
Mitigating Computational Constraints via Adaptive Control and
Resource Allocation Co-design*

Linh Thi Xuan Phan
University of Pennsylvania

Ricardo G. Sanfelice
University of California, Santa Cruz

I. INTRODUCTION AND MOTIVATION

Most engineering systems of today involve physics and
computing systems for their operation. These cyber-physical
systems (CPS) exchange data of different nature (analog, dig-
ital, etc.) and dimension (small data packets, video streams,
etc.) between its components [1], [5]. The resources required
for the processing of the data and for making decisions
change over time. One size fits all type of solutions are not
adequate, as they lead to a costly, oversized system that is
not necessarily tailored to the application at hand.

Many applications of CPS require the control algorithm
to change its behavior to adapt to events in the environment.
A widely adopted paradigm consists of defining differ-
ent modes of operation for the system and the controller
algorithm, and include a decision maker that selects the
suitable mode of operation for the current conditions. In
most cases, the control algorithm used for each mode is
significantly different structurally (e.g., a PID, MPC, or
neural network controller), or uses totally different control
parameters (e.g., adaptive cruise control). As a result of the
changes in the system and control algorithm, the required
platform resources change. Unfortunately, the unavoidable
computational constraints makes adaptive resource allocation
challenging.

To cope with such changes, resources need to be re-
allocated properly to optimize performance and resource
use. A similar situation emerges when the control algorithm
consists of the combination of several controllers. In such
a setting, the decision maker may activate or deactivate
different sub-controllers as the system operates (e.g., on a
highway, pedestrian detection is not typically needed), which
results in different subset of tasks running. Motivated by
these real-world scenarios, designers are typically interested
in using multiple control tasks, deployed on a multicore
platform, and in resources (e.g., CPU, cache, memory, and
memory bandwidth) that can be dynamically adapted. To
materialize such a need, co-design of the controllers and the
decision maker that allocate resources to them is critical to
optimize performance while minimizing resource use.

State-of-the-art research in CPS has considered this prob-
lem to a limited extent. For example, control-platform co-
design methods have been proposed that enable a control
algorithm to change its behavior (e.g., sampling time) based
on the available CPU or network resource. Independently,

*This research is supported in part by NSF grants CNS-1703936, CNS-
1750158, CNS-1955670, ECS-1710621, CNS-1544396 and CNS-2039054,
ONR grant N00014-20-1-2744, AFOSR grants FA9550-19-1-0053, FA9550-
19-1-0169 and FA9550-20-1-0238, and by ARO grant W911NF-20-1-0253.

real-time multi-mode techniques have been developed to en-
sure timing predictability of multi-mode systems. However,
research in these two directions is typically disconnected
from one another, and each focuses exclusively on either
CPU (on a single core platform) or network. None of
the existing work considers shared resources on modern
multicore hardware or heterogeneous architectures.

II. CHALLENGES AND OPPORTUNITIES IN CO-DESIGN OF
ADAPTIVE CONTROL AND RESOURCE ALLOCATION

A. Compositional co-design with control-resource interfaces
An important challenge to control and resource allocation
co-design is complexity. Due to sharing, different controllers
(implemented as tasks) executing concurrently in the system
can substantially interfere with one another and cause dead-
line misses by accessing shared resources, such as cache,
memory and memory bandwidth on a multicore platform.
In addition, different types of resources on a platform are
often interdependent – e.g., the larger the shared cache, the
less the demands on memory bandwidth – and so are their
effects on tasks’ execution. Further, analyzing a system that
dynamically updates its behavior at run time is generally
much more difficult than analyzing a static system. Finally,
while considering the controllers and resource allocation
jointly improves performance and resource optimization, it
also increases the design space and analysis complexity.

One promising approach to addressing this complexity
is through novel adaptive interfaces for compositional co-
design. Such interfaces holistically, and succinctly, capture
the interdependence between the characteristics and resource
needs of the controller, as well as the resource availability
and reconfiguration/reallocation capabilities of the platform.
The interfaces should also enable run-time adaptation –
besides exposing the dynamic nature of the system across
different levels, they should additionally inform feasible run-
time changes to the control behavior and resource alloca-
tion. Based on such an interface, control algorithms and
resource allocation strategies can be concurrently developed
and analyzed, and will later be composed (and potentially
redesigned) in an efficient manner. Prior work on real-
time compositional analysis [3], [7] and assume-guarantee
interfaces [6] should provide a useful first step.

B. Co-synthesis of modes and mode transitions
Our approach to modeling adaptive CPS is by using the
multi-mode formalism [4]. At the high level, the system
operates in multiple modes, where each mode represents
a distinct control behavior and/or resource allocation, and
each mode transition captures triggering conditions for a



new control behavior/strategy or resource reallocation. This
explicit modeling of run-time adaptation via mode transi-
tions is beneficial as it facilitates formal analysis (which is
essential for safety) and systematic exploration of the design
space. A key question here is how to efficiently construct
a mode structure for the system that balances the trade-off
between analysis efficiency, performance, safety guarantee,
and resource optimization.

We observe that the multi-mode abstraction applies at
nearly all levels across the system hierarchy. For instance,
the system may operate in different modes that each consist
of different subsets of control software components, each
control software may switch between different controllers,
each controller may transition between different control
parameters with different resource needs, and the platform
may switch between different configurations in response to
events such as hardware/software failures. Based on this
insight, a potential direction is to use different techniques for
constructing modes and transitions that best suit each level
and compose the results. For this, we anticipate that existing
techniques from an interdisciplinary set of domains could be
adapted—e.g., fault-tolerance techniques can provide a way
for constructing different hardware/software configurations
in response to faults; hybrid control design and learning
methods can be extended to synthesize verifiable controllers
and their switching semantics; and safety assurance and real-
time scheduling techniques can be adapted to derive system-
level modes and transitions.

C. Unified control-resource mode change protocols

During run-time adaptation, as the system changes the con-
trol behavior and resource allocation by moving to a new
mode, it enters a transient stage in which jobs from both
modes co-exist. This co-execution of jobs from old and new
modes may lead to a temporal overload that can cause jobs to
miss their deadlines. Simultaneously, the system may need to
perform transitional activities that add delay, such as saving
and loading state variables for consistency and functional
correctness. Hence, appropriate mechanisms for handling
transient stages, otherwise known as mode change protocols
(MCPs), are crucial to the overall performance and safety of
the system. By enforcing a certain execution behavior of a
mode transition – such as aborting certain jobs, or delaying
the release of new jobs – such protocols minimize potential
overload to avoid timing and safety violations.

MCPs have been studied extensively in the real-time
community; however, prior work focuses exclusively on
timeliness and CPU resource scheduling. There is a need
for novel unified protocols that holistically consider control,
scheduling and resource allocation. Specifically, they should
define mode change actions not only with respect to CPU
scheduling but also for the reallocation of the different shared
resources on modern hardware. Furthermore, they should
tightly integrate the mode switch semantics of the control
algorithm with that of the scheduling and resource allocation.
For example, the switching mechanism between different
controllers needs to account for the mode change actions and

resulting delay at the scheduling and resource allocation in
the implementation layer, and vice versa. To be effective, the
protocols must also be low in run-time overhead. New control
synthesis and mode change analysis techniques will also need
to be developed to ensure safety and control performance
under such unified MCPs.

D. Efficient and safe run-time systems for co-design
Theoretical foundations for adaptive control and resource
allocation co-design aren’t sufficient—they can only realize
their full potential when accompanied by efficient run-time
systems for testing, experimental evaluation, and design
space exploration. Building such a system is particularly
challenging in the presence of run-time adaptation: to au-
tomatically adapt to run-time changes, the system needs to
perform a broad set of scheduling and resource allocation
actions, such as migrate tasks between hardware components,
redeploy tasks (e.g., stop some existing tasks and spawn
some new tasks), update tasks’ parameters, and reconfigure
resource allocations. Such actions need to be done promptly
(i.e., with minimal delay), efficiently (i.e., without incurring
high overhead), and safely (i.e., without breaking control
and timing guarantees). Ideally, the run-time system should
also be expressive (e.g., easier to specify and implement a
broad spectrum of modes and mode transition behaviors)
and support composable co-design (e.g., allows for efficient
construction of a system by composing mode structures and
mode change actions at various levels of granularity). An
interesting direction is to develop OS and hypervisor primi-
tives and resource allocation protocols that optimize run-time
adaptation actions, as well as corresponding overhead-aware
formal analysis. Prior work on run-time systems for multi-
mode virtualization and MCP design [2] can serve as initial
building blocks in this direction.

III. SUMMARY

This abstract envisions a new co-design paradigm for adap-
tive CPS on modern hardware, in which adaptive control
methods and run-time resource allocations are jointly de-
veloped. We have discussed several key challenges and
opportunities, as well as potential directions towards this
vision. If successful, co-design with run-time adaptation
as a first-class citizen will enable more advanced control
capability, optimize resources, improving performance while
guaranteeing safety.

REFERENCES

[1] R. Alur. Principles of cyber-physical systems. MIT press, 2015.
[2] T. Chen and L. T. X. Phan. SafