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Abstract

We use the EasyCrypt proof assistant to formalize the adversarial approach to proving lower bounds

for computational problems in the query model. This is done using a lower bound game between an

algorithm and adversary, in which the adversary answers the algorithm’s queries in a way that makes

the algorithm issue at least the desired number of queries. A complementary upper bound game

is used for proving upper bounds of algorithms; here the adversary incrementally and adaptively

realizes an algorithm’s input. We prove a natural connection between the lower and upper bound

games, and apply our framework to three computational problems, including searching in an ordered

list and comparison-based sorting, giving evidence for the generality of our notion of algorithm and

the usefulness of our framework.
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1 Introduction

1.1 Algorithmic Background

The establishment of lower bounds for computational problems, and upper bounds for

algorithms solving those problems, are synergistic activities. As algorithms and their upper

bounds become better, that encourages the search for tighter lower bounds, and vice versa.

One of the richest sources of non-trivial lower bounds is the query model,1 in which an

algorithm doesn’t have direct access to its input, but may only issue queries about it. A

lower bound theorem in the query model shows a lower bound, as a function of the input

1 We include comparison-based sorting in this category.
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Algorithm Adversary

Game

Figure 1 Game between Algorithm and Adversary

size, n, of the number of queries any algorithm must issue in the worst case, in order to solve

a size-n instance of the given computational problem.

Adversary arguments (the adversarial method) are one of the most common ways of

establishing such lower bounds [3, 2, 13]. When Knuth first published Volume 3 of The Art

of Computer Programming [15], he used the term “oracular lower bounds” for this method.

In Section 5.3.2, when discussing minimum comparison merging, he talked of constructing a

“suitable oracle” that answers an algorithm’s queries about which of two elements is greater:

If we can construct a suitable oracle . . . we can ensure that every valid merging

algorithm will have to ask a rather large number of questions.

In the 1998 Second Edition of Volume 3 [16], he has adopted the modern terminology of

“adversary” instead of oracle.

An adversary argument is structured as a two-party game between the algorithm and

adversary, as illustrated in Figure 1. The algorithm is allowed to query parts of the input

(e.g., bits, or cells), and the adversary is programmed to answer in a way that delays the

game long enough to achieve the desired lower bound. The duration of the game is measured

by steps, where one step consists of a query by the algorithm combined with its answer by

the adversary. The game2 plays the role of referee, keeping track of the inputs that are

consistent with the adversary’s answers so far, and declaring the game to be over when all

the remaining inputs have the same answer. Neither the algorithm nor the adversary have

to report anything. When proving a lower bound theorem, one exhibits an adversary, and

then proves that, for all algorithms (correct or not), the game continues for long enough to

achieve the lower bound—in which case we say the adversary has “won” the game.

Perhaps the simplest example of an adversary argument is the proof that an algorithm

computing the or (disjunction) function of a list of booleans of size n must query, in the

worst case, the value of every index of the list, and so must make n queries. The adversary

can be stateless, and when asked for the value of the ith element of the list it can always

answer false, keeping the algorithm uncertain as to whether the result of the or function will

be true or false. Initially the set of input lists maintained by the game consists of all 2n lists

of booleans of size n. As the game progresses, the set of input lists will always consist of all

lists of booleans in which all the elements at the indices queried so far are false. Thus as

long as not every index has been queried, there is at least one input list including at least

one occurrence of true, and so where the answer is true, and exactly one input list where all

the elements are false, and thus the answer is false. In other words, the game is not over

until all indices have been queried.

In our work, we are interested in establishing concrete bounds (like n in the preceding

example), rather than asymptotic ones. Of course concrete bounds can by abstracted to

asymptotic bounds after the initial proof, as desired.

2 We consider a slight variation of the framework of [2] that is well-suited to formalization.
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1.2 Formalization in EasyCrypt

When we set out to formalize adversary arguments using a proof assistant, we opted to work in

EasyCrypt because of our experience (e.g., [21]) formalizing cryptographic games in EasyCrypt.

EasyCrypt (see Section 2) has a module system allowing one to implement algorithms and

adversaries as modules—collections of procedures operating on private variables. This

allows our lower bound game (see Section 3.3) to be expressed as a parameterized module—

parameterized by an abstract algorithm and adversary. Procedures in EasyCrypt are allowed

to employ random assignments, choosing values from probability distributions. Consequently,

lower bound theorems in our formalization must be proved against potentially probabilistic

algorithms. Making use of randomness doesn’t give an algorithm an advantage, though, if

we consider worst-case efficiency and expect it to produce the correct result with probability

1. An adversary “wins” a run of the lower bound game against an algorithm and for a

bound lb iff the game runs at least lb steps before the queries/answers uniquely determine

the computational problem’s answer and the game ends. When proving a lower bound

theorem, one exhibits an adversary and shows that, for all algorithms, the adversary wins

the lower bound game with probability 1. The lower bound game itself isn’t probabilistic,

and neither are the adversaries we have used in our work to date. Thus when an algorithm

is also non-probabilistic, winning with probability 1 just means the only possible run results

in a win.

In our framework, we have a general method (see Section 3.1) for expressing computational

problems in the query model over inputs consisting of lists of a fixed size, n. Our bounds are

then expressions in terms of n. We accommodate restrictions on input lists, e.g., that they

are sorted. Our notion of query is general enough to encompass comparisons, i.e., queries

asking not for the value of the input at a given index, but asking how the values at two

indices are related. A computational problem is parameterized by an auxiliary value picked by

the adversary, but made available to the algorithm. E.g., this is used in searching problems

to say which element should be searched for in an ordered list.

Upper bound theorems can also be naturally expressed in terms of a game: an upper

bound game, parameterized by an algorithm and an adversary. This time (see Section 3.4), the

algorithm reports an answer to the computational problem, in addition to issuing queries.3

The adversary adaptively answers the algorithm’s queries, incrementally realizing more

and more of the input list (or the relative order of the input list’s elements, in the case of

comparison queries). This notion of adversary includes ones based on hard-coded auxiliary

values and input lists. The upper bound game plays the role of referee, keeping track of the

inputs that are consistent with the answers to the queries issued so far. An algorithm “wins”

a run of the upper bound game for a bound ub and against an adversary iff, in no more

than ub steps, either the algorithm reports the correct answer (the same, for all remaining

consistent inputs), or the adversary answers a query inconsistently, causing the game to end

early. When proving an upper bound theorem for an algorithm, we prove that for all (even

probabilistic) adversaries, the algorithm wins the upper bound game against the adversary

with probability 1. The upper bound game itself isn’t probabilistic, and so when both the

algorithm and adversary are also non-probabilistic, winning with probability 1 just means

the only possible run results in a win.

We connect the lower and upper bound games via the following theorem (see Section 3.5

for the formal statement): If an adversary wins the lower bound game against an algorithm

3 Such an algorithm can be converted to the kind expected by the lower bound game.
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for bound lb with probability 1, and ub < lb, then with probability 1, the algorithm loses the

upper bound game against the adversary for bound ub.

We use examples to informally make the case that our model of algorithm—in which a

game asks the algorithm for its next query, and later tells it the answer—is general enough

to model all algorithms. In a recursive algorithm, e.g., the stack of recursive calls may be

arbitrarily deep at the point where an answer is needed to a query. We must suspend the

computation, storing the suspension in a global variable of the algorithm. Once the answer is

received, this suspended computation can then be resumed and supplied the query’s answer.

We realize this using terms of an ad hoc functional language as the suspensions. We leave to

future work the design of, and development of a meta-theory for, a general purpose functional

language for expressing suspendable algorithms in the query model.

In our current work, the probabilistic nature of EasyCrypt is something of an impediment.

Because we are modeling the worst-case query complexity of algorithms that must always

produce correct results, randomization is not an advantage when expressing algorithms.

Fortunately, we have a generic method for reducing lower and upper bound theorems for

probability 1 to non-probabilistic Hoare logic judgments. This method still requires us to

prove termination with probability 1 of the procedures of our adversary (resp., algorithm) in

a lower bound (resp., upper bound) proof. But doing this is not significantly different from

proving termination, as we don’t use randomness in our adversaries (resp., algorithms). In

future work, though, we would like to work with randomized algorithms that are allowed to

produce incorrect results with small probability. Thus continuing to work in EasyCrypt may

be an advantage.

By using our EasyCrypt framework for lower and upper bound results, we eliminate

errors that could lurk in ad hoc formalizations. The lower and upper bound games act as

referees, and EasyCrypt guarantees that algorithms and adversaries cannot interfere with

the states of the games or their opponents. Assuming we are happy with the formalization

of a computational problem, the definition of an adversary is simply part of the proof of a

lower bound theorem; if it has “bugs”, as long as the proof goes through, they are irrelevant.

Furthermore, when proving an upper bound theorem for a given algorithm, the framework

ensures that we are counting queries correctly. And any algorithm, even a “buggy one”,

shows the existence of an algorithm with the proved upper bound.

1.3 Our Contributions

Here are the paper’s contributions, all of which were formalized using the EasyCrypt proof

assistant:

We formalize a general notion of list-based computational problems in the query model.

We give a generic formalization of the adversarial method, expressing this as a two-party

lower bound game between an algorithm and adversary.

We formalize a two-party upper bound game for establishing upper bounds of algorithms,

where the adversary adaptively and incrementally realizes an input to the algorithm.

We prove a natural connection between the lower and upper bound games.

We provide an axiom-free EasyCrypt theory for working with bounds involving logarithms.

We also provide an axiom-free theory formalizing well-founded relations, induction and

recursion.

We demonstrate the utility and generality of our framework by applying it to three

computational problems, giving evidence for why our apparently “passive” notion of

algorithm is general enough to express all algorithms, including recursive ones.
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1.4 Paper Outline

The rest of the paper is structured as follows. In Section 2, we give an introduction to

EasyCrypt and detail the proof practices we follow. In Section 3: we describe our framework

for formalizing computational problems, as well as the lower and upper bound games; we

consider the proof of the theorem connecting these games; and we consider the proof of

the lower bound theorem for the or function. In Section 4, we apply our framework to the

problem of searching in an ordered list, proving identical lower and upper bounds (the upper

bound is for the binary search algorithm). We also (Section 4.1) consider a general EasyCrypt

theory for working with bounds involving logarithms. In Section 5, we apply our framework

to the problem of sorting a list of distinct elements, proving lower and upper bounds (the

upper bound is for the merge sort algorithm) that are close, but with a slight gap. We also

mention our EasyCrypt theory of well-founded relations, induction and recursion. In Section 6,

we consider related work. Finally, in Section 7 we consider directions for future work.

2 The EasyCrypt Proof Assistant

EasyCrypt [6] is a tactic-based proof assistant with several program logics allowing one to

state and prove lemmas about a simple programming language, pWhile, with non-recursive

procedures, while loops, and probabilistic assignments, and in which programs are structured

using a simple module system designed for expressing games. Modules consist of procedures

along with global variables that can be manipulated by those procedures. They can be

parameterized by abstract modules implementing module types, and can later be applied to

concrete modules implementing those types. EasyCrypt has:

a Hoare logic for proving partial correctness of procedures;

a probabilistic Hoare logic, pHL, for proving probabilistic facts about procedures;

a probabilistic relational Hoare logic, pRHL, for proving relations between procedures;

an “ambient” higher-order logic, which is used for connecting judgments of the program

logics, as well as for giving mathematical definitions and proving lemmas about them.

Simple ambient logic goals may be solved using SMT solvers. Finally, EasyCrypt has theories,

which collect definitions, modules and module types, axioms and lemmas. Theories may

be parameterized by types and operators, and instantiating a theory with values for those

types and operators is done by a process called cloning. All axioms involving those types

and operators must then be proved to hold.4 E.g., if a theory T includes the parameters

op n : int. (∗ n is an integer ∗)
axiom gt0_n : 0 < n. (∗ n is positive ∗)

and we clone T instantiating n with the expression k ∗ 2, then we must prove that k ∗ 2 is

positive.

To explain the meaning of judgments in EasyCrypt’s logics, suppose M.f (M is a module)

is a procedure with parameter x : int returning a value of type bool, and N.g is a procedure

with parameter y : int returning a value of type bool.

The Hoare logic judgment

hoare [M.f : 0 < x =⇒ res]

4 EasyCrypt provides a facility for cloning but leaving some types and operators abstract, so axioms
involving them are not proved, but we do not use this facility in our work.
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says that if we start M.f in a memory &m in which the value of the parameter field x is

positive, and this execution terminates with a memory &n, then the result value field res of

&n will be true (this says nothing when the execution does not terminate). If, instead, we

wrote

hoare [M.f : 0 < x =⇒ !res]

then we would be saying that the result value field will be false, not true (! is negation).

