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Abstract

We investigate the role of noise in op-
timization algorithms for learning over-
parameterized models. Specifically, we con-
sider the recovery of a rank one matrix Y* €
R%>4 from a noisy observation Y using an
over-parameterization model. We parameter-
ize the rank one matrix Y* by XX T, where
X € R¥¥4 We then show that under mild
conditions, the estimator, obtained by the ran-
domly perturbed gradient descent algorithm
using the square loss function, attains a mean
square error of O(0?/d), where o2 is the vari-
ance of the observational noise. In contrast,
the estimator obtained by gradient descent
without random perturbation only attains a
mean square error of O(a?). Our result par-
tially justifies the implicit regularization ef-
fect of noise when learning over-parameterized
models, and provides new understandings of
training over-parameterized neural networks.

1 INTRODUCTION

Deep neural networks have revolutionized many re-
search areas, and achieved the state-of-the-art perfor-
mance in many computer vision (Krizhevsky et al.,
2012; Goodfellow et al., 2014; Long et al., 2015), natu-
ral language processing (Graves et al., 2013; Bahdanau
et al., 2014; Young et al., 2018) and signal processing
tasks (Yu and Deng, 2010). Such huge successes cannot
be well explained by conventional wisdom. These deep
neural networks are significantly over-parameterized
— using more parameters than statistically necessary.
However, training these neural networks does not re-
quire explicit regularization or constraints to control
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the model complexity.

There have been two major lines of theoretical research
on demystifying such an over-parameterization phe-
nomenon. One line of research attempts to investi-
gate the training of deep neural networks from a pure
optimization perspective. Liang et al. (2018); Sharif-
nassab et al. (2020); Liang et al. (2019) show that under
properly simplified settings, the over-parameterization
can eliminate spurious local optima of the training ob-
jective, and all obtained local optima become global.
Therefore, over-parameterization makes the optimiza-
tion landscape benign, which eases the training of neu-
ral network. However, these results are not relevant to
the generalization performance of deep neural networks.

Another line of research attempts to connects the deep
neural networks to reproducing kernel functions. Du
et al. (2018); Jacot et al. (2018); Allen-Zhu et al. (2018);
Arora et al. (2019) show that under certain conditions,
training the over-parameterized neural networks by gra-
dient descent is equivalent to training a kernel machine,
which is often referred to as Neural Tangent Kernel
(NTK) in existing literature. Therefore, adding more
neurons only makes the behavior of deep neural net-
works behave more close to that of their corresponding
reproducing kernel functions. By further exploiting
such a connection, they show that the global optima of
the training objective can be obtained by the gradient
descent (GD) algorithm, However, as shown in E et al.
(2020), these results cannot explain the generalization
performance well, as the equivalent reproducing kernel
functions still suffer from the curse of dimensionality.

Complementary to the aforementioned two lines of re-
search, there have been some empirical investigations
on the role of noise in optimization algorithms for train-
ing over-parameterized neural networks. For example,
Keskar et al. (2016) show that the stochastic gradient
descent (SGD) algorithms with small batch sizes yield
significantly better generalization performance than
those with large batch sizes. This clearly indicates
that the noise plays a very important role on implicitly
controlling the model complexity of over-parameterized
neural networks. Unfortunately, due to the complex
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structures of deep neural networks and current tech-
nical limit, establishing theory for understanding the
noise in SGD is very challenging. Though some of the
aforementioned work consider SGD, they only consider
small learning rates and large batch sizes to make the
noise negligible such that its behavior is close to GD.
Hence, their results cannot justify the advantage of
SGD for training over-parameterized models.

To flesh out our understanding the role of noise for
training over-parameterized models, we propose to ana-
lyze a simpler but nontrivial alternative problem — over-
parameterized matrix factorization using perturbed gra-
dient descent (P-GD). Specifically, we consider the re-
covery of a symmetric rank one matrix Y* € R?*? from
its noisy observation Y under over-parameterization
model. Different from existing work, which usually
parameterizes Y* as the outer product of two vectors,
we factorize Y* as the product of two matrices X X T,
where X € R4X4. Therefore, we are essentially us-
ing d? parameters rather than statistically necessary
d parameters. To recover Y*, we solve the following
optimization problem,

Xg;‘ggMHY XX (1)

We then solve (1) using a perturbed form of gradient
descent P-GD, which injects independent noise to it-
erates, and then evaluates gradient at the perturbed
iterates. Note that our algorithm is different from SGD
in terms of the noise. For our algorithm, we inject in-
dependent noise to the iterate X; and use the gradient
evaluated at the perturbed iterates. The noise of SGD,
in contrast, usually comes from the training sample.
As a consequence, the noise of SGD has very complex
dependence on the iterate, which is difficult to analyze.

We further analyze the computational and statistical
properties of the P-GD algorithm. Specifically, at the
early stage, noise helps the algorithm to avoid regions
with undesired landscape, including saddle points. Af-
ter entering the region with benign landscape, the noise
induces an implicit regularization effect, and P-GD
eventually converges to an estimator X, which attains
a mean square error of O(0?/d) with overwhelming
probability, i.e.,

(%)

where o° is the variance of the observational noise.
For comparison, if we solve (1) by GD without ran-
dom perturbation, and the obtained estimator only
attains a mean square error of O(c?). To the best
of our knowledge, this is the first theoretical result
towards understanding the role of noise in training
over-parameterized models.

‘XXT—Y*

7

2

Our work is closely related to Li et al. (2017), which
analyze GD for solving over-parameterized matrix sens-
ing problem. Specifically, they show that when initial-
ized at a sufficiently small magnitude, GD also has an
implicit regularization effect and can approximately re-
cover low rank matrix under the RIP condition. Their
theory, however, only works for noiseless cases. Our the-
ory complements their results under the noisy setting,
and demonstrates that the noise of optimization algo-
rithms can also contribute to the implicit regularization
effects for training over-parameterized models.

The rest of the paper is organized as follows: Section
2 introduces the rank-1 matrix factorization problem
and the perturbed gradient descent algorithm to solve
it. Section 3 presents the main theorem showing that
P-GD converges to solutions with smaller mean square
error than GD. Section 4 verifies our theoretical result
numerically on rank-1 matrix recovery, rank-r matrix
recovery and also rectangular matrix recovery. The
discussion on the extension of our theoretical results
and also related literature are presented in Section 5.

Notations: Let S be a subspace of R?, we use Projg(-)
to denote the projection of a vector or matrix to S. For
a vector v € R? and matrix A € R¥*?, we use Id, A
to denote the projection of each column of A onto the
subspace span(v) = {z € Rz = av,a € R}. Id is the
identity matrix. The ball with radius 7 in R? and its
sphere are denoted as B(1) and S(1), respectively. For
matrices A, B € R"*™ we use (A, B) to denote the
Frobenius inner product, i.e., (A, B) = tr(AT B). || A]|p
and ||A|l2 denotes the Frobenius norm and spectral
norm of A, respectively.

