
Integrated Actor-Critic for Deep
Reinforcement Learning

Jiaohao Zheng1, Mehmet Necip Kurt2(B), and Xiaodong Wang2

1 Shenzhen Institute of Advanced Technology, Shenzhen, China
jh.zheng@siat.ac.cn

2 Electrical Engineering Department, Columbia University, New York, NY, USA
m.n.kurt@columbia.edu, wangx@ee.columbia.edu

Abstract. We propose a new deep deterministic actor-critic algorithm
with an integrated network architecture and an integrated objective func-
tion. We address stabilization of the learning procedure via a novel adap-
tive objective that roughly ensures keeping the actor unchanged while
the critic makes large errors. We reduce the number of network parame-
ters and propose an improved exploration strategy over bounded action
spaces. Moreover, we incorporate some recent advances in deep learn-
ing to our algorithm. Experiments illustrate that our algorithm speeds
up the learning process and reduces the sample complexity considerably
over the state-of-the-art algorithms including TD3, SAC, PPO, and A2C
in continuous control tasks.

Keywords: Deep reinforcement learning · Integrated actor-critic ·
Adaptive objective · Sample complexity

1 Introduction

Reinforcement learning (RL) is effective to learn and control over complex and
uncertain environments [25]. Especially with the combination of deep learning,
RL has been to shown to perform well in many fields such as robotics, games,
automatic control and cybersecurity [2,3,12]. In RL, an agent interacts with
an environment with the goal of learning the reward-maximizing policy. Policy-
based RL directly optimizes the policy towards higher rewards. Value-based
RL learns the value (i.e., expected future reward) of each environment state or
state-action pair, and the optimal policy is implicitly determined as the reward-
maximizing action at each state. Actor-critic RL is at the intersection of the
policy-based and the value-based RL such that the policy (actor) is optimized
in the direction suggested by the value function (critic).

In deep RL, actor and critic strongly interact while they are trained simulta-
neously towards the same objective (i.e., learning the reward-maximizing policy).
We aim to use the interdependency between them more explicitly and propose an
integrated actor-critic algorithm. In this framework, actor and critic share more

c© Springer Nature Switzerland AG 2021
I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12894, pp. 505–518, 2021.
https://doi.org/10.1007/978-3-030-86380-7_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86380-7_41&domain=pdf
https://doi.org/10.1007/978-3-030-86380-7_41

506 J. Zheng et al.

knowledge, which leads to saving lots of parameters. However, shared parame-
ters also bring an additional challenge on stabilizing the training procedure. The
integrated actor-critic can be motivated from animal brains such that although
different regions in a brain are assigned to different tasks, all regions are still
interconnected, and a brain can act both as actor (i.e., select an action) and
critic (i.e., evaluate an action).

Deep RL algorithms suffer from slow learning and high sample complexity.
We propose a new model-free off-policy deep deterministic integrated actor-critic
algorithm (IAC)1. Our algorithm speeds up learning, and equivalently reduces
sample complexity of the training procedure, compared to the state-of-the-art
deep RL algorithms including the twin delayed deep deterministic policy gradi-
ent algorithm (TD3) [4], soft actor-critic algorithm (SAC) [6], proximal policy
optimization algorithm (PPO) [21], and advantage actor-critic algorithm (A2C)
[15] in continuous control tasks. We first design a novel integrated actor-critic
network architecture. Next, we propose a novel adaptive objective function to
stabilize the training procedure of the integrated network. Finally, we propose an
improved exploration strategy over bounded action spaces and use a set of recent
advances in deep learning to further improve the performance and stability of
our algorithm.

2 Background

We consider a standard RL problem where an agent interacts with a stochas-
tic environment in order to maximize its expected total reward. We model the
problem as a Markov decision process where at each discrete time t, the environ-
ment is in a particular state st ∈ S. Assuming a fully observable environment,
the agent observes the state st, takes an action at ∈ A, and receives a reward
r(st, at) ∈ R in return of its action. At the same time, the environment makes a
transition to the next state st+1 with the probability p(st+1|st, at). This process
is repeated until a terminal state is reached. We assume that state and action
spaces are continuous and real-valued. In addition, since the feasible action space
is usually bounded, we assume at,k ∈ [amin, amax] where at,k denotes the kth ele-
ment of at.

