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Apportionment is the problem of distributing ℎ indivisible seats across states in proportion to the states’

populations. In the context of the US House of Representatives, this problem has a rich history and is a prime

example of interactions between mathematical analysis and political practice. Grimmett [22] suggested to

apportion seats in a randomized way such that each state receives exactly their proportional share 𝑞𝑖 of seats in

expectation (ex ante proportionality) and receives either ⌊𝑞𝑖 ⌋ or ⌈𝑞𝑖 ⌉ many seats ex post (quota). However, there
is a vast space of randomized apportionment methods satisfying these two axioms, and so we additionally

consider prominent axioms from the apportionment literature. Our main result is a randomized method

satisfying quota, ex ante proportionality and house monotonicity—a property that prevents paradoxes when

the number of seats changes and which we require to hold ex post. This result is based on a generalization of

dependent rounding on bipartite graphs, which we call cumulative rounding and which might be of independent

interest, as we demonstrate via applications beyond apportionment.
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1 INTRODUCTION
The Constitution of the United States says that

“Representatives [in the US House of Representatives] shall be apportioned among the

several States according to their respective numbers, counting the whole number of

persons in each State . . . ”

These “respective numbers,” or populations, of the states are determined every decade through

the census. For example, on April 1, 2020, the population of the United States was 331,108,434, and

the state of New York had a population of 20,215,751. New York therefore deserves 6.105% of the

435 seats in the House, which is 26.56 seats, for the next ten years.

The puzzle of apportionment is what to do about New York’s 0.56 seat— in this round of ap-

portionment it was rounded down to 0, and New York lost its 27th seat— or, more generally,

how to allocate fractional seats. This mathematical question has riveted the American political

establishment since the country’s founding [36].

In 1792, Congress approved a bill that would enact an apportionment method proposed by

Alexander Hamilton,
1
the first secretary of the treasury and star of the eponymous musical. If we

denote the standard quota of state 𝑖 by 𝑞𝑖 (𝑞𝑖 = 26.56 in the case of New York in 2020), Hamilton’s

method allocates to each state its lower quota ⌊𝑞𝑖⌋ (26 for NY). Then, Hamilton’s method goes

through the states in order of decreasing residue 𝑞𝑖 − ⌊𝑞𝑖⌋ (0.56 for NY) and allocates an additional

seat to each state until all house seats are allocated.

As sensible as Hamilton’s method appears, it repeatedly led to bizarre results, which became

known as apportionment paradoxes.
The Alabama paradox: Using the 1880 census results, the chief clerk of the Census Office

calculated the apportionment according to Hamilton’s method for all House sizes between

275 and 350, and discovered that, as the size increased from 299 to 300, Alabama lost a seat.

In 1900, the Alabama paradox reappeared, this time affecting Colorado and Maine.

The population paradox: In 1900, the populations of Virginia and Maine were 1,854,184

and 694,466, respectively. Over the following year, the populations of the two states grew

by 19,767 and 4,649, respectively. Even though Virginia’s growth was larger even relative to

its population, Hamilton’s method would have transferred a seat from Virginia to Maine.

Past occurrences of these paradoxes invited partisan strife, which is only natural since a state’s

representatives have a strong personal stake in their state not losing seats. Both in Congress and the

courts, this strife took the form of a tug-of-war over the choice of apportionment method, the size of

the House,
2
and the census numbers, driven by the states’, parties’, and individual representatives’

self-interest rather than the public good.

This state of affairs improved in 1941 when Congress adopted an apportionment method that

provably avoids the Alabama and population paradoxes, which had been developed by Edward

Huntington, a Harvard mathematician, and Joseph Hill, the chief statistician of the Census Bureau.

While the Huntington–Hill method is house monotone (i.e., it avoids the Alabama paradox) and

population monotone (i.e., it avoids the population paradox), it has a different, equally bizarre

weakness: it does not satisfy quota, that is, the allocation of some states may be different from ⌊𝑞𝑖⌋
or ⌈𝑞𝑖⌉. A striking impossibility result by Balinski and Young [6] shows that this tension is inevitable:

no apportionment method can simultaneously satisfy quota and be population monotone.
3

1
In fact, the bill was vetoed by George Washington and Hamilton’s method was only adopted in 1850.

2
For a long time, the House kept growing such that no state ever lost a seat, even though the influence of each seat

diminished.

3
We will revisit this result in Section 3 and show that, while Balinski and Young’s theorem makes additional implicit

assumptions, the incompatibility between quota and population monotonicity continues to hold without these assumptions.
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While the Balinski–Young impossibility is troubling, in our view there is an even larger source of

unfairness that plagues apportionment methods, which is rooted in their determinism. In addition to

introducing bias (the Huntington-Hill method disadvantages larger states), deterministic methods

often lead to situations where small counting errors can change the outcome.
4
For example, based

on the 2020 census, New York lost its 27th House seat, but it would have kept it had its population

count been higher by 89 residents! Indeed, current projections suggest that New York would have

kept its seat were it not for distortions in census response rates [18, p. 20]. After the 1990 and 2000

censuses, similar circumstances were the basis for lawsuits brought by Massachusetts and Utah.

To address these issues, an obvious solution is to use randomization in order to realize the standard

quota of each state in expectation, as Grimmett proposed in 2004 [22]. If such a randomized method

was used, 89 additional residents would have shifted New York’s expected number of seats by a

negligible 0.0001, and the decision between 26 or 27 seats would have been made by an impartial

random process, which is less accessible to political maneuvering than, say, the census [35].

Grimmett’s proposed apportionment method is easy to describe. First, we choose a random

permutation of the states; without loss of generality, that permutation is identity. Second, we draw

𝑈 uniformly at random from [0, 1], and let 𝑄𝑖 B 𝑈 +∑𝑖
𝑗=1 𝑞𝑖 . Finally, we allocate to each state 𝑖

one seat for each integer contained in the interval [𝑄𝑖−1, 𝑄𝑖 ). (In particular, this implies that the

allocation will satisfy quota.)

Why this particular method? Grimmett writes [22, p. 302]:

“We offer no justification for this scheme apart from fairness and ease of implementation.”

Grimmett’s method is easy to implement for sure, and what he refers to as “fairness”— realizing

the fractional quotas in expectation— is arguably a minimal requirement for any randomized

apportionment method. But his two axioms, “fairness” and quota, allow for a vast number of

randomized methods: Indeed, after allocating ⌊𝑞𝑖⌋ seats to each agent, the problem of determining

which states to round up reduces to so-called “𝜋ps sampling” (“inclusion probability proportional to

size”), and dozens of such schemes have been proposed in the literature [11]. We believe, therefore,

that additional criteria are needed to guide the design of randomized apportionment methods. To

identify such criteria, we return to the classics: house and population monotonicity.

1.1 Our Approach and Results
In this paper, we seek randomized apportionment methods that satisfy natural extensions of house

and population monotonicity to the randomized setting. We want these monotonicity axioms to

hold even ex post, i.e., after the randomization has been realized. We find such methods by taking a

parameterized class of deterministic methods all of which satisfy the desired ex post axioms (in our

case, subsets of population monotonicity, house monotonicity, and quota), and to then randomize

over the choice of parameters such that ex ante properties hold (here: ex ante proportionality).
5

Guaranteeingmonotonicity axioms ex post is helpful for preventing certain kinds of manipulation

in the apportionment process. For instance, say that the census concludes and a randomized

apportionment is determined, and only then does a state credibly contest that its population was

undercounted (in the courts or in Congress with the support of a majority). Using an apportionment

method without population monotonicity, states might strategically undercount their population in

the census and only reveal the true count in case this turns out to be beneficial once the randomness

4
A second shortcoming of deterministic apportionment methods is a lack of fairness over time: For example, if the states’

populations remain static, a state with a standard quota of, say, 1.5might receive a single seat in every single apportionment

and therefore only receive 2/3 of its deserved representation. Using randomized apportionment, the long-term average of a

state’s number of seats is proportional to the state’s average share of the total population.

5
In mechanism design, a similar approach extends strategyproofness to universal strategyproofness [28].
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Fig. 1. Illustration of cumulative rounding. Dashed lines indicate edges 𝑒 ∈ 𝐸 in the bipartite graph (𝑉 , 𝐸),
which are labeled with weights𝑤𝑡

𝑒 . The red lines indicate a possible random outcome of cumulative rounding.

is revealed. When using a population monotone method, by contrast, any revised apportionment

would be made using the same deterministic and population monotone method, which implies that

immediately revealing the full population count is a dominant strategy, even for coalitions of states.

In Section 3, we first show that no such randomized methods exist for population monotonicity.

This impossibility is not due to randomization or ex ante proportionality, but due to the fact that

population monotonicity and quota are outright incompatible. Thus, there do not exist suitable

deterministic apportionment methods that a randomized apportionment method could randomize

over. That population monotonicity and quota are incompatible is well-known from the Balinski–

Young impossibility theorem [6], but their proof uses some “mild” background conditions (notably

neutrality), which are not mild for our randomized purposes. We are able to prove a stronger version

of their theorem, which derives the impossibility with no assumptions other than population

monotonicity and quota. The deterministic apportionment methods that are most commonly used

in practice (so called divisor methods, including the Huntington–Hill method) satisfy population

monotonicity but fail quota. So it makes sense to ask whether population monotonicity can be

combined with ex ante proportionality (without requiring quota). We construct such a method,

which is reminiscent of the family of divisormethods, except that the so-called “divisior criterion” [6]

is specific to each state and is given by a sequence of Poisson arrivals.

For house monotonicity, we provide in Section 4 a randomized apportionment method that

satisfies house monotonicity, quota, and ex ante proportionality. To obtain this result, we generalize

the classic result of Gandhi et al. [20] on dependent rounding in a bipartite graph.We call this method

cumulative dependent randomized rounding or just cumulative rounding (Theorem 4). Cumulative

rounding allows to correlate dependent-rounding processes in multiple copies of the same bipartite

graph such that the result satisfies an additional guarantee across copies of the graph. This guarantee,

which we describe in the next paragraph, generalizes the quota axiom of apportionment. As a

side product, our existence proof for house monotonicity provides a new characterization of the

deterministic apportionment methods satisfying house monotonicity and quota, which is based on

the corner points of a bipartite matching polytope.

To describe cumulative rounding more precisely, we first sketch the result of Gandhi et al. [20].

For a bipartite graph (𝑉 , 𝐸) and edge weights {𝑤𝑒 }𝑒∈𝐸 in [0, 1], dependent rounding randomly

generates a subgraph (𝑉 , 𝐸 ′) with 𝐸 ′ ⊆ 𝐸 providing three properties: marginal distribution (each

edge 𝑒 ∈ 𝐸 is contained in 𝐸 ′
with probability𝑤𝑒 ), degree preservation (in the rounded graph, the

degree of a vertex 𝑣 is the floor or the ceiling of 𝑣 ’s fractional degree
∑

𝑣∈𝑒∈𝐸 𝑤𝑒 ), and negative
correlation. Cumulative rounding allows us to randomly round𝑇 many copies of (𝑉 , 𝐸), where each
copy 1 ≤ 𝑡 ≤ 𝑇 has its own set of weights {𝑤𝑡

𝑒 }𝑒∈𝐸 . Each copy will provide marginal distribution,

degree preservation, and negative correlation. As we prove in Section 5, cumulative rounding

additionally guarantees cumulative degree preservation: for each vertex 𝑣 and 1 ≤ 𝑡 ≤ 𝑇 , the sum
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of degrees of 𝑣 across copies 1 through 𝑡 equals the sum of fractional degrees of 𝑣 across copies 1

through 𝑡 , either rounded up or down. For example, node 𝑣1 in Fig. 1 is incident to edges with a total

fractional weight of 2 · 1/4 + 2 · 1/2 = 1.5 across copies 𝑡 = 1, 2, and must hence be incident to 1 or 2

edges in total across the rounded versions of copies 𝑡 = 1, 2. Since, across copies 𝑡 = 1, 2, 3, 𝑣1’s total

fractional degree is 1.5 + 2 · 3/4 = 3, 𝑣1 must be incident to a total of exactly 3 rounded edges across

the copies 𝑡 = 1, 2, 3. Applying cumulative rounding to a star graph yields the desired randomized

apportionment method satisfying house monotonicity, quota, and ex-ante proportionality.

We believe that cumulative rounding is of broader interest, and in Section 6, we present applica-

tions of cumulative rounding beyond apportionment. First, we look at a proposal of Buchstein and

Hein [12] for a reform of the European Commission of the European Union: They propose to use

a weighted lottery to choose which countries get to nominate commissioners. Using cumulative

rounding to implement this lottery would eliminate two key problems the authors identified in

a simulation study, in particular the possibility that some member states might go without any

commissioners for a long period of time. We also describe how cumulative rounding can be applied

to round fractional allocations of goods or chores, and we discuss a specific application of assigning

faculty to teach courses.

1.2 Related Work
Randomized apportionment was first suggested by Grimmett [22], whose proposal we have already

discussed. More recently, Aziz et al. [3] developed a randomized rounding scheme as part of a

mechanism for strategy-proof peer selection, which they simultaneously propose as a randomized

apportionment method. Just like Grimmett’s method, their method satisfies ex ante proportionality

and quota. Aziz et al. argue that the main advantage of their method is that its support consists of

only linearly (not exponentially) many deterministic apportionments. This, they claim, is useful in

repeated apportionment settings, where one could repeat a periodic sequence of these deterministic

apportionments and thereby limit the possibility of selecting the same state much too frequently or

much too rarely due to random fluctuations. If this is the goal, cumulative rounding will arguably

give better guarantees (see Section 6.1).

As a consequence of the Birkhoff–von Neumann Theorem [9, 37], any fractional matching in a

bipartite graph can be implemented as a lottery over integral matchings, in the sense that each edge

is present in the random matching with probability equal to its weight in the fractional matching.

One algorithm for rounding a bipartite matching is pipage rounding [1], which Gandhi et al. [20]

randomized in their dependent rounding technique. This rounding technique is powerful since it

can directly accommodate fractional degrees larger than 1 and can provide negative-correlation

properties such that Chernoff concentration bounds apply [30]. The technique of Gandhi et al. has

found many applications in approximation algorithms [7, 20, 26] and in fair division [2, 15, 32].

Steiner and Yeomans [33] study a problem in just-in-time industrial manufacturing: how to

alternate between the production of different types of goods in a way that produces each type in

specified proportions. As pointed out by Bautista et al. [8], this problem is related to apportionment.

In particular, a production schedule resembles a deterministic house monotone apportionment

method: as the available production time increases by one slot, the schedule needs to decide which

type to produce in the next slot. Steiner and Yeomans end up with a property that nearly guarantees

quota because they aim to minimize how far the prevalence of types among the goods produced so

far deviates from the desired proportions. Now, they only produce deterministic schedules, and

the existence of deterministic house monotone and quota apportionment methods has long been

known [4, 34]. But we believe that the main construction in their proof could be randomized to

obtain an alternative proof of Theorem 6, without however providing the generality of cumulative
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rounding. In fact, a similar graph construction to that by Steiner and Yeomans is randomly rounded

within a proof by Gandhi et al. [20] to obtain an approximation result about broadcast scheduling.

2 MODEL
Throughout this paper, fix a set of 𝑛 ≥ 2 states 𝑁 = {1, 2, . . . , 𝑛}. For a given population profile
®𝑝 ∈ N𝑛+, which assigns a population of 𝑝𝑖 ∈ N+ to each state 𝑖 , and for a house size ℎ ∈ N+, an
apportionment solution deterministically allocates to each state 𝑖 a number 𝑎𝑖 ∈ N of house seats

such that the total number of allocated seats isℎ. Formally, a solution is a function 𝑓 : N𝑛+×N+ → N𝑛
such that, for all ®𝑝 and ℎ,

∑
𝑖∈𝑁 𝑓𝑖 ( ®𝑝,ℎ) = ℎ. For a population profile ®𝑝 and house size ℎ, state 𝑖’s

standard quota is 𝑞𝑖 B
𝑝𝑖∑

𝑖∈𝑁 𝑝𝑖
ℎ. Next, we define three axioms for solutions:

Quota: A solution 𝑓 satisfies quota if, for any ®𝑝 and ℎ, it holds that 𝑓𝑖 ( ®𝑝, ℎ) ∈ {⌊𝑞𝑖⌋, ⌈𝑞𝑖⌉} for
all states 𝑖 .

House monotonicity: A solution 𝑓 satisfies house monotonicity if, for any ®𝑝 and ℎ, increas-

ing the house size toℎ+1 does not reduce any state’s seat number, i.e., if 𝑓𝑖 ( ®𝑝, ℎ) ≤ 𝑓𝑖 ( ®𝑝, ℎ+1)
for all 𝑖 ∈ 𝑁 .

Population monotonicity:6 We say that a solution 𝑓 , some ®𝑝, ®𝑝 ′ ∈ N𝑛+, and some ℎ,ℎ′ ∈ N+
exhibit a population paradox if there are two states 𝑖 ≠ 𝑗 such that 𝑝 ′

𝑖 ≥ 𝑝𝑖 , 𝑝
′
𝑗 ≤ 𝑝 𝑗 ,

𝑓𝑖 ( ®𝑝 ′, ℎ′) < 𝑓𝑖 ( ®𝑝, ℎ), and 𝑓𝑗 ( ®𝑝 ′, ℎ′) > 𝑓𝑗 ( ®𝑝,ℎ), or, in words, if state 𝑖 loses seats and 𝑗 wins

seats even though 𝑖’s population weakly grew and 𝑗 ’s population weakly shrunk. A solution

𝑓 is population monotone if it exhibits no population paradoxes for any ®𝑝, ®𝑝 ′, ℎ, ℎ′
. By setting

®𝑝 = ®𝑝 ′
, one easily verifies that population monotonicity implies house monotonicity.

Finally, we will define randomized apportionment methods. One potential definition, used by

Grimmett [22], is a function that for each ®𝑝 and ℎ specifies a probability distribution over seat allo-

cations (𝑎𝑖 )𝑖∈𝑁 . Instead, we are looking for a random process whose outcome𝜔 ∈ Ω simultaneously
determines apportionments for all population vectors ®𝑝 and house sizes ℎ, which will allow us to

formulate axioms relating these different apportionments. Conceptually, we think of such a method

as a solution-valued random variable. Formally, a randomized apportionment method, which we

will just call a method, consists of a probability space Ω = (Ω, F , P) and a function 𝐹 mapping

elements of Ω to solutions such that, for all ®𝑝 and ℎ, 𝐹 ( ®𝑝,ℎ) is a random vector specifying the seat

allocation. Typically, we will not need to think about the internal structure of Ω and therefore leave

it implicit. Using a programming metaphor, the “randomness” of a program is really determined

by an implicit random seed. We can think of a method 𝐹 as a procedure that is initialized with a

seed 𝜔 and then takes ®𝑝 and ℎ as its input in order to return an apportionment. When 𝜔 is chosen

at random, then 𝐹 behaves as a random procedure, but for any fixed 𝜔 , 𝐹𝜔 is just a deterministic

procedure mapping ®𝑝,ℎ to apportionments.
7
Our axioms, described in the next paragraph, constrain

both the random behavior of 𝐹 and the consistency of any 𝐹𝜔 across inputs.

A method 𝐹 satisfies ex ante proportionality if, for any ®𝑝 , ℎ and for any state 𝑖 , 𝑖’s expected

number of seats equals 𝑖’s standard quota, i.e., if E[𝐹𝑖 ( ®𝑝,ℎ)] = 𝑞𝑖 . A method 𝐹 satisfies quota,
house monotonicity, or population monotonicity if all solutions in the method’s support satisfy the

respective axiom. In this paper, we mainly search for apportionment methods that combine quota

and ex ante proportionality— the two axioms obtained by Grimmett [22]—with either population

or house monotonicity.

6
This definition of population monotonicity, taken from Robinson and Ullman [31], is slightly weaker than the definition

of other authors, whose violation we describe in the introduction. All results extend to the alternative notion of relative
population monotonicity [31]: the proof of Theorem 1 immediately applies, and the proof of Theorem 2 is easy to adapt.

7
This is also how we would implement an apportionment method on a computer. A seed obtained using physical randomness

would determine the solution, and the solution would be computed from the seed using a pseudo-random number generator.
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profile ®𝑝𝐴 profile ®𝑝𝐵 profile ®𝑝𝐶

state 𝑖 𝑝𝐴𝑖 𝑞𝐴𝑖 𝑝𝐵𝑖 𝑞𝐵𝑖 𝑝𝐶𝑖 𝑞𝐶𝑖

1 824 8.24 824 6.99 824 9.02

2 44 0.44 44 0.37 1 0.01

3 44 0.44 44 0.37 1 0.01

4 44 0.44 44 0.37 44 0.48

5 44 0.44 222 1.88 44 0.48

Table 1. Populations and standard quotas for three population profiles, used in showing that population
monotonicity and quota are incompatible. The house size is ℎ = 10.

3 POPULATION MONOTONICITY
3.1 Population Monotonicity Is Incompatible with Quota
We begin by showing that no apportionment method satisfies population monotonicity, quota, and

ex ante proportionality. In fact, quota and population monotonicity alone are incompatible: We will

show that no solution satisfies these two axioms. Since a method satisfying quota and population

monotonicity would be a random choice over such solutions, no such method exists either.

At first glance, the incompatibility of quota and population monotonicity might seem to follow

from existing results, but these results implicitly make neutrality assumptions that are not appro-

priate for randomized apportionment. Indeed, Balinski and Young [6], who originally proved this

incompatibily, as well as variations of their proof [17, 31] all assume what Robinson and Ullman

[31] call the order-preserving property, i.e., if state 𝑖 has strictly larger population than state 𝑗 , then

𝑖 must receive at least as many seats as 𝑗 . This property is usually proved as a consequence of

neutrality together with population monotonicity.

While the order-preserving property is reasonable for developing deterministic apportionment

methods, it is not desirable for the component solutions of a randomized apportionment method.

This is clear for ℎ = 1: The order-preserving property would mean that only the very largest state(s)

can get a seat with positive probability; by contrast, the strength of randomization is that it allows

us to allocate the seat to smaller states. To our knowledge, the existence of quota and population

monotone solutions without the assumption of the order-preserving property was an open problem.

Theorem 1. No (deterministic) apportionment solution satisfies population monotonicity and quota.

Proof. Fix a set of 5 states, and let 𝑓 be a solution satisfying quota. We will show that 𝑓 must

violate population monotonicity by analyzing three types of population profiles, which are given

in Table 1, all for house size ℎ = 10. The starting profile is ®𝑝𝐴 in this table. By quota, state 1

must receive either 8 or 9 seats on this profile, but we will show that either choice leads to a

violation of population monotonicity: First, we show that allocating 9 seats implies a violation

of population monotonicity with respect to profile ®𝑝𝐵 ; second, we show that allocating 8 seats

contradicts population monotonicity with respect to ®𝑝𝐶 .
Allocating 9 seats contradicts population monotonicity. Suppose that 𝑓1 ( ®𝑝𝐴, 10) = 9. Then, the

remaining seat must be given to either state 2, 3, 4, or 5. Without loss of generality, we may assume

that 𝑓 ( ®𝑝𝐴, 10) = (9, 0, 0, 0, 1).
Next, consider the profile ®𝑝𝐵 . Since quota prevents us from allocating more than 7 seats to state 1

or more than 2 seats to state 5, at least one of the states 2, 3, and 4 must receive a seat on ®𝑝𝐵 . Thus,
this state’s allocation strictly increases from its allocation of zero seats on ®𝑝𝐴, even though the
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state’s population has not changed. Moreover, state 1 can receive at most 7 seats on this profile

by quota, which is strictly below the 9 seats on ®𝑝𝐴, and state 1’s population has also remained the

same. But population monotonicity forbids there to be a pair of states with unchanged population,

such that one gains a seat and the other loses a seat. Hence, if state 1 receives 9 seats on ®𝑝𝐴, then 𝑓

violates population monotonicity.

Allocating 8 seats contradicts population monotonicity. Now, suppose that 𝑓1 ( ®𝑝𝐴, 10) = 8. The

remaining two seats must be given to two states out of 2, 3, 4, and 5; without loss of generality, we

may assume that 𝑓 ( ®𝑝𝐴, 10) = (8, 0, 0, 1, 1).
On profile ®𝑝𝐶 , quota implies that state 1 receives at least 9 seats — strictly more than the 8 given

on ®𝑝𝐴 even though the population has not changed. Given that there is at most one more seat to

hand out, at least one state out of 4 and 5 must receive zero seats on ®𝑝𝐶 , which is a strict reduction

with respect to ®𝑝𝐴 even though the state’s population is the same. Thus, allocating 8 seats to state 1

on ®𝑝𝐴 also leads to a violation of population monotonicity.

Since both possible choices for 𝑓1 ( ®𝑝𝐴, 10) imply a monotonicity violation, no solution can satisfy

both quota and population monotonicity. □

3.2 A Population Monotone and Ex Ante Proportional (But Not Quota) Method
The incompatibility between population monotonicity and quota leaves open the question of

whether there are apportionment methods satisfying population monotonicity and ex ante propor-

tionality. The answer is positive, as the following proposition shows:

Theorem 2. There exists an apportionment method 𝐹 that satisfies population monotonicity and ex
ante proportionality.

Proof. Which solution is randomly chosen by the method will depend on the values taken on by

𝑛 independent Poisson arrival processes with rate 1.
8
We fix an outcome 𝜔 ∈ Ω and will construct

a solution 𝐹 (𝜔). For each state 𝑖 , 𝜔 determines an infinite sequence 0 < 𝑥𝑖
1
< 𝑥𝑖

2
< . . . of arrival

times. We will describe the apportionment given by 𝐹 (𝜔) on input ®𝑝 and ℎ, which we illustrate

in Fig. 2: First, we divide each arrival time 𝑥𝑖𝑡 by the corresponding state’s population, i.e., we set

𝑦𝑖𝑡 B 𝑥𝑖𝑡/𝑝𝑖 . Second, we combine the 𝑦𝑖𝑡 for all 𝑡 and 𝑖 in a single arrival sequence (𝑧1, 𝑖1), (𝑧2, 𝑖2), . . .
labeled with states, i.e., each (𝑧 𝑗 , 𝑖 𝑗 ) corresponds to some arrival 𝑦𝑖𝑡 for some 𝑖 and 𝑡 , such that

𝑧 𝑗 = 𝑦𝑖𝑡 is the arrival time, 𝑖 𝑗 = 𝑖 is the agent label, and the 𝑧 𝑗 are sorted in increasing order. Third,

we allocate |{1 ≤ 𝑗 ≤ ℎ | 𝑖 𝑗 = 𝑖}| many seats to each state 𝑖 , i.e., a number of seats equal to how

many among the ℎ smallest scaled arrival times belonged to 𝑖’s arrival process. This specifies the

solution 𝐹 (𝜔), and, moreover, the method 𝐹 .

First, we show that 𝐹 satisfies ex ante proportionality. For this, fix some ®𝑝 and ℎ. Then, the

{𝑦𝑖𝑡 }𝑡 ≥1 for each 𝑖 are distributed as the arrival sequences of independent Poisson processes, where

𝑖’s arrival process has a rate of 𝑝𝑖 . By the coloring theorem for Poisson processes [25, p. 53], our

labeled arrival sequence (𝑧 𝑗 , 𝑖 𝑗 ) has the same distribution as if we had sampled a Poisson arrival

process 0 < 𝑧1 < 𝑧2 < . . . with arrival rate

∑
𝑖∈𝑁 𝑝𝑖 and had drawn each 𝑖 𝑗 independently, choosing

each 𝑖 ∈ 𝑁 with probability proportional to 𝑝𝑖 . Since the 𝑧 𝑗 and 𝑖 𝑗 are independent in this way,

𝐹 ( ®𝑝,ℎ) is distributed as if sampling ℎ states, with probability proportional to the states’ populations

and with replacement. In particular, this implies ex ante proportionality.

It remains to show that 𝐹 satisfies population monotonicity. Fix an 𝜔 , i.e., the 𝑥𝑖𝑡 , as well as two

inputs ®𝑝, ℎ and ®𝑝 ′, ℎ′
, for which we will show that 𝐹 (𝜔) does not exhibit a population paradox.

Denoting the inputs’ respective variables by 𝑦𝑖𝑡 , 𝑧 𝑗 and 𝑦
𝑖
𝑡

′
, 𝑧 ′𝑗 , it is easy to see that, for all 𝑖 for which

8
Hence, we can select Ω as the probability space used in any standard construction [25] of a random variable denoting a

vector whose 𝑛 components are the outcomes of independent Poisson processes.
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state 1:

state 2:

combined:

𝑥1

1

𝑦1
1

𝑧3

𝑥1

2

𝑦1
2

𝑧6

𝑥1

3

𝑦1
3

𝑧7

𝑥2

1

𝑦2
1

𝑧1

𝑥2

2

𝑦2
2

𝑧2

𝑥2

3

𝑦2
3

𝑧4

𝑥2

4

𝑦2
4

𝑧5

apportionment for ℎ = 5

Fig. 2. Illustration of the population-monotone method in Theorem 2.

𝑝 ′
𝑖 ≥ 𝑝𝑖 , 𝑦

𝑖
𝑡

′ ≤ 𝑦𝑖𝑡 for all 𝑡 , and that, for all 𝑖 for which 𝑝 ′
𝑖 ≤ 𝑝𝑖 , 𝑦

𝑖
𝑡

′ ≥ 𝑦𝑖𝑡 for all 𝑡 . Observe that each

state 𝑖 receives a number of seats equal to the number of its scaled arrival times 𝑦𝑖𝑡 (resp., 𝑦
𝑖
𝑡

′
) that

are at most 𝑧ℎ (resp., 𝑧 ′
ℎ
).

Suppose that 𝑧 ′
ℎ
≥ 𝑧ℎ (the reasoning for the case 𝑧 ′

ℎ
≤ 𝑧ℎ is symmetric). Then, whenever 𝑦𝑖𝑡 ≤ 𝑧ℎ

for a state 𝑖 for which 𝑝 ′
𝑖 ≥ 𝑝𝑖 , then 𝑦𝑖𝑡

′ ≤ 𝑦𝑖𝑡 ≤ 𝑧ℎ ≤ 𝑧 ′
ℎ
, which shows that 𝑖’s seat number must

weakly increase. One verifies that this rules out a population paradox on ®𝑝,ℎ and ®𝑝 ′, ℎ′
. Together

with the symmetric argument for 𝑧 ′
ℎ
≤ 𝑧ℎ , this establishes population monotonicity. □

Though the apportionment solutions used in the last theoremmight seem esoteric, it is interesting

to compare them to divisor methods (for consistency with our terminology, divisor solutions), which,
under widely assumed regularity assumptions, exactly characterize the space of all population

monotone solutions [6]. A divisor solution is characterized by a divisor criterion, which is amonotone

increasing function 𝑑 : N → R≥0 such that, for all 𝑡 ∈ N, 𝑡 ≤ 𝑑 (𝑡) ≤ 𝑡 + 1. For instance, the

Huntington-Hill solution is induced by 𝑑 (𝑡) B
√︁
𝑡 (𝑡 + 1). For a population profile ®𝑝 and house size

ℎ, the divisor solution corresponding to𝑑 can be calculated by considering the sets {𝑝𝑖/𝑑 (𝑡) | 𝑡 ∈ N}
for each state 𝑖 , determining theℎ largest values across all sets, and allocating to each state 𝑖 a number

of seats equal to how many of the ℎ largest values came from 𝑖’s set. The solutions in the above

proof could have been cast in similar terms, where state 𝑖’s set is {1/𝑦𝑖𝑡 | 𝑡 ∈ N} = {𝑝𝑖/𝑥𝑖𝑡 | 𝑡 ∈ N},
i.e., where, for each state 𝑖 , 𝑡 ↦→ 𝑥𝑖𝑡 plays the role of a state-specific divisor criterion.

Clearly, the solutions’ resemblance to divisor solutions enabled our proof of population mono-

tonicity. At the same time, using different “divisor criteria” for different states allowed to avoid

the order-preserving property, which would have prevented ex ante proportionality as described

in Section 3.1. Less satisfying is that these “divisor criteria” do not satisfy any bounds such as

𝑡 ≤ 𝑑 (𝑡) ≤ 𝑡 + 1, which makes it likely that solutions substantially deviate from proportionality

ex post. An interesting question for future work is whether Theorem 2 can be strengthened to

additionally satisfy lower quota (“𝐹𝑖 ( ®𝑝,ℎ) ≥ ⌊𝑞𝑖⌋”) or upper quota (“𝐹𝑖 ( ®𝑝, ℎ) ≤ ⌈𝑞𝑖⌉”).

4 HOUSE MONOTONICITY
While we cannot obtain population monotonicity without giving up on quota, we now propose an

apportionment method that combines house monotonicity with quota and ex ante proportionality.

4.1 Examples of Pitfalls
An intuitive strategy for constructing a house monotone randomized apportionment methods is to

do it inductively, seat-by-seat. Thus, we would need a strategy for extending a method that works
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for all house sizes ℎ′ ≤ ℎ to a method that also works for house size ℎ + 1. In this section, we give

examples suggesting that this does not work, by showing that some reasonable methods cannot be

extended without violating quota or ex ante proportionality. This motivates a search for a more

“global” strategy for constructing a house-monotone method.

Example 1. Our first example will show that there are apportionments for a given ℎ that satisfy

quota, but that are “toxic” in that they can never be chosen by a house monotone solution which

satisfies quota. Suppose that we have four states with populations ®𝑝 = (1, 2, 1, 2). The distribution
that we will consider is the one given by Grimmett’s method [22] (as described in the introduction)

for these inputs.
9
Let ℎ = 2. Observe that, if the random permutation chosen by Grimmet’s method

is identity and if furthermore𝑈 > 2/3, then Grimmett’s method will return the allocation (1, 0, 1, 0).
But we will show that no solution 𝑓 such that 𝑓 ( ®𝑝, 2) = (1, 0, 1, 0) can satisfy house monotonicity

and quota. Indeed, if 𝑓 is house monotone, then at least one out of state 2 or state 4 must still be

given zero seats by 𝑓 when ℎ = 3, but quota requires that both states receive exactly one seat when

ℎ = 3. It follows that Grimmett’s method, or any other method satisfying quota and whose support

contains solutions 𝑓 with 𝑓 ( ®𝑝, 2) = (1, 0, 1, 0), cannot be house monotone.

Thus, a first challenge that any quota and house monotone method must overcome is to never

produce a toxic apportionment for a specific ℎ that cannot be extended to all larger house sizes in a

house monotone and quota-compliant way. Still [34] and later Balinski and Young [5] give a charac-

terization of non-toxic apportionments, but we found no way of transforming this characterization

into an apportionment method that would be ex ante proportional.

Example 2. Our second example shows that, even if there are no toxic apportionments in the

support of a distribution, the wrong distribution over apportionments might still lead to violations

of one of the axioms. Let there be four states with populations ®𝑝 = (45, 25, 15, 15) and let ℎ = 3;

thus, the standard quotas are (1.35, 0.75, 0.45, 0.45). We consider the following distribution over

allocations:

®𝑎 =

{
(2, 1, 0, 0) with probability 35%, (1, 1, 0, 1) with probability 20%, and

(1, 1, 1, 0) with probability 20%, (1, 0, 1, 1) with probability 25%.

As we show in Appendix A, none of these allocations is toxic, and the distribution can be part of

an apportionment method in which all three axioms hold for ®𝑝 and all ℎ′ ≤ 3. Nevertheless, we

show in the following that any apportionment method 𝐹 that satisfies house monotonicity and

quota and that has the above distribution for 𝐹 ( ®𝑝, 3) must violate ex ante proportionality. Indeed,

fix such an 𝐹 . On the one hand, note that, for ℎ = 4, state 2’s standard quota is 4 · 25

100
= 1, so any

quota apportionment must give the state 1 seat. Since any solution 𝑓 in the support of 𝐹 satisfies

house monotonicity and quota by assumption, any 𝑓 such that 𝑓 ( ®𝑝, 3) = (1, 0, 1, 1) must satisfy

𝑓 ( ®𝑝, 4) = (1, 1, 1, 1). Thus, with at least 25% probability, 𝐹1 ( ®𝑝, 4) = 1. On the other hand, since

state 1’s standard quota for ℎ = 4 is 1.8 ≤ 2, 𝐹1 ( ®𝑝, 4) ≤ 2 holds deterministically, by quota. It

follows that E[𝐹1 ( ®𝑝, 4)] ≤ 25% · 1 + 75% · 2 = 1.75 < 1.8, which means that 𝐹 must violate ex ante

proportionality as claimed. To avoid this kind of conflict between house monotonicity, ex ante

proportionality, and quota, the distribution of 𝐹 ( ®𝑝, 3) must allocate at least 5% combined probability

to the allocations (2, 0, 1, 0) and (2, 0, 0, 1), which to us is not obvious other than by considering the

specific implications on ℎ = 4 as above.

9
It is easy to correlate an outcome for ℎ = 1 with this distribution in a way that preserves house monotonicity: Draw an

apportionment ®𝑎 from the ℎ = 2 distribution and then flip a coin to determine if the seat for ℎ = 1 should go to the smaller

or the larger one of the states receiving a seat in ®𝑎. This satisfies quota, ex ante proportionality, and house monotonicity

across the inputs ( ®𝑝, 1) and ( ®𝑝, 2) .
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4.2 Cumulative Rounding
The examples of the last section showed that it is difficult to construct house monotone apportion-

ment methods seat-by-seat. In this section, we develop an approach that is able to explicitly take

into account how rounding decisions constrain each other across house sizes. Our approach will be

based on dependent randomized rounding in a bipartite graph that we construct. First, we state the

main theorem by Gandhi et al. [20]:

Theorem 3 (Gandhi et al.). Let (𝐴 ∪ 𝐵, 𝐸) be an undirected bipartite graph with bipartition
(𝐴, 𝐵). Each edge 𝑒 ∈ 𝐸 is labeled with a weight 𝑤𝑒 ∈ [0, 1]. For each 𝑣 ∈ 𝐴 ∪ 𝐵, we denote the
fractional degree of 𝑣 by 𝑑𝑣 B

∑
𝑣∈𝑒∈𝐸 𝑤𝑒 .

Then there is a random process, running in O
(
( |𝐴| + |𝐵 |) · |𝐸 |

)
time, that defines random variables

𝑋𝑒 ∈ {0, 1} for all 𝑒 ∈ 𝐸 such that the following properties hold:

Marginal distribution: for all 𝑒 ∈ 𝐸, E[𝑋𝑒 ] = 𝑤𝑒 ,
Degree preservation: for all 𝑣 ∈ 𝐴 ∪ 𝐵,

∑
𝑣∈𝑒∈𝐸 𝑋𝑒 ∈ {⌊𝑑𝑣⌋, ⌈𝑑𝑣⌉}, and

Negative correlation: for all 𝑣 ∈ 𝐴 ∪ 𝐵 and 𝑆 ⊆ {𝑒 ∈ 𝐸 | 𝑣 ∈ 𝑒}, P[∧𝑒∈𝑆 𝑋𝑒 = 1] ≤ ∏
𝑒∈𝑆 𝑤𝑒

and P[∧𝑒∈𝑆 𝑋𝑒 = 0] ≤ ∏
𝑒∈𝑆 (1 −𝑤𝑒 ).

If 𝑋𝑒 = 1 for an edge 𝑒 , we say that 𝑒 gets rounded up, and if 𝑋𝑒 = 0 then 𝑒 gets rounded down.
We do not use the negative correlation property in our apportionment results, but it is crucial in

many other applications of dependent rounding: It implies that linear combinations of the shape∑
𝑒∈𝑆 𝑎𝑒 𝑋𝑒 for some 𝑎𝑒 ∈ [0, 1] obey Chernoff concentration bounds [30].

