. So it makes sense to ask whether population monotonicity can be
combined with ex ante proportionality (without requiring quota). We construct such a method,
which is reminiscent of the family of divisor methods, except that the so-called “divisior criterion” [6]
is specific to each state and is given by a sequence of Poisson arrivals.

For house monotonicity, we provide in Section 4 a randomized apportionment method that
satisfies house monotonicity, quota, and ex ante proportionality. To obtain this result, we generalize
the classic result of Gandhi et al. [20] on dependent rounding in a bipartite graph. We call this method
cumulative dependent randomized rounding or just cumulative rounding (Theorem 4). Cumulative
rounding allows to correlate dependent-rounding processes in multiple copies of the same bipartite
graph such that the result satisfies an additional guarantee across copies of the graph. This guarantee,
which we describe in the next paragraph, generalizes the quota axiom of apportionment. As a
side product, our existence proof for house monotonicity provides a new characterization of the
deterministic apportionment methods satisfying house monotonicity and quota, which is based on
the corner points of a bipartite matching polytope.

To describe cumulative rounding more precisely, we first sketch the result of Gandhi et al. [20].
For a bipartite graph (V, E) and edge weights {w,}.cg in [0, 1], dependent rounding randomly
generates a subgraph (V, E’) with E’ C E providing three properties: marginal distribution (each
edge e € E is contained in E’ with probability w,), degree preservation (in the rounded graph, the
degree of a vertex v is the floor or the ceiling of v’s fractional degree 3}, c.cr We), and negative
correlation. Cumulative rounding allows us to randomly round T many copies of (V, E), where each
copy 1 < t < T has its own set of weights {w’}.cg. Each copy will provide marginal distribution,
degree preservation, and negative correlation. As we prove in Section 5, cumulative rounding
additionally guarantees cumulative degree preservation: for each vertex v and 1 < t < T, the sum
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of degrees of v across copies 1 through ¢ equals the sum of fractional degrees of v across copies 1
through t, either rounded up or down. For example, node v; in Fig. 1 is incident to edges with a total
fractional weight of 2 - 1/4+ 2 - /2 = 1.5 across copies t = 1,2, and must hence be incident to 1 or 2
edges in total across the rounded versions of copies ¢ = 1, 2. Since, across copies t = 1,2, 3, v;’s total
fractional degree is 1.5 + 2 - 3/s = 3, v; must be incident to a total of exactly 3 rounded edges across
the copies t = 1, 2, 3. Applying cumulative rounding to a star graph yields the desired randomized
apportionment method satisfying house monotonicity, quota, and ex-ante proportionality.

We believe that cumulative rounding is of broader interest, and in Section 6, we present applica-
tions of cumulative rounding beyond apportionment. First, we look at a proposal of Buchstein and
Hein [12] for a reform of the European Commission of the European Union: They propose to use
a weighted lottery to choose which countries get to nominate commissioners. Using cumulative
rounding to implement this lottery would eliminate two key problems the authors identified in
a simulation study, in particular the possibility that some member states might go without any
commiissioners for a long period of time. We also describe how cumulative rounding can be applied
to round fractional allocations of goods or chores, and we discuss a specific application of assigning
faculty to teach courses.

1.2 Related Work

Randomized apportionment was first suggested by Grimmett [22], whose proposal we have already
discussed. More recently, Aziz et al. [3] developed a randomized rounding scheme as part of a
mechanism for strategy-proof peer selection, which they simultaneously propose as a randomized
apportionment method. Just like Grimmett’s method, their method satisfies ex ante proportionality
and quota. Aziz et al. argue that the main advantage of their method is that its support consists of
only linearly (not exponentially) many deterministic apportionments. This, they claim, is useful in
repeated apportionment settings, where one could repeat a periodic sequence of these deterministic
apportionments and thereby limit the possibility of selecting the same state much too frequently or
much too rarely due to random fluctuations. If this is the goal, cumulative rounding will arguably
give better guarantees (see Section 6.1).

As a consequence of the Birkhoff-von Neumann Theorem [9, 37], any fractional matching in a
bipartite graph can be implemented as a lottery over integral matchings, in the sense that each edge
is present in the random matching with probability equal to its weight in the fractional matching.
One algorithm for rounding a bipartite matching is pipage rounding [1], which Gandhi et al. [20]
randomized in their dependent rounding technique. This rounding technique is powerful since it
can directly accommodate fractional degrees larger than 1 and can provide negative-correlation
properties such that Chernoff concentration bounds apply [30]. The technique of Gandhi et al. has
found many applications in approximation algorithms [7, 20, 26] and in fair division [2, 15, 32].

Steiner and Yeomans [33] study a problem in just-in-time industrial manufacturing: how to
alternate between the production of different types of goods in a way that produces each type in
specified proportions. As pointed out by Bautista et al. [8], this problem is related to apportionment.
In particular, a production schedule resembles a deterministic house monotone apportionment
method: as the available production time increases by one slot, the schedule needs to decide which
type to produce in the next slot. Steiner and Yeomans end up with a property that nearly guarantees
quota because they aim to minimize how far the prevalence of types among the goods produced so
far deviates from the desired proportions. Now, they only produce deterministic schedules, and
the existence of deterministic house monotone and quota apportionment methods has long been
known [4, 34]. But we believe that the main construction in their proof could be randomized to
obtain an alternative proof of Theorem 6, without however providing the generality of cumulative
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rounding. In fact, a similar graph construction to that by Steiner and Yeomans is randomly rounded
within a proof by Gandhi et al. [20] to obtain an approximation result about broadcast scheduling.

2 MODEL

Throughout this paper, fix a set of n > 2 states N = {1,2,...,n}. For a given population profile
p € N which assigns a population of p; € N, to each state i, and for a house size h € N,, an
apportionment solution deterministically allocates to each state i a number a; € N of house seats
such that the total number of allocated seats is h. Formally, a solution is a function f : N7 xN, — N”
such that, for all p and h, 3;cn fi(p, h) = h. For a population profile p and house size h, state i’s

standard quota is q; = Z‘pN o h. Next, we define three axioms for solutions:
i€ 1

Quota: A solution f satisfies quota if, for any p and h, it holds that f;(p, h) € {|q:]. [¢i1} for
all states i.

House monotonicity: A solution f satisfies house monotonicity if, for any p and h, increas-
ing the house size to h+1 does not reduce any state’s seat number, i.e., if f;(p, k) < fi(p, h+1)
foralli € N.

Population monotonicity:® We say that a solution f, some p,5’ € N?, and some h,h’ € N,
exhibit a population paradox if there are two states i # j such that p; > p;, p} < pj,
filp", ) < fi(p,h), and f;(p’, k") > f;(p, h), or, in words, if state i loses seats and j wins
seats even though i’s population weakly grew and j’s population weakly shrunk. A solution
f is population monotone if it exhibits no population paradoxes for any p, p’, h, h’. By setting
p = p’, one easily verifies that population monotonicity implies house monotonicity.

Finally, we will define randomized apportionment methods. One potential definition, used by
Grimmett [22], is a function that for each p and h specifies a probability distribution over seat allo-
cations (a;);en. Instead, we are looking for a random process whose outcome w € Q simultaneously
determines apportionments for all population vectors p and house sizes h, which will allow us to
formulate axioms relating these different apportionments. Conceptually, we think of such a method
as a solution-valued random variable. Formally, a randomized apportionment method, which we
will just call a method, consists of a probability space Q = (Q, #,P) and a function F mapping
elements of Q to solutions such that, for all ﬁ and h, F (ﬁ h) is a random vector specifying the seat
allocation. Typically, we will not need to think about the internal structure of Q and therefore leave
it implicit. Using a programming metaphor, the “randomness” of a program is really determined
by an implicit random seed. We can think of a method F as a procedure that is initialized with a
seed w and then takes p and h as its input in order to return an apportionment. When  is chosen
at random, then F behaves as a random procedure, but for any fixed w, F,, is just a deterministic
procedure mapping p, h to apportionments.” Our axioms, described in the next paragraph, constrain
both the random behavior of F and the consistency of any F,, across inputs.

A method F satisfies ex ante proportionality if, for any p, h and for any state i, i’s expected
number of seats equals i’s standard quota, i.e., if E[F;(p,h)] = ¢;. A method F satisfies quota,
house monotonicity, or population monotonicity if all solutions in the method’s support satisfy the
respective axiom. In this paper, we mainly search for apportionment methods that combine quota
and ex ante proportionality — the two axioms obtained by Grimmett [22] — with either population
or house monotonicity.

%This definition of population monotonicity, taken from Robinson and Ullman [31], is slightly weaker than the definition
of other authors, whose violation we describe in the introduction. All results extend to the alternative notion of relative
population monotonicity [31]: the proof of Theorem 1 immediately applies, and the proof of Theorem 2 is easy to adapt.

"This is also how we would implement an apportionment method on a computer. A seed obtained using physical randomness
would determine the solution, and the solution would be computed from the seed using a pseudo-random number generator.
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profile p4 profile p? profile p¢

: A A B B cC C
state i pi q; p; q; p; q;

1 824 8.24 824 6.99 824 9.02
2 44 0.44 44  0.37 1 0.01
3 44 0.44 44 0.37 1 0.01
4 44 0.44 44 0.37 44 0.48
5 44 0.44 222 1.88 44 0.48

Table 1. Populations and standard quotas for three population profiles, used in showing that population
monotonicity and quota are incompatible. The house size is h = 10.

3 POPULATION MONOTONICITY
3.1 Population Monotonicity Is Incompatible with Quota

We begin by showing that no apportionment method satisfies population monotonicity, quota, and
ex ante proportionality. In fact, quota and population monotonicity alone are incompatible: We will
show that no solution satisfies these two axioms. Since a method satisfying quota and population
monotonicity would be a random choice over such solutions, no such method exists either.

At first glance, the incompatibility of quota and population monotonicity might seem to follow
from existing results, but these results implicitly make neutrality assumptions that are not appro-
priate for randomized apportionment. Indeed, Balinski and Young [6], who originally proved this
incompeatibily, as well as variations of their proof [17, 31] all assume what Robinson and Ullman
[31] call the order-preserving property, i.e., if state i has strictly larger population than state j, then
i must receive at least as many seats as j. This property is usually proved as a consequence of
neutrality together with population monotonicity.

While the order-preserving property is reasonable for developing deterministic apportionment
methods, it is not desirable for the component solutions of a randomized apportionment method.
This is clear for h = 1: The order-preserving property would mean that only the very largest state(s)
can get a seat with positive probability; by contrast, the strength of randomization is that it allows
us to allocate the seat to smaller states. To our knowledge, the existence of quota and population
monotone solutions without the assumption of the order-preserving property was an open problem.

THEOREM 1. No (deterministic) apportionment solution satisfies population monotonicity and quota.

Proor. Fix a set of 5 states, and let f be a solution satisfying quota. We will show that f must
violate population monotonicity by analyzing three types of population profiles, which are given
in Table 1, all for house size h = 10. The starting profile is p* in this table. By quota, state 1
must receive either 8 or 9 seats on this profile, but we will show that either choice leads to a
violation of population monotonicity: First, we show that allocating 9 seats implies a violation
of population monotonicity with respect to profile p5; second, we show that allocating 8 seats
contradicts population monotonicity with respect to p¢.

Allocating 9 seats contradicts population monotonicity. Suppose that f;(p%,10) = 9. Then, the
remaining seat must be given to either state 2, 3, 4, or 5. Without loss of generality, we may assume
that £(p4,10) = (9,0,0,0,1).

Next, consider the profile p2. Since quota prevents us from allocating more than 7 seats to state 1
or more than 2 seats to state 5, at least one of the states 2, 3, and 4 must receive a seat on ﬁB . Thus,
this state’s allocation strictly increases from its allocation of zero seats on p*, even though the
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state’s population has not changed. Moreover, state 1 can receive at most 7 seats on this profile
by quota, which is strictly below the 9 seats on p*, and state 1’s population has also remained the
same. But population monotonicity forbids there to be a pair of states with unchanged population,
such that one gains a seat and the other loses a seat. Hence, if state 1 receives 9 seats on p*, then f
violates population monotonicity.

Allocating 8 seats contradicts population monotonicity. Now, suppose that f;(p4,10) = 8. The
remaining two seats must be given to two states out of 2, 3, 4, and 5; without loss of generality, we
may assume that f(p*,10) = (8,0,0, 1, 1).

On profile ¢, quota implies that state 1 receives at least 9 seats — strictly more than the 8 given
on p* even though the population has not changed. Given that there is at most one more seat to
hand out, at least one state out of 4 and 5 must receive zero seats on ﬁc, which is a strict reduction
with respect to p* even though the state’s population is the same. Thus, allocating 8 seats to state 1
on p* also leads to a violation of population monotonicity.

Since both possible choices for f;(p#, 10) imply a monotonicity violation, no solution can satisfy
both quota and population monotonicity. O

3.2 A Population Monotone and Ex Ante Proportional (But Not Quota) Method

The incompatibility between population monotonicity and quota leaves open the question of
whether there are apportionment methods satisfying population monotonicity and ex ante propor-
tionality. The answer is positive, as the following proposition shows:

THEOREM 2. There exists an apportionment method F that satisfies population monotonicity and ex
ante proportionality.

Proor. Which solution is randomly chosen by the method will depend on the values taken on by
n independent Poisson arrival processes with rate 1.* We fix an outcome » € Q and will construct
a solution F(w). For each state i, » determines an infinite sequence 0 < xi < xé < ... of arrival
times. We will describe the apportionment given by F(w) on input p and h, which we illustrate
in Fig. 2: First, we divide each arrival time x! by the corresponding state’s population, i.e., we set
yi = xi/pi. Second, we combine the yi for all ¢ and i in a single arrival sequence (z1, i1), (22, i2), . . -
labeled with states, i.e., each (zj,i;) corresponds to some arrival yf; for some i and ¢, such that
zj = yﬁ is the arrival time, i; = i is the agent label, and the z; are sorted in increasing order. Third,
we allocate [{1 < j < h | i; = i}| many seats to each state i, i.e., a number of seats equal to how
many among the h smallest scaled arrival times belonged to i’s arrival process. This specifies the
solution F(w), and, moreover, the method F.

First, we show that F satisfies ex ante proportionality. For this, fix some p and h. Then, the
{y!}:>1 for each i are distributed as the arrival sequences of independent Poisson processes, where
i’s arrival process has a rate of p;. By the coloring theorem for Poisson processes [25, p. 53], our
labeled arrival sequence (zj,i;) has the same distribution as if we had sampled a Poisson arrival
process 0 < z; < z < ... with arrival rate }};.y p; and had drawn each i; independently, choosing
each i € N with probability proportional to p;. Since the z; and i; are independent in this way,
F(p, h) is distributed as if sampling h states, with probability proportional to the states’ populations
and with replacement. In particular, this implies ex ante proportionality.

It remains to show that F satisfies population monotonicity. Fix an w, i.e., the x;', as well as two
inputs p, h and p’, b/, for which we will show that F(w) does not exhibit a population paradox.
Denoting the inputs’ respective variables by ., z; and yi, z}, it is easy to see that, for all i for which

8Hence, we can select Q as the probability space used in any standard construction [25] of a random variable denoting a
vector whose n components are the outcomes of independent Poisson processes.
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Fig. 2. lllustration of the population-monotone method in Theorem 2.

Pl > pi, yl’ <yl for all t, and that, for all i for which p] < p;, yi" > y! for all t. Observe that each
state i receives a number of seats equal to the number of its scaled arrival times y! (resp., y’) that
are at most zj, (resp., z;).

Suppose that z; > zj, (the reasoning for the case z; < zj, is symmetric). Then, whenever y; < zj
for a state i for which p/ > p;, theny!’ <yl <z, < z,, which shows that i’s seat number must
weakly increase. One verifies that this rules out a population paradox on p, h and p’, h’. Together
with the symmetric argument for z; < z, this establishes population monotonicity. O

Though the apportionment solutions used in the last theorem might seem esoteric, it is interesting
to compare them to divisor methods (for consistency with our terminology, divisor solutions), which,
under widely assumed regularity assumptions, exactly characterize the space of all population
monotone solutions [6]. A divisor solution is characterized by a divisor criterion, which is a monotone
increasing function d : N — Ry such that, for all t € N, ¢t < d(¢) < t + 1. For instance, the
Huntington-Hill solution is induced by d(t) := +/t (¢ + 1). For a population profile p and house size
h, the divisor solution corresponding to d can be calculated by considering the sets {p;/d(t) | t € N}
for each state i, determining the h largest values across all sets, and allocating to each state i a number
of seats equal to how many of the h largest values came from i’s set. The solutions in the above
proof could have been cast in similar terms, where state i’s set is {1/y! | t € N} = {p;/x! | t € N},
i.e., where, for each state i, t — x§ plays the role of a state-specific divisor criterion.