Return from a state is defined as the total discounted future reward,
Gt =

∑∞
i=t γi−tr(si, ai), where γ ∈ [0, 1] denotes the discount factor. In RL, the

agent’s goal is to learn an optimal policy π : S → P(A) to maximize its expected
return from the start, written by Jπ = Esi∼pπ,ai∼π[G1], where pπ denotes the
state visitation distribution under the policy π. The agent’s policy can either be
stochastic or deterministic. In case the policy is stochastic, π(at|st) denotes a
probability density function over the action space given the state st.

The expected return from a state and action pair is called the Q value. If
policy π is followed after taking action a in state s, the Q value is written by
Qπ(s, a) = Esi>t∼pπ,ai>t∼π[Gt|st = s, at = a]. The Bellman equation provides a
recursive relationship between the current and the next Q values:

Qπ(st, at) = r(st, at) + γ Est+1∼pπ,at+1∼π[Qπ(st+1, at+1)].
1 IAC codes are available at https://github.com/IAC-deepRL/IAC.

https://github.com/IAC-deepRL/IAC

Integrated Actor-Critic for Deep Reinforcement Learning 507

If the policy is deterministic, it is denoted by μ : S → A and the Bellman
equation is written by

Qμ(st, at) = r(st, at) + γ Est+1∼pμ [Qμ(st+1, μ(st+1))].

2.1 Deterministic Policy Gradient

Policy gradient algorithms are useful to solve the RL problems, especially over
continuous action domains, in which the policy is parameterized and updated
with the policy gradient. Let a deterministic policy μθ(s) be parameterized with
θ and the expected return be written by

J(θ) = Es∼pμ [Qμ(s, μθ(s))]. (1)

In the deterministic policy gradient algorithm (DPG) [22], the parameters θ are
moved towards maximizing J(θ) via the deterministic policy gradient, given by

∇θJ(θ) = Es∼pμ

[∇θμθ(s)∇aQμ(s, a)|a=μθ(s)

]
.

2.2 Deep Deterministic Policy Gradient

The deep deterministic policy gradient algorithm (DDPG) [13] is a model-free off-
policy actor-critic algorithm that combines DPG [22] with the deep Q network
algorithm (DQN) [16]. In DDPG, actor and critic are both neural networks. The
critic estimates the Q values Qw(s, a) parameterized by w and the actor learns a
deterministic policy μθ(s). Moreover, separate target actor and target critic net-
works are kept with parameters θ′ and w′, respectively, that are slowly updated.
These networks provide stable targets to the critic through the Bellman equation:
yt = r(st, at) + γQw′(st+1, μθ′(st+1)). The critic then updates its parameters w
to minimize the difference between its Q value estimates and the given targets.
Let δi = yi − Qw(si, ai). The critic minimizes the following loss function over a
mini-batch of samples chosen uniformly from an experience replay buffer D:

L(w) = E(si,ai,r(si,ai),si+1)∼D
[
δ2i

]
, (2)

where the replay buffer stores the tuples (si, ai, r(si, ai), si+1) collected during
exploration. Moreover, the policy parameters are updated via the sample deter-
ministic policy gradients, given by

∇θJ(θ) = ED
[∇θμθ(s)|s=si

∇aQw(s, a)|s=si,a=μθ(si)

]
.

In DDPG, actor and critic network parameters, θ and w, are disjoint
and updated simultaneously in turn. For exploration, actor follows a stochas-
tic behavior policy via additive random noise N on the deterministic policy:
μ′(s) = μθ(s) + N .

508 J. Zheng et al.

3 Integrated Actor-Critic

3.1 Network Architecture

The proposed integrated network (see Fig. 1) consists of five main building blocks:
state encoder, action encoder, action decoder, Q value decoder, and an internal
network connected to all encoders and decoders. The integrated network acts as
actor when the green area is activated, and critic when the pink area is activated.
The actor and critic share the state encoder and the internal network. The whole
network is kept active during training procedure and only the green area (i.e.,
actor) is activated after training is done.

In the integrated network, each building block is a multilayer neural network
(see Fig. 2). The encoder outputs can either be concatenated or added to obtain
the internal network’s input. According to our experiments, the addition oper-
ation works better to reduce the network size and speed up learning without
performance loss. In this case, the encoder outputs have the same width, say m.