To see the connection to apportionment, let ®𝑝 be a population profile. Then to warm up, the

problem of apportioning a single seat can be easily cast as dependent rounding in a bipartite graph:

Indeed, let 𝐴 consist of a single special node 𝑎 and let 𝐵 contain a node 𝑏𝑖 for each state 𝑖 . We draw

an edge 𝑒 = {𝑎, 𝑏𝑖 } with weight𝑤𝑒 = 𝑝𝑖/
∑

𝑗 ∈𝑁 𝑝 𝑗 for each state 𝑖 . Apply dependent rounding to this

star graph. Then 𝑎’s fractional degree of exactly 1 means that, by degree preservation, exactly one

edge {𝑎, 𝑏𝑖 } gets rounded up, which we interpret as the seat being allocated to state 𝑖 . Moreover,

marginal distribution ensures that each state receives the seat with probability proportional to its

population. This shows that randomized rounding can naturally express ex ante proportionality,

which will become a useful building block in the following.

Next, we will expand our construction to multiple house seats, and to satisfying house mono-

tonicity across different house sizes. The most natural way is to duplicate the star-graph structure

from the last paragraph, once per house size ℎ = 1, 2, . . . 10 with nodes 𝑎ℎ , {𝑏ℎ𝑖 }𝑖∈𝑁 and edges{
{𝑎ℎ, 𝑏ℎ𝑖 }

}
𝑖∈𝑁 . If {𝑎

ℎ, 𝑏ℎ𝑖 } gets rounded up in the ℎ-th copy of the star graph, we interpret this as

the ℎ-th seat going to state 𝑖 . In other words, we determine how many seats get apportioned to

state 𝑖 for a house size ℎ by counting how many edges {𝑎ℎ′, 𝑏ℎ′𝑖 } got rounded up across all ℎ′ ≤ ℎ.

This construction automatically satisfies house monotonicity, and satisfies ex ante proportionality

by the marginal distribution property, but it may violate quota by arbitrary amounts.

To explain how randomized rounding might be useful for guaranteeing quota, let us give a

few details on how Gandhi et al.’s pipage rounding procedure randomly rounds a bipartite graph.

In each step, pipage rounding selects either a cycle or a maximal path consisting of edges with

fractional weights in (0, 1). The edges along this cycle or path are then alternatingly labeled “even”

or “odd”.
11
Depending on a biased coinflip and appropriate numbers 𝛼, 𝛽 > 0, the algorithm either

(1) increases all odd edge weights by 𝛼 and decreases all even edge weights by 𝛼 , or (2) decreases

10
In this intuitive exposition, we will not consider any explicit upper bound on the house sizes we consider. Our formal

result in Theorem 6 will round a finite graph but this will suffice to obtain house monotonicity for all house sizes ℎ ∈ N+.
11
This is possible because, in a bipartite graph, any cycle has an even number of edges.



Paul Gölz, Dominik Peters, and Ariel D. Procaccia 11

all odd edge weights by 𝛽 and increases all even edge weights by 𝛽 . In this process, more and more

edge weights become zero or one, which determines the 𝑋𝑒 once no fractional edges remain.

The cycle/path rounding steps in pipage rounding represent an opportunity to couple the seat-

allocation decisions across ℎ, in a way that ultimately will allow us to guarantee quota. In our

current graph consisting of disjoint stars, there are no cycles and the maximal paths are always

pairs of edges {𝑎ℎ, 𝑏ℎ𝑖 }, {𝑎ℎ, 𝑏ℎ𝑗 } for two states 𝑖, 𝑗 and some ℎ. Thus, pipage rounding correctly

anti-correlates the decision of giving the ℎ-th seat to state 𝑖 and the decision of giving the ℎ-th seat

to state 𝑗 , but decisions for different seats remain independent. To guarantee quota, increasing (resp.,

decreasing) the probability of the ℎ-th seat going to state 𝑖 should also decrease (resp., increase) the

probability of some nearby seats ℎ′
going to state 𝑖 and increase (resp., decrease) the probability

of seats ℎ′
going to some other state 𝑗 . The difficulty is to choose these ℎ′

and 𝑗 to provide quota,

which is particular tricky since, in the course of running pipage rounding, some of the edge weights

will be rounded to zero and one and no longer be available for paths or cycles.

Not only are we able to use pipage rounding to guarantee quota, but we will do so through a

general construction that adds quota-like guarantees to an arbitrary instance of repeated randomized

rounding; we refer to this technique as cumulative rounding. In the following statement, the “time

steps” 𝑡 take the place of our possible house sizes ℎ.

Theorem 4. Let (𝐴∪𝐵, 𝐸) be an undirected bipartite graph. For each time step 𝑡 = 1, . . . ,𝑇 , consider
a set of edge weights {𝑤𝑡

𝑒 }𝑒∈𝐸 in [0, 1] for this bipartite graph. For each 𝑣 ∈ 𝐴 ∪ 𝐵 and 1 ≤ 𝑡 ≤ 𝑇 , we
denote the fractional degree of 𝑣 at time 𝑡 by 𝑑𝑡𝑣 B

∑
𝑣∈𝑒∈𝐸 𝑤

𝑡
𝑒 .

Then there is a random process, running in O(𝑇 2 ·
(
|𝐴| + |𝐵 |) · |𝐸 |

)
time, that defines random

variables 𝑋 𝑡
𝑒 ∈ {0, 1} for all 𝑒 ∈ 𝐸 and 1 ≤ 𝑡 ≤ 𝑇 , such that the following properties hold for all

1 ≤ 𝑡 ≤ 𝑇 . Let 𝐷𝑡
𝑣 B

∑
𝑣∈𝑒∈𝐸 𝑋

𝑡
𝑒 denote the random degree of 𝑣 at time 𝑡 .

Marginal distribution: for all 𝑒 ∈ 𝐸, E[𝑋 𝑡
𝑒 ] = 𝑤𝑡

𝑒 ,
Degree preservation: for all 𝑣 ∈ 𝐴 ∪ 𝐵, 𝐷𝑡

𝑣 ∈ {⌊𝑑𝑡𝑣⌋, ⌈𝑑𝑡𝑣⌉},
Negative correlation: for all 𝑣 ∈ 𝐴 ∪ 𝐵 and 𝑆 ⊆ {𝑒 ∈ 𝐸 | 𝑣 ∈ 𝑒}, P[∧𝑒∈𝑆 𝑋

𝑡
𝑒 = 1] ≤ ∏

𝑒∈𝑆 𝑤
𝑡
𝑒

and P[∧𝑒∈𝑆 𝑋
𝑡
𝑒 = 0] ≤ ∏

𝑒∈𝑆 (1 −𝑤𝑡
𝑒 ),

Cumulative degree preservation: for all 𝑣 ∈ 𝐴 ∪ 𝐵,
∑𝑡

𝑡 ′=1 𝐷
𝑡 ′
𝑣 ∈ {⌊∑𝑡

𝑡 ′=1 𝑑
𝑡 ′
𝑣 ⌋, ⌈

∑𝑡
𝑡 ′=1 𝑑

𝑡 ′
𝑣 ⌉}.

The first three properties could be achieved by applying Theorem 3 in each time step indepen-

dently. Cumulative rounding correlates these rounding processes such that cumulative degree

preservation (a generalization of quota) is additionally satisfied.

4.3 House Monotone,Quota-Compliant, and Ex Ante Proportional Apportionment
Before we prove Theorem 4, we will explain how cumulative rounding can be used to construct an

apportionment method that is house monotone and satisfies quota and ex ante proportionality.

None of these three axioms connects the outcomes at different population profiles ®𝑝 and so it

suffices to consider them independently. Thus, let us fix a population profile ®𝑝 . Denote the total
population by 𝑝 B

∑
𝑖∈𝑁 𝑝𝑖 . The behavior of a house monotone solution on inputs with profile

®𝑝 and arbitrary house sizes can be expressed through what we call an infinite seat sequence, an
infinite sequence 𝛼 = 𝛼1, 𝛼2, . . . over the states 𝑁 . We will also define finite seat sequences, which
are sequences 𝛼 = 𝛼1, . . . , 𝛼𝑝 of length 𝑝 over the states. Either sequence represents that, for any

house size ℎ (in the case of a finite seat sequence ℎ ≤ 𝑝), the sequence apportions 𝑎𝑖 (ℎ) B |{1 ≤
ℎ′ ≤ ℎ | 𝛼ℎ′ = 𝑖}| seats to each state 𝑖 . We can naturally express the quota axiom for seat sequences:

𝛼 satisfies quota if, for all ℎ (ℎ ≤ 𝑝 if 𝛼 is finite) and all states 𝑖 , we have 𝑎𝑖 (ℎ) ∈ {⌊ℎ 𝑝𝑖/𝑝⌋, ⌈ℎ 𝑝𝑖/𝑝⌉}.
The main obstacle in obtaining a house monotone method via cumulative rounding is that we

can only apply cumulative rounding to a finite number 𝑇 of copies, whereas the quota axiom must

hold for all house sizes ℎ ∈ N+. However, it turns out that for our purposes of satisfying quota, we
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can treat the allocation of seats 1, 2, . . . , 𝑝 independently from the allocation of seats 𝑝 + 1, . . . , 2𝑝 ,

the allocation of seats 2𝑝 + 1, . . . 3𝑝 , and so forth. The reason is that, when ℎ is a multiple 𝑘 𝑝 of 𝑝

(for some 𝑘 ∈ N+), each state 𝑖’s standard quota is an integer 𝑘 𝑝𝑖 . Thus, any solution that satisfies

quota is forced to choose exactly the allocation (𝑘 𝑝1, . . . , 𝑘 𝑝𝑛) for house size ℎ. At this point, the
constraints for satisfying quota and house monotonicity reset to what they were at ℎ = 1. We make

this precise in the following lemma, proved in Appendix B:

Lemma 5. An infinite seat sequence 𝛼 satisfies quota iff it is the concatenation of infinitely many
finite seat sequences 𝛽1, 𝛽2, 𝛽3, . . . of length 𝑝 each satisfying quota, i.e.,

𝛼 = 𝛽1
1
, 𝛽1

2
, . . . , 𝛽1𝑝 , 𝛽

2

1
, 𝛽2

2
, . . . , 𝛽2𝑝 , 𝛽

3

1
, . . . .

This lemma allows us to apply cumulative rounding to only 𝑇 = 𝑝 many copies of a star graph.

Then, cumulative rounding produces a random matching that encodes a finite seat sequence

satisfying quota, and Lemma 5 shows that the infinite repetition of this finite sequence describes

an infinite seat sequence satisfying quota. This implies the existence of an apportionment method

satisfying all three axioms we aimed for. The formal proof is in Appendix B.

Theorem 6. There exists an apportionment method 𝐹 that satisfies house monotonicity, quota, and
ex ante proportionality.

Implications for deterministic methods. Our construction also increases our understanding of

deterministic apportionment solutions satisfying house monotonicity and quota: Indeed, the possible

roundings of the bipartite graph constructed for cumulative rounding turn out to correspond

one-to-one to the finite seat sequences satisfying quota. Together with Lemma 5, this gives a

characterization of all seat sequences that satisfy quota, providing a geometric (and graph-theoretic)

alternative to the characterizations by Still [34] and Balinski and Young [5].

Theorem 7. For each population vector ®𝑝 , we can construct a bipartite graph (𝐴 ∪ 𝐵, 𝐸) such that
the set 𝑆 of all finite seat sequences satisfying quota for ®𝑝 is in one-to-one correspondence to the corner
points of the polytope of all perfect fractional matchings on (𝐴 ∪ 𝐵, 𝐸). Together with Lemma 5 this
characterizes the set of infinite seat sequences satisfying quota as the set of infinite sequences over 𝑆 .

Since a fractional matching assigning each edge {𝑎, 𝑏𝑖 } a weight of 𝑝𝑖/𝑝 > 0 lies in the interior of

this polytope of perfect fractional matchings, one immediate consequence of this characterization

(equivalently, of ex ante proportionality in Theorem 6) is that, for each state 𝑖 and ℎ ∈ N+, there is a
house monotone and quota-compliant solution that assigns the ℎ-th seat to 𝑖 . To our knowledge, this

result is not obvious based on the earlier characterizations. More generally, the polytope characteri-

zation might be useful in answering questions such as “For a set of pairs (ℎ1, 𝑖1), (ℎ2, 𝑖2), . . . , (ℎ𝑡 , 𝑖𝑡 ),
is there a population-monotone and quota-compliant solution that assigns the ℎ 𝑗 -th seat to state 𝑖 𝑗

for all 1 ≤ 𝑗 ≤ 𝑡?” To answer this question, one can remove the nodes 𝑎ℎ 𝑗
and 𝑏

ℎ 𝑗

𝑖 𝑗
from the graph

(simulating that they got matched) and check whether the remaining graph still permits a perfect

matching, say, with the help of Hall’s marriage theorem [23].

Computation. Before we prove the cumulative rounding result in Section 5, let us quickly discuss

computational considerations of our house-monotone apportionment method. While it is possible

to run dependent rounding on the constructed graph (for a given population profile ®𝑝), the running
time would scale in O(𝑝2 𝑛2), and the quadratic dependence on the total population 𝑝 might be

prohibitive. In practice, we see two ways to avoid this computational cost:

First, one might often not require a solution that is house monotone on all possible house sizes

ℎ ∈ N+; instead, it might suffice to rule out Alabama paradoxes for house sizes up to an upper
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bound ℎmax . In this case, it suffices to apply cumulative rounding on ℎmax many copies of the graph,

leading to a much more manageable running time of O(ℎ2max 𝑛
2).