The executions of M.f from &m can be modeled as the branches of a tree that splits upon

random assignments, where each arc is labeled with the (non-zero) probability of the selected

value from the support of the distribution. EasyCrypt allows sub-distributions, and so the

sum of these probabilities may be less than 1. In addition, each iteration of a while loop is

marked by a single arc labeled with probability 1. These trees can be infinitely splitting,

even though EasyCrypt’s distributions are discrete (a distribution on an infinite type will be

non-uniform), and they can have infinite branches, corresponding to non-termination. Each

branch has an associated probability (the limit of the multiplication of all its probabilities),

and the sum of the probabilities of all the branches may be less than 1. A run is a branch

with non-zero probability. When M.f is non-probabilistic, its tree has a single run, which

either terminates in a final memory or is infinite.

The pHL judgment

phoare [M.f : 0 < x =⇒ res] = p

says that if we execute M.f from an initial memory &m in which the value of x is positive,

the probability that the execution terminates in a memory with a result value field that is

true is p—i.e., p is the sum of the probabilities of all the branches of the running of M.f from

&m terminating with memories whose result value fields are true. If we prove this, we can

then use some ambient logic tactics to conclude

forall &m (a : int), 0 < a ⇒ Pr[M.f(a) @ &m : res] = p

which says that for all memories &m and positive integers a, the probability that running

M.f in the updating of &m that gives x the value a terminates in a memory whose result

value field is true is exactly p. If we set p to 1%r (the integer 1 converted to type real) this

means every run of M.f(a) from &m terminates in a memory whose result value field is true,

and the sum of the probabilities of those runs is 1. And if M.f isn’t probabilistic, its single

run will terminate in a memory with a true result value field. This allows us to express total

correctness. A judgment

phoare [M.f : true =⇒ true] = 1%r

says that M.f is lossless: no matter what memory M.f is started in (the memory includes its

argument), it terminates with probability 1. This mean that any infinite branch (if there are

any) has probability 0, i.e., all runs terminate, and the sum of the runs’ probabilities is 1.

If M.f is non-probabilistic, losslessness means that the single branch of M.f from any initial

memory terminates.

The pRHL judgment

equiv [M.f ~ N.g : x{1} = y{2} =⇒ res{1} ⇒ res{2}]

says that if &1 and &2 are memories in which the value of x in &1 is equal to the value

of y in &2, then the distributions on memories corresponding to running M.f and N.g on

&1 and &2, respectively, satisfy the lifting of the formula res{1} ⇒ res{2} (if the result of

the first memory is true, then the result of the second memory is true) to pairs of memory

distributions. Given a proof of this judgment, we can then prove the ambient logic formula
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Listing 1 Framework Parameters

type inp, out, aux. op univ : inp list. op arity : {int | 0 ≤ arity} as ge0_arity.
axiom univ_uniq : uniq univ.
op good : aux → inp list → bool. op f : aux → inp list → out option.
axiom good (aux : aux, inps : inp list) :

size inps = arity ⇒ all (mem univ) inps ⇒ good aux inps ⇒ exists (y : out), f aux inps = Some y.
axiom bad (aux : aux, inps : inp list) :

size inps 6= arity ∨ ! (all (mem univ) inps) ∨ ! good aux inps ⇒ f aux inps = None.

forall &m (a : int), Pr[M.f(a) @ &m : res] ≤ Pr [N.g(a) @ &m : res]

Alternatively, if we prove the judgment

equiv [M.f ~ N.g : x{1} = y{2} =⇒ res{1} = res{2}]

we can conclude

forall &m (a : int), Pr[M.f(a) @ &m : res] = Pr [N.g(a) @ &m : res]

2.1 Our Proof Practices

Unrestricted use of SMT solvers can lead to poorly documented, unstable proofs. We counter

this as follows. Sometimes we avoid using SMT solvers entirely, using the EasyCrypt directive

that disallows the smt tactic. More commonly, we use the directive requiring that every goal

solved using the smt tactic be solved by both the Z3 and Alt-Ergo solvers. And in every

use of smt, we explicitly list the lemmas the solvers may use (in addition to their internal

theories). smt() means to only use the solvers’ internal theories.

3 EasyCrypt Framework for Lower and Upper Bounds

In this section we describe our framework—defined as a theory Bounds in EasyCrypt (788

lines of code)—for describing computational problems and proving lower and upper bound

theorems, using lower and upper bound games. We also consider the proof of a theorem

connecting the lower and upper bound games. And we consider the proof of the lower bound

theorem for the or function that was sketched in the introduction.

3.1 Expressing Computational Problems

The Bounds theory is parameterized by several types and operators (functions) that allow us

to express computational problems. They are described in Listing 1. An input list is a list of

values of size arity (a non-negative integer; ge0_arity is introduced as the name of an axiom

saying that 0 ≤ arity) where each value has type inp (the input type) and is an element of a

finite universe univ (a list of distinct (unique) elements). The type aux is a type of auxiliary

values, and a value of type aux is the first parameter of the good and f operators. When inps

is an input list, good aux tests whether it is a good input list for our computational problem,

according to the auxiliary value aux. The operator f represents our computational problem;

f aux inps returns an optional value of the output type, out. We axiomatize that:

(good) If inps is an input list that is good according to aux, then f aux inps returns Some

of some output value.

(bad) Otherwise, f aux inps returns None

ITP 2022
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When we instantiate the above types and operators, we will typically leave arity abstract, so

that algorithms and adversaries will have to work for all input list sizes.

Below are three examples of how computational problems can be formalized using our

framework. We believe many more problems can be easily encoded using variations of these

techniques.

3.1.1 Or Function

If our computational problem is the or (disjunction) function, we can instantiate inp, univ,

out and aux to bool, [true; false], bool and unit (whose only value is ()), where good () always

returns true (all input lists satisfy it). When inps is an input list, f inps returns Some true, if at

least one of the elements of inps is true, and Some false, otherwise. We use this instantiation

of Bounds in Section 3.6.

3.1.2 Searching in an Ordered List

To see why we parameterize f and good by an auxiliary value, consider the problem of

searching in an ordered list inps of elements from a finite range of at least two integers for

a given value k that is guaranteed to occur at least once in inps, returning the first index

(indices are in the range 0, . . . , arity− 1) into inps where k is found. Here we can instantiate

inp and out to int, and instantiate univ to the finite range of integers. But both good and f

need to know what k is, and so we set aux to int, so the first arguments to good and f can be

k. Then an input list inps is satisfied by good k iff it is sorted in (not necessarily strictly)

ascending order and contains at least one occurrence of k, and f k inps returns Some of the

first index into inps where k is found, when inps is a good input list relative to k, and returns

None, otherwise. We use this instantiation of Bounds in Section 4.