Fig. 1. Integrated actor-critic network. (Color figure online)

We design the internal network by modifying the Dense Convolutional Net-
work (DenseNet) [9] such that all convolutional layers in the DenseNet are
replaced with dense (i.e., fully connected) layers. Shortcut connections in the
DenseNet architecture enable us training with fewer parameters and improve the
learning performance. The internal network takes an input tensor with width m
and outputs a tensor of width 4m, which is input to both decoders.

Thanks to the shared internal network and the state encoder, the integrated
network has fewer parameters compared to overall parameters of separate actor
and critic networks, especially in high-dimensional tasks (e.g., when video frames
form the state input). This can speed up learning. However, the shared parame-
ters also bring an additional challenge on the training stability. The next section
addresses this challenge via an adaptive objective function designed for the inte-
grated network.

Integrated Actor-Critic for Deep Reinforcement Learning 509

3.2 Adaptive Objective Function

Let φ denote parameters of the integrated network, which is the union of actor
and critic parameters: φ = θ ∪ w. In our algorithm, similar to DDPG, we also
keep a separate target network with parameters φ′ to provide stable targets to
the critic during training. For convenience, let the policy and the value function
be written in terms of φ by μφ(s) and Qφ(s, a), respectively. Moreover, let the
expected return and the critic’s loss be written by J(φ) (see Eq. (1)) and L(φ)
(see Eq. (2)), respectively, additionally with the following �1 smoothing [10] on
the critic’s loss: L(φ) = ED [f(δi)] , where

f(x) =

{
0.5x2, if |x| < 1,

|x| − 0.5, if |x| ≥ 1.

The �1 smoothing enables a more stable training, as it provides steady gradients
for large δi and hence helps to avoid exploding gradients.

We aim to design an objective function to train the parameter-sharing inte-
grated network in a stable manner. In the policy gradient algorithms, the policy
cannot be improved if the value function estimation is wrong [4]. Hence, we
introduce an adaptive variable λ ∈ [0, 1] that reflects the critic’s reliability level.
After an initialization, we propose to update λ depending on the critic’s loss
(over a batch of samples) such that λ ← τe−L(φ)2 + (1 − τ)λ, where τ ∈ (0, 1) is
a hyperparameter. Notice that as the critic’s loss L(φ) gets larger, λ gets closer
to 0, and as the critic’s loss gets smaller, λ gets closer to 1. A larger λ implies a
more reliable critic.

Using the adaptive variable λ, we integrate J(φ) and L(φ) as well as an
additional regularization term G(φ) on the policy into the following objective
function:

Z(φ) = L(φ) − λJ(φ) + (1 − λ)G(φ), (3)

where G(φ) = ED [f(μφ(si) − μφ′(si))] is a measure of how different the policy
is from the target policy.

In
te

rn
al

 N
et

w
or

k

Tensor (4m)

Dense Layer

ReLU

St
at

e
En

co
de

r

Tensor (m)

State

Ac
�o

n
En

co
de

r

Ac�on

co
nc

at
en

at
e

 c
on

ca
te

na
te

Tensor (m)

Dropout

Dense Layer

Dense Layer

ReLU

Tensor (m)

Dense Layer

Dense Layer

Hard-swish

Dense Layer

Hard-swish

Dense Layer

ReLU

Ac
�o

n
De

co
de

r

Ac�on

Dense Layer

Tensor (4m)

Tanh

Dense Layer

ReLU

Q value

Dense Layer

Tensor (4m)

Spectral N.Q
 v

al
ue

 D
ec

od
er

Fig. 2. Building blocks of the integrated network.

510 J. Zheng et al.

The integrated network parameters are updated towards minimizing Z(φ)
via the stochastic gradient descent as follows:

φ ← φ − α∇φZ(φ) = φ − α

N

N∑

i=1

∇φZi(φ),

where α is the learning rate, N is the batch size, and

Zi(φ) = f(yi − Qφ(si, ai)) − λQφ(si, μφ(si)) + (1 − λ) f(μφ(si) − μφ′(si)).

We use the deterministic policy gradient theorem [22] to compute sample policy
gradients as in [13].

According to the adaptive objective in Eq. (3), when the critic is less reliable
(i.e., smaller λ), the actor gets a smaller learning rate. Specifically, as λ → 0, the
objective function approximates to

Z(φ) ≈ L(φ) + (1 − λ)G(φ),

including only the critic’s loss and the regularization term on the actor that
roughly ensures keeping the policy unchanged (near the target policy) while
the critic makes large errors. In this case, effectively only the critic is updated
towards minimizing its loss. On the other hand, when the critic is more reli-
able (i.e., larger λ), actor gets a larger learning rate such that as λ → 1, the
objective function approximates to Z(φ) ≈ L(φ) − λJ(φ) without including the
regularization term G(φ). In this case, actor and critic are updated together.

The two-time-scale update rule (TTUR) [7,11] was shown to be useful for
the convergence of the actor-critic algorithms. The TTUR suggests updating the
policy with a smaller learning rate and less frequently than the value function.
Notice that with the proposed objective function Z(φ), we update the policy less
frequently than the value function, and moreover, we update the policy with a
smaller learning rate as λ ≤ 1. Hence, the proposed objective enables an adaptive
version of the TTUR.

Finally, depending on the critic’s reliability level, we perform adaptive peri-
odic updates on the target network. In particular, we perform hard target
updates φ′ ← φ at certain periods p > 1 only if the critic is sufficiently reli-
able: λ > β, where β ∈ (0, 1) is a predetermined threshold. This provides an
adaptive version of the delayed target updates in TD3 [4].

4 Further Techniques on Improving Performance
and Stability

In this section, we first propose an improved exploration strategy and then a
modified version of the target policy smoothing technique in TD3. Next, we
discuss utility of a set of recent deep learning techniques that have not been
commonly used in deep RL.

Integrated Actor-Critic for Deep Reinforcement Learning 511

4.1 Exploration over Bounded Action Spaces

In deep RL, improving exploration is critical to increase data diversity, mitigate
overfitting, and speed up learning. Moreover, in off-policy deterministic policy
gradient algorithms, exploration can be treated independently from the learn-
ing problem [13]. Existing algorithms such as DDPG [13] use random explo-
ration noise N1 such that μ′(s) = μθ(s) + N1 is the behavior policy. How-
ever, since feasible actions are usually bounded to a certain interval such that
a ∈ [amin, amax], a clipping operation needs to be employed after noise addition:
μ′(s) = min{max{amin, μθ(s)+N1}, amax}. We argue that the clipping degrades
the exploration efficiency since all actions exceeding the limits are set to the
boundary actions, which may then be repeatedly explored by the RL agent.

We address this issue via an easy modification: whenever action exceeds
the limits, choose a uniformly random action from the feasible space: μ′(s) =
g(μφ(s) + N1), where

g(a) = a 11{a ∈ [amin, amax]} + U [amin, amax] 11{a /∈ [amin, amax]}, (4)

11{·} is an indicator function, and U [amin, amax] is a uniform random variable. If
the action space is multidimensional, g(·) performs the same elementwise opera-
tion at each dimension. We choose the exploration noise N1 as an independent
and identically distributed (iid) zero-mean Gaussian process with variance σ2

1 at
each dimension.

4.2 Target Policy Smoothing

In TD3 [4], target policy smoothing regularization forces similar actions to have
similar values and for this purpose, a small random noise is clipped and added
on the target policy when computing the target Q values. We find it useful to
apply a modified target policy smoothing technique by computing the target yi

for Qφ(si, ai) as follows:

yi = r(si, ai) +
γ

2
(
Qφ′(si+1, μφ′(si+1)) + Qφ′(si+1, g(μφ′(si+1) + N2))

)
,

where g(·) is as given in Eq. (4) and the smoothing noise N2 is chosen as an iid
zero-mean Gaussian process with variance σ2

2 at each action dimension.

4.3 Spectral Normalization

Since the generative adversarial networks (GANs) [5] and the actor-critic RL
[11] are both bi-level optimization problems, where one model is optimized with
respect to the optimum of another model, and there are many similarities in their
information structures [17], techniques for improving the stability of GANs are
potentially useful to stabilize the actor-critic algorithms as well. In GANs, the
spectral normalization, that normalizes the spectral norm of the weight matrices
of the discriminator network, is shown to improve the stability of training the

512 J. Zheng et al.

discriminator [14]. Since the discriminator in GANs corresponds to the critic in
actor-critic RL [17], we employ the spectral normalization on the critic network,
particularly on the Q value decoder (see Fig. 2), with the goal of improving the
stability of our algorithm.