A second option would be to apply cumulative rounding on all 𝑝 copies of the graph, but to stop

pipage rounding once all edge weights in the first ℎ copies of the graph are integral, even if edge

weights for higher house sizes are still fractional. This would allow to return an apportionment for

inputs ®𝑝, ℎ while randomly determining not a single house-monotone solution, but a conditioned

distribution 𝐹𝑐 over house-monotone solutions, all of which agree on the apportionment for ®𝑝
and ℎ. Since all solutions are house monotone, the expected number of seats for a party will

always monotonically increase in ℎ across the conditioned distribution. Should it become necessary

to determine apportionments for larger house sizes, one can simply continue the cumulative-

rounding process where it left off. Since the pipage rounding used to prove Theorem 4 leaves open

which cycles or maximal paths get rounded next, it seems likely that one can deliberately choose

cycles/paths such that the apportionment for the first ℎ seats is determined in few rounds.

5 PROOF OF CUMULATIVE ROUNDING
Wewill now prove Theorem 4 on cumulative rounding. Our proof will construct a weighted bipartite

graph including𝑇 many copies of (𝐴 ∪ 𝐵, 𝐸), connected by appropriate additional edges and nodes,

and then applying dependent rounding to this constructed graph. The additional edges and vertices

ensure that if too many edges adjacent to some node 𝑣 are rounded up in one copy of the graph,

then this is counterbalanced by rounding down edges adjacent to 𝑣 in another copy.

Construction 8. Let (𝐴 ∪ 𝐵, 𝐸), 𝑇 , and {𝑤𝑡
𝑒 }𝑒,𝑡 be given as in Theorem 4. We construct a new

weighted, undirected, and bipartite graph as follows: For each node 𝑣 ∈ 𝐴∪𝐵 and for each 𝑡 = 1, . . . ,𝑇 ,
create four nodes 𝑣𝑡 , 𝑣 𝑡 , 𝑣 𝑡 , and 𝑣𝑡 :𝑡+1; furthermore, create a node 𝑣0:1 for each node 𝑣 . For each {𝑎, 𝑏} ∈ 𝐸

and 𝑡 = 1, . . . ,𝑇 , connect the nodes 𝑎𝑡 and 𝑏𝑡 with an edge of weight 𝑤𝑡
{𝑎,𝑏 } . Additionally, for each

node 𝑣 ∈ 𝐴 ∪ 𝐵 and each 𝑡 = 1, . . . ,𝑇 , insert edges with the following weights:

𝑣𝑡

𝑣 𝑡

𝑣 𝑡𝑣𝑡−1:𝑡 𝑣𝑡 :𝑡+1∑𝑡−1
𝑡′=1 𝑑

𝑡′
𝑣 −

⌊∑𝑡−1
𝑡′=1 𝑑

𝑡′
𝑣

⌋
1 −∑𝑡

𝑡′=1 𝑑
𝑡′
𝑣 +

⌊∑𝑡
𝑡′=1 𝑑

𝑡′
𝑣

⌋

1 − 𝑑𝑡𝑣 +
⌊
𝑑𝑡𝑣

⌋
𝑑𝑡𝑣 −

⌊
𝑑𝑡𝑣

⌋

Before we go into the proof, we give in Fig. 3 an interpretation for what it means for each edge in

the constructed graph to be rounded up. One can easily verify that, under the (premature) assump-

tion that cumulative rounding satisfies marginal distribution, degree preservation, and cumulative

degree preservation, the edge weights coincide with the probabilities of each interpretation’s event.

We want to stress that it is not obvious that these descriptions will indeed be consistent for any

dependent rounding of the constructed graph, and we will not make use of these descriptions in the

proof of Theorem 4. Instead, the characterizations will follow from intermediate results in the proof.

We give these interpretations here to make the construction seem less mysterious. We begin the

formal analysis of the construction with a sequence of simple observations about the constructed

graph (proofs are in Appendix C).

Lemma 9. The graph produced by Construction 8 is bipartite.

Lemma 10. All edge weights lie between 0 and 1.



Paul Gölz, Dominik Peters, and Ariel D. Procaccia 14

𝑣𝑡

(𝑣 ′)𝑡

𝑣 𝑡

𝑣 𝑡𝑣𝑡−1:𝑡 𝑣𝑡 :𝑡+1
“up to time 𝑡 − 1, 𝑣’s cumulative

degree was rounded up”

(

∑𝑡−1
𝑡′=1 𝐷

𝑡′
𝑣 =

⌊∑𝑡−1
𝑡′=1 𝑑

𝑡′
𝑣

⌋
+ 1)

“up to time 𝑡 , 𝑣’s cumulative

degree was rounded down”

(

∑𝑡
𝑡′=1 𝐷

𝑡′
𝑣 =

⌊∑𝑡
𝑡′=1 𝑑

𝑡′
𝑣

⌋
)

“edge {𝑣, 𝑣′ } is rounded up at time 𝑡”

(𝑋 𝑡
{𝑣,𝑣′} = 1)

“𝑣’s degree is rounded down at time 𝑡”

(𝐷𝑡
𝑣 = ⌊𝑑𝑡𝑣 ⌋)

“𝑣’s degree is rounded up at time 𝑡”

(𝐷𝑡
𝑣 = ⌊𝑑𝑡𝑣 ⌋ + 1)

Fig. 3. Interpretation of each edge being rounded up in the constructed graph, for arbitrary nodes 𝑣, 𝑣 ′ ∈ 𝐴∪𝐵

and 1 ≤ 𝑡 ≤ 𝑇 . The correctness of this characterization will be shown along the proof of Theorem 4, specifically
in the sections on degree preservation and cumulative degree preservation.

Lemma 11. For each node 𝑣 ∈ 𝐴 ∪ 𝐵, the following table gives the fractional degrees of various
nodes in the constructed graph, all of which are integer:

nodes fractional degree

𝑣𝑡 (∀1≤ 𝑡 ≤𝑇 ) ⌊𝑑𝑡𝑣⌋ + 1

𝑣 𝑡 (∀1≤ 𝑡 ≤𝑇 )
⌊∑𝑡

𝑡 ′=1 𝑑
𝑡 ′
𝑣

⌋
−
⌊∑𝑡−1

𝑡 ′=1 𝑑
𝑡 ′
𝑣

⌋
− ⌊𝑑𝑡𝑣⌋ + 1

𝑣 𝑡 (∀1≤ 𝑡 ≤𝑇 ) 1

𝑣𝑡 :𝑡+1 (∀1≤ 𝑡 ≤𝑇 −1) 1

𝑣0:1 0

Proof of Theorem 4. We define cumulative rounding as the random process that follows Con-

struction 8 and then applies dependent rounding (Theorem 3) to the constructed graph, which is

valid since the graph is bipartite and all edge weights lie in [0, 1] (Lemmas 9 and 10). For an edge 𝑒

in the constructed graph, let 𝑋𝑒 be the random variable indicating whether dependent rounding

rounds it up or down. For any edge {𝑎, 𝑏} ∈ 𝐸 in the underlying graph and some 1 ≤ 𝑡 ≤ 𝑇 , we

define the random variable 𝑋 𝑡
{𝑎,𝑏 } to be equal to 𝑋 {𝑎𝑡 ,𝑏𝑡 } . Recall that we defined 𝐷

𝑡
𝑣 =

∑
𝑣∈𝑒∈𝐸 𝑋

𝑡
𝑒 .

To prove the theorem, we have to bound the running time of this process, and provide the

four guaranteed properties: marginal distribution, degree preservation, negative correlation, and

cumulative degree preservation, out of which the last property takes by far the most work.

Running time. Without loss of generality, we may assume that each vertex 𝑣 ∈ 𝐴∪𝐵 is incident to

at least one edge, since, otherwise, we could remove this vertex in a preprocessing step. From this, it

follows that |𝐸 | ∈ Ω( |𝐴| + |𝐵 |). Constructing the graph takes O(𝑇 |𝐸 |) time, which will be dominated

by the time required for running dependent rounding on the constructed graph. The constructed

graph has (1 + 4𝑇 ) ( |𝐴| + |𝐵 |) ∈ O(𝑇 ( |𝐴| + |𝐵 |)) nodes and𝑇 |𝐸 | + 4𝑇 ( |𝐴| + |𝐵 |) ∈ O(𝑇 |𝐸 |) edges.
Since the running time of dependent rounding scales in the product of the number of vertices and

the number of edges, our procedure runs in O(𝑇 2 ( |𝐴| + |𝐵 |) |𝐸 |) time, as claimed.

Marginal distribution. For an edge {𝑎, 𝑏} ∈ 𝐸 and 1 ≤ 𝑡 ≤ 𝑇 , E[𝑋 𝑡
{𝑎,𝑏 }] = E[𝑋 {𝑎𝑡 ,𝑏𝑡 }] = 𝑤𝑡

{𝑎,𝑏 } ,

where the last equality follows from the marginal-distribution property of dependent rounding.
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𝑣0:1 𝑣 1 𝑣1:2 𝑣 2 𝑣2:3 𝑣 3 𝑣3:4 . . . 𝑣𝑡−1:𝑡 𝑣 𝑡 𝑣𝑡 :𝑡+1

𝑣 1

𝑣1

𝑣 2

𝑣2

𝑣 3

𝑣3

𝑣 𝑡

𝑣𝑡

𝑉 ′

Legend: : 𝑉 : 𝑉 : 𝑉 : 𝑉 :

Fig. 4. Illustration of the counting argument for proving cumulative degree preservation. Edges in the figure
are edges from the constructed graph, a superset of the edges in the rounded graph. Node color and shape
indicate the set that a node belongs to, as indicated in the legend.

Degree preservation. Fix a node 𝑣 ∈ 𝐴 ∪ 𝐵 and 1 ≤ 𝑡 ≤ 𝑇 . By Lemma 11, the fractional degree

of 𝑣𝑡 is ⌊𝑑𝑡𝑣⌋ + 1, and thus, by degree preservation of dependent rounding, exactly ⌊𝑑𝑡𝑣⌋ + 1 edges

adjacent to 𝑣𝑡 must be rounded up. The only of these edges that does not count into 𝐷𝑡
𝑣 is {𝑣 𝑡 , 𝑣𝑡 };

depending on whether this edge is rounded up or down, 𝐷𝑡
𝑣 is either ⌊𝑑𝑡𝑣⌋ or ⌊𝑑𝑡𝑣⌋ + 1. If 𝑑𝑡𝑣 is not

integer, the latter number equals ⌈𝑑𝑡𝑣⌉, which proves degree preservation. Else, if 𝑑𝑡𝑣 is an integer,

the edge weight of {𝑣 𝑡 , 𝑣𝑡 } is 1. Dependent rounding always rounds up edges with weight 1, which

means that 𝐷𝑡
𝑣 is definitely ⌊𝑑𝑡𝑣⌋ in this case. Thus, degree preservation holds in either case.

Negative correlation. Negative correlation for 𝑣 ∈ 𝐴 ∪ 𝐵, 𝑆 ⊆ {𝑒 ∈ 𝐸 | 𝑣 ∈ 𝑒}, and 1 ≤ 𝑡 ≤ 𝑇

directly follows from the negative-correlation property of dependent rounding for the node 𝑣𝑡 and

the edge set 𝑆 ′ B
{
{𝑣𝑡 , (𝑣 ′)𝑡 }

�� {𝑣, 𝑣 ′} ∈ 𝑆
}
.

Cumulative degree preservation. Fix a node 𝑣 ∈ 𝐴 ∪ 𝐵 and 1 ≤ 𝑡 ≤ 𝑇 . We will consider the

“rounded version” of the constructed graph, i.e., the unweighted bipartite graph over the nodes

of the constructed graph in which exactly those edges are present that got rounded up by the

randomized rounding process. We define five sets of nodes in the rounded graph (Fig. 4):

𝑉 B {𝑣𝑡 ′ | 1 ≤ 𝑡 ′ ≤ 𝑡} 𝑉 ′ B {(𝑣 ′)𝑡 ′ | 𝑣 ′ ∈ (𝐴 ∪ 𝐵) \ {𝑣}, 1 ≤ 𝑡 ′ ≤ 𝑡}
𝑉 B {𝑣 𝑡 ′ | 1 ≤ 𝑡 ′ ≤ 𝑡} 𝑉 B {𝑣 𝑡 ′ | 1 ≤ 𝑡 ′ ≤ 𝑡} 𝑉 : B {𝑣𝑡 :𝑡+1 | 0 ≤ 𝑡 ′ ≤ 𝑡}

For any set of nodes 𝑉1 in the rounded graph, we denote its neighborhood by 𝑁 (𝑉1), and we will

write deg(𝑉1) for the sum of degrees of 𝑉1 in the rounded graph. For any two sets of nodes 𝑉1,𝑉2,

we write cut (𝑉1,𝑉2) to denote the number of edges between 𝑉1 and 𝑉2 in the rounded graph.