2 MODEL AND ALGORITHM

We first describe the over-parameterized rank one ma-
trix factorization problem. Specifically, we observe a
matrix Y € R4¥4 where

Y =Y* +T,

where Y € R%*? is an unknown rank one matrix, and
I' € R¥? is a random noise matrix with each entry
ii.d. sampled from some sub-Gaussian distribution
with EI';; = 0 and El"fj = 0%, We recover Y* by
solving the following problem:

X = argminF (X),
Xe]Rdxd

1 2
WMmFM':ﬂMXT—YM. (2)
The estimator of Y* can be obtained by Y = XXT.
Here Y is over-parameterized with d? parameters in X
while the intrinsic dimension of the rank one matrix
Y™ is only d. We do not use any explicit regularizer to

control the search space of X.
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We then describe the perturbed gradient descent (P-
GD) algorithm for solving (2). Specifically, at the
(t+1)-th iteration, we first inject a random noise matrix
Wt S ]RdXd to Xt,

)A(:t =X+ Wy,

where each column of W, is independently sampled from
UNIF(S(v)), and S(v) denotes the hypersphere with
radius v centered at 0. Note that we have ||[W[|Z = dv?.

We then update X; using the gradient of F(X) at X,
Xiy1 = X; — UVJ:(X})
=Xy —n (X—t)?t'l' - Ysym) Xt, (3)

where Yiym = (Y + Y 7)/2. The P-GD algorithm is
essentially solving the following stochastic optimization
problem,
in F(X)=EwF(X+W), 4
in F(X) =EwF(X +W) (4)
where each column of W is independently sampled from
UNIF(S(v)). Note that (4) can be viewed as a smooth
approximation of (2) by convolution using a uniform
kernel. The smoothing effect further induces implicit
regularization effect to the estimator.

The P-GD algorithm is also related to the randomized
smoothing in existing literature. It was first proposed
by Duchi et al. (2012) to handle convex non-smooth
optimization. Zhou et al. (2019); Jin et al. (2017); Lu
et al. (2019) further show that the random perturbation
can also help escape from saddle points and spurious
optima.

3 CONVERGENCE ANALYSIS

We study the convergence properties of our proposed
perturbed gradient descent (P-GD) algorithm. Before
presenting our main results, we first introduce the
subspace dissipative condition, which is frequently used
in our proof and is defined as follows.

Definition 3.1 (Subspace Dissipativity). Let S be a
subspace of R? and xs = Projs(z) be the projection
of Vo € R? into S. For any operator H : R? — R?,
we say that H is (cs,vs,S)-subspace dissipative with
respect to (w.r.t.) the subset X* C R? over the set
X D X%, if for every x € X, there exist an z* € X*
and two positive universal constants cs and s such
that

(Projs(H(x)), zs — 25) = eslles — 255 = 7s. (5)

Here, X is called the subspace dissipative region of the
operator H.

The intuition behind the subspace dissipative condition
is that Projs(#(x)) has a positive fraction pointing

towards zg up to certain perturbation. When the
algorithm iterates along —#(z), its projection in S can
gradually evolve towards x% and finally converge to a
neighborhood of z%.

We then introduce two assumptions on the signal noise
ratio and the initialization, respectively. Specifically,
the first assumption requires noise I' not to overwhelm
the ground truth low rank matrix Y*. For notational

simplicity, we denote Y* = z*z*T.

Assumption 1 (Signal-Noise-Ratio). There exist some
universal constants Cy, C1 such that

. C
le*ll; > Co, o < =t [Toymlle < 2do,
max{||Tsym@” |2, | Tsymll2} < C1Vdo, (6)
where
Toym =Yeym —Y* =Y +YT)/2-V*=(T+T")/2.

The spectral and Frobenius norms of the noise I'sym
are of order O(1/v/d) and O(1), respectively, while z*
is non-degenerate and yields a sufficiently large signal
noise ratio.

Note that Li et al. (2019) show that 0 is a strict sad-
dle point to (2). The second assumption requires the
initialization of the P-GD algorithm to be sufficiently
distant from 0.

Assumption 2 (Proper Initialization). Xg is bounded
and sufficiently away from 0, i.e.,

IXollf <1 - C1vdo?, | Xy 2*|3 > Cdo®.  (7)

Assumption 2 can be further relaxed to an arbitrary
initialization within a hyperball centered at 0. We do
not consider such a relaxation, since it is not directly
related to the regularization effect of the noise, but
makes the convergence analysis much more involved.

Remark 3.1. Note that both Assumptions 1 and 2 are
deterministic. Later in Lemmas 3.7 and 3.8, we will
show that both assumptions hold with high probability,
given that I' is sub-Gaussian and our initialization is
random within a ball.

We then present our main results in the following theo-
rem.

Theorem 3.1 (Convergence Rate of P-GD). Suppose
that Assumptions 1 and 2 hold for T and Xy, respec-
tively. For any ¢ € (0,1), we choose

2 1\ -1
V2 =CiVdo? and n<mny= O(Z—Z(log 3) )
Then there exists some generic constant cq such that
with probability at least 1 — §, we have

0.2
FIR)

1 *
SIXX -V IR < e
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for all t’s such that 7o < t < T = (’)(77_2), where
To = O(%log#log %)

Theorem 3.1 implies that the noise plays an important
role on regularizing the over-parameterized model dur-
ing training, and induces a bias towards low complexity
estimators. The estimation error is optimal for noisy
rank one matrix factorization. For comparison, we can
invoke the theoretical analyses in Jain et al. (2015)
and show that GD does not have such a regularization
effect and converges to a solution denoted by Xgp,
where XGDXgD is essentially the positive semidefinite
approximation of Y. Therefore, Xgp only attains a
suboptimal estimation error,

1 *
= XapXdp — Y[} = 0(?).

As can be seen, P-GD outperforms GD in terms of
mean square error for recovering the underlying low
rank matrix Y* by a factor of d.

The proof of Theorem 3.1 is very involved. Due to the
space limit, we only present a proof sketch here. Please
see more details in Appendix B.

Proof Sketch. Without loss of generality, we assume
|z*]|, = 1. We start with a meta proof plan. Specifi-
cally, we decompose X; into its projections in the sub-
space spanned by x* and its orthogonal complement
as follows:

X; =Tdp- Xy + (Id = 1d,-) X = 2™ + E;,  (8)

where 7, = X, 2*. Note that the signal term R, = x*r,’
always satisfies Ry R, = ||r¢||3Y*, which is a multiple

of the ground truth matrix. Therefore, any solution
satisfying ||7¢||3 = 1 and E; = 0 gives the exact recovery.
In light of this fact, we show that P-GD can find a
solution such that [|r¢]|2 is approximately 1 and E,
stays small. To facilitate our analysis, we write down
the update of r; and F; as follows.

Tigq = XtTHa:* =r —nVxF(X, + W) z*,
Eiv1 = (Id — Tdp+ ) X g
= E; —n(Id — Id, ) Vx F (X + Wy).
We further denote the gradient of F with respect to
rand E as V,F(X) = VxF(X)Tz* and Ve F(X) =
(Id — Id )Vx F(X), where r = X T2*, and F = (Id —
Id,+)X. The key of our proof is to show that V,F and

V g F satisty the subspace dissipative condition, which
is stated in the next lemma.

Lemma 3.1 (Subspace Dissipativity). For any X €
RI*4 VL F satisfies

(Ew [VeF(X + W)}, E)

1 *
~ ICeymll ) 11 ~ FTma” B
)

2

> ((2d+ D=

Leta=1—(2d+ 1)”712 +x*TFSymm*, then V,.F satisfies
the inequality below if ||r||2 > a.

(Ew [V, F(X +W)],r)
1

> [Irll3(lIrll3 = @) = 7ITsymuellz.— (10)

Moreover, when ||E||% < C2HI‘Symx*H2,||I‘Symx*||§ <

I7ll3 < a, for some constant ¢ > 0, then —V,.F satisfies
the following inequality.