4.4 Hard-Swish

In neural networks, nonlinear activation functions enable learning complex map-
pings from inputs to outputs, which is useful to deal with complex and high-
dimensional data. Hard-swish [8] is a computationally simplified version of the
swish nonlinearity [18] and it achieves a good performance especially in deep neu-
ral networks [8]. In our network design, we use the hard-swish as the activation
function in the internal network and the decoders (see Fig. 2). Moreover, we use
the rectified linear unit (ReLU) activation in the encoders and the hyperbolic
tangent (Tanh) activation at the output layer of the action decoder.

4.5 Dropout

Dropout [24] is randomly zeroing out a certain fraction of neurons at a layer, that
reduces the network capacity and forces the network to learn the most important
patterns in the data. It is a widely used technique to mitigate overfitting in deep
learning. We use the dropout at the last layer of the internal network (see Fig. 2)
with the purpose of reducing the overfitting and improving the generalization
ability of the network.

4.6 Adjusting Batch Size and Number of Iterations During Training

In [23], it is shown that increasing the batch size enables training a model with
fewer parameter updates compared to reducing the learning rate in the stochastic
gradient descent optimization. Based on this principle, we increase the batch size
and the number of iterations during training as new samples are collected and
stored in the experience replay buffer, until the buffer is full.

In our algorithm (see Algorithm 1), at each training episode, first the actor
interacts with the environment, collects new samples, and saves them into the
buffer. Next, the network parameters are updated via the stochastic gradient
descent with a mini-batch of samples chosen uniformly from the buffer. In this
process, let the parameters be updated over K iterations and the batch size
be N . Moreover, let K0 ≥ 1 and N0 ≥ 1 be the initial number of iterations
and the initial batch size, respectively. Furthermore, let the buffer capacity be
M
 1 and the current size of the buffer be 0 ≤ R ≤ M . We keep and update
a parameter ρ while the buffer size gradually increases as more samples are
collected: ρ = 1+R/M . We then update the number of iterations and the batch
size as K = ρK0 and N = ρN0, respectively.

Integrated Actor-Critic for Deep Reinforcement Learning 513

Algorithm 1. Integrated Actor-Critic (IAC)

1: Initialize the integrated network with random parameters φ and the target network
with φ′ ← φ

2: Initialize the replay buffer D with size R ← 0 and the adaptive variable with
λ ← 0.5

3: for episode = 1 : E do
4: I. Interact with environment
5: Observe the initial state s1
6: for t = 1 : T do
7: Select action at ← g(μφ(st) + N1), receive reward r(st, at), and observe the

next state st+1

8: Save the tuple (st, at, r(st, at), st+1) into D and update the buffer size: R ←
min{R + 1, M}

9: II. Update network parameters
10: Update the number of iterations and the batch size: ρ ← 1 + R/M , K ← ρK0,

N ← ρN0

11: Initialize the total loss of critic: L ← 0
12: for k = 1 : K do
13: Sample uniformly a mini-batch of N tuples (si, ai, r(si, ai), si+1) from D
14: yi ← r(si, ai) + γ

2
(Qφ′(si+1, μφ′(si+1)) + Qφ′(si+1, g(μφ′(si+1) + N2)))

15: Update the integrated network: φ ← φ − α
N

∑N
i=1 ∇φZi(φ)

16: Update the total loss of critic: L ← L +
∑N

i=1 f(yi − Qφ(si, ai))
17: if k mod p then
18: Compute the average loss of critic: L̄ ← L/pN and reset the total loss:

L ← 0
19: Update the adaptive variable: λ ← τe−L̄2

+ (1 − τ)λ
20: if λ > β then
21: Update the target network: φ′ ← φ

5 Experiments

5.1 Comparisons with Benchmark Algorithms

We evaluate IAC (see Algorithm 1) over five continuous control tasks in the
OpenAI Gym [1]. In all the tasks, feasible actions are limited to [−1, 1]. For
comparisons, we use TD3 [4], SAC [6], A2C [15] (both with separate and shared
actor-critic networks), and PPO [21] algorithms. Figure 3 illustrates the learn-
ing curves of all algorithms. We measure the sample complexity (equivalently,
learning speed) of each algorithm until reaching the default target reward set at
each environment. Figure 4 illustrates the average training steps until achieving
the target rewards. Note that in Fig. 4, we do not present the bar charts for
algorithms that could not reach the target rewards within a reasonable training
period. We obtain both the learning curves and the bar charts by averaging the
results over 50 random seeds. The experiments show that IAC outperforms all
the benchmark algorithms in terms of learning speed.