3.1.3 Sorting

We can encode the problem of sorting a list of distinct elements of size len (at least 1)

according to some total ordering, as follows. First, we instantiate inp and univ to bool and

[true; false], and instantiate arity to len ∗ len. Thus an index into an input list inps can be

thought of as encoding a pair (i, j), where i and j are indices into the list of distinct elements,

and asking for the boolean corresponding to (i, j) can be thought of as querying whether

the ith element of the list of distinct elements is less-than-or-equal to the jth element. In

this example, we don’t need an auxiliary value, and so aux can be unit. The predicate good,

though, should test whether an inps satisfies the properties of a total ordering. Finally, the

operator f should transform a list of booleans representing a total ordering to Some of the

permutation of the indices of the list of distinct elements that is sorted according to the total

ordering, and return None when not given a total ordering. Thus out can be int list (even

though the len! permutations on the indices 0, . . . , len− 1 are a small subset of this type).

We use this instantiation of Bounds in Section 5, when our lower and upper bounds will be

expressed in terms of len (not arity).

3.2 Adversaries

In the following two sections, we will consider two sub-theories of Bounds: LB for lower

bounds, and UB, for upper bounds. Both of these theories share the same kind of adversary,

defined by the following module type (interface):
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Listing 2 Lower Bound Game

1 module G(Alg : ALG, Adv : ADV) = {
2 proc main() : bool ∗ int = {
3 var inpss : inp list list; var don : bool; var error : bool;
4 var stage : int; var queries : int fset; var aux : aux;
5 var i : int; var inp : inp;
6 aux <@ Adv.init(); Alg.init(aux);
7 inpss ← init_inpss aux; error ← false; don ← inpss_done aux inpss; stage ← 0; queries ← fset0;
8 while (!don ∧ !error) {
9 i <@ Alg.make_query();

10 if (0 ≤ i < arity ∧ ! i \in queries) {
11 queries ← queries `|` fset1 i; stage ← stage + 1;
12 inp <@ Adv.ans_query(i);
13 Alg.query_result(inp);
14 inpss ← filter_nth inpss i inp; don ← inpss_done aux inpss;
15 }
16 else { error ← true; }
17 }
18 return (error, stage);
19 }
20 }.

module type ADV = { proc ∗init() : aux proc ans_query(i : int) : inp }.

A module of this type may have global (private) variables, and implements at least the two

procedures of the module type. There may be auxiliary procedures, and all procedures may

access the global variables. The procedure init takes no arguments and returns an auxiliary

value—because in both the lower and upper bound games we let the adversary choose the

auxiliary value. The asterisk before its name specifies that init must initialize the module’s

global variables. The procedure ans_query will only be called with an index i into an input

list, i.e., an integer between 0 and arity− 1. It is a request for the value of the ith element of

the input list. In addition to returning this value, a stateful adversary will update some of

its global variables, so it knows how to properly respond to subsequent queries.

3.3 Lower Bounds Subtheory

In this subsection, we consider the lower bounds subtheory, LB. A lower bound algorithm is

a module satisfying the interface:

module type ALG = { proc ∗init(aux : aux) : unit proc make_query() : int
proc query_result(x : inp) : unit }.

Its init procedure is given the auxiliary value chosen by the adversary, and initializes its global

variables. The procedure make_query asks the algorithm to issue a query, which should be

an index into an input list, i.e., an integer in the range 0, . . . , arity− 1. And the procedure

query_result is called to tell the algorithm the adversary’s answer to the algorithm’s last

query. Note that the algorithm does not report an answer to the computational problem.

The lower bound game, G, is defined in Listing 2. G is parameterized by an algorithm

Alg and adversary Adv, i.e., modules with the module types ALG and ADV, respectively. It

defines a procedure main that takes no arguments, and returns a value of type bool ∗ int.

The boolean indicates whether the game ended with the algorithm committing an error by

issuing an illegal query, and the integer is the stage (number of steps executed) at the game’s

termination. main uses two groups of local variables (which are not accessible to Alg and Adv).

The ones on lines 3–4 are persistent; they are initialized before the game’s while loop, and

ITP 2022
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are updated by each loop iteration. The ones on line 5 are temporary variables; their values

are reset at each iteration. main begins (line 6) by asking Adv to initialize itself and choose

the auxiliary value, which is stored in aux, and then asking Alg to initialize itself, letting it

know the auxiliary value. On line 7, main initializes the rest of the persistent variables:

inpss records (as a list of lists with no duplicates) the good inputs lists (relative to aux)

that are consistent with the queries issued so far and their answers. It is initialized to all

the good input lists, using an operator init_inpss.

error records whether the algorithm has issued an illegal query.

don records whether all elements of inpss have the same answer to the computational

problem (relative to aux), i.e., whether all the elements of the result of mapping f aux over

inpss are the same (this is what the operator inpss_done tests). Depending upon good, f

and aux, this may be true initially; and it’s true whenever inpss is empty.

stage records the current stage, and is initialized to 0.

queries records the set of queries that have been issued by the algorithm, and is initialized

to the empty set.

The while loop of main runs as long as both error and don are false, i.e., as long as the

algorithm has not committed an error and at least two elements of inpss have different

answers. An iteration of the while loop begins by asking (line 9) Alg to issue a query, which

is stored in i. If (test on line 10) i is not a good index into an input list or repeats an earlier

query, this causes error to be set to true. Otherwise (line 11) the set of queries is updated

to include i and the stage is incremented. Adv (line 12) is then asked to answer the query

i, producing inp. On line 13, Alg is informed of the adversary’s answer. On line 14, inpss

is filtered to only retain input lists whose ith elements are equal to inp, and then don is

recomputed based on the updated inpss, seeing if the game is now done. Once the while loop

has terminated (line 18), because either error or don became true, main returns the final error

status and stage.

If Adv answers a query in a way that is inconsistent with inpss, i.e., so that after filtering,

inpss becomes empty, then don will be set to true, and so the game will end without error. It

doesn’t matter whether Alg notices this inconsistency upon the final call to Alg.query_result.

But at every call to Alg.make_query, Alg can be assured that all of the answers it has received

so far are consistent.

When proving a lower bound theorem for a given computational problem, we program a

concrete adversary Adv whose procedures are provably lossless, and then prove that for all

algorithms Alg whose procedures are lossless and don’t read or write the global variables of

Adv (or vice versa),

Pr[G(Alg, Adv).main() @ &m : res.`1 ∨ φ(arity) ≤ res.`2] = 1%r.

holds, where φ is the desired function of arity. We can read the conclusion as saying that,

when started in a memory &m (which the game doesn’t depend on, because G has no global

variables, and Adv.init and Alg.init initialize the adversary’s and algorithm’s global variables),

with probability 1, the game terminates either with the algorithm having committed an error

(by asking an out of range query or the same query twice), or with the final stage being at

least φ(arity).