Clearly, the solutions’ resemblance to divisor solutions enabled our proof of population mono-
tonicity. At the same time, using different “divisor criteria” for different states allowed to avoid
the order-preserving property, which would have prevented ex ante proportionality as described
in Section 3.1. Less satisfying is that these “divisor criteria” do not satisfy any bounds such as
t < d(t) < t+1, which makes it likely that solutions substantially deviate from proportionality
ex post. An interesting question for future work is whether Theorem 2 can be strengthened to
additionally satisfy lower quota (“F;(p, h) > |¢;]”) or upper quota (“F;(p, h) < [q:1”).

4 HOUSE MONOTONICITY

While we cannot obtain population monotonicity without giving up on quota, we now propose an
apportionment method that combines house monotonicity with quota and ex ante proportionality.

4.1 Examples of Pitfalls

An intuitive strategy for constructing a house monotone randomized apportionment methods is to
do it inductively, seat-by-seat. Thus, we would need a strategy for extending a method that works
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for all house sizes b’ < h to a method that also works for house size h + 1. In this section, we give
examples suggesting that this does not work, by showing that some reasonable methods cannot be
extended without violating quota or ex ante proportionality. This motivates a search for a more
“global” strategy for constructing a house-monotone method.

Example 1. Our first example will show that there are apportionments for a given h that satisfy
quota, but that are “foxic” in that they can never be chosen by a house monotone solution which
satisfies quota. Suppose that we have four states with populations p = (1,2, 1, 2). The distribution
that we will consider is the one given by Grimmett’s method [22] (as described in the introduction)
for these inputs.” Let h = 2. Observe that, if the random permutation chosen by Grimmet’s method
is identity and if furthermore U > 2/3, then Grimmett’s method will return the allocation (1,0, 1,0).
But we will show that no solution f such that f(p,2) = (1,0, 1,0) can satisfy house monotonicity
and quota. Indeed, if f is house monotone, then at least one out of state 2 or state 4 must still be
given zero seats by f when h = 3, but quota requires that both states receive exactly one seat when
h = 3.1t follows that Grimmett’s method, or any other method satisfying quota and whose support
contains solutions f with f(p,2) = (1,0, 1,0), cannot be house monotone.

Thus, a first challenge that any quota and house monotone method must overcome is to never
produce a toxic apportionment for a specific 4 that cannot be extended to all larger house sizes in a
house monotone and quota-compliant way. Still [34] and later Balinski and Young [5] give a charac-
terization of non-toxic apportionments, but we found no way of transforming this characterization
into an apportionment method that would be ex ante proportional.

Example 2. Our second example shows that, even if there are no toxic apportionments in the
support of a distribution, the wrong distribution over apportionments might still lead to violations
of one of the axioms. Let there be four states with populations ﬁ = (45,25,15,15) and let h = 3;
thus, the standard quotas are (1.35,0.75, 0.45, 0.45). We consider the following distribution over
allocations:

» _[(2,1,0,0) with probability 35%, (1,1,0,1) with probability 20%, and
(1,1,1,0) with probability 20%, (1,0,1,1) with probability 25%.

As we show in Appendix A, none of these allocations is toxic, and the distribution can be part of
an apportionment method in which all three axioms hold for p and all &/’ < 3. Nevertheless, we
show in the following that any apportionment method F that satisfies house monotonicity and
quota and that has the above distribution for F(p,3) must violate ex ante proportionality. Indeed,
fix such an F. On the one hand, note that, for h = 4, state 2’s standard quota is 4 - % =1, so any
quota apportionment must give the state 1 seat. Since any solution f in the support of F satisfies
house monotonicity and quota by assumption, any f such that f(p,3) = (1,0, 1, 1) must satisfy
f(p,4) = (1,1,1,1). Thus, with at least 25% probability, F;(p,4) = 1. On the other hand, since
state 1’s standard quota for h = 4 is 1.8 < 2, F;(p,4) < 2 holds deterministically, by quota. It
follows that E[F;(p,4)] < 25% - 1+ 75% - 2 = 1.75 < 1.8, which means that F must violate ex ante
proportionality as claimed. To avoid this kind of conflict between house monotonicity, ex ante
proportionality, and quota, the distribution of F(p, 3) must allocate at least 5% combined probability
to the allocations (2,0, 1,0) and (2,0, 0, 1), which to us is not obvious other than by considering the
specific implications on h = 4 as above.

%It is easy to correlate an outcome for h = 1 with this distribution in a way that preserves house monotonicity: Draw an
apportionment d from the h = 2 distribution and then flip a coin to determine if the seat for & = 1 should go to the smaller
or the larger one of the states receiving a seat in a. This satisfies quota, ex ante proportionality, and house monotonicity
across the inputs (p, 1) and (p, 2).
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4.2 Cumulative Rounding

The examples of the last section showed that it is difficult to construct house monotone apportion-
ment methods seat-by-seat. In this section, we develop an approach that is able to explicitly take
into account how rounding decisions constrain each other across house sizes. Our approach will be
based on dependent randomized rounding in a bipartite graph that we construct. First, we state the
main theorem by Gandhi et al. [20]:

THEOREM 3 (GANDHI ET AL.). Let (AU B, E) be an undirected bipartite graph with bipartition
(A, B). Each edge e € E is labeled with a weight w, € [0,1]. For eachv € A U B, we denote the
fractional degree of v by d, = Y cocE We-

Then there is a random process, running in O ((|A| + |B|) - |E|) time, that defines random variables
X, € {0,1} for all e € E such that the following properties hold:

Marginal distribution: foralle € E, E[X,] = w,,

Degree preservation: forallv € AUB, Y c.cg Xe € {ldu], [dv]}, and

Negative correlation: forallv e AUBandS C{e € E|vee},P[AccsXe =1] < [lees We
and P[Nees Xe = 0] < [lees(1 — we).

If X, = 1 for an edge e, we say that e gets rounded up, and if X, = 0 then e gets rounded down.
We do not use the negative correlation property in our apportionment results, but it is crucial in
many other applications of dependent rounding: It implies that linear combinations of the shape
Yecs de X, for some a, € [0, 1] obey Chernoff concentration bounds [30].

To see the connection to apportionment, let p be a population profile. Then to warm up, the
problem of apportioning a single seat can be easily cast as dependent rounding in a bipartite graph:
Indeed, let A consist of a single special node a and let B contain a node b; for each state i. We draw
an edge e = {a, b;} with weight w, = p;/3.;cn p; for each state i. Apply dependent rounding to this
star graph. Then a’s fractional degree of exactly 1 means that, by degree preservation, exactly one
edge {a, b;} gets rounded up, which we interpret as the seat being allocated to state i. Moreover,
marginal distribution ensures that each state receives the seat with probability proportional to its
population. This shows that randomized rounding can naturally express ex ante proportionality,
which will become a useful building block in the following.

Next, we will expand our construction to multiple house seats, and to satisfying house mono-
tonicity across different house sizes. The most natural way is to duplicate the star-graph structure
from the last paragraph, once per house size h = 1,2,...'" with nodes a”, {bfl}ieN and edges
{{ah, bﬁ’}}i N I {a", bf’} gets rounded up in the h-th copy of the star graph, we interpret this as
the h-th seat going to state i. In other words, we determine how many seats get apportioned to
state i for a house size h by counting how many edges {a", bf"} got rounded up across all h* < h.
This construction automatically satisfies house monotonicity, and satisfies ex ante proportionality
by the marginal distribution property, but it may violate quota by arbitrary amounts.