514 J. Zheng et al.

5.2 Self-comparisons

We evaluate contributions of various IAC components on the overall algorithm
performance. We specify four algorithm levels such that new components are
added at each level and the level 4 corresponds to the full algorithm (see Table 1).
Figure 5 illustrates the average training steps until achieving the target rewards
(over 50 random seeds) for all IAC levels and TD3 as a benchmark. Figure 5
shows that the learning speed progressively improves from level 1 to level 4,
which implies that all IAC components are useful. Note that in the level 1,
conventional clipping operation is performed for the exploration, different from
the level 2. Furthermore, the ReLU activation is used instead of hard-swish at all
levels except for the level 4. Notice that the level 1 and level 2 include the novel
components of IAC whereas the level 3 and level 4 incorporates some existing

Fig. 3. Learning curves: expected return vs. number of training steps.

Table 1. Levels of IAC for self-comparisons

Level Description

L1 Integrated network + Adaptive objective

L2 L1 + Modified exploration strategy

L3 L2 + Target policy smoothing + Spectral normalization

L4 L3 + Hard-swish + Dropout + Adjusting batch size and iteration number

Integrated Actor-Critic for Deep Reinforcement Learning 515

Fig. 4. Comparisons with benchmark algorithms. The bar charts illustrate the mean
and standard deviation of the number of training steps until achieving the target
rewards.

Fig. 5. Self-comparisons. The bar charts illustrate the mean and standard deviation of
the number of training steps until achieving the target rewards.

deep learning techniques. Figure 5 shows that only with the novel components,
IAC still significantly outperforms TD3.

6 Related Work

Parameter sharing is used for multi-task learning in neural networks [19]. In
deep RL, sharing parameters between actor and critic have been discussed for
A3C/A2C [15] and PPO [21] (although the PPO implementation does not share
parameters) such that the network is shared except for the output layers and
the objective function directly adds the actor’s and critic’s objectives, possibly
with an additional entropy term to enable sufficient exploration. In the shared
versions of both A3C/A2C and PPO, actor and critic have the same state input.
In IAC, we propose a new shared network architecture where actor and critic

516 J. Zheng et al.

have different inputs. Moreover, the adaptive objective of IAC is specifically
designed for stable training of the integrated actor-critic network.

Policy gradient algorithms have high sample complexity [6,13]. Deterministic
policy gradient algorithms scale better over high-dimensional action spaces since
the deterministic policy gradient integrates only over the state space whereas the
stochastic policy gradient integrates over both state and action spaces [22]. More-
over, off-policy learning with experience replay enables reusing the past experi-
ence and reduces the sample complexity [13]. IAC further reduces the sample
complexity via reducing the number of parameters, improving the exploration
strategy, and using some recent advances in deep learning, namely the dropout
[24], DenseNet [9], and increasing the batch size during training [23].

TD3 [4] addresses the overestimation of the value function via the clipped dou-
ble Q learning, delayed updates on the policy and target networks, and the target
policy smoothing regularization. Our objective function enables an adaptive ver-
sion of the delayed policy updates in addition to TTUR [7,11] (see Sect. 3.2).
Moreover, we delay updates on the target network adaptively depending on the
critic’s loss (see Algorithm 1). Further, we use a modified target policy smoothing
technique for performance improvement (see Sect. 4.2).

In RL, reward-maximizing actions can be learned more quickly with a better
exploration strategy. SAC [6], PPO [21], and the trust region policy optimization
algorithm (TRPO) [20] use entropy regularization to encourage more exploration.
In A3C/A2C [15], multiple actors explore environment in parallel, each with a
possibly different behavior policy for better exploration. In deterministic policy
gradient algorithms, a stochastic behavior policy is used to ensure sufficient
exploration [4,13]. In IAC, we improve exploration over bounded action spaces
(see Sect. 4.1).