Note that

∑𝑡
𝑡 ′=1 𝐷

𝑡 ′
𝑣 , which we must bound, equals cut (𝑉 ,𝑉 ′). We will bound this quantity by

repeatedly using the following fact, which we refer to pivoting: For pairwise disjoint sets of nodes
𝑉0,𝑉1,𝑉2, if 𝑁 (𝑉0) ⊆ 𝑉1 ∪ 𝑉2, then deg(𝑉0) = cut (𝑉0,𝑉1) + cut (𝑉0,𝑉2). Since Lemma 11 gives us

a clear view of the fractional degrees of nodes in the constructed graph, and since, by degree

preservation, a node’s degree in the rounded graph must equal the fractional degree whenever the

latter is an integer, this property allows us to express cuts in terms of other cuts. Figure 4 illustrates

which of these sets border on each other, and helps in following along with the derivation.∑𝑡
𝑡 ′=1 𝐷

𝑡 ′
𝑣 = cut (𝑉 ,𝑉 ′)
= deg(𝑉 ) − cut (𝑉 ,𝑉 ) (pivot 𝑉0 = 𝑉 ,𝑉1 = 𝑉 ′,𝑉2 = 𝑉 )
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= 𝑡 +∑𝑡
𝑡 ′=1⌊𝑑𝑡

′
𝑣 ⌋ − cut (𝑉 ,𝑉 ) (deg(𝑉 ) = 𝑡 +∑𝑡

𝑡 ′=1⌊𝑑𝑡
′
𝑣 ⌋ by Lemma 11)

= 𝑡 +∑𝑡
𝑡 ′=1⌊𝑑𝑡

′
𝑣 ⌋ − deg(𝑉 ) + cut (𝑉 ,𝑉 ) (pivot 𝑉0 = 𝑉 ,𝑉1 = 𝑉 ,𝑉2 = 𝑉 )

=
∑𝑡

𝑡 ′=1⌊𝑑𝑡
′
𝑣 ⌋ + cut (𝑉 ,𝑉 ) (deg(𝑉 ) = 𝑡 by Lemma 11)

=
∑𝑡

𝑡 ′=1⌊𝑑𝑡
′
𝑣 ⌋ + deg(𝑉 ) − cut (𝑉 ,𝑉 :) (pivot 𝑉0 = 𝑉 ,𝑉1 = 𝑉 ,𝑉2 = 𝑉 :

)

=
∑𝑡

𝑡 ′=1⌊𝑑𝑡
′
𝑣 ⌋ − cut (𝑉 ,𝑉 :) +

∑︁𝑡

𝑡 ′=1

(
⌊∑𝑡 ′

𝑡 ′′=1 𝑑
𝑡 ′′
𝑣 ⌋ − ⌊∑𝑡 ′−1

𝑡 ′′=1 𝑑
𝑡 ′′
𝑣 ⌋ − ⌊𝑑𝑡 ′𝑣 ⌋ + 1

)
(Lemma 11)

=
∑𝑡

𝑡 ′=1⌊𝑑𝑡
′
𝑣 ⌋ − cut (𝑉 ,𝑉 :) + ⌊∑𝑡

𝑡 ′′=1 𝑑
𝑡 ′′
𝑣 ⌋ −∑𝑡

𝑡 ′=1⌊𝑑𝑡
′
𝑣 ⌋ + 𝑡 (telescoping sum)

= ⌊∑𝑡
𝑡 ′=1 𝑑

𝑡 ′
𝑣 ⌋ + 𝑡 − cut (𝑉 ,𝑉 :).

To bound cut (𝑉 ,𝑉 :) in the last expression, observe that 𝑁 (𝑉 : \ {𝑣𝑡 :𝑡+1}) ⊆ 𝑉 , from which it follows

that cut (𝑉 ,𝑉 : \ {𝑣𝑡 :𝑡+1}) = deg(𝑉 : \ {𝑣𝑡 :𝑡+1}) = 𝑡 − 1. Thus, cut (𝑉 ,𝑉 :) = 𝑡 − 1 + 1{𝑋 {𝑣 𝑡 ,𝑣𝑡 :𝑡+1 }}, and
we resume the above equality∑𝑡

𝑡 ′=1 𝐷
𝑡 ′
𝑣 = ⌊∑𝑡

𝑡 ′=1 𝑑
𝑡 ′
𝑣 ⌋ + 𝑡 − (𝑡 − 1 + 1{𝑋 {𝑣 𝑡 ,𝑣𝑡 :𝑡+1 }}) = ⌊∑𝑡

𝑡 ′=1 𝑑
𝑡 ′
𝑣 ⌋ + 1 − 1{𝑋 {𝑣 𝑡 ,𝑣𝑡 :𝑡+1 }}.

If

∑𝑡
𝑡 ′=1 𝑑

𝑡 ′
𝑣 is not an integer, the above shows that

∑𝑡
𝑡 ′=1 𝐷

𝑡 ′
𝑣 is either the floor or ceiling of

∑𝑡
𝑡 ′=1 𝑑

𝑡 ′
𝑣 ,

establishing cumulative degree preservation. Else, if

∑𝑡
𝑡 ′=1 𝑑

𝑡 ′
𝑣 is integer, note that the weight of

the edge {𝑣 𝑡 , 𝑣𝑡 :𝑡+1} in the constructed graph is 1. Since dependent rounding always rounds such

edges up,

∑𝑡
𝑡 ′=1 𝐷

𝑡 ′
𝑣 = ⌊∑𝑡

𝑡 ′=1 𝑑
𝑡 ′
𝑣 ⌋. This establishes cumulative degree preservation, the last of the

properties guaranteed by the theorem. □

6 OTHER APPLICATIONS OF CUMULATIVE ROUNDING
Our exploration of housemonotone randomized apportionment led us to themore general technique

of cumulative rounding, which we believe to be of broader interest. We next illustrate this by

discussing additional applications.

6.1 Sortition of the European Commission
The European Commission is one of the main institutions of the European Union, in which it plays

a role comparable to that of a government. The commission consists of one commissioner from each

of the 27 member states, and each commissioner is charged with a specific area of responsibility.

Since the number of EU member states has nearly doubled in the past 20 years, so has the size of

the commission. Besides making coordination inside the commission less efficient, the enlargement

of the commission has led to the creation of areas of responsibility much less important than others.

Since the important portfolios are typically reserved for the largest member states, smaller states

have found themselves with limited influence on central topics being decided in the commission.

To remedy this imbalance, Buchstein and Hein [12] propose to reduce the number of commis-

sioners to 15, meaning that only a subset of the 27 member states would send a commissioner at

any given time. Which states would receive a seat would be determined every 5 years by a weighted

lottery (“sortition”), in which states would be chosen with degressive proportional weights. Degres-

sive means that smaller states get non-proportionately high weight; such weights are already used

for apportioning the European parliament. The authors argue that by the law of large numbers,

political representation on the commission would be essentially proportional to these weights in

politically relevant time spans.

However, a follow-up simulation study by Buchstein et al. [13] challenges this assertion on two

fronts: (1) First, the authors find that their implementation of a weighted lottery chooses states

with probabilities that deviate from proportionality to the weights in a way that is not analytically

tractable (see [11, p. 24]). (2) Second, and more gravely, their simulations undermine “a central
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argument in favor of legitimacy” in the original proposal, namely, that “in the long term, the seats

on the commission would be distributed approximately like the share of lots” [13, own translation].

From a mathematical point of view, the authors had overestimated the rate of concentration across

the independent lotteries. Instead, in the simulation, it takes 30 lotteries (150 years) until there is a

probability of 99% that all member states have sent at least one commissioner.

These serious concerns could be resolved by using cumulative rounding to implement the

weighted lotteries. Specifically, we would again construct a star graph with a special node 𝑎 and one

node 𝑏𝑖 for each state 𝑖 , setting𝑇 to the desired number of consecutive lotteries. For each 1 ≤ 𝑡 ≤ 𝑇 ,

each edge {𝑎, 𝑏𝑖 } would be weighted by
15𝑤𝑖∑
𝑗∈𝑁 𝑤𝑗

where𝑤 𝑗 is state 𝑗 ’s degressive weight.12 Degree

preservation on 𝑎 would ensure that in each lottery 𝑡 , exactly 15 distinct states are selected. By

marginal distribution, the selection probabilities would be exactly proportional to the degressive

weights, resolving issue (1). Furthermore, cumulative degree preservation on the state nodes would

eliminate issue (2). If we take the effective selection probabilities of Buchstein et al. [13] as the states’

weights, even the smallest states 𝑖 would have an edge weight𝑤𝑡
{𝑎,𝑏𝑖 } ≈ 0.187. Then, cumulative

quota prevents any state from getting rounded down in 11 = ⌈2/0.187⌉ consecutive lotteries: Indeed,
fixing any 0 ≤ 𝑡0 ≤ 𝑇 − 11,∑𝑡0+11

𝑡 ′=1 𝐷𝑡 ′

𝑏𝑖
≥ ⌊(𝑡0 + 11) 0.187⌋ ≥ ⌊𝑡0 0.187⌋ + 2 ≥ ⌈𝑡0 0.187⌉ + 1 ≥ ∑𝑡0

𝑡 ′=1 𝐷
𝑡 ′

𝑏𝑖
+ 1,

which means that state 𝑖 must have been selected at least once between time 𝑡0 + 1 and 𝑡0 + 11. In

political terms, this means that 55, not 150, years would be enough to deterministically ensure that

each member state send a commissioner at least once in this period.

6.2 Repeated Allocation of Courses to Faculty Or Shifts to Workers
A common paradigm in fair division is to first create a fractional assignment between agents and

resources, and to then implement this fractional assignment in expectation, through randomized

rounding. Below, we describe a setting of allocating courses to faculty members in a university

department, in which implementing a fractional assignment using cumulative rounding is attractive.

For a university department, denote its set of faculty members by𝐴 and the set of possible courses

to be taught by 𝐵. For each faculty member 𝑎 and course 𝑏, let there be a weight 𝑤 {𝑎,𝑏 } ∈ [0, 1]
indicating how frequently course 𝑏 should be taught by 𝑎 on average. These numbers could be

derived using a process such as probabilistic serial [10], the Hylland-Zeckhauser mechanism [24],

or the mechanisms by Budish et al. [14], which would transform preferences of the faculty over

which courses to teach into such weights.
13
We will allow arbitrary fractional degrees on the faculty

side (so one person can teach multiple courses) while assuming that the fractional degree of any

course 𝑏 is at most 1.

When applying cumulative rounding to this graph (using the same edge weights in each period)

for consecutive semesters 1 ≤ 𝑡 ≤ 𝑇 , we observe the following properties.

• Marginal distribution implies that, in each semester, faculty member 𝑎 has a probability

𝑤 {𝑎,𝑏 } of teaching course 𝑏.

12
This assumes that each state’s weight is at most 1/15 ∑

𝑗∈𝑁 𝑤𝑗 , which is in fact not the case for the largest member

states [13]. Therefore, proportionality to the weights is incompatible with Buchstein and Hein’s requirement that each state

may not send more than a single commissioner. To obtain proportionality, there are three solutions: increasing the number

of commissioners, allowing a state to receive multiple commissioners (which can be expressed in cumulative rounding by

splitting the state into multiple copies), or adjusting the weights. If desired, cumulative rounding can accommodate weights

that change across lotteries according to population projections, which Buchstein et al. do for some of their experiments.

13
Although these mechanisms are formulated for goods, they can be applied to bads when the number of bads allocated to

each agent is fixed, as it is when allocating courses to faculty or shifts to workers.
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• Degree preservation on the course side means that a course is never taught by two different

faculty members in the same semester.

• Degree preservation on the faculty side implies that a faculty member 𝑎’s teaching load

does not vary by more than 1 between semesters; it is either the floor or the ceiling of 𝑎’s

expected teaching load.

• Cumulative degree preservation on the course side ensures that courses are offered with

some regularity. For example, if a course’s fractional degree is 1/2, it will be taught exactly
once in every academic year (either in Fall or in Spring).

• Cumulative degree preservation on the faculty side allows for non-integer teaching load.

For example, a faculty member with fractional degree 1.5will have a “2-1” teaching load, i.e.,

they will teach 3 courses per year, either 2 in the Fall and one in the Spring or vice versa.

The same approach is applicable for matching workers to shifts.

One could also use cumulative rounding to repeatedly round a fractional assignment of general

chores, such as the ones computed by the online platform spliddit.org [21]. In this case, a caveat

is that (cumulative) degree preservation only ensures that the number of assigned chores is close

to its expected number per time period, not necessarily the cost of the assigned chores. However,

if many chores are allocated per time step, and if costs are additive, then an agent’s per-timestep

cost is well-concentrated, which follows from the negative-correlation property that permits the

application of Chernoff concentration bounds [30].

7 DISCUSSION
Though our work is motivated by the application of apportioning seats at random, the technical

questions we posed and addressed are fundamental to the theoretical study of apportionment. In a

sense, any deterministic apportionment solution is “unproportional” — after all, its role is to decide

which agents receive more or fewer seats than their standard quota. By searching for randomized

methods satisfying ex ante proportionality, we ask whether these unproportional solutions can be

combined (through random choice) such that these deviations from proportionality cancel out to

achieve perfect proportionality, and whether this remains possible when we restrict the solutions

to those satisfying subsets of the axioms population monotonicity, house monotonicity, and quota.

Naturally, this objective pushes us to better understand the whole space of solutions satisfying

these subsets of axioms, including the space’s more extreme elements. Therefore, it is in hindsight

not surprising that our work led to new insights for deterministic apportionment: a more robust

impossibility between population monotonicity and quota (Theorem 1), an exploration of solutions

generalizing the divisor solutions (Theorem 2), and a geometric characterization of house monotone

and quota compliant solutions (Theorem 7).