To explain how randomized rounding might be useful for guaranteeing quota, let us give a
few details on how Gandhi et al.’s pipage rounding procedure randomly rounds a bipartite graph.
In each step, pipage rounding selects either a cycle or a maximal path consisting of edges with
fractional weights in (0, 1). The edges along this cycle or path are then alternatingly labeled “even”
or “odd”.!! Depending on a biased coinflip and appropriate numbers «, > 0, the algorithm either
(1) increases all odd edge weights by a and decreases all even edge weights by «, or (2) decreases

101n this intuitive exposition, we will not consider any explicit upper bound on the house sizes we consider. Our formal
result in Theorem 6 will round a finite graph but this will suffice to obtain house monotonicity for all house sizes h € N..
This is possible because, in a bipartite graph, any cycle has an even number of edges.
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all odd edge weights by § and increases all even edge weights by f. In this process, more and more
edge weights become zero or one, which determines the X, once no fractional edges remain.

The cycle/path rounding steps in pipage rounding represent an opportunity to couple the seat-
allocation decisions across h, in a way that ultimately will allow us to guarantee quota. In our
current graph consisting of disjoint stars, there are no cycles and the maximal paths are always
pairs of edges {a", b}, {a", bil} for two states i, j and some h. Thus, pipage rounding correctly
anti-correlates the decision of giving the h-th seat to state i and the decision of giving the h-th seat
to state j, but decisions for different seats remain independent. To guarantee quota, increasing (resp.,
decreasing) the probability of the h-th seat going to state i should also decrease (resp., increase) the
probability of some nearby seats A’ going to state i and increase (resp., decrease) the probability
of seats h’ going to some other state j. The difficulty is to choose these h’ and j to provide quota,
which is particular tricky since, in the course of running pipage rounding, some of the edge weights
will be rounded to zero and one and no longer be available for paths or cycles.

Not only are we able to use pipage rounding to guarantee quota, but we will do so through a
general construction that adds quota-like guarantees to an arbitrary instance of repeated randomized
rounding; we refer to this technique as cumulative rounding. In the following statement, the “time
steps” t take the place of our possible house sizes h.

THEOREM 4. Let (AUB, E) be an undirected bipartite graph. For each time stept = 1,..., T, consider
a set of edge weights {w'}ccg in [0, 1] for this bipartite graph. For eachv € AUBand1 <t < T, we
denote the fractional degree of v at timet by d! = Y jcocp WL.

Then there is a random process, running in O(T? - (|A| + |B|) - |E|) time, that defines random
variables X! € {0,1} foralle € E and 1 < t < T, such that the following properties hold for all
1<t <T.Let D! = Y ycecr XL denote the random degree of v at time t.

Marginal distribution: foralle € E, E[X!] = w!,

Degree preservation: forallv € AUB, D! € {|d!],[d!]},

Negative correlation: forallv € AUBandS C{e€E|veEe},P[Apes Xt =1] < [TeesW:
andP[/\eES Xé = O] < HeES(l - Wé)’

Cumulative degree preservation: forallo € AUB, Y!,_ D} e {|34_, d" ], [X_, d) T}

The first three properties could be achieved by applying Theorem 3 in each time step indepen-
dently. Cumulative rounding correlates these rounding processes such that cumulative degree
preservation (a generalization of quota) is additionally satisfied.

4.3 House Monotone, Quota-Compliant, and Ex Ante Proportional Apportionment

Before we prove Theorem 4, we will explain how cumulative rounding can be used to construct an
apportionment method that is house monotone and satisfies quota and ex ante proportionality.
None of these three axioms connects the outcomes at different population profiles p and so it
suffices to consider them independently. Thus, let us fix a population profile . Denote the total
population by p := };cn pi- The behavior of a house monotone solution on inputs with profile
p and arbitrary house sizes can be expressed through what we call an infinite seat sequence, an
infinite sequence @ = a3, @, . .. over the states N. We will also define finite seat sequences, which
are sequences a = ay, . .., &, of length p over the states. Either sequence represents that, for any
house size h (in the case of a finite seat sequence h < p), the sequence apportions a;(h) = |{1 <
h" < h | ay = i}| seats to each state i. We can naturally express the quota axiom for seat sequences:
a satisfies quota if, for all h (h < p if « is finite) and all states i, we have a;(h) € {|hpi/pl, [hpi/p1}.
The main obstacle in obtaining a house monotone method via cumulative rounding is that we
can only apply cumulative rounding to a finite number T of copies, whereas the quota axiom must
hold for all house sizes h € N;. However, it turns out that for our purposes of satisfying quota, we
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can treat the allocation of seats 1,2,. .., p independently from the allocation of seats p +1,...,2p,
the allocation of seats 2p + 1,...3 p, and so forth. The reason is that, when h is a multiple k p of p
(for some k € N,), each state i’s standard quota is an integer k p;. Thus, any solution that satisfies
quota is forced to choose exactly the allocation (k ps, ..., k p,) for house size h. At this point, the
constraints for satisfying quota and house monotonicity reset to what they were at h = 1. We make
this precise in the following lemma, proved in Appendix B:

LEMMA 5. An infinite seat sequence a satisfies quota iff it is the concatenation of infinitely many
finite seat sequences B, B2, 33, ... of length p each satisfying quota, i.e.,

a =Pl By B Bl B By i

This lemma allows us to apply cumulative rounding to only T = p many copies of a star graph.
Then, cumulative rounding produces a random matching that encodes a finite seat sequence
satisfying quota, and Lemma 5 shows that the infinite repetition of this finite sequence describes
an infinite seat sequence satisfying quota. This implies the existence of an apportionment method
satisfying all three axioms we aimed for. The formal proof is in Appendix B.

THEOREM 6. There exists an apportionment method F that satisfies house monotonicity, quota, and
ex ante proportionality.

Implications for deterministic methods. Our construction also increases our understanding of
deterministic apportionment solutions satisfying house monotonicity and quota: Indeed, the possible
roundings of the bipartite graph constructed for cumulative rounding turn out to correspond
one-to-one to the finite seat sequences satisfying quota. Together with Lemma 5, this gives a
characterization of all seat sequences that satisfy quota, providing a geometric (and graph-theoretic)
alternative to the characterizations by Still [34] and Balinski and Young [5].

THEOREM 7. For each population vector p, we can construct a bipartite graph (AU B, E) such that
the set S of all finite seat sequences satisfying quota for p is in one-to-one correspondence to the corner
points of the polytope of all perfect fractional matchings on (AU B, E). Together with Lemma 5 this
characterizes the set of infinite seat sequences satisfying quota as the set of infinite sequences over S.

Since a fractional matching assigning each edge {a, b;} a weight of p;/p > 0 lies in the interior of
this polytope of perfect fractional matchings, one immediate consequence of this characterization
(equivalently, of ex ante proportionality in Theorem 6) is that, for each state i and h € N, there is a
house monotone and quota-compliant solution that assigns the h-th seat to i. To our knowledge, this
result is not obvious based on the earlier characterizations. More generally, the polytope characteri-
zation might be useful in answering questions such as “For a set of pairs (hy, i1), (h2, i2), . - ., (hs, i),
is there a population-monotone and quota-compliant solution that assigns the hj-th seat to state i;

for all 1 < j < t?” To answer this question, one can remove the nodes a/ and b " from the graph

(simulating that they got matched) and check whether the remaining graph stlll permlts a perfect
matching, say, with the help of Hall’s marriage theorem [23].

Computation. Before we prove the cumulative rounding result in Section 5, let us quickly discuss
computational considerations of our house-monotone apportionment method. While it is possible
to run dependent rounding on the constructed graph (for a given population profile p), the running
time would scale in O(p? n?), and the quadratic dependence on the total population p might be
prohibitive. In practice, we see two ways to avoid this computational cost:

First, one might often not require a solution that is house monotone on all possible house sizes
h € N,; instead, it might suffice to rule out Alabama paradoxes for house sizes up to an upper
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bound A ey In this case, it suffices to apply cumulative rounding on A4, many copies of the graph,
leading to a much more manageable running time of O(h%,,, n%).

A second option would be to apply cumulative rounding on all p copies of the graph, but to stop
pipage rounding once all edge weights in the first h copies of the graph are integral, even if edge
weights for higher house sizes are still fractional. This would allow to return an apportionment for
inputs p, h while randomly determining not a single house-monotone solution, but a conditioned
distribution F® over house-monotone solutions, all of which agree on the apportionment for p
and h. Since all solutions are house monotone, the expected number of seats for a party will
always monotonically increase in h across the conditioned distribution. Should it become necessary
to determine apportionments for larger house sizes, one can simply continue the cumulative-
rounding process where it left off. Since the pipage rounding used to prove Theorem 4 leaves open
which cycles or maximal paths get rounded next, it seems likely that one can deliberately choose
cycles/paths such that the apportionment for the first h seats is determined in few rounds.