Strong connections between the actor-critic RL and the GANs have been
discussed in [17]. The implication is that techniques used to stabilize and improve
one of them can be useful for the other. In IAC, we use the spectral normalization
that was shown to stabilize the training of GANs [14].

7 Conclusions

We have proposed an off-policy deep deterministic integrated actor-critic algo-
rithm (IAC) based on a shared network architecture and an adaptive objec-
tive function. Sharing the network between actor and critic reduces the overall
number of parameters but brings an additional challenge on the training sta-
bility. The adaptive objective enables a stable training via keeping the policy
unchanged while the value estimation is wrong. We have presented an improved
exploration strategy over bounded action spaces. Moreover, we have incorporated
some recent advances in deep learning, namely the DenseNet, spectral normaliza-
tion, target policy smoothing, dropout, hard-swish activation, and adjustment of
the batch size and iteration number during training, to further improve our algo-
rithm. The experiments have shown that IAC speeds up learning and reduces
the sample complexity significantly over the state-of-the-art deep RL algorithms.

Integrated Actor-Critic for Deep Reinforcement Learning 517

References

1. OpenAI Gym (2021). https://gym.openai.com/
2. Church, A., Lloyd, J., Hadsell, R., Lepora, N.F.: Deep reinforcement learning for

tactile robotics: learning to type on a braille keyboard. IEEE Rob. Autom. Lett.
5(4), 6145–6152 (2020)

3. François-Lavet, V., Henderson, P., Islam, R., Bellemare, M.G., Pineau, J.: An intro-
duction to deep reinforcement learning. Found. Trends®in Mach. Learn. 11(3–4),
219–354 (2018)

4. Fujimoto, S., van Hoof, H., Meger, D.: Addressing function approximation error in
actor-critic methods. arXiv preprint arXiv:1802.09477 (2018)

5. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Informa-
tion Processing Systems, pp. 2672–2680 (2014)

6. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290 (2018)

7. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs
trained by a two time-scale update rule converge to a local Nash equilibrium. In:
Advances in Neural Information Processing Systems, pp. 6626–6637 (2017)

8. Howard, A., et al.: Searching for mobilenetv3. arXiv preprint arXiv:1905.02244
(2019)

9. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017

10. Huber, P.J.: Robust estimation of a location parameter. In: Breakthroughs in Statis-
tics, pp. 492–518. Springer (1992). https://doi.org/10.1007/978-1-4612-4380-9 35

11. Konda, V.R., Tsitsiklis, J.N.: On actor-critic algorithms. SIAM J. Control. Optim.
42(4), 1143–1166 (2003)

12. Kurt, M.N., Ogundijo, O., Li, C., Wang, X.: Online cyber-attack detection in smart
grid: a reinforcement learning approach. IEEE Trans. Smart Grid 10(5), 5174–5185
(2019)

13. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971 (2015)

14. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for
generative adversarial networks. arXiv preprint arXiv:1802.05957 (2018)

15. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: Inter-
national Conference on Machine Learning, pp. 1928–1937 (2016)

16. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529 (2015)

17. Pfau, D., Vinyals, O.: Connecting generative adversarial networks and actor-critic
methods. arXiv preprint arXiv:1610.01945 (2016)

18. Ramachandran, B.Z.P., Le, Q.V.: Searching for activation functions. arXiv preprint
arXiv:1710.05941 (2017)

19. Ruder, S.: An overview of multi-task learning in deep neural networks. arXiv
preprint arXiv:1706.05098 (2017)

20. Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.: Trust region policy
optimization. In: International Conference on Machine Learning, pp. 1889–1897
(2015)

21. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

https://gym.openai.com/
http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1905.02244
https://doi.org/10.1007/978-1-4612-4380-9_35
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1802.05957
http://arxiv.org/abs/1610.01945
http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1707.06347

518 J. Zheng et al.

22. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.: Determin-
istic policy gradient algorithms. In: Proceedings of The 31st International Confer-
ence on Machine Learning, pp. 387–395 (2014)

23. Smith, S.L., Kindermans, P.J., Le, Q.V.: Don’t decay the learning rate, increase
the batch size. In: International Conference on Learning Representations (2018)

24. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

25. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