Concerning the cumulative rounding technique introduced in this paper, we have only scratched

the surface in exploring its applications. In particular, we hope to investigate whether cumulative

rounding can extend existing algorithmic results that use dependent rounding, and whether it

can be used to construct new approximation algorithms. For both of these purposes, the negative-

correlation property, which we have not used much so far, will hopefully turn out to be valuable.

Despite their advantageous properties, randomized mechanisms have in the past often met with

resistance by practitioners and the public [27], but we see signs of a shift in attitudes. Citizens’
assemblies, deliberative forums composed of a random sample of citizens, are quickly gaining

usage around the world [29] and proudly point to their random selection— often carried out using

complex algorithms from computer science [19]— as a source of legitimacy. If this trend continues,

randomness will be associated by the public with neutrality and fairness, not with haphazardness,

and randomized apportionment methods might receive serious consideration.
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APPENDIX
A PITFALLS IN THE DEVELOPMENT OF HOUSE MONOTONE METHODS
In Section 4.1, we claimed that for the population vector ®𝑝 = (45, 25, 15, 15) and house size ℎ = 3—

thus, the standard quotas (1.35, 0.75, 0.45, 0.45)— the following distribution over apportionments

can be part of an apportionment method in which house monotonicity, quota, and ex ante propor-

tionality hold across the inputs {( ®𝑝, ℎ′) | ℎ′ ≤ 3}:

®𝑎 =

{
(2, 1, 0, 0) with probability 35%, (1, 1, 0, 1) with probability 20%, and

(1, 1, 1, 0) with probability 20%, (1, 0, 1, 1) with probability 25%.

To obtain such an apportionment method, consider the following capacitated flow network:

(1, 0, 0, 0)

(0, 1, 0, 0)

(0, 0, 1, 0)

(0, 0, 0, 1)

(1, 1, 0, 0)

(1, 0, 1, 0)

(1, 0, 0, 1)

(0, 1, 1, 0)

(0, 1, 0, 1)

(2, 1, 0, 0)

(1, 1, 1, 0)

(1, 1, 0, 1)

(1, 0, 1, 1)
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One easily verifies that it is possible to send a total flow of 1 through this network, which necessarily

uses all edges at their capacity. Consider any decomposition of this flow into paths. Our method

will be defined as (1) choosing one of these paths ®𝑎1 → ®𝑎2 → ®𝑎3 with probability proportional to

its amount of flow and (2) returning a solution 𝑓 such that 𝑓 ( ®𝑝, 𝑗) = ®𝑎 𝑗 for 𝑗 = 1, 2, 3, and some

canonical apportionment for all other inputs.

Across the inputs {( ®𝑝, ℎ′) | ℎ′ ≤ 3}, this method does not violate house monotonicity since edges

in the flow network are such that no agent’s seat number decreases along an edge. Since one verifies

that all apportionments labeling the nodes of the flow network satisfy quota, the method satisfies

quota on {( ®𝑝,ℎ′) | ℎ′ ≤ 3}. On the same set of inputs, the method satisfies ex-ante proportionality,

which follows from the fact that, for ℎ′ = 1, 2, 3, weighting the apportionments of the ℎ′
-th layer of

the flow network by their internal flow, we obtain the vector of standard quotas for ®𝑝 and house

size ℎ′
. The egress edges also ensure that, indeed, the method’s distribution over apportionments

on ®𝑝,ℎ is as given above.

Finally, we must prove that none of the apportionments in the last layer of the flow network

are toxic. For this, observe that the quota solution by Balinski and Young [4] (which is house

monotone and satisfies quota), for one way of breaking ties in the definition, produces the following
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apportionments on ®𝑝: (1, 0, 0, 0) → (1, 1, 0, 0) → (2, 1, 0, 0) → (2, 1, 1, 0) → (2, 1, 1, 1), . . . . Since
(2, 1, 0, 0) coincides with one of these values, it can be extended by the suffix of the quota solution

and is therefore not toxic. Furthermore, we can extend (1, 1, 1, 0) → (2, 1, 1, 0), and then continue

as the quota solution; (1, 1, 0, 1) → (2, 1, 0, 1) → (2, 1, 1, 1), and then as the quota solution; and

(1, 0, 1, 1) → (1, 1, 1, 1) → (2, 1, 1, 1), and then as the quota solution. The claim follows by verifying

that these extensions does not violate quota until merging with the quota solution.

B DEFERRED PROOFS FOR HOUSE MONOTONE APPORTIONMENT
Lemma 5. An infinite seat sequence 𝛼 satisfies quota iff it is the concatenation of infinitely many

finite seat sequences 𝛽1, 𝛽2, 𝛽3, . . . of length 𝑝 each satisfying quota, i.e.,

𝛼 = 𝛽1
1
, 𝛽1

2
, . . . , 𝛽1𝑝 , 𝛽

2

1
, 𝛽2

2
, . . . , 𝛽2𝑝 , 𝛽

3

1
, . . . .

Proof. “⇒”: Fix 𝛼 and some 𝑘 ∈ N. We must show that the finite seat sequence 𝛽𝑘+1 B
𝛼𝑘𝑝+1, 𝛼𝑘𝑝+2 . . . , 𝛼 (𝑘+1)𝑝 satisfies quota. Indeed, for any 1 ≤ 𝑟 ≤ 𝑝 , the number of seats allocated by

𝛽𝑘+1 to state 𝑖 at house size 𝑟 is���{1 ≤ ℎ′ ≤ 𝑟 | 𝛽𝑘+1
ℎ′ = 𝑖}

��� = ��{1 ≤ ℎ′ ≤ 𝑟 | 𝛼𝑘𝑝+ℎ′ = 𝑖}
��

= 𝑎𝑖 (𝑘𝑝 + 𝑟 ) − 𝑎𝑖 (𝑘𝑝)
∈ {⌊(𝑘𝑝 + 𝑟 ) 𝑝𝑖/𝑝⌋, ⌈(𝑘𝑝 + 𝑟 ) 𝑝𝑖/𝑝⌉} − 𝑘 𝑝𝑖 (since 𝛼 satisfies quota)

= {⌊𝑟 𝑝𝑖/𝑝⌋ + 𝑘 𝑝𝑖 , ⌈𝑟 𝑝𝑖/𝑝⌉ + 𝑘 𝑝𝑖 } − 𝑘 𝑝𝑖

= {⌊𝑟 𝑝𝑖/𝑝⌋, ⌈𝑟 𝑝𝑖/𝑝⌉},

which shows that 𝛼 can be decomposed into finite seat sequences {𝛽𝑘 }𝑘∈N+ satisfying quota.

“⇐”: Fix someℎ and choose 𝑘 B ⌊(ℎ−1)/𝑝⌋+1 and 𝑟 B ((ℎ−1)mod𝑝)+1 such thatℎ = (𝑘−1) 𝑝+𝑟 ,
𝑘 ≥ 1 and 1 ≤ 𝑟 ≤ 𝑝 . We will show that 𝛼 ’s allocation 𝑎(ℎ) on ℎ satisfies quota. Denoting 𝛽𝑘 ’s

allocation for a house size ℎ′
by 𝑏𝑘 (ℎ′), it holds for all states 𝑖 that 𝑎𝑖 (ℎ) =

∑𝑘−1
𝑘′=1 𝑏

𝑘′ (𝑝) + 𝑏𝑘 (𝑟 ). By
quota,𝑏𝑘

′ (𝑝) = 𝑝𝑖 for all 𝑘 , and𝑏
𝑘 (𝑟 ) ∈ {⌊𝑟 𝑝𝑖/𝑝⌋, ⌈𝑟 𝑝𝑖/𝑝⌉}. Thus, 𝑎𝑖 (ℎ) ∈ {(𝑘−1) 𝑝𝑖+⌊𝑟 𝑝𝑖/𝑝⌋, (𝑘−

1) 𝑝𝑖 + ⌈𝑟 𝑝𝑖/𝑝⌉}. The conclusion follows since ℎ 𝑝𝑖/𝑝 = ((𝑘 − 1) 𝑝 +𝑟 ) 𝑝𝑖/𝑝 = (𝑘 − 1) 𝑝𝑖 +𝑟 𝑝𝑖/𝑝 . □

Lemma 12. For any population profile ®𝑝 , there is a probability distribution D over finite seat
sequences such that one can sample a finite seat sequence 𝛼 ∼ D in O(𝑝2 𝑛2) randomized time, such
that all finite seat sequences in the support of D satisfy quota, and such that, for all states 𝑖 and
1 ≤ ℎ ≤ 𝑝 ,

P[𝛼ℎ = 𝑖] = 𝑝𝑖/𝑝.

Proof. As sketched in Section 4.2, we define D by invoking Theorem 4 on a star graph with

𝐴 = {𝑎}, 𝐵 = {𝑏𝑖 | 𝑖 ∈ 𝑁 }, and 𝐸 =
{
{𝑎, 𝑏𝑖 } | 𝑖 ∈ 𝑁

}
. We set 𝑇 B 𝑝 , and, for each 1 ≤ 𝑡 ≤ 𝑇 and

state 𝑖 , set𝑤𝑡
{𝑎,𝑏𝑖 } B 𝑝𝑖/𝑝 .

Theorem 4 now defines a joint distribution over variables 𝑋 𝑡
𝑒 satisfying marginal distribution,

degree preservation, and cumulative degree preservation (as well as negative correlation, which

we will not use). We will describe how each joint realization of the 𝑋 𝑡
𝑒 can be mapped to a finite

seat sequence and that the distribution D that arises from applying this mapping to the dependent-

rounding distribution has the properties claim in the statement. The running time follows from the

running time of applying dependent rounding, and the fact that the transformation for translating

the outcome into a finite seat sequence requires only O(𝑝 𝑛) time.

For a given joint realization of the 𝑋 𝑡
𝑒 , let 𝛼 be the finite seat sequence that maps each ℎ ∈

{1, . . . , 𝑝} to the state 𝑖 such that 𝑋ℎ
{𝑎,𝑏𝑖 } = 1. This definition presupposes that there is exactly one
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such 𝑖 for each ℎ, which follows from the degree-preservation guarantee for vertex 𝑎 at time step ℎ

and from the fact that 𝑑ℎ𝑎 =
∑

𝑖∈𝑁 𝑝𝑖/𝑝 = 1. This seat sequence 𝛼 furthermore satisfies quota, which

directly follows from cumulative degree preservation and from

∑ℎ
𝑡 ′=1 𝑑

𝑡 ′

𝑏𝑖
= ℎ 𝑝𝑖/𝑝 . It only remains

to show that 𝛼ℎ has value 𝑖 with a probability of 𝑝𝑖/𝑝 = 𝑤ℎ
{𝑎,𝑏𝑖 } for all 𝑖 ∈ 𝑁 and 1 ≤ ℎ ≤ 𝑝 , but this

immediately follows from the marginal distribution guarantee of Theorem 4. □

Theorem 6. There exists an apportionment method 𝐹 that satisfies house monotonicity, quota, and
ex ante proportionality.

Proof. For each population profile ®𝑝 , Lemma 12 provides a probability distribution over finite

seat sequences for that population profile. We choose the probability space Ω such that, for each ®𝑝 ,
there is a random variable 𝛼 ®𝑝

following the distribution from Lemma 12 and such that all of these

random variables are independent [16, Prop. 10.6.1].

From now on, we fix an 𝜔 ∈ Ω, which determines the values of all 𝛼 ®𝑝
. For this 𝜔 , we must

construct an apportionment solution 𝑓 . For a given input ®𝑝, ℎ, let 𝛼 be the concatenation of

infinitely many copies of 𝛼 ®𝑝
as in Lemma 5. Then, we define 𝑓 ( ®𝑝,ℎ) as the apportionment giving

𝑎𝑖 (ℎ) = |{1 ≤ ℎ′ ≤ ℎ | 𝛼 (ℎ′) = 𝑖}| seats to each state 𝑖 .

By Lemma 12, 𝛼 ®𝑝
satisfies quota, and, thus, 𝛼 satisfies quota by Lemma 5, from which it follows

immediately that 𝑓 satisfies quota. Since 𝑓 was constructed from a seat sequence allocating one

seat at a time, it clearly satisfies house monotonicity.

It remains to argue that 𝐹 satisfies ex ante proportionality. Fix any ®𝑝 and ℎ. By construction,

𝐹𝑖 ( ®𝑝,ℎ) − 𝐹𝑖 ( ®𝑝,ℎ − 1) = 1
{
𝛼
®𝑝
1+(ℎ−1mod𝑝) = 𝑖

}
, setting 𝐹𝑖 ( ®𝑝, 0) = 0. Hence,

E[𝐹𝑖 ( ®𝑝,ℎ) − 𝐹𝑖 ( ®𝑝,ℎ − 1)] = P[𝛼 ®𝑝
1+(ℎ−1mod𝑝) = 𝑖] = 𝑝𝑖/𝑝,

where the last equality follows from Lemma 12. By linearity of expectation, it follows that,

E[𝐹𝑖 ( ®𝑝, ℎ)] =
ℎ∑︁

ℎ′=1

E[𝐹𝑖 ( ®𝑝,ℎ) − 𝐹𝑖 ( ®𝑝, ℎ − 1)] = ℎ 𝑝𝑖/𝑝,

which shows ex ante proportionality. □

Theorem 7. For each population vector ®𝑝 , we can construct a bipartite graph (𝐴 ∪ 𝐵, 𝐸) such that
the set 𝑆 of all finite seat sequences satisfying quota for ®𝑝 is in one-to-one correspondence to the corner
points of the polytope of all perfect fractional matchings on (𝐴 ∪ 𝐵, 𝐸). Together with Lemma 5 this
characterizes the set of infinite seat sequences satisfying quota as the set of infinite sequences over 𝑆 .