An algorithm that issues duplicate queries can be converted into a more efficient one

by caching query answers, and so from the point of view of lower bounds, treating query-

repeating algorithms as erroneous is sound. Our motivation for signaling an error when a

query is repeated is to ensure the game terminates—which is technically useful.

When proving that the procedures of an algorithm (or adversary) are lossless, it is

sometimes necessary to condition this on a termination invariant on the global variables of
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the algorithm (or adversary). When doing this, we show that the initialization procedures

establish this invariant with probability 1, and that the other procedures preserve the

invariant with probability 1. We will see this in action when we consider the proof of the

upper bound theorem for the merge-sort algorithm (Section 5.2).

Because our conclusion is with probability 1 and we assume the procedures of the

algorithm are lossless, we can apply a generic lemma that we have proved using pHL to show

that G(Alg, Adv).main is lossless. And we can use this fact to reduce our theorem to a “main

lemma” whose conclusion is an ordinary Hoare (partial correctness) judgment:

hoare [G(Alg, Adv).main : true =⇒ res.`1 ∨ φ(arity) ≤ res.`2].

The challenging part of proving the main lemma is handling the game’s loop. In Hoare

logic, this is done using a loop invariant, and we need a loop invariant that is true when the

loop is first entered, is preserved by the loop, and where the conjunction of the loop invariant

and the fact that the game has ended—and so either the algorithm has committed an error,

or f aux agrees on all elements of inpss—tells us that if the algorithm hasn’t committed an

error, then the game has run long enough to give us the desired lower bound. In Sections 3.6,

4.2 and 5.1, we will see three rather different examples of loop invariants supporting lower

bound proofs.

3.4 Upper Bounds Subtheory

In this subsection, we consider the upper bounds subtheory, UB. In order to define the

module type of upper bound algorithms, we need a datatype response of algorithm responses,

along with some associated operators:

type response = [ Response_Query of int | Response_Report of out ].
op dec_response_query (resp : response) : int option =

with resp = Response_Query i ⇒ Some i with resp = Response_Report _ ⇒ None.
op dec_response_report (resp : response) : out option =

with resp = Response_Query _ ⇒ None with resp = Response_Report x ⇒ Some x.
op is_response_query (resp : response) : bool = dec_response_query resp 6= None.
op is_response_report (resp : response) : bool = dec_response_report resp 6= None.

A value of type response either has the form Response_Query i, for an integer i, representing a

query by the algorithm, or the form Response_Report x, for a value x of type out, representing

the algorithm’s reporting of an answer, x, to a computational problem. The operator

dec_response_query tries to decode a value of type response as a query, yielding Some i

when given Response_Query i, and yielding None when given a value with constructor

Response_Report. And dec_response_report is similar, but with the constructors swapped,

and so producing an optional value of type out. The operators is_response_query and

is_response_report use these operators to test whether a value of type response has constructor

Response_Query or Response_Report.

An upper bound algorithm is a module satisfying the interface:

module type ALG = { proc ∗init(aux : aux) : unit proc make_query_or_report_output() : response
proc query_result(x : inp) : unit }.

The procedures init and query_result are just like the procedures of the same names of a

lower bound algorithm. And make_query_or_report_output asks the algorithm to either issue

another query or report the answer to the computational problem.

The upper bound game, G, is defined in Listing 3. This game is similar to the lower bound

game (Listing 2), and so we focus on the differences. The interpretations of error and don are

different:
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Listing 3 Upper Bound Game

1 module G(Alg : ALG, Adv : ADV) = {
2 proc main() : bool ∗ int = {
3 var inpss : inp list list; var aux : aux; var error : bool;
4 var don : bool; var stage : int; var queries : int fset;
5 var resp : response; var i : int; var inp : inp; var out : out;
6 aux <@ Adv.init(); Alg.init(aux);
7 inpss ← init_inpss aux; error ← false; don ← inpss = []; stage ← 0; queries ← fset0;
8 while (!don ∧ !error) {
9 resp <@ Alg.make_query_or_report_output();

10 if (is_response_query resp) {
11 i ← oget (dec_response_query resp);
12 if (0 ≤ i < arity ∧ ! i \in queries) {
13 queries ← queries `|` fset1 i; stage ← stage + 1;
14 inp <@ Adv.ans_query(i);
15 Alg.query_result(inp);
16 inpss ← filter_nth inpss i inp; if (inpss = []) { don ← true; }
17 }
18 else { error ← true; }
19 }
20 else {
21 out ← oget (dec_response_report resp);
22 if (inpss_answer aux inpss out) { don ← true; }
23 else { error ← true; }
24 }
25 }
26 return (error, stage);
27 }
28 }.

error can still become true because Alg issues an illegal query, but also because the final

answer it reports is incorrect.

don can become true because Alg reports the correct answer, but also because Adv chooses

aux or answers queries in a way that causes inpss to become empty.

On line 7, don is initialized to be true iff inpss is empty. On line 9, Alg is asked to either issue

a query or report the final answer, encoded in a value resp of type response. If resp encodes a

query, then it is decoded on line 11, resulting in the query i. Lines 12–15 and line 18 are the

same as lines 10–13 and line 16 of the lower bound game. But line 16 is different: it sets don

to true if inpss has become empty. Alternatively, if resp encodes the reporting of an output,

then line 21 decodes resp to out. Line 22 then checks (via the operator inpss_answer) whether

out is the answer (relative to aux) for all the elements of inpss, i.e., whether every element of

the result of mapping f aux over inpss is equal to Some out. If the answer is “yes”, then don

is set to true; otherwise error is set to true.

When proving an upper bound theorem for algorithm Alg, we prove that Alg’s procedures

are lossless, and that, for all adversaries Adv whose procedures are lossless and don’t read or

write the global variables of Alg, that

Pr[G(Alg, Adv).main() @ &m : ! res.`1 ∧ res.`2 ≤ φ(arity)] = 1%r.

holds, where φ is the desired function of arity. We can read the conclusion as saying

that, when started in a memory &m, with probability 1, the game terminates without the

algorithm having committed an error (and so with Alg having reported the correct answer to

the computational problem, unless Adv caused inpss to become empty) and with the final

stage being no more than φ(arity).
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Listing 4 Conversion from Upper to Lower Bound Algorithm

1 module UBAlg_to_LBAlg (UBAlg : UB.ALG) : LB.ALG = {
2 proc init(aux : aux) : unit = { UBAlg.init(aux); }
3 proc make_query() : int = {
4 var resp : UB.response; var i : int; resp <@ UBAlg.make_query_or_report_output();
5 if (UB.is_response_query resp) { i ← oget (UB.dec_response_query resp); } else { i ← −1; }
6 return i;
7 }
8 proc query_result(x : inp) : unit = { UBAlg.query_result(x); }
9 }.