5 PROOF OF CUMULATIVE ROUNDING

We will now prove Theorem 4 on cumulative rounding. Our proof will construct a weighted bipartite
graph including T many copies of (A U B, E), connected by appropriate additional edges and nodes,
and then applying dependent rounding to this constructed graph. The additional edges and vertices
ensure that if too many edges adjacent to some node v are rounded up in one copy of the graph,
then this is counterbalanced by rounding down edges adjacent to v in another copy.

CoNSTRUCTION 8. Let (AU B,E), T, and {w'}.; be given as in Theorem 4. We construct a new
weighted, undirected, and bipartite graph as follows: For each nodev € AU B and foreacht =1,...,T,
create four nodesv’, 3", 9", andv"*'; furthermore, create a node v*! for each nodev. For each{a, b} € E
andt =1,...,T, connect the nodes a’ and b' with an edge of weight Wga,b}' Additionally, for each
nodev € AUB andeacht =1,...,T, insert edges with the following weights:

Ut

| 1-db+ |t

5[

|t |az)
o7 t=1 g1’ t-1 gt’ o t t t 4 ot
s dy - |36t db | =% dl |5 df |

Before we go into the proof, we give in Fig. 3 an interpretation for what it means for each edge in
the constructed graph to be rounded up. One can easily verify that, under the (premature) assump-
tion that cumulative rounding satisfies marginal distribution, degree preservation, and cumulative
degree preservation, the edge weights coincide with the probabilities of each interpretation’s event.
We want to stress that it is not obvious that these descriptions will indeed be consistent for any
dependent rounding of the constructed graph, and we will not make use of these descriptions in the
proof of Theorem 4. Instead, the characterizations will follow from intermediate results in the proof.
We give these interpretations here to make the construction seem less mysterious. We begin the
formal analysis of the construction with a sequence of simple observations about the constructed
graph (proofs are in Appendix C).

LEMMA 9. The graph produced by Construction 8 is bipartite.

LEMMA 10. All edge weights lie between 0 and 1.



Paul Golz, Dominik Peters, and Ariel D. Procaccia 14

(@)
“edge {v, v’} is rounded up at time ¢”
KXoy =1

{o.0'}

(]

“0’s degree is rounded down at time ¢”
(D = ldg))

(S]]

“v’s degree is rounded up at time ¢”
Dy = ldg]+1)

z)tfl:t at Z)t:t+1
“up to time ¢ — 1, ¥’s cumulative “up to time ¢, v’s cumulative
degree was rounded up” degree was rounded down”
t-1 nt' _ t-1 gt’ t t_ t t
(Zﬂ:l Dv - {Zﬂ:l dv J + 1) (Zﬂ:] Dv - { t'=1 dv J)

Fig. 3. Interpretation of each edge being rounded up in the constructed graph, for arbitrary nodes v,0” € AUB
and 1 < t < T. The correctness of this characterization will be shown along the proof of Theorem 4, specifically
in the sections on degree preservation and cumulative degree preservation.

LEMMA 11. For each node v € A U B, the following table gives the fractional degrees of various
nodes in the constructed graph, all of which are integer:

nodes fractional degree
ot (V1<t<T) ldi]+1
7t (V1<t<T) | Zhodl | = | Znhdy | - 1dh] +1

ot (V1<t<T)

ot (V1<t<T-1)
z)0:1

O = =

Proor oF THEOREM 4. We define cumulative rounding as the random process that follows Con-
struction 8 and then applies dependent rounding (Theorem 3) to the constructed graph, which is
valid since the graph is bipartite and all edge weights lie in [0, 1] (Lemmas 9 and 10). For an edge e
in the constructed graph, let X, be the random variable indicating whether dependent rounding
rounds it up or down. For any edge {a, b} € E in the underlying graph and some 1 <t < T, we
define the random variable Xfa,b} to be equal to X{4 ¢}. Recall that we defined D}, = 3, c.cp XL

To prove the theorem, we have to bound the running time of this process, and provide the
four guaranteed properties: marginal distribution, degree preservation, negative correlation, and
cumulative degree preservation, out of which the last property takes by far the most work.

Running time. Without loss of generality, we may assume that each vertex v € AU B is incident to
at least one edge, since, otherwise, we could remove this vertex in a preprocessing step. From this, it
follows that |E| € Q(]A|+|B]). Constructing the graph takes O(T |E|) time, which will be dominated
by the time required for running dependent rounding on the constructed graph. The constructed
graph has (1+4T) (|A| +|B|) € O(T (JA| + |B|)) nodes and T |E| +4 T (|A| + |B|) € O(T |E|) edges.
Since the running time of dependent rounding scales in the product of the number of vertices and
the number of edges, our procedure runs in O(T? (|A| + |B|) |E|) time, as claimed.

Marginal distribution. For an edge {a,b} € Eand 1 <t < T, E[X{tab}] = B[X(apy] = wiab},
where the last equality follows from the marginal-distribution property of dependent rounding.
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Legend: O:V Q? D:V D:V:
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00:1 R 51 — z)1:2 — 52 \—— 02:3 — 53 \—— 03:4 vt—l:t — 51‘ \—— z)t:t+1

Fig. 4. lllustration of the counting argument for proving cumulative degree preservation. Edges in the figure
are edges from the constructed graph, a superset of the edges in the rounded graph. Node color and shape
indicate the set that a node belongs to, as indicated in the legend.

Degree preservation. Fix anodev € AUBand 1 <t < T. By Lemma 11, the fractional degree
of o’ is |d!] + 1, and thus, by degree preservation of dependent rounding, exactly |d}] + 1 edges
adjacent to o' must be rounded up. The only of these edges that does not count into D! is {27, v'};
depending on whether this edge is rounded up or down, D! is either |d!| or |d!] + 1. If d! is not
integer, the latter number equals [d’], which proves degree preservation. Else, if d/, is an integer,
the edge weight of {2%,0} is 1. Dependent rounding always rounds up edges with weight 1, which
means that D}, is definitely |d’] in this case. Thus, degree preservation holds in either case.

Negative correlation. Negative correlation foro €e AUB,SC {e€ E|vee},and1 <t <T
directly follows from the negative-correlation property of dependent rounding for the node v’ and

the edge set §” == {{o’, (¢v/)"} | {o,0'} € S}.

Cumulative degree preservation. Fix anodev € AUBand 1 < t < T. We will consider the
“rounded version” of the constructed graph, i.e., the unweighted bipartite graph over the nodes
of the constructed graph in which exactly those edges are present that got rounded up by the
randomized rounding process. We define five sets of nodes in the rounded graph (Fig. 4):

Vi={" 1<t <t} V = {()" | € (AUB)\{o}, 1<t <t}
Vi={" 1<t <t} V={" 1<t <t} Vi= o o<t <t}

For any set of nodes V; in the rounded graph, we denote its neighborhood by N(V;), and we will
write deg(V7) for the sum of degrees of V; in the rounded graph. For any two sets of nodes V1, V3,
we write cut(Vj, V,) to denote the number of edges between V; and V; in the rounded graph.
Note that Zi,:l Df;, which we must bound, equals cut(V, V’). We will bound this quantity by
repeatedly using the following fact, which we refer to pivoting: For pairwise disjoint sets of nodes
Vo, V1, Vo, if N(Vy) € Vi U Vs, then deg(Vy) = cut(Vy, Vi) + cut(Vp, V2). Since Lemma 11 gives us
a clear view of the fractional degrees of nodes in the constructed graph, and since, by degree
preservation, a node’s degree in the rounded graph must equal the fractional degree whenever the
latter is an integer, this property allows us to express cuts in terms of other cuts. Figure 4 illustrates
which of these sets border on each other, and helps in following along with the derivation.

St_ DY = cut(V,V’)
deg(V) = cut(V,V) (pivot Vo = V. Vy = V', V, = V)
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=t+ X0  [dY] - cut(V, V) (deg(V) =t +X!,_,|d" ] by Lemma 11)
=t+ X4 1d"] - deg(V) + cut(V,V) (pivot Vo =V, V; =V, V, = V)
=3t 1dY | + cut(V,V) (deg(V') = t by Lemma 11)
=3h_ 1d) | + deg(V) — cut(V,V?) (pivot Vo =V, V; =V, V, = V)
= Sholdy |-tV v)+ 3 (IS df'] - Zhhdl | - [d5]+1) (Lemma 11)
=L ldl ] = cut(V, vy + | 3L dy = Sh_ Ld) |+t (telescoping sum)

= |SL_ dY |+t — cut(V, V5.

To bound cut(V, V*) in the last expression, observe that N(V*\ {0**1}) C V, from which it follows
that cut(V, V: \ {o"**1}) = deg(V* \ {0"**'}) =t — 1. Thus, cut(V,V*) = t = 1+ 1{X (gt yeen1 }, and
we resume the above equality

S DY =Xk di = (= 1+ DX gr gy ) = |20, d5 |+ 1= L{X (e ey
1 v’

If Zt, dt is not an integer, the above shows that )’ =1 Dt is either the floor or ceiling of Zt,

estabhshlng cumulative degree preservation. Else, if 3./,_, d’ is integer, note that the weight of
the edge {97, 0"*'} in the constructed graph is 1. Since dependent rounding always rounds such
edges up, Z;’:l DY = (> d” ]. This establishes cumulative degree preservation, the last of the
properties guaranteed by the theorem. O

6 OTHER APPLICATIONS OF CUMULATIVE ROUNDING

Our exploration of house monotone randomized apportionment led us to the more general technique
of cumulative rounding, which we believe to be of broader interest. We next illustrate this by
discussing additional applications.

6.1 Sortition of the European Commission

The European Commission is one of the main institutions of the European Union, in which it plays
arole comparable to that of a government. The commission consists of one commissioner from each
of the 27 member states, and each commissioner is charged with a specific area of responsibility.
Since the number of EU member states has nearly doubled in the past 20 years, so has the size of
the commission. Besides making coordination inside the commission less efficient, the enlargement
of the commission has led to the creation of areas of responsibility much less important than others.
Since the important portfolios are typically reserved for the largest member states, smaller states
have found themselves with limited influence on central topics being decided in the commission.

To remedy this imbalance, Buchstein and Hein [12] propose to reduce the number of commis-
sioners to 15, meaning that only a subset of the 27 member states would send a commissioner at
any given time. Which states would receive a seat would be determined every 5 years by a weighted
lottery (“sortition”), in which states would be chosen with degressive proportional weights. Degres-
sive means that smaller states get non-proportionately high weight; such weights are already used
for apportioning the European parliament. The authors argue that by the law of large numbers,
political representation on the commission would be essentially proportional to these weights in
politically relevant time spans.

However, a follow-up simulation study by Buchstein et al. [13] challenges this assertion on two
fronts: (1) First, the authors find that their implementation of a weighted lottery chooses states
with probabilities that deviate from proportionality to the weights in a way that is not analytically
tractable (see [11, p. 24]). (2) Second, and more gravely, their simulations undermine “a central
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argument in favor of legitimacy” in the original proposal, namely, that “in the long term, the seats
on the commission would be distributed approximately like the share of lots” [13, own translation].
From a mathematical point of view, the authors had overestimated the rate of concentration across
the independent lotteries. Instead, in the simulation, it takes 30 lotteries (150 years) until there is a
probability of 99% that all member states have sent at least one commissioner.

These serious concerns could be resolved by using cumulative rounding to implement the
weighted lotteries. Specifically, we would again construct a star graph with a special node a and one
node b; for each state i, setting T to the desired number of consecutive lotteries. Foreach 1 <t < T,

each edge {a, b;} would be weighted by e 15 “— where w; is state j’s degressive weight. 12 Degree

preservation on a would ensure that in each lottery t, exactly 15 distinct states are selected. By
marginal distribution, the selection probabilities would be exactly proportional to the degressive
weights, resolving issue (1). Furthermore, cumulative degree preservation on the state nodes would
eliminate issue (2). If we take the effective selection probabilities of Buchstein et al. [13] as the states’
weights, even the smallest states i would have an edge weight w{ by ~ 0-187. Then, cumulative
quota prevents any state from getting rounded down in 11 = [2/0.187] consecutive lotteries: Indeed,
fixing any 0 < t, < T — 11,

Y DY > [(t +11) 0.187] > [£0.187] +2 > [150.187] +1 > X

p
=1 Db,- +1,

=1
which means that state i must have been selected at least once between time t, + 1 and ¢y + 11. In
political terms, this means that 55, not 150, years would be enough to deterministically ensure that
each member state send a commissioner at least once in this period.

6.2 Repeated Allocation of Courses to Faculty Or Shifts to Workers

A common paradigm in fair division is to first create a fractional assignment between agents and
resources, and to then implement this fractional assignment in expectation, through randomized
rounding. Below, we describe a setting of allocating courses to faculty members in a university
department, in which implementing a fractional assignment using cumulative rounding is attractive.

For a university department, denote its set of faculty members by A and the set of possible courses
to be taught by B. For each faculty member a and course b, let there be a weight w, ) € [0, 1]
indicating how frequently course b should be taught by a on average. These numbers could be
derived using a process such as probabilistic serial [10], the Hylland-Zeckhauser mechanism [24],
or the mechanisms by Budish et al. [14], which would transform preferences of the faculty over
which courses to teach into such weights.!*> We will allow arbitrary fractional degrees on the faculty
side (so one person can teach multiple courses) while assuming that the fractional degree of any
course b is at most 1.

When applying cumulative rounding to this graph (using the same edge weights in each period)
for consecutive semesters 1 < t < T, we observe the following properties.

e Marginal distribution implies that, in each semester, faculty member a has a probability
Ww{qp} of teaching course b.

12This assumes that each state’s weight is at most 1/15 2 jen Wj, which is in fact not the case for the largest member
states [13]. Therefore, proportionality to the weights is incompatible with Buchstein and Hein’s requirement that each state
may not send more than a single commissioner. To obtain proportionality, there are three solutions: increasing the number
of commissioners, allowing a state to receive multiple commissioners (which can be expressed in cumulative rounding by
splitting the state into multiple copies), or adjusting the weights. If desired, cumulative rounding can accommodate weights
that change across lotteries according to population projections, which Buchstein et al. do for some of their experiments.
13 Although these mechanisms are formulated for goods, they can be applied to bads when the number of bads allocated to
each agent is fixed, as it is when allocating courses to faculty or shifts to workers.
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o Degree preservation on the course side means that a course is never taught by two different
faculty members in the same semester.

e Degree preservation on the faculty side implies that a faculty member a’s teaching load
does not vary by more than 1 between semesters; it is either the floor or the ceiling of a’s
expected teaching load.

e Cumulative degree preservation on the course side ensures that courses are offered with
some regularity. For example, if a course’s fractional degree is 1/2, it will be taught exactly
once in every academic year (either in Fall or in Spring).

e Cumulative degree preservation on the faculty side allows for non-integer teaching load.
For example, a faculty member with fractional degree 1.5 will have a “2-1” teaching load, i.e.,
they will teach 3 courses per year, either 2 in the Fall and one in the Spring or vice versa.

The same approach is applicable for matching workers to shifts.

One could also use cumulative rounding to repeatedly round a fractional assignment of general
chores, such as the ones computed by the online platform spliddit.org [21]. In this case, a caveat
is that (cumulative) degree preservation only ensures that the number of assigned chores is close
to its expected number per time period, not necessarily the cost of the assigned chores. However,
if many chores are allocated per time step, and if costs are additive, then an agent’s per-timestep
cost is well-concentrated, which follows from the negative-correlation property that permits the
application of Chernoff concentration bounds [30].

7 DISCUSSION

Though our work is motivated by the application of apportioning seats at random, the technical
questions we posed and addressed are fundamental to the theoretical study of apportionment. In a
sense, any deterministic apportionment solution is “unproportional” — after all, its role is to decide
which agents receive more or fewer seats than their standard quota. By searching for randomized
methods satisfying ex ante proportionality, we ask whether these unproportional solutions can be
combined (through random choice) such that these deviations from proportionality cancel out to
achieve perfect proportionality, and whether this remains possible when we restrict the solutions
to those satisfying subsets of the axioms population monotonicity, house monotonicity, and quota.
Naturally, this objective pushes us to better understand the whole space of solutions satisfying
these subsets of axioms, including the space’s more extreme elements. Therefore, it is in hindsight
not surprising that our work led to new insights for deterministic apportionment: a more robust
impossibility between population monotonicity and quota (Theorem 1), an exploration of solutions
generalizing the divisor solutions (Theorem 2), and a geometric characterization of house monotone
and quota compliant solutions (Theorem 7).