Proof. Wewill first show a variant of the theorem, in which the finite seat sequences correspond

not to perfect matchings but to perfect b-matchings, i.e., where each node is labeled with a target

degree in N, and where a subset of edges is a perfect b-matching when each node has its target

degree in the induced subgraph. We will then show how to modify the graph to obtain the claimed

result for perfect matchings.

Then, the bipartite graph is the one to which we applied cumulative rounding in Lemma 12

(without the weights), with the following (technically necessary) modifications:

(1) We set each node’s target degree to its fractional degree as in Lemma 11. This is possible

since all nodes have integer weight, including the nodes 𝑣𝑇 :𝑇+1 which have weight 1 given

that

∑𝑇
𝑡 ′=1 𝑑

𝑡 ′
𝑣 is an integer for all nodes 𝑣 in the underlying graph for the chosen 𝑇 = 𝑝 .

(2) Then, we delete all edges with zero weight (to ensure that they are never part of the

b-matching).
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(3) Finally, for each edge with weight 1, we delete the edge and decrement the target degree

of both adjacent nodes (simulating the constraint that these edges must be present in any

b-matching).

The proof of Lemma 12 indicated a way to map perfect b-matchings to finite seat sequences, and

we have to show that this mapping is a bijection, i.e., that it is injective and surjective.

To show that the mapping is injective, observe that two perfect b-matchings that differ in

whether a certain edge {𝑣𝑡 , (𝑣 ′)𝑡 } is included lead to different seat sequences. Furthermore, the

characterization of the edges in Fig. 3 (whose correctness follows from the proof of Theorem 4 and

does not rely on properties of the result of dependent rounding other than those required by our

b-matchings) implies that the set of edges of shape {𝑣𝑡 , (𝑣 ′)𝑡 } in the matching uniquely determines

which of the other edges are included in the perfect b-matching, which means that there are never

multiple perfect b-matchings that would be mapped to the same finite seat sequence.

It is more involved to show that the mapping is surjective. For a given finite seat sequence

𝛼 , we will construct a perfect b-matching which is mapped to 𝛼 . Clearly, each edge {𝑎𝑡 , (𝑏𝑖 )𝑡 }
is included in the matching iff 𝛼𝑡 = 𝑖 (none of these edges have weight zero or one since 𝑛 ≥ 2

and each state has a positive population). We label all other edges according to the edges’ events

described in Fig. 3. One verifies that, by quota, this step would not have taken any edges with

zero weight in the cumulative-rounding graph and would have taken all edges with weight one

in the cumulative-rounding graph, which allows us to pretend for ease of exposition that we are

producing a b-matching on the labeled graph before the preprocessing steps (2) and (3). One easily

verifies that the resulting edge set gives the target degree to all nodes of shape 𝑣𝑡 , 𝑣 𝑡 , and 𝑣𝑡 :𝑡+1

(including the special cases 𝑣0:1 and 𝑣𝑇 :𝑇+1).
It only remains to show that the nodes 𝑣 𝑡 have their target degree,

⌊∑𝑡
𝑡 ′=1 𝑑

𝑡 ′
𝑣

⌋
−
⌊∑𝑡−1

𝑡 ′=1 𝑑
𝑡 ′
𝑣

⌋
−

⌊𝑑𝑡𝑣⌋ + 1. For nodes 𝑣 = 𝑎𝑡 , it holds that 𝑑𝑡
′
𝑣 = 𝐷𝑡 ′

𝑣 = 1 for all 𝑡 ′, which means that the target degree

is one and indeed only one adjacent edge, namely, {𝑣 𝑡 , 𝑣𝑡 :𝑡+1}, is taken.
We will now consider the case of a node 𝑣 = 𝑏𝑡𝑖 . Observe that 𝑑

𝑡 ′
𝑣 = 𝑝𝑖/

∑
𝑗 ∈𝑁 𝑝 𝑗 < 1 for all 𝑡 ′,

which means that

∑𝑡 ′
𝑡 ′′=1 𝑑

𝑡 ′′
𝑣 = 𝑡 ′ 𝑝𝑖/

∑
𝑗 ∈𝑁 𝑝 𝑗 , which is just 𝑖’s standard quota for house size 𝑡 ′,

which we will write as 𝑞𝑖 (𝑡 ′). Furthermore, note that

∑𝑡 ′
𝑡 ′′=1 𝐷

𝑡 ′
𝑣 = 𝑎𝑖 (𝑡 ′). With this, the target degree

of 𝑣 is just ⌊𝑞𝑖 (𝑡)⌋ − ⌊𝑞𝑖 (𝑡−1)⌋ + 1, and the three edges incident to 𝑣 are selected if

(a) 𝑎𝑖 (𝑡) = 𝑎𝑖 (𝑡−1) + 1 (rather than 𝑎𝑖 (𝑡) = 𝑎𝑖 (𝑡−1)),
(b) 𝑎𝑖 (𝑡−1) = ⌊𝑞𝑖 (𝑡−1)⌋ + 1 (rather than 𝑎𝑖 (𝑡−1) = ⌊𝑞𝑖 (𝑡−1)⌋), and
(c) 𝑎𝑖 (𝑡) = ⌊𝑞𝑖 (𝑡)⌋ (rather than 𝑎𝑖 (𝑡) = ⌊𝑞𝑖 (𝑡)⌋),
respectively, where the values in parentheses are the only alternatives to the properties, by house

monotonicity and quota. That is, we want to show that, for our house monotone and quota 𝛼 ,

exactly ⌊𝑞𝑖 (𝑡)⌋ − ⌊𝑞𝑖 (𝑡−1)⌋ + 1 ∈ {1, 2} many out of the statements (a), (b), and (c), are true. In

Table 2, we rule out all other cases via a case distinction, which shows that we indeed produced a

perfect b-matching, and that the mapping is surjective.

The above establishes the one-to-one correspondence to the vertices on the polytope of perfect

fractional b-matchings. Though this polytope is very nicely behaved already, we prefer to state

the theorem for a classical perfect matching polytope, which is more widely known. Thus, we

will adapt the bipartite graph above such that all nodes have target degree one, while keeping the

perfect b-matchings in one-to-one correspondence. First, we remove all nodes with target degrees

zero from the graph, which clearly does not change the set of perfect b-matchings. Looking at

Lemma 11, only two kinds of nodes can have a target degree larger than one: nodes 𝑎𝑡 and some

nodes 𝑏𝑡𝑖 . In fact, the nodes 𝑎𝑡 are no problem: While they have degree 2 in the cumulative-rounding

construction, one of their adjacent edges, {𝑎𝑡 , 𝑎𝑡 } had weight 1, and thus the target degree of 𝑎𝑡

was already lowered to one in step (3) of the preprocessing.
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Thus, once more, the only issue are nodes of the form 𝑏𝑡𝑖 , specifically, when their target degree is

2 (it is never higher, as discussed above). If such a node only has two adjacent edges remaining

in the graph these edges must be taken in any perfect b-matching, so we can eliminate 𝑏𝑡𝑖 and

its neighbors. Thus, say that the node still has all three adjacent edges, {𝑏𝑡𝑖 , 𝑏𝑡𝑖 }, {𝑏𝑡𝑖 , 𝑏𝑡−1:𝑡𝑖 }, and
{𝑏𝑡𝑖 , 𝑏𝑡 :𝑡+1𝑖 }. In this case, replace node 𝑏𝑡𝑖 by two fresh nodes 𝑛1 and 𝑛2, both with target degree 1,

and connect these nodes using four edges (𝑛1, 𝑏𝑡𝑖 ), (𝑛1, 𝑏𝑡−1:𝑡𝑖 ), (𝑛2, 𝑏𝑡−1:𝑡𝑖 ), (𝑛2, 𝑏𝑡 :𝑡+1𝑖 ). One verifies
that, that in any perfect b-matching on the graph before replacement, one can replace the two

edges incident to 𝑏𝑡𝑖 by exactly one subset of the new edges to obtain a perfect b-matching on the

new graph, and that the analogous step in the other direction also works in one unique way. Thus,

after making these replacements, the finite seat sequences satisfying quota correspond one-to-one

to the perfect matchings of the graph, which are the corner points of the polytope of fractional

perfect matchings by the Birkhoff–von Neumann Theorem. □

C DEFERRED PROOFS FOR CUMULATIVE ROUNDING
Lemma 9. The graph produced by Construction 8 is bipartite.

Proof. Note that the set of nodes

{𝑎𝑡 | 𝑎 ∈ 𝐴, 1≤ 𝑡 ≤𝑇 } ∪ {𝑎𝑡 | 𝑎 ∈ 𝐴, 1≤ 𝑡 ≤𝑇 } ∪ {𝑏𝑡 | 𝑏 ∈ 𝐵, 1≤ 𝑡 ≤𝑇 } ∪ {𝑏𝑡 :𝑡+1 | 𝑏 ∈ 𝐵, 0≤ 𝑡 ≤𝑇 }
has no internal edges, and neither does the complement of this set. □

Lemma 10. All edge weights lie between 0 and 1.

Proof. If the edge has the shape {𝑣𝑡 , (𝑣 ′)𝑡 } for some 𝑣, 𝑣 ′ ∈ 𝐴∪𝐵, then the edge weight is one of

the𝑤𝑡
𝑒 , which are in [0, 1] by assumption. All other edge weights either have the shape 𝑥 − ⌊𝑥⌋ or

the shape 1 − 𝑥 + ⌊𝑥⌋ = 1 − (𝑥 − ⌊𝑥⌋) for some 𝑥 ∈ R. The claim follows since 𝑥 − 1 < ⌊𝑥⌋ ≤ 𝑥 . □

Lemma 11. For each node 𝑣 ∈ 𝐴 ∪ 𝐵, the following table gives the fractional degrees of various
nodes in the constructed graph, all of which are integer:

nodes fractional degree

𝑣𝑡 (∀1≤ 𝑡 ≤𝑇 ) ⌊𝑑𝑡𝑣⌋ + 1

𝑣 𝑡 (∀1≤ 𝑡 ≤𝑇 )
⌊∑𝑡

𝑡 ′=1 𝑑
𝑡 ′
𝑣

⌋
−
⌊∑𝑡−1

𝑡 ′=1 𝑑
𝑡 ′
𝑣

⌋
− ⌊𝑑𝑡𝑣⌋ + 1

𝑣 𝑡 (∀1≤ 𝑡 ≤𝑇 ) 1

𝑣𝑡 :𝑡+1 (∀1≤ 𝑡 ≤𝑇 −1) 1

𝑣0:1 0

Proof. Within this proof, denote by frac(·) the fractional degree of a vertex in the constructed

graph.

frac(𝑣𝑡 ) = ∑
𝑣∈𝑒∈𝐸 𝑤

𝑡
𝑒︸      ︷︷      ︸

=𝑑𝑡𝑣

+
(
1 − 𝑑𝑡𝑣 + ⌊𝑑𝑡𝑣⌋

)
= ⌊𝑑𝑡𝑣⌋ + 1

frac(𝑣 𝑡 ) =
(
𝑑𝑡𝑣 − ⌊𝑑𝑡𝑣⌋

)
+
(∑𝑡−1

𝑡 ′=1 𝑑
𝑡 ′
𝑣 − ⌊∑𝑡−1

𝑡 ′=1 𝑑
𝑡 ′
𝑣 ⌋

)
+
(
1 −∑𝑡

𝑡 ′=1 𝑑
𝑡 ′
𝑣 + ⌊∑𝑡

𝑡 ′=1 𝑑
𝑡 ′
𝑣 ⌋

)
= ⌊∑𝑡

𝑡 ′=1 𝑑
𝑡 ′
𝑣 ⌋ − ⌊𝑑𝑡𝑣⌋ − ⌊∑𝑡−1

𝑡 ′=1 𝑑
𝑡 ′
𝑣 ⌋ + 1

frac(𝑣 𝑡 ) =
(
1 − 𝑑𝑡𝑣 + ⌊𝑑𝑡𝑣

)
+
(
𝑑𝑡𝑣 − ⌊𝑑𝑡𝑣⌋

)
= 1

frac(𝑣𝑡 :𝑡+1) =
(
1 −∑𝑡

𝑡 ′=1 𝑑
𝑡 ′
𝑣 + ⌊∑𝑡

𝑡 ′=1 𝑑
𝑡 ′
𝑣 ⌋

)
+
(∑𝑡

𝑡 ′=1 𝑑
𝑡 ′
𝑣 − ⌊∑𝑡

𝑡 ′=1 𝑑
𝑡 ′
𝑣 ⌋

)
= 1 (if 1 ≤ 𝑡 ≤ 𝑇 − 1)

frac(𝑣0:1) = ∑
0

𝑡 ′=1 𝑑
𝑡 ′
𝑣 − ⌊∑0

𝑡 ′=1 𝑑
𝑡 ′
𝑣 ⌋ = 0 − ⌊0⌋ = 0 □
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