Because our conclusion is with probability 1 and we assume the procedures of the adversary

are lossless, we can apply a generic lemma that we have proved using pHL to show that

G(Alg, Adv).main is lossless. And we can use this fact to reduce our theorem to a “main

lemma” whose conclusion is an ordinary Hoare judgment:

hoare [G(Alg, Adv).main : true =⇒ ! res.`1 ∧ res.`2 ≤ φ(arity)].

In Sections 4.3 and 5.2 we will see two rather different examples of loop invariants supporting

upper bound proofs.

If Adv answers a query inconsistently, so that after filtering, inpss becomes empty, and

thus don is set to true and the game ends without error, the final call to Alg.query_result must

still update the state of Alg in such a way that the loop invariant is preserved. But at every

call to Alg.make_query_or_report_output, Alg can be assured that all of the answers it has

received so far are consistent.

A meta-level analysis using the semantics of EasyCrypt shows that if Alg loses a run of

the upper bound game against Adv and for bound ub (the only run if both Alg and Adv

are non-probabilistic), there is an auxiliary value aux, and an inps that is good relative to

aux such that there is a run (the only run if Alg is non-probabilistic) of Alg against the

non-probabilistic, non-adaptive adversary that picks aux and then answers queries according

to inps in which Alg loses. Thus if we are able to prove that Alg wins the upper bound game

against all such hard-coded adversaries with probability 1, it will actually win the game

against all adversaries with probability 1. We haven’t tried to prove this meta result in

EasyCrypt, and we don’t assume it in our proofs.

3.5 Connections between Frameworks

Listing 4 defines a parameterized module UBAlg_to_LBAlg that converts an upper bound

algorithm to a lower bound one. The only issue is what to do when the upper bound

algorithm reports an answer to the computational problem—an action that isn’t allowed for

a lower bound algorithm. UBAlg_to_LBAlg translates the reporting of an answer into the

illegal query −1. (This is so that, if the upper bound algorithm reports an answer before

there is a unique answer according to the remaining consistent input lists, and so the upper

bound game terminates with an error, the same thing will happen in the lower bound game.)

Through a sequence of lemmas using pRHL, Hoare logic, pHL and the ambient logic, we

were able to prove the theorem saying that for all integers lb and ub, upper bound algorithms

Alg whose procedures are lossless, adversaries Adv whose procedures are lossless and don’t

read/write the global variables of Alg, and memories &m:

Pr[LB.G(UBAlg_to_LBAlg(Alg), Adv).main() @ &m : res.`1 ∨ lb ≤ res.`2] = 1%r ⇒ ub < lb ⇒
Pr[UB.G(Alg, Adv).main() @ &m : res.`1 ∨ ub < res.`2] = 1%r.
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Thus if we have proved a lower bound theorem involving Adv and lb, and we know ub < lb, we

can conclude that every run of the upper bound game between Alg and Adv (when both Alg

and Adv are non-probabilistic there is only one run) ends with either Alg committing an error

or the game having run strictly more than ub steps, and that the sum of the probabilities of

those runs is 1. This of course implies that we cannot prove an upper bound theorem for Alg

with bound ub.

3.6 Lower Bound for Or Function

As a warm up exercise, we formalized the proof from Section 1.1 that any algorithm computing

the or function on a list of booleans of size arity must query every element of the list, in

the worst case. We clone our general Bounds framework as described in Section 3.1.1. Our

adversary is stateless and answers all queries with false. Our loop invariant for the lower

bound game’s while loop simply says (in addition to some housekeeping properties) that

inpss is all the input lists in which all the queried indices are false. The formalization of the

computational problem and the subsequent lower bound proof took 324 of code.

4 Application to Searching in an Ordered List

In this section, we consider proofs of lower and upper bound theorems for the computational

problem of searching in an ordered list of integers (coming from a finite range of at least

two elements) of size arity in which an element k occurs at least once, returning the first

index into the list where k can be found. We clone our general Bounds theory as described in

Section 3.1.2.

4.1 Theory for Reasoning about Bounds Involving Logarithms

We have developed a reusable (also used in Section 5) EasyCrypt theory IntLog (1440 lines of

code) for reasoning about bounds involving integer logarithms. We have the operators

op (%/) : int → int → int. op (%%/) : int → int → int.

%/ is EasyCrypt’s integer division operator, and we define %%/ to add one to the result of

n %/ b when n is not divisible by b. Then we can prove that, for all integers n and b ≥ 1,

n%/ b = bn/bc5 and n%%/ b = dn/be. We define integer logarithm operators rounding down

and up

op int_log : int → int → int. op int_log_up : int → int → int.

Then we prove that, for all b ≥ 2 and n ≥ 1, int_log b n = blog b nc and int_log_up b n =

dlog b ne, where log is the real number logarithm operator. For use in lower and upper bound

proofs, it is convenient to define operators

op divpow2 (n k : int) : int = n %/ (2 ^ k). op divpow2up (n k : int) : int = n %%/ (2 ^ k).

where ^ is exponentiation. We will mention some of the many lemmas we have proved about

these operators in the following sections.

5 In EasyCrypt’s syntax, one actually must write floor (n%r / b%r).
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4.2 Lower Bound Proof

Our adversary is expressed in terms of the minimum element of the universe, a, and a + 1,

which we call b. Its init procedure chooses b as the auxiliary value—the value the algorithm

must search for. The adversary has global variables win_beg and win_end of type int and

win_empty of type bool that determine the current window of uncertainty, where win_beg

and win_end are indices into an input list such that win_beg ≤ win_end, and if win_empty

holds (the window is empty), then win_beg = win_end and win_end < arity− 1 (the window

does not end at the end of the input list). The window size (computed by operator win_size)

is defined to be: 0, if the window is empty; and win_end − win_beg + 1, otherwise. The

procedure init initializes win_beg to 0, win_end to arity − 1 and win_empty to false. When

ans_query is called with query i, it acts as follows:

if the window is empty (win_size returns 0), it returns witness—some unknown but fixed

value6;

else, if i is strictly smaller than win_beg, it returns a;

else, if i is strictly greater than win_end, it returns b;

else, if the window has size 1 and win_end is arity− 1, it returns b;

else, if the window has size 1 and win_end is strictly less than arity− 1, it sets win_empty

to true and returns witness;

else, if i < (win_beg + win_end) %%/ 2, it sets win_beg to i + 1 and returns a;

else it sets win_end to i− 1 and returns b.