Concerning the cumulative rounding technique introduced in this paper, we have only scratched
the surface in exploring its applications. In particular, we hope to investigate whether cumulative
rounding can extend existing algorithmic results that use dependent rounding, and whether it
can be used to construct new approximation algorithms. For both of these purposes, the negative-
correlation property, which we have not used much so far, will hopefully turn out to be valuable.

Despite their advantageous properties, randomized mechanisms have in the past often met with
resistance by practitioners and the public [27], but we see signs of a shift in attitudes. Citizens’
assemblies, deliberative forums composed of a random sample of citizens, are quickly gaining
usage around the world [29] and proudly point to their random selection — often carried out using
complex algorithms from computer science [19] — as a source of legitimacy. If this trend continues,
randomness will be associated by the public with neutrality and fairness, not with haphazardness,
and randomized apportionment methods might receive serious consideration.
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APPENDIX
A PITFALLS IN THE DEVELOPMENT OF HOUSE MONOTONE METHODS

In Section 4.1, we claimed that for the population vector [5 = (45, 25,15, 15) and house size h = 3 —
thus, the standard quotas (1.35, 0.75, 0.45, 0.45) — the following distribution over apportionments
can be part of an apportionment method in which house monotonicity, quota, and ex ante propor-
tionality hold across the inputs {(p, k') | b’ < 3}:

» _[(2,1,0,0) with probability 35%, (1,1,0,1) with probability 20%, and
(1,1,1,0) with probability 20%, (1,0,1,1) with probability 25%.

To obtain such an apportionment method, consider the following capacitated flow network:
45% 35%

— (1,0,0,0) ——— (1,1,0,0) ——— (2,1,0,0) ——

35%

25% . 20%
— (0,1,0,0) (1,1,1,0) ——
15% 20%
— (0,0,1,0) (1,1,0,1) ——
15% 25%
— (0,0,0,1) Y (0,1,0,1) (1,0,1,1) ——

One easily verifies that it is possible to send a total flow of 1 through this network, which necessarily
uses all edges at their capacity. Consider any decomposition of this flow into paths. Our method
will be defined as (1) choosing one of these paths a; — d, — a3 with probability proportional to
its amount of flow and (2) returning a solution f such that f(p, j) = @; for j = 1, 2,3, and some
canonical apportionment for all other inputs.

Across the inputs {(p, k) | K’ < 3}, this method does not violate house monotonicity since edges
in the flow network are such that no agent’s seat number decreases along an edge. Since one verifies
that all apportionments labeling the nodes of the flow network satisfy quota, the method satisfies
quota on {(p,h’) | h’ < 3}. On the same set of inputs, the method satisfies ex-ante proportionality,
which follows from the fact that, for b’ = 1, 2, 3, weighting the apportionments of the h’-th layer of
the flow network by their internal flow, we obtain the vector of standard quotas for p and house
size h’. The egress edges also ensure that, indeed, the method’s distribution over apportionments
on p, h is as given above.

Finally, we must prove that none of the apportionments in the last layer of the flow network
are toxic. For this, observe that the quota solution by Balinski and Young [4] (which is house
monotone and satisfies quota), for one way of breaking ties in the definition, produces the following
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apportionments on p: (1,0,0,0) — (1,1,0,0) — (2,1,0,0) — (2,1,1,0) — (2,1,1,1),.... Since
(2,1,0,0) coincides with one of these values, it can be extended by the suffix of the quota solution
and is therefore not toxic. Furthermore, we can extend (1,1,1,0) — (2,1, 1,0), and then continue
as the quota solution; (1,1,0,1) — (2,1,0,1) — (2,1,1,1), and then as the quota solution; and
(1,0,1,1) — (1,1,1,1) — (2,1,1,1), and then as the quota solution. The claim follows by verifying
that these extensions does not violate quota until merging with the quota solution.

B DEFERRED PROOFS FOR HOUSE MONOTONE APPORTIONMENT

LEMMA 5. An infinite seat sequence a satisfies quota iff it is the concatenation of infinitely many
finite seat sequences B, B2, B°, ... of length p each satisfying quota, i.e.,

a =Pl By B B B By B

ProOF. “=": Fix « and some k € N. We must show that the finite seat sequence f**! :=
®kp+1s Akpez - - > A(k+1)p Satisfies quota. Indeed, for any 1 < r < p, the number of seats allocated by
BF*1 to state i at house size r is

(1< <r| =iy = {1 < W <1 arpew = i}

= a;(kp +r) - ai(kp)
e {l(kp+r)pi/pl.[(kp+71)p:i/p1} —kp: (since a satisfies quota)
={lrpi/pl +kpi[rpi/pl+kpi} —kp;
= {Lrpi/p) [rpi/p1}s
which shows that « can be decomposed into finite seat sequences {f*}rcp, satisfying quota.

“<":Fix some hand choose k := | (h—1)/p]+1andr := ((h—1) mod p)+1suchthat h = (k—1) p+r,
k> 1and 1 < r < p. We will show that &’s allocation a(h) on h satisfies quota. Denoting *’s
allocation for a house size h’ by b*(h’), it holds for all states i that a;(h) = lez;ll b (p) + b (r). By

quota, b¥ (p) = p; forall k, and b*(r) € {|r pi/p], [r pi/p1}. Thus, a;(h) € {(k—1) pi+|r pi/p], (k-
1) p;+ [r pi/p]}- The conclusion follows since hp; /p = ((k—1) p+r) pi/p = (k=) p;+rp;/p. O

LEMMA 12. For any population profile p, there is a probability distribution D over finite seat
sequences such that one can sample a finite seat sequence « ~ D in O(p? n®) randomized time, such
that all finite seat sequences in the support of D satisfy quota, and such that, for all states i and
1<h<p,

Plap =] = pi/p.

Proor. As sketched in Section 4.2, we define D by invoking Theorem 4 on a star graph with
A={a},B={b;|i€ N},andE = {{a,b,-} |ie N}.We set T := p, and, foreach1 <t < T and
state i, set W?a,bi} = pi/p.

Theorem 4 now defines a joint distribution over variables X! satisfying marginal distribution,
degree preservation, and cumulative degree preservation (as well as negative correlation, which
we will not use). We will describe how each joint realization of the X! can be mapped to a finite
seat sequence and that the distribution D that arises from applying this mapping to the dependent-
rounding distribution has the properties claim in the statement. The running time follows from the
running time of applying dependent rounding, and the fact that the transformation for translating
the outcome into a finite seat sequence requires only O(p n) time.

For a given joint realization of the X, let « be the finite seat sequence that maps each h €

{1,...,p} to the state i such that X ?a,b,-} = 1. This definition presupposes that there is exactly one
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such i for each h, which follows from the degree-preservation guarantee for vertex a at time step h
and from the fact that d" = ;. pi/p = 1. This seat sequence « furthermore satisfies quota, which
directly follows from cumulative degree preservation and from Z?’:l dg_ = hp;/p. It only remains

to show that a;, has value i with a probability of p;/p = w?a b} foralli € Nand 1 < h < p, but this

immediately follows from the marginal distribution guarantee of Theorem 4. O

THEOREM 6. There exists an apportionment method F that satisfies house monotonicity, quota, and
ex ante proportionality.

Proor. For each population profile p, Lemma 12 provides a probability distribution over finite
seat sequences for that population profile. We choose the probability space Q such that, for each p,
there is a random variable o following the distribution from Lemma 12 and such that all of these
random variables are independent [16, Prop. 10.6.1].

From now on, we fix an w € Q, which determines the values of all o . For this w, we must
construct an apportionment solution f. For a given input p,h, let a be the concatenation of
infinitely many copies of aP as in Lemma 5. Then, we define f(p, h) as the apportionment giving
a;(h) = {1 £ k' < h| a(k’) = i}| seats to each state i.

By Lemma 12, of satisfies quota, and, thus, « satisfies quota by Lemma 5, from which it follows
immediately that f satisfies quota. Since f was constructed from a seat sequence allocating one
seat at a time, it clearly satisfies house monotonicity.

It remains to argue that F satisfies ex ante proportionality. Fix any p and h. By construction,

Fi(p,h) - Fi(p.h—1) = ]l{af+(h—1modp) = i}, setting F;(p, 0) = 0. Hence,

ELFi(,h) = Fi(p,h = D] =Plaf, , oar = il = pilp,

where the last equality follows from Lemma 12. By linearity of expectation, it follows that,

h
E[Fi(p.h)] = Z E[Fi(p.h) = Fi(p.h = D] = hpi/p,

h'=1

which shows ex ante proportionality. O

TuEOREM 7. For each population vector p, we can construct a bipartite graph (AU B, E) such that
the set S of all finite seat sequences satisfying quota for p is in one-to-one correspondence to the corner
points of the polytope of all perfect fractional matchings on (AU B, E). Together with Lemma 5 this
characterizes the set of infinite seat sequences satisfying quota as the set of infinite sequences over S.

Proor. We will first show a variant of the theorem, in which the finite seat sequences correspond
not to perfect matchings but to perfect b-matchings, i.e., where each node is labeled with a target
degree in N, and where a subset of edges is a perfect b-matching when each node has its target
degree in the induced subgraph. We will then show how to modify the graph to obtain the claimed
result for perfect matchings.

Then, the bipartite graph is the one to which we applied cumulative rounding in Lemma 12
(without the weights), with the following (technically necessary) modifications:

(1) We set each node’s target degree to its fractional degree as in Lemma 11. This is possible
since all nodes have integer weight, including the nodes o”**! which have weight 1 given
that 25:1 d’ is an integer for all nodes v in the underlying graph for the chosen T = p.

(2) Then, we delete all edges with zero weight (to ensure that they are never part of the
b-matching).
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(3) Finally, for each edge with weight 1, we delete the edge and decrement the target degree
of both adjacent nodes (simulating the constraint that these edges must be present in any
b-matching).

The proof of Lemma 12 indicated a way to map perfect b-matchings to finite seat sequences, and
we have to show that this mapping is a bijection, i.e., that it is injective and surjective.

To show that the mapping is injective, observe that two perfect b-matchings that differ in
whether a certain edge {v’, (v)’} is included lead to different seat sequences. Furthermore, the
characterization of the edges in Fig. 3 (whose correctness follows from the proof of Theorem 4 and
does not rely on properties of the result of dependent rounding other than those required by our
b-matchings) implies that the set of edges of shape {0/, (v")'} in the matching uniquely determines
which of the other edges are included in the perfect b-matching, which means that there are never
multiple perfect b-matchings that would be mapped to the same finite seat sequence.

It is more involved to show that the mapping is surjective. For a given finite seat sequence
a, we will construct a perfect b-matching which is mapped to a. Clearly, each edge {a’, (b;)"}
is included in the matching iff a; = i (none of these edges have weight zero or one since n > 2
and each state has a positive population). We label all other edges according to the edges’ events
described in Fig. 3. One verifies that, by quota, this step would not have taken any edges with
zero weight in the cumulative-rounding graph and would have taken all edges with weight one
in the cumulative-rounding graph, which allows us to pretend for ease of exposition that we are
producing a b-matching on the labeled graph before the preprocessing steps (2) and (3). One easily
verifies that the resulting edge set gives the target degree to all nodes of shape v, %, and v**!
(including the special cases v*! and oT7*1).

It only remains to show that the nodes 3’ have their target degree, | Yt._ d% | — | Z52 db | -
Ld’] + 1. For nodes v = a, it holds that d} = D’ = 1 for all #/, which means that the target degree
is one and indeed only one adjacent edge, namely, {77, 0"} is taken.

We will now consider the case of a node v = b!. Observe that dt = pi/2jenpj < 1forall ¢/,

which means that Z;:,:l df,N = t' pi/2jen pj> Which is just i’s standard quota for house size ¢/,
which we will write as ¢;(¢"). Furthermore, note that Zg,zl Df,/ = q;(1"). With this, the target degree
of v is just [ g; ()] — Lg:(t—1)] + 1, and the three edges incident to v are selected if

(@) a;(t) = a;(t—1) + 1 (rather than a;(t) = a;(t—1)),

(b) ai(t—1) = |qi(t—1)] + 1 (rather than a;(t—1) = | ¢;(¢—1)]), and

(¢) ai(t) = gi(t)] (vather than a;(t) = [gi(¢)]),

respectively, where the values in parentheses are the only alternatives to the properties, by house
monotonicity and quota. That is, we want to show that, for our house monotone and quota a,
exactly |g;(¢)] — qi(t—1)] + 1 € {1, 2} many out of the statements (a), (b), and (c), are true. In
Table 2, we rule out all other cases via a case distinction, which shows that we indeed produced a
perfect b-matching, and that the mapping is surjective.

The above establishes the one-to-one correspondence to the vertices on the polytope of perfect
fractional b-matchings. Though this polytope is very nicely behaved already, we prefer to state
the theorem for a classical perfect matching polytope, which is more widely known. Thus, we
will adapt the bipartite graph above such that all nodes have target degree one, while keeping the
perfect b-matchings in one-to-one correspondence. First, we remove all nodes with target degrees
zero from the graph, which clearly does not change the set of perfect b-matchings. Looking at
Lemma 11, only two kinds of nodes can have a target degree larger than one: nodes a’ and some
nodes Ef In fact, the nodes a’ are no problem: While they have degree 2 in the cumulative-rounding
construction, one of their adjacent edges, {a’,a’} had weight 1, and thus the target degree of a*
was already lowered to one in step (3) of the preprocessing.
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Thus, once more, the only issue are nodes of the form Ff , specifically, when their target degree is
2 (it is never higher, as discussed above). If such a node only has two adjacent edges remaining
in the graph these edges must be taken in any perfect b-matching, so we can eliminate b’ and
its neighbors. Thus, say that the node still has all three adjacent edges, {Ef, Ef}, {Ef, b=}, and
{Ef, b!**1} In this case, replace node El? by two fresh nodes n; and n,, both with target degree 1,
and connect these nodes using four edges (ny, b%), (ny, b:"1%), (ny, bI71), (na, b1*1). One verifies
that, that in any perfect b-matching on the graph before replacement, one can replace the two
edges incident to Ef by exactly one subset of the new edges to obtain a perfect b-matching on the
new graph, and that the analogous step in the other direction also works in one unique way. Thus,
after making these replacements, the finite seat sequences satisfying quota correspond one-to-one
to the perfect matchings of the graph, which are the corner points of the polytope of fractional
perfect matchings by the Birkhoff-von Neumann Theorem. O

C DEFERRED PROOFS FOR CUMULATIVE ROUNDING
LEMMA 9. The graph produced by Construction 8 is bipartite.
Proor. Note that the set of nodes
{a'lae A1<t<T}U{a |ae A1<t<T}U{b' |be B 1<t<T}U{b"* |beB0<t<T}
has no internal edges, and neither does the complement of this set. O
LEMMA 10. All edge weights lie between 0 and 1.

Proor. If the edge has the shape {0, (v”)'} for some v,0” € AU B, then the edge weight is one of
the w’, which are in [0, 1] by assumption. All other edge weights either have the shape x — | x] or
the shape 1 —x + [x] = 1 — (x — [x]) for some x € R. The claim follows since x — 1 < |[x] < x. O

LEMMA 11. For each nodev € A U B, the following table gives the fractional degrees of various
nodes in the constructed graph, all of which are integer:

nodes fractional degree

of (V1<t<T) ldl]+1

7' (V1<t<T) |Shodl ] - | 2pd dl ] - Ldt] +1
ot (V1<t<T) 1

ot (V1<t<T-1) 1

00:1 0

Proor. Within this proof, denote by frac(-) the fractional degree of a vertex in the constructed
graph.

frac(vt) = YocecE W£+ (1 - dztz + LdiJ) = LdthJ +1
———
—at

frac(@") = (dy — Ldy]) + (Zi2hdy = LZ02db ) + (1= 2o, d + 120, ds 1)
= |Shodi ] - Ldh) - 1200 db  +1
frac(@') = (1 —d’ + |d}) + (d - [d']) =1
frac(™*) = (1= 34 db + |30 d )+ (24 db — | Xh_dh]) =1 (f1<t<T-1)
frac(@®") =30 _ d) - X%  d]=0-10]=0 o
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