<EW[_VT]:(X +W)]7T>
> [Irl3(a = [I7113) = (¢* + ) PsymuslF. (11)

Lemma 3.1 helps describe the converge pattern of F;
and r;. Specifically, the subspace dissipativity holds
for Vg F(X + W) globally, which implies that the
orthogonal part F; vanishes independent of ;. The
convergence of ||r;||3, however, is more complicated. On
the one hand, (10) suggests that when [|r;||3 exceeds a,
P-GD tends to decrease the norm ||r;||3. On the other,
when ||r¢]|3 is small, (11) suggests ||r¢||3 will increase
to a only after | E||% is sufficiently small. Combining
these two aspects, ||r¢||3 will move towards and stay
close to a &~ 1. We remark that (11) requires || E;[|% to
be small. Therefore, the convergence of ||7;||3 happens
after that of || E||%.

Before showing the convergence, we provide a lemma
showing that the trajectory of P-GD is bounded with
high probability. This lemma helps us bound high
order terms in the proof.

Lemma 3.2 (Boundedness of Trajectory). Suppose I’
and Xq satisfy Assumptions 1 and 2, respectively. For
any 6 € (0,1), we choose v? = C1Vdo? and

n<mn = min{@ (; <log§>1> , O <d12>}
Then with probability at least 1 — 5, fort <T = (’)(n%),
1X¢ ]| < 4d.
Following our discussions, we first show the convergence

of |E¢||% in the next lemma.

Lemma 3.3 (Convergence of E;). Suppose I and Xy
satisfy Assumptions 1 and 2, respectively. For any
§ € (0,1), we choose v* = C1Vdo? and

n<m =min{o (;’3 (log(ls)_1> 0 (‘C’;)} ,
then with probability at least 1 — 4,
I1EE < 1 Eollf + e1Vdo? (12)
holds for all t’s such that t <T = O(n~?), and
1Bl < e1vdo? (13)
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holds for all t’s such that 1y <t < T = O(n~2
c1 18 an absolute constant and

7'12(9(

) where

lo —lo 1)
nVdo? gd gé

In addition to the convergence result (13), the bound-
edness of |E;||Z in (12) will help us show that ||r.||3
always stays away from the strict saddle point 0 as
shown in the following lemma.

Lemma 3.4 (Avoid Strict Saddle). Suppose T' and
Xo satisfy Assumptions 1 and 2, respectively. Assume
(12) holds for all't > 0. For any ¢ € (0,1), we choose

v?2 = C1Vdo? and

0! o?
n<mn3=minq O 04(10g5> 7(’)(dz> ,
we then have with probability at least 1 — 0, for all
t < O(1/n?),

723 = [ITsymz |13 (14)

Given that || E¢||% becomes sufficiently small in Lemma
3.3, and 7 stays distant from zero, we can then invoke
subspace dissipative condition (10) and (11) and show
that ||r¢]|2 will converge to 1 in the following lemma.

Lemma 3.5 (Convergence of ;). Suppose I' satisfies
Assumption 1. Assume (13) and (14) hold for allt > 0.
For any 6 € (0,1), we choose v*> = C1Vdo? and

0 <= min{(’) <a4 (log(1$>_1> 0 (‘;)}

Then with probability at least 1 — 0,
llrell3 = 1] < e2Vdo? (15)

for all t’s such that 79 <t <T = O(n~2
an absolute constant and

7—2:0( logd log(ls)

), where ¢y 18

Note that the recovering error can be rewritten as
follows.

XX, = Y¥|[f = (1= [lrell3)? + 20 Eerell3 + | B |3

< (L= [Ireli3)* + 20 Bel[E a3 + 1B

(16)

Combining (13) and (15), we know that P-GD has
already entered and stays in the region with small
recovery error. We remark that a naive treatment
of the cross term || E;r||3 as in (16) will result in a
recovery error O(v/do?) that dominates (16), with a
worse dependency on d. Instead, we take a more refined
approach to bound the cross term by directly analyzing
its optimization trajectory.

Lemma 3.6 (Convergence of Eyry). SupposeI' satisfies
Assumption 1. Assume (13) and (14) hold for allt > 0.
For any 6 € (0,1), we choose v*> = C1Vdo? and

-1
1’,§775:O<d0'2 (10g;> )

Then with probability at least 1 — 9,
||Et’f't||§ S 03d0'2

holds for all t’s such that 73 <t <T = O(n~
c3 > 0 is an absolute constant and

2), where

Ty = O(%log#log%).

The proof of Lemmas 3.1-3.6 requires supermartingale-
based analysis, which is very involved and technical.
See more details in Section 3.1 and Appendix B.

Finally, using the conclusions of Lemmas 3.3, 3.5 and
3.6, we have with high probability that

1Xe X, = Y*|5 = (L= |Irell3)” + 2| Eere|l3 + |1 BB/ |13
< (2 4 2¢5 + 2)do?

holds when 7y + 7o + 73 <t < T. Take ¢y = ¢? + c2 +
263,7’0 =T1 +T2+7‘3 and

2

I _
n S o = @) <d2 (10g 5) ) S mln{n17n27’r/3an4an5}a

where the last inequality holds since o = O(1/d), and
we prove that

1 " o?

EHXtXtT —-Y|§ < o~
holds with high probability for all 79 <t < T. O

Next, we verify that the noise matrix and the initializa-
tion of P-GD satisfy Assumptions 1 and 2, respectively.
For noise matrix I' with i.i.d sub-Gaussian entries, As-
sumption (1) holds with high probability by applying
the standard concentration result as in the next lemma.
Lemma 3.7 (Signal-Noise-Ratio). For any ¢ € (0, 1),
with high probability at least 1 — §, we have

[ 8
max{||Teym®* |2, | Tsym|l2} < CVdo + Cay/log 5

8
H]-—‘sym”F < do+ o 2010g S,

where C is some absolute constant.
0 = O(exp(—d)) and we have

max{||Cayma*[l2, [Taymll2} < C1Vdo,

(17)

Moreover, take

ITsymllr < 2do.

Furthermore, P-GD with random initialization in a
unit ball satisfies Assumption 2 with high probability
as shown in the next lemma.
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Lemma 3.8 (Proper Initialization). Given a random
initialization Xo = wox] where o ~ UNIF(B(1)), then

with probability at least 1 — O (d_i) ,
1 Xol[2 <1 —C1Vdo?, | X, 2*[|3 > C?do?.

3.1 Super-martingale Theorem

In this section, we briefly introduce the key tech-
nique behind our analysis. We first provide a super-
martingale based theorem frequently used in our ensu-
ing analysis of perturbed gradient descent algorithm.
Such a theorem can also be adapted to analyzing other
stochastic recursive algorithm satisfying certain condi-
tions, and hence can be of independent interest.

Theorem 3.2. Given a random sequence {z;} € R¢
satisfying xi41 = x¢ — nf(xe, &), VYVt >0, where xg €
R? is known, f is some bounded real valued function
and & € R represents the randomness in the update.
Let g be some real valued function on R®. If there
exist constants ag € R, > 0, A > 0,¢ > 0 such that
(1 —nB)"t(g(xs) — g — ) is a super-martingale for
any n > 0 satisfying nf < 1, i.e.,

E[(1—=nB) """ (g(zi11) — ag — nA)|F]
< (L=nB)""g(@e) —ao —nA),  (18)

where Fy = o{x.,7 < t}.Then for any § € [0,1],a >
g, we have the following conclusions.

. (7)) Q
Part 1. If we take n < min s -
/ 7= { 2(max f)Zg(zg)>2a 4A }
With probability at least 1 — 8, there exists t < 7', such
that

g(‘rt) < 20[,

where
T 7§D¢

L 0 10g ezt 10g 1) | g(ag) > 20
0, 0.W.

Part II. Moreover, if we further have

19(xe1) = Elg(xe11)[F)| Z1g(e0) <40y < dm (19)

and take
2 1 -1
ngmin{(’) <0;525 <10g5> ),

(%)) @
2(max f)Ig(x0)>2a AN [T

then with probability at least 1 — 4,
g(xy) < 4o,

for any 7' <t <T = O(1/n?).

Theorem 3.2 has two parts of results. Part I states that
when the update satisfies (18), with properly chosen
step size, the sequence {z;} can enter the region where g
is bounded by a pre-specified constant « in polynomial
time. Part IT ensures that the sequence will stay in this
region for long enough time. Please refer to Section A
for the detailed proof.

To utilize Theorem 3.2 in analyzing our P-GD algo-
rithm, we only need to check whether g(x) = ||z — z* Hg
meets the condition stated in (18). In fact, when the
subspace dissipativity condition (5) is satisfied, we have

E |21 - 21317
||z — &* |5 — 2B [(f (21, &), 70 — x5) | 1]
+ B [||f (@ &) 317

<(1 —2ncs)||ze — x*||g +2n(ys + O(n))

where cg,vs are the constants of subspace dissipativity
conditions. By simple manipulation, the above inequal-
ity can be shown to be equivalent to the following
inequality

E |- 21e) " (o — a1 - (2 +0) ) 17]
< -2e9) (e -1} - (2 + 0 ) ).

which is in the same form as in (18). Therefore, by
exploiting subspace dissipativity in conjunction with
our developed super-martingale theorem, we are poised
to prove the key elements Lemma 3.1-3.6 in the analysis
of P-GD.

4 NUMERICAL EXPERIMENTS

In this section, we demonstrate the regularization effect
of noise using numerical experiments. Specifically, we
compare P-GD algorithm with gradient descent (GD)
with small and large initialization to show that noise
induces a bias towards low complexity estimators.

4.1 Noisy Positive Semidefinite Matrix
Recovery

We consider recovering a positive semidefinite (PSD)
matrix Y* = X*X*T, with X* € R¥". We first
present experiments for » = 1 to support our theory,
then we conduct experiments on » = 3 and show that
the general rank-r PSD matrix recovery exhibits similar
behavior. Rank-1. We set the ground truth matrix
Y* = 2*2*T, where 2* = (1,1,--- ,1) € R% and d =
30. The noise matrix I' has i.i.d. Gaussian entries with
mean 0 and variance o2 = 0.1. We run P-GD, GD with
small and large initializations to solve (2). Specifically,
GD-Small is initialized at éA, where A is a random
orthogonal matrix as suggested in Li et al. (2017), while
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Rank-1 PSD Rank-3 PSD Rank-3 Rectangular
10* 10* 10*
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(b) (d) (f)
Figure 1: Average learning curves and final recovery error box plots of P-GD, GD with small initialization

(GD-Small) and with large initialization (GD-Large). X,Y-axes are in log scale. The band in (a), (c), (e) represents
standard deviation. (a)-(b): Rank-1 positive semidefinite matrix recovery. (c)-(d): Rank-3 positive semidefinite
matrix recovery. (e)-(f): Rank-3 rectangular matrix recovery. GD-Small shows a regularization effect in the early
stage but overfits later; P-GD performs the best. GD-Small with Early Stopping (GD-SE) achieves significantly
better recovery error than other GD’s, but still worse than P-GD.

GD-Large is initialized at idB , where B is a random
matrix with i.i.d. standard normal entries. P-GD takes
the same initialization as GD-Large. In every iteration
of P-GD , we perturb the iterate with I" having i.i.d.
Unif(S(v)) columns, where v> = 0.4v/do2. All three
algorithms are run with 7 = 0.2502/d? = 2.7 x 10~°
for T =1 x 10® iterations.

The results of 20 repeated runs are summarized in Fig-
ure 1.(a) and (b). The average learning curve in Figure
1.(a) shows that the convergence of GD with small ini-
tialization has two phases. Specifically, it first iterates
towards the low complexity solutions and achieve a
recovery error 0.9 in around 3 x 10° iterations, which
is consistent with the algorithmic regularization effect
of GD shown in Li et al. (2017). In the second stage,
however, GD-small overfits the observational noise and
finally attains a larger recovery error about 2, which
is similar to GD-Large. In Figure 1.(b), we plot the
final recovery error of the three algorithms. We also
plot the minimal recovery error obtained by GD-Small
and name it GD-Small with early stopping (GD-SE).
It can be seen GD-SE avoids overfitting and can ob-
tain a significantly lower recovery error than GD-Small.
This observation justifies the regularization effect of

early stopping in gradient descent learning. However,
GD-SE still performs worse than P-GD. Different from
GD, P-GD always converges to the estimators with
lower recovery error around 0.5, even with large ini-
tialization. This suggests that noise induces implicit
bias towards the low complexity solutions in training
over-paramterized models.

Rank-3. We then consider rank-3 PSD matrix recovery.
We choose set Y* = X*X*T and X* € R™3 with i.i.d.
standard Gaussian entries. One can verify that Y* is a
rank-3 PSD matrix with probability 1. We choose other
experiment settings the same as those of the rank-1
case except v2 = 0.25v/do?. The results of 20 repeated
runs are summarized in Figure 1.(c) and (d). We have
similar observations as those in the rank-1 case from
the learning curve and boxplot of GD and P-GD.

4.2 Noisy Rectangular Matrix Recovery

We perform experiments on rectangular matrix fac-
torization, to show that the regularization effect of
noise is not limited to symmetric matrix factorization
problems. We set ground truth matrix Y* = U*V* T,
where U* € R43 and V* € R¥3. We recover Y*
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by solving the following over-parameterized nonconvex
optimization problem.

(20)

PPN 1

(0.7)=  argmin  C|lUvT —v]|
UeRdXd7V€RdXd 2

where Y = Y* + I is a noisy observation of Y*. P-GD

solving (20) takes the following update:

U1 = Uy = Vo F (U + Wi, Vi + Z3),
Vig1 = Vi = Vv F(U, + Wi, Vi + Z4), (21)

where Vg F(U,V) = (UVT —=Y)V, VyFUYV) =
(UVT —Y)TU. Note that without perturbation, GD
will converge exactly to an optimal solution such that
U;V; =Y. In our experiment, we choose d = 30 and
U*,V* to be two random rectangular matrices with
i.i.d. standard Gaussian entries. The noise matrix I"
has i.i.d. Gaussian entries with mean 0 and variance
0% = 0.1. We run P-GD, GD-Small and GD-large to
solve (20). GD-Small is initialized at % (A, A3), where
Aq, Ay are a random orthogonal matrix, while GD-
Large is initialized at ﬁ(Bl,Bg), where By, Bs is a

2
jal

random matrix with i.i.d. standard normal entries.
P-GD takes the same initialization as GD-Large. We
run P-GD with perturbation noise Wy, Z; taking i.i.d.
Unif(S(r)) columns, where v> = 0.6v/do2. All three
algorithms are run with 7 = 0.2502/d? = 2.7 x 1076
for T =1 x 10® iterations.

The results of 20 repeated experiments are summarized
in Figure 1.(e) and (f). We observe similar phenomenon
of GD and P-GD as that in the rank-1 PSD matrix
recovery, which advocates that the regularization effect
of noise appears in general rectangular matrix recovery.

5 DISCUSSIONS

Extension to Rank-r Matrix Recovery: We can
extend our theoretical analysis to rank-r PSD matrix re-
covery. Similar to the projection in (8), we project each
iterate into the subspaces spanned by each eigenvectors
of Y*, and the orthogonal complement. The subspace
dissipative conditions of each subspace can be obtained
following similar lines to the proof of Lemma 3.1. We
can then apply our super-martingale type analysis and
show that P-GD can achieve the optimal convergence
rate O(%) for the rank-r case under some conditions
on the eigen-value. The analysis, however, will be much
more involved. We believe our results on the rank-1
case has already unveiled the regularization effect of
noise and left technical extensions as our future work.

Extension to Rectangular Matrix Recovery:
Our theoretical analysis can potentially extend to rect-
angular matrix recovery (20) by reducing the problem
to symmetric PSD matrices as in Ge et al. (2017). De-
note W," = (U,",V,") and W*T = (U*T,V*T), where

Y* = U*V*T. One can verify N* = W*W*T is a PSD
matrix. Recovering Y* by P-GD (21) can be viewed
as recovering N* by applying P-GD on W;. The prob-
lem is then reduced to rank-r PSD matrix recovery.
To complete the analysis, we need theoretical guaran-
tees on the equivalence of this reduction in our noisy
observation case, which is left for future research.

Biased Stochastic Gradient Approximation: In
our P-GD algorithm, the random perturbation to the
iterates makes the gradient approximation biased. We
remark that the biased stochastic gradient approxima-
tion also appears in training neural networks. Specifi-
cally, neural nets are often trained by SGD combining
with many regularization techniques such as batch nor-
malization (BN), weight decay, dropout and etc. These
tricks help overcome overfitting. Meanwhile, since they
essentially change the network structure or the loss
function, the stochastic gradient in SGD becomes bi-
ased with respect to the original objective (Helmbold
and Long, 2015, 2017; Mianjy et al., 2018; Luo et al.,
2018). Such a biased approximation is worth further
investigation to unveil their importance in learning
over-parameterized models.

Regularization Effect: Our theoretical results pro-
vide new insights towards understanding the regular-
ization effect of SGD in training deep neural networks.
Specifically, besides the algorithmic regularization in-
duced by deterministic first order algorithms (such as
GD as shown in Li et al. (2017)), our theory suggests
that noise also plays an important role in regularizing
over-parameterized models.

Related Literature: Blanc et al. (2020) also study
the implicit regularization for SGD type of algorithms
based on a different problem setup, i.e., a 2-layer neural
network without over-parameterization. They consider
noise perturbation on labels instead of on parameters
as in our paper and do not provide any explicit recovery
error bound. Moreover, Blanc et al. (2020) consider
regularizing the lo norm of gradient, which is equivalent
to adding a regularizer defined by ||(XX T —Y)X]||% in
our setting. To our best knowledge, there is no existing
literature that shows this regularizer help find solutions
with low complexity.

Some other papers study related problems but have
fundamental differences with our work. HaoChen et al.
(2020) consider perturbing labels while our work con-
sider perturbing parameters. Du and Lee (2018) con-
sider a problem without the underlying low complexity
generating models, while we take advantage of an un-
derlining low rank generating model and provide an
estimation error bound analysis. Most importantly, we
study the implicit regularization effect of noise without
any explicit regularizers used in their work.
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A PROOF OF THEOREM 3.2

Proof. Part I. We first show that with probability at least 1 —d, there exists ¢t < 79 such that g(z;) < 2«. We only
need to consider the case where g(zg) > 2ap. Let & = {g(x;) > 2a,V7 <t},G = (1 —nB)"t(g(xt) — ag — ).
Then by (18), we have

E[Gti1Ze, Fi] < E[GiZe,] < E[G¢Zs,_,]-

The last inequality holds since when Zg, , =1 while Zg, =0, G; > 0 when n < min{z3¢—, 7% }. Then {GZ¢, .}
are a supermartingale sequence. Then

E[g(z4)] < (1 —nB)"(g(x0) — 0 — nA) + ag + A <

3
p <P >2a) < —

_s
when ¢ > n% log w. Recursively applying the above lines for O(log %) times, we know there exists ¢t < 7

such that g(x;) < 2« with probability at least 1 — §, where

_ 5
=0 ilogwml .
np a 5

Part II. Then we show, with high probability, for any o > ag, g(z:) < 4« for long enough time. Let
Hy = {g(z;) < 4o, VT < t}. By (18), we have

E[Gi+1Ty, Fi] < E[GiZy,] < E[GiTy, ] (22)

Then {GiZg,_,} are a super-martingale sequence. We then bound the difference between G;Zg, , and
E[GiZe, ,|F].

dy = |GiZe, , — E[GiZe, || Fi]l = (1 = nB)"g(x41) — Elg(zes1) | F])| < (1 —nB)"¢m. (23)
Denote D; = \/ZZ:O d?. By Azuma’s Inequality, we get

O (1) D? log (ﬁ)
2Y i 4

1 1
P <GtI7-Lt1 —Go>0O(1)Dylog? <7725>> <exp|—

Therefore, with at least probability 1 — O (772(5), we have

g(ze) < (1 =nB) (9(z0) — ap —nA) + O (1) (1 = nB)" D, log? (T%) + ap + A
10} 1 1 5

where the last line holds, since we can always find 7 = min {(’) (a(:f (log %)_1) , Z—f\} to satisfy the condition.

< g(zo) +O(1)

The above inequality shows that if H; holds, then H;,1 holds with at least probability 1 — O (7]25). Hence, with
at least probability 1 — §, we have g(z;) <4aforallt <T =0 (17%)

Combine Part I and Part 2, properly rescale §, and we prove the theorem. O
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B PROOF OF TECHNICAL LEMMAS

B.1 Proof of Lemma 3.1

Proof. For notational simplicity, we denote v = % We start from the subspace dissipative condition for E;. We
will use the fact Y*F = 0.
(E,Ew (Id — Id,« )Vx F(X + W))

=(B,(Id—1ds) (XXT —Y)X + (2d + 1)7*X))

=(E,(2d+ 1)v’E+ (Id — Idg) (XX " = Y)X))

=(2d+1)y?|E|f +(XXT —Y,(Id - Idg)EX ")
=Qd+1D)VIEF+ (XX —Y,EXT)
=
=(
= (
= (
> (

2d + 1)V Bl + (XX T, EX") — (Dyym, EX ")

2d + )72 ElF + |EXTE — (Toym, EX )

2d+ 12| Bl + |EET|E + |1EZT|F = (Toym, EET) — (Toym, BZ ")
(2d +1)7* = [Tsyml2) | ElIE + 1EZT|F — |Tsymll2I BZ 2

)
)
2d + D)V B +(XXT = Y* EX") — (Toym, EX )
)
)

1
> ((2d + 1)'7’2 - HFsymH?)”EH% - ZHFsym”%'

The last inequality holds since given b > 0, 22 — bx > 7% for V& > 0. Then we obtain the inequality (9).

We next prove the subspace dissipative condition for r.
(re,E [va(Xt + W) Ta*])
= (re, X, (X: X, — Yogm)2z* + (2d + 1)7° X, 2*)
= (2d +1)y2 ||7’,5||2 + <rt, X[ (XX, - Y*)x*> — <rt,XtTI‘Symx*>. (24)

We calculate the last two terms separately. Note that X,' (X, X, =Y *)z* = X! Xyry—ry = (|| Hg —U)r+E Eyry.
Insert this equation in the second term in (24) and we have

(re, X (XX =Y")a") = (lrell = Dlirells + [ Eerel-
Moreover, the last term in(24) can be calculated as follows.
(re, X, Toymz™) = 1/ X Dyyma™
=7 (ra*" + B Teyma™
= ||7"t|‘§x* Loyme* +7¢ By Toyma™.
Let a =1— (2d + 1)y + 2* "T'yyma*. Then we have
(e B [V F (X + W) Ta]) = 2d+ 05 lrall3 + (lrelly = Dlrell3
+ 1 Eerelly = llrell o™ Tayma™ = )l B Taymar®
= (all3 = 1+ 24+ 192 = & T ) lrall3 + 1 Berell; = 7 B Doma®
> (lrell = a)llrells + | Eerdllz = [1Eerall2|Tsyma” 2

> (Irel2 ~ @)l — 3ITma”l3
This proves the inequality (10). On the other hand,
(re, —E [VxF(Xe+ W) Ta7]) = =2+ 1)52mel3 = (rel3 = Dl
—|Berdlly + Irellze" Togma® + 7] B Taya®
(= lrel3) lirel3 = 1 Eerell3 + 7 EJ Toyma®
> (a = IrPlredl3 = 1Beral3 = |1 Ber 2oy
> (a = rlP)lrl3 = (€ + Ol 1.
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We prove the inequality (11). O

B.2 Proof of Lemma 3.2
Proof. Given our choice of v, we have with probability at least 1 — &, dy? > ||Tsym||2. Given our initialization, we
have || Xol|z2 =1 < 4d.
El| Xeral[§ 7] = E [ X = nVx F(Xe + Wo)[71F]
= [|Xe 1% — 20E[( X, VX F(Xi + W) [Fo] + 0 °E [V x F(Xe + W) 3] 7]
= [ Xell§ — 20 (Xe, E[Vx F(Xe + Wo)lF]) + 0°E [ VX F(Xe + W) [717]
= | Xe|lf — 20 {( Xy, VX F(Xy) + 2d + 1)7*X,) + 0°E [|[Vx F(Xi + W) 15| F]
= IXellE = 20 (X, (XX, = Y*) Xy = Toym Xy + (24 + 1)7°X0)
+07E [[[VxF(Xe + Wo) |21 F]
= (1= 29(2d + D)) | Xellf — 201X, Xel[f + 20 (X0, Y Xo)
+ 20 (Xe, Daym Xe) + 0°E [V F (X + W) [1F] -

Note that

(X0, Y*Xy) = tr( X, Y Xy) < || Xe|I3,

2
1
(Z(X? Xt»-,i) = ~lx,

%

~—

X = 060, 2 DO X >

%,J

IS

and )
(Xt, DsymXe) < [|[Tsyml|2]| Xellf

Then we have
1
E[l| X1 ll5lFe) < (1= 20(2d + 1)7* + 2n(1 + [Ceymll2)) [ X213 — 277E||Xt\|§ + ’E[[|[Vx F(X¢ + W) I2]-

or equivalently,

Bl Xe1 [ - dIF
< (1= 20020+ 172 + 20Cunlle) (X3 — ) — 205 [ X (X~ )

— 20d((2d + 172 — [Cayml2) + PEIV X F (X, + W) 2]

< (1= 2020+ 1 4 200l — 203102 ) (X1 - @
— 29 (24 + 172 ~ [Dayunlle) + B[V x F (X, + W3]

(1 = 20(2d+ 17 + 29| Tgmlz — 2n§lxt||%) (X212 = d) + BV x F(X; + Wa)[2]

< (1= 20(2d + 17 + 20|Duymallz — 20) (X212 = ) + PV F (X, + W) 2.

Let & be the event {[|X,||# < 4d,Vr <t}. Then

E [(IXea e — d)Ze, | F] < (1= 2n(2d 4+ 1)7% + 20| Cayml2 — 2n) (1 X[ — d)Ze, +
TPE[|VxF (X + Wo)|[5]Ze,
< (1= 2n(2d + 1)7* + 20| Tsymll2 — 2n) (1 Xl[% — d)Ze, + n*Ci T,

where C; = O(d?). Let \; =
have the following inequality.

E [(IXes1llf = d = nAi)Ze, | Fe] < (1= Bu) (IXelli — d = A Ze,.

2(2d+1).y2§21”FSymH2+2 = O(d?), 1 = 2(2d 4+ 1) — 2||Tsym||2 + 2. Equivalently, we

We further denote Gy = (1 — 1) 7! (|| X¢||2 — d — nA1). Then we have
E[Gt-i-lIgt] < ]E[Gtzgt,] < E[thgt—l]'
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Then (22) is satisfied. We then bound the difference between G;Zg, , and the conditional expectation
BlGiZe, | Fi-1].

dy = ’Gtz&—l - E[GtI&_l |ft—1]|
= (1= )" |20 (B(X; 1, Vx F(Xio1 + Wi1)) [Foa] = (X1, VaF(Xeo1 + Wi))
= 0° (BIIVXF(Xeo1 + Ween) [ Fia] = VX F(Xer + Wan)[F) |

<(A=p)" [277((2d + DX ll7 + 31X B I Weeille + 31 Xe—1 B IIWe—r 17 + 1 Xe—1 lw [ Weea |3
X el [ Ko [l Wea ) + 20°C1]
< (1= B1) "o,
where ¢y = O(d'-%). Then (23) is satisfied. Directly applying Part II of Theorem 3.2, we can get the result.

Specifically, we choose
, 4 A d
min {(9 (d?’ (log 5) ) ,O (d?’)}
1 1\ !
=0 <d2 (10g5> ) .

=
|

With at least probability 1 — &, we have | X;||z < 4d for all t < O (7]%)

B.3 Proof of Lemma 3.3

Proof. Let Fy = 0{X,,7 <t} be the c—field generated by past t iterations. We first calculate the conditional
expectation of || X;1]|% given F;. Note that the update of E; can be written as follows:

Eiv1 = (Id — Idg) X¢41 = (Id = Idg) (X¢ — nVx F(X¢ + W)
=E, —n(Id —Idg)Vx F(X: + W) (25)
Then we calculate the conditional expectation of || Eyi1]/%.
E(| B |81 F] = [|1EellE — 2nE[(Er, (Id = Idy- )V x F(X; + Wy)) | Fi]
+ B[ (Id — Tdg ) Vx F (X, + Wo) [ 7).
Applying the subspace dissipative condition (9), we get the following inequality.

T sym ™ I3

E[l[Eeallp| 7] <1 = 20((2d + 1)7* = [[Toym DI EelE + 07—

+ 7?E[||(1d — 1d, ) Vx F(X; + Wo) |3 F:]-
Since both X; and W, are bounded, we can verify E[||(Id — Id,«)VxF(X; + Wy)||3|F] < Cd3. Let By =
_ ey |12 _ &
2((2d+1)7* = [ITsymll2): @2 = sz =ams 204 A2 = Camarnse—TmomT

E[(| Be1 ]l — a2 = n\)|F] < (1= nB2) (IElE — az — ).