The part of the game’s loop invariant relating to inpss says that, if the window is not empty,

then:

for all i between win_beg and win_end, inclusive, the input list consisting of a’s up to but

not including position i, and then b’s thereafter, is in inpss; and

if win_end < arity−1, the input list consisting of a’s up to and including position win_end,

and then b’s thereafter, is in inpss.

The bound part of the loop invariant says that:

(win_end = arity − 1 ⇒
divpow2up arity stage ≤ win_size win_empty win_beg win_end) ∧

(win_end < arity − 1 ⇒
divpow2 arity stage ≤ win_size win_empty win_beg win_end)

We are able to prove that:

if the window is not empty and the game is finished, then the window size is 1; and

if win_end < arity− 1 and the game is finished, then the window is empty.

At the game’s beginning, win_end = arity − 1. If this is still true at the game’s end, it

follows that the window is not empty and divpow2up arity stage is 1, and thus—by one of

the lemmas of IntLog—that int_log_up 2 arity ≤ stage. Otherwise, there is a point at which

win_end is set to one less than the algorithm’s query, i. At this point, we don’t know that

the new window size is at least the old window size divided by two, rounding up, but it

is at least the old window size divided by two, rounding down. And thus we switch to

only knowing divpow2 arity stage ≤ win_size win_empty win_beg win_end. Then, when the

game ends, we have that the window is empty, so that divpow2 arity stage is 0. Because it

is 0, we can conclude—using another of our IntLog lemmas—that int_log_up 2 arity ≤ stage.

Consequently, our lower bound theorem has bound int_log_up 2 arity.

6 Used to document that the proof doesn’t depend on the value returned.
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4.3 Upper Bound Proof

Because binary search can be expressed iteratively, it was straightforward to define the binary

search algorithm in our framework. Its state consists of the element aux to be searched for,

along with input list indices low and high, where low ≤ high and the following invariant holds:

every element of inpss is sorted and has at least one occurrence of aux between positions

low and high inclusive;

in every element of inpss, there are no occurrences of aux at positions strictly less than

low;

no indices between low and high inclusive have been asked as queries.

low and high are initialized to 0 and arity− 1. The window size is defined to be high− low + 1.

When make_query_or_report_output is called:

if the window size is 1, the algorithm reports its answer, low;

else, the algorithm queries the midpoint mid ← (low + high) %/ 2.

When query_result is called with the answer, x:

if x < aux, it sets low to mid + 1;

else, it sets high to mid.

In either case, the new window size is no more than the old window size divided by 2,

rounding up. Thus the bound part of the loop invariant can be

stage ≤ int_log_up 2 arity ∧ win_size low high ≤ divpow2up arity stage

When the window size is 2 or more, one of our IntLog lemmas tells us that stage <

int_log_up 2 arity, ensuring the bound invariant will be preserved as stage is incremented.

Our overall upper bound is thus int_log_up 2 arity.

4.4 Conclusions

The formalization of the searching problem and some associated lemmas took 148 lines of

code. And the proof of the lower bound (resp., upper bound) theorem took 724 (resp., 353)

lines of code.

Our upper and lower bounds are identical, proving that the binary search algorithm is

optimal. Our first version of the lower bound theorem used a simpler approach but only

achieved a bound of int_log 2 arity. We noticed this was not optimal for the arity of 3, and

then wrote an OCaml program7 to generate optimal strategies for larger arities and small

universes. The program’s results helped us develop an adversarial strategy supporting our

tighter lower bound theorem.

5 Application to Sorting

In this section, we consider proofs of lower and upper bound theorems for the computational

problem of sorting a nonempty list of distinct elements of size len. We clone our general

Bounds theory as described in Section 3.1.3.

5.1 Lower Bound Proof

Our adversary has a single global variable inpss of type inp list list consisting of its own copy

of the list of consistent input lists maintained by the lower bound game. Initially, this is

7 All OCaml programs are included in our repository.
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init_inpss (), which has len! elements—because the set of all permutations of the indices

0, . . . , len− 1 is in one-to-one correspondence with all the total orderings on those indices.

When its ans_query procedure is called with a query q encoding a comparison query (i, j)

(and so asking if element i of the list of distinct elements is less-than-or-equal-to element j),

it partitions inpss into two lists:

inpss_t is all the elements of inpss in which position q is true; and

inpss_f is all the elements of inpss in which position q is false.

If the size of inpss_f is at least as big as the size of inpss_t, it sets inpss to inpss_f and

returns false; otherwise it sets inpss to inpss_t, and returns true. Because the new size of

inpss in each step is at least the old size divided by 2, rounded up, the initial size of inpss is

fact len, and the game isn’t over until inpss contains a single element, it is straightforward to

prove a lower bound of int_log_up 2 (fact len). We lower-approximate this in two ways: (1)

(len∗ int_log 2 len)%/ 2; and (2) len∗ (int_log 2 len)−2∗2^ (int_log 2 len). When len is at least

11, we prove (2) ≥ (1). For example, when len is 20,000, (2) evaluates to 247,232 whereas

int_log_up 2 (fact len) evaluates to 256,909, and so the gap is only 9,677 comparisons.

5.2 Upper Bound Proof

Our upper bound result is for the merge sort algorithm. First, we defined a recurrence wc

returning (what we later prove is) an upper-approximation of the worst-case number of

comparisons needed by merge sort when sorting a nonempty list of distinct elements of size

n:

wc n =

{

0, if n = 1,

wc (n %/ 2) + wc (n %%/ 2) + n− 1, otherwise.

If we had made a mistake in defining wc, our upper bound proof would have failed. We were

able to upper-approximate wc len as len ∗ int_log 2 len.

In order to define wc in EasyCrypt and prove the necessary properties about it, we used our

axiom-free theory WF (503 of code) for well-founded relations, induction and recursion.8 In

this theory, we mirrored the set theoretic formalization of these concepts within EasyCrypt’s

higher-order logic, using the type

type 'a rel = 'a → 'a → bool.

to represent relations. This theory has now been added to the official EasyCrypt library.

Because merge sort is a recursive algorithm, we opted to let Alg have a single global

variable term of type term where term is the inductive datatype

type term = [ Sort of int list | List of int list | Cons of int & term | Merge of term & term
| Cond of int & int & int list & int list ].

We think of the elements of term as terms of an ad hoc functional programming language.