Then (18) holds for ||E;||%. Moreover, based on the boundedness proved in Lemma 3.2, one can easily verify.

ot then we have

1B llE = Bl Eeea [F1F) | 2, 12 <a00)y < 1C2d> %02,

Thus, if we take ¢o = Cad??°0%, (19) holds. By Theorem 3.2, if we take

) :mm{o (d (bg;)”) o (d)}

we then have with probability at least 1 — §,
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o |E||Z <||Eol|f + c1Vdo? <1, for all ¥'s such that t <T = O(1/n?);

o ||Ei||3 < c1Vdo?, for all t's such that 7 <t < T = O(1/n?), where c¢; is a constant and

T = 0(77\/17 ”\/% logl)

B.4 Proof of Lemma 3.4

Proof. With our initialization, we have ||ro||3 < a. Then we prove ||ro||3 < a + O(v/do?) for long enough time.
Recall that @ = 1 — (2d + 1)72 + 2* Tyyma*. By (10), the subspace dissipative condition of r;, we can upper
bound the conditional expectation of ||r¢y1]|3 — @ given the trajectory history.
Elllre+1113 — alF] = (Irell3 — a) = 20E [(re, VX F(X; + We) T2*) [F]
+ 772IE U|VX-F(Xt + Wt H }ft]
= (1= 2nllrel3)(Irell3 — @) — 20(| Berell3 — | B Toyma™)
+ R [|Vx F(X¢ + Wy) Ta*||5| 7]

T syma™ 13

< (1= 2na)([re3 = a) + =452 + B [[Vx F (X, + W) T3] 7]
I'syma™
< (1= 2ma) (Il — o) + Lol e,
where C'is a constant. Let 83 = 2a, az = W and A3 = 02—‘5. This is equivalent to

E[[[reall3 — a = a3|F] < (1= 8s) (I3 —a — s —nAs) -

Then (18) holds for ||r¢||3 — a. Denote H; = {V7 < t,|7¢||3 — a < 43}, Then we have
E[G1 T, |Fi] < GiTn, < GiTn, ..
We then bound the difference between ||7;41(/3Zx, and E[||rs41|3Z%, | F]-

17e1113Z3, — Elllres1l15T0, [ Fe]| < nCsd = nes.

where ¢3 = O(d). Thus, (19) holds for ||r;||3 — a. We can then apply Theorem 3.2. Choose

ool )ot)

then with probability 1 — §, we have ||rt||§ < a+ 4ag for all t’s such that t < O(n~2).

We next prove (14) . Suppose there exists some time ¢ such that ||r,||* > a —2/3, our following analysis will show
that the algorithm will stay in the region such that ||rt||2 > a — 2/3, for long enough time. Then we can move to
Lemma 3.5. Suppose such t does not exists, i.e., ||7”t||2 < a—2/3, for all t’s. Then we have the following inequality.

Elllre41ll3]Fe] = [Irell3 — 20K [(re, VX F (X + W) T2*) | Fe] + 0°E [V F(Xe + Wo) Ta*||3] 7
= (1 =20(l|rel5 — @)) [Irel15 = 2n(|| Eirell3 = v/ B} Toyma™)
+0°E [|VxF(Xe + W) T 2*[|3]| 7]
> (1=nQIEND)) Irll3 +n2(a— llrdl3)rel3 = 2llrell2ll B Teyma*|l2)
> (1 =n(2+25-2)|r:l5 +n (2@~ [[rd3)Irell5 — 20 B Toymz13)
> (1= 2.5) |13 + 0 (3llrel5 — 47*[Coymaz™[[3) ,
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where 7% = S/ do2. Let & = {||r-||3 > 7?||Tsym*||2, V7 < ¢} . Then we have

3 — 4lTsymz" |2 »

g [(1 ~ 259 (el - 220

T ||2) T \ft}
3 Ll
2.5

— 3 — 4||Psyma™ |2 *
Z (1*25’/]) t <||7’t||g 2—;)] 2||F5ym$ H2 Igt—l'

> (1—2.5n)"" <||rt||§ ||Fsymx*|z> L,

3—4Tsymz” |2
2.5

The last inequality comes from the fact > 1. The above inequality actually shows that

_ 3 4 Fb mZL |2
G = (=20 (Il - 2= e o) 7

is a submartingale. Following the same proof of Part II of Theorem 3.2, we can show that with our choice of
small 7, with high probability, ||r¢[|3 > r?||Tsymz*[l2 > || Tsym@*[|3. O

B.5 Proof of Lemma 3.5

Proof. We first show that there must exist some 721 such that ||r[|3 > &. We first have the following inequality:

Elllres1 3] Fe] = lIrell3 — 20E [(re, Vx F(Xe + W) Ta*) | F] + 0°E [V F (Xt + We) T2 ||3| 7]
= (1=2n(rell5 — @) lI7ell3 = 2n([|Eerell5 — 7] By Tsyma™)
+0°E [|[Vx F (X + W) T 2™ 3] 7]

3 ITsym® ”
> (1=2n(|[rel3 — a)) [Im]I3 — 277(§|\Et|\%||7”t||§ + ny)

+ 0’ [ VxF(Xe + We) Ta™ 3|7
3 .
> (1= 201l =+ 59} Il = e

Denote & = {V7 < ¢,[|r-[|3 < ¢}. Then we have

2 3 *
Bl 322,17 > (1= 20~ 3a+ 5e10)) B2, — e B7e.

Let Gy = (1+n(50 — 3016))_t (HHH% - M) . Thus, we have

§a73cle
E [Gi1Ze, | Fi] > GiIe, > Gie, .

The last inequality must hold, otherwise we have found a ¢ such that ||r.||3 > 4. We have constructed a sub-
martingale sequence Following similar lines to our previous proof, with probability at least 1 — J, there exists
t< T = log 9 log %, such that [|r[|3 > %

Next, we show that the solution trajectory will stay in this region {||r¢||5 > &}. Let & = {Vr < t,||r,[5 > &}.

Ela — [[req1l3|F] = (@ — [Irel3) + 20E [(r, VxF (X + W) 2*) | F]

—0’E [|IVxF(X; + Wi) T a*[[5|F]
= (1 =2nlre[I3)(a = I7el13) + 2n(| Eere|3 — 7/ B/ Tsymz™)

— K[| VxF (X + W) T2*|13] 7] -
_Ir

* (12
Let a’ = a+ 4as, where ag = %qu comes from the proof of Lemma 3.4, and thus ||r;[|3 < a’. Then the above
equality is equivalent to the following:

Ela' — e ll3|Fe) = (1= 2nllrel3) (a” — lIrell3) + 2n(a’” — a)||re]l3
+ 20(|Eerel|3 — r) B Tyma™) — °E [IVx F(Xe + We) T2*||3| ]
< (1 =2nllrel13)(@ = Irell3) + 2n(a” — a)a’ + 2n([| Eirel|3 — r] EJ Tyma™).
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We further have

2
Ela' — |res1l3Ze, | Fe) < (1 - n3a> (@' = lIrel3)Ze, + CaVdo?e,,

which is equivalent to the following equations.

2
Bl el - CavioDZe 7] < (1= n3a) (= Il — CaoVo?) Te. .

Then we can construct a supermartingale G1Zg, |, = ﬁ(a’ —||r¢l|3 — Cav/do?)Ze,_,. Applying Theorem 3.2,
3
—3

one can show with probability 1 — 8, we have o’ — [|r]|3 < 4a,4
91 <t < O(n~2). Then the following inequality always holds.

or equivalently ||rt||§ > ¢ for all t’s such that

2
Bl ~ Iren - Caviod)| 7l < (1-n3a) (o = Il - Cavo?)

Following similar lines to the proof of ||rf|\§ < a + 4ag, one can show with probability 1 — 4, we have HTfH; >
a’ — Cs5V/do? for all t’s such that m99 <t < O(n~2), where 15 = (’)(% log # log %) Take T = T21 4 T2, we have
when t > 75,

o' — CsVdo? < ||r||2 < a+4as.
Therefore there exists some constant co > 0 such that when t > 75,

llell3 = 1] < c2Vdo?.

C PROOF OF LEMMA 3.6

Proof. Note that we can refine the upper bound of the norm of X; as follows: || X¢||z = ||E||z + ||re]l3 <
(cl 4 ¢2)Vdo?. We first write down the update of Ey;ry :

Et+lrt+1 = EtT‘t — nEtVr]:(Xt + Wt) — UVE.F'(Xt + Wt)’l“t + nQVE]:(Xt + Wt)VT]:(Xt + Wt)

For notational simplicity, denote Dy = VpF (X + W)V, F (X, + Wy). By simple calculation, we know that
| D1 ¢||2 is at most O(do?). Then the update of the squared norm of Eyr; is as follows:

|Evarialls = | Berells — 2n(Eere) T E NV F(Xy + We) — 20(Ere) 'V g F(Xy + Wi)ry
+ 07 (B V- F(Xe + W3+ [VeF (X + Wo)rdl3 + 2(Evry) " D1y)

— 20D, (B, F(Xy + W) + VeF(Xe + Wo)re) +n*(| D143

= 1Bl = 20(Evry) "BV, F(Xy 4+ Wi) = 20(Eery) 'V g F(Xo + Wi)re + 107 Doy,

where

Doy = (||E:V, F(Xe + W[5 + [IVEF (Xt + We)rel|3 + 2(Eer) " D1y
— 20D, (E:V, F(X¢ + W) + VEF (X + Wi)re) + 07| D1y

2
2-
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By simple calculation, we know Dy ; is at most O(1). Thus, the last three terms is n? Dy ; < Cgn?, and the update
is dominated by the O(n) terms. We next calculate the O(n) terms as follows

E[(Eire) " VEF (Xt + We)re| Fi]
=(Eyre) " (Id — Idg) (XX, = Y*) Xy — DoymXe + (2d + 1D)¥2 Xy) 1y
=r Bl ((95*7“;r + E)(E, Eyry + v ry) — ) 1y — Toym Eyry
— Dyyma™r) re + (2d + V)y2Epry + (2d + 1)72x*r:rt>
— (el + 77 B " + 24+ 152) | Eerillg — 77 EJ Ty Eure
+ (lrellz = Irell3 + 2d + D3 llrell3) vl B @ + | B Evrel3 + llrel|3re B Tsyma™

3 . )
> (4|rt% Cayumlla + T BT 2™ + (2 + W’) VEerell2 4+ relZ (IrellZ = 1+ 2+ 17%) T 2
1 *
B (0Bl = o7 BT
3 %
> (Bl + Iyl + 7T B 0" + 24+ 107 1B

+lrell3 (lrell3 = 1+ (2d + 1)y%) ) B 2™ — %Ilfsymx*IIi
and
E[(Eyre) " BV, F(X; + Wi)|Fi
=r B/ B, (X X: X! = YV*)2* — X/ Tyyma* + (2d + 1)v2 X,  2*)
=B Erl5 + (Irell3 — 1 — 2 Tyymz™ + (2d + 1)7°) | Evrell5 — r] B BB Toyma*
> (Irell3 = a) | Eerells — v/ B EvB] Toyma™.

Combine the above two inequalities together and we have:
Ell B 7] < (1= 20 (008 — 0 = Camlla + ] BV a” + 24+ 107%) ) 1Bl
=20 (|Irel3 (Irall3 = 1+ 24+ 19) 7] B2
— Wy B = 1 B B Ty} 4+ 97D

< (1= )| Ewre|3 + nCrdo® + Cen®.

Let ay = Crdo?, Ay = Cg and 3 = 1, then (18) holds. Moreover, one can also check ||| Eyr¢||3 — E[||Eire||3]| Fi—1] <
nCs, where Cy is some constant. Then we can apply Theorem 3.2. Choose

-1
n=0 <d02 (log (15) > ,

then with probability at least 1 — d, there exists some constant c3 > 0 such that

HEt+1Tt+1||§ < czdo”,
for all #'s such that 5 <t < (9(77%)7 where 73 = (’)(% logd%2 log %) 0
C.1 Proof of Lemma 3.7

Proof. Note that the Frobenius norm of I' can be written as a sum of d? squared subGaussian random variable:
ITIE =3, j I'};. Since Ty ; is subGaussian, I'; ; is sub-exponential. Then we have the following concentration

inequality.
||FHF 1242
P(‘—o|>t < 2exp —7202 s
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for any t > 0. Take t = 2,/2C log £, we have with probability at least 1 — ¢, we have
d 5 4

|IT||p < do+ 04/2C log %
1 . 8
ICsymlle < 5 (ITle + [T {lp) = [Tllp < do + 0y /2C log .

Moreover, since ||z*||a = 1, we have

ITz*||2 dt?

||FT£C*||2 dt2

Take t = %, /2clog %7 we have with probability at least 1 — g, we have

/ 8

|Tz*||y < Vdo + oy/2C log 5
8
[T Ta*||s < \/(30+01/2010g5.

* 1 * * 8
IPoym 12 < 5 (T2 s + T2 lw) < Vo + 7y [2CTog .

By Theorem 4.4.5 in Vershynin (2018), we have for any ¢ > 0,
Iz < Co(2vd + 1),

Then we have

Then we have

with probability at least 1 — 2 eXp(—tQ), where C' is some absolute constant. Take t = 4/log %, we have with
probability at least 1 — 4,

2
]2 < Co (2\/&+ log ) .

1)
[ 2

Then we have
1
IPsymll2 < S (T2 + T [l2) = [Tll> < Cor (
Take § = O(exp(—d)) and we prove the result. O

C.2 Proof of Lemma 3.8

Proof. Note that our initialization can be rewritten as Xo = rajyz’, , where 72 ~ UNIF|0, 1] and 2, ~ UNIF(S(1)).
Then

* T« 1\ 2
Iroll3 = [1Xg &*[13 = r*(a"g @*)* = r* cos(£(ap, 2™)) "
Note that the probability ||rg]|3 > C?do? can then be bounded as follows.
P (7"2 cos(£(z}, x*))° > CQdUZ) >P (7‘2 > CVdo?, cos(£ (), 2*))” > C d02)
>P (r2 >CV d02) +P (cos(l(:rg,x*))2 >C d02) —

1
—1-P (7’2 < c\/ﬁ) —P <cos(4(zg,x*))2 < c\/ﬁ)
:1—]P’(r2 SC\/W) —4]P’<arccos \/C\/ﬁ <0<

1
1O<do.25>7

where § ~ UNIF[0,7/2]. That is with high probability, we have [|ro[|3 > [|Tsymz*||3.
Moreover, P(|| Xo[|3 < 1-C1Vdo?) =P(r? < 1-C1Vdo?) = 1—C1Vdo? = 1— O( g5 ). We finish the proof. [

)
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