A term is evaluated relative to a total ordering on indices. Sort xs evaluates to the result

of sorting xs. List xs evaluates to xs. Cons i t is evaluated by evaluating t to xs, and then

returning i :: xs. Merge t u is evaluated by first evaluating t to xs, next evaluating u to ys,

and then returning the result of merging xs and ys. Finally, Cond i j us vs queries whether

i ≤ j in the total ordering, returning: i :: zs, where zs is the result of merging us and j :: vs,

when the answer is “yes”; and j :: zs, where zs is the result of merging i :: us and vs, when

the answer is “no”.

8 We developed this theory for another purpose, but it has not been referenced in the literature, to-date.
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The procedure init initializes term to Sort [0; . . . ; len− 1]. We implemented a single-step

operational semantics that runs a term until it either produces an answer (List xs) which can

be reported to the algorithm (as the result of make_query_or_report_output) or asks a query

(Cond), which can be returned to the game, recording the blocked term in the global variable

term. Once the answer to the query is supplied via query_result, the algorithm applies the

answer to term, so execution can continue upon the next call to make_query_or_report_output.

To ensure termination of make_query_or_report_output, we make use of a well-formedness

invariant on terms together with a termination metric.

Our loop invariant says that:

term is well-formed;

for each remaining consistent input list inps (representing a total ordering), the evaluation

of term relative to inps is the same as the result of sorting [0; . . . ; len− 1] using inps;

wc_term term + stage ≤ wc len, where wc_term recursively upper-bounds the numbers of

comparisons term can make in the worst case; and

all the comparisons term could potentially make have not yet been issued as queries.

At the start of the game, wc_term term is wc len and stage is 0. As the game progresses,

wc_term term becomes smaller as stage becomes bigger. When the game ends, wc_term term

is 0, and so we get that stage is no more than wc len, which we know is no more than

len ∗ int_log 2 len.

5.3 Conclusions

The formalization of the sorting problem took 557 lines of code (this included the formalization

of total orderings as lists of booleans). The lower bound proof took 547 lines of code, which

included 59 lines of generic code for showing that two lists of unique elements have the same

size using the existence of a bijection between them. And the upper bound proof took 1740

lines of code, much of which consisted of meta-theoretic results about the ad hoc functional

language used to model suspendable, recursive computations.

Our lower and upper bounds are close, but there is a small gap. E.g., if we compare

int_log_up 2 (fact len) (the tightest form of the lower bound) with wc len (the tightest form

of the upper bound) when len is equal to 20,000, we obtain 256,909 and 267,233, respectively,

for a gap of only 10,324. We are considering how the gap could be closed.

6 Related Work

Formalization of lower and upper bounds. There is existing work [14, 20, 11, 1, 17]

formalizing specific lower bounds using proof assistants in computational models other than

the query model. Some of these works include reusable libraries applicable to certain classes

of problems. General frameworks for certifying upper bounds were developed in [12, 18], but

again not in the query model. Eberl [11] and Azevedo de Amorim [1] have formalized lower

bounds on comparison-based sorting problems in Isabelle and Coq, respectively. Both works

utilize decision trees, even though the two recursive datatypes representing them are rather

different. Their proofs give a lower bound, in terms of the number of permutations on list

indices, on the heights of decision trees, and then lower-approximate this bound in terms of

list size. In our work we formalize a similar lower bound as an instance of our framework,

showing that lower bound games and adversarial reasoning are good and flexible abstractions.

In fact, the decision tree model and the query model are closely related, and we expect that

a formalization of the adversarial approach could also be based on decision trees. We leave

the study of the relations between the two formalizations to future work. In contrast to
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the formalizations of Eberl and Azevedo de Amorim, our work is much more general. Our

generic notions of algorithms and adversaries, and generic definitions of lower and upper

bound games apply uniformly to all computational problems. Any algorithm can give rise

to an upper bound theorem, assuming the proof goes through; similarly, any adversary

supports a lower bound theorem, assuming the proof goes through. We are not aware of

other works that have formalized the query model directly. Recent work by Tassarotti et

al. [22] formalizes probably approximately correct (PAC) learnability in Lean. Classifiers, in

the PAC learning model, are similar to queries in the query model. It would be interesting

to explore if our framework could be used in this model.

Game-based formal reasoning. Extensive research has employed formal reasoning

based on games, often in the context of cryptographic security. Novak [19] developed a

framework for proving the security of cryptographic schemes based on probabilistic games in

Coq. Barthe et al. [7] formalized a framework in Coq with similar goals where cryptographic

schemes and protocols are modeled by probabilistic games, parameterized by adversarial

entities. Subsequent work in this direction led to the design of EasyCrypt [8, 6], which provides

better support for this kind of reasoning. We use EasyCrypt in our work, demonstrating its

utility for game-based reasoning beyond security. An Isabelle/HOL framework for proving the

security of cryptographic schemes based on probabilistic games has recently been developed

[9]. Recent work [5] has extended EasyCrypt with a cost model, allowing proofs about

execution time and numbers of oracle calls and restrictions on the cost of adversaries. It

would be interesting to investigate if this extension could be used to reason about lower

bounds in the query model in a more natural way. Game-based reasoning supported by a

proof assistant has also been used for certifying results useful in computer networking [4]. The

recent work of [10] has employed a two-player game between an adversary and an algorithm

to certify lower bounds for the online bin stretching problem. The proposed game, used to

establish lower bounds for varying numbers of bins, is formalized in Coq. Interestingly, this

work also proves some previously unknown lower bounds. As a comparison, our framework

targets a larger class of computational problems in the query model. Moreover, it is not

limited to lower bounds, but also explores upper bounds and the connection between them.

7 Future Work

In future work, we would like to generalize our framework for defining computational problems

in various ways. It would be nice to be able to directly model problems whose inputs are not

lists, e.g., graphs, instead of having to encode them using lists. We would also like to be

able to model problems where answers are not required to be unique, e.g., searching for any

element of a list satisfying some predicate.

The formalization of the ad hoc functional language we used to model suspendable,

recursive query-model algorithms in our upper bound proof for merge sort (Section 5.2) could

be generalized so as to be applicable to recursive algorithms in general, instead of just merge

sort. Proving the meta-theoretic results once and for all in a more general form would save a

great deal of effort when formalizing upper bound theorems for other algorithms.

We would like to extend our framework to be able to handle randomized algorithms

that are allowed to produce incorrect results with small probabilities. In such an extended

framework, the probabilistic nature of EasyCrypt could be an asset.

Finally, we would like to use our existing framework or future versions of our framework to

discover new lower or upper bounds, as opposed to simply formalizing variations of standard

results in our framework(s), as we have done in the current work.

ITP 2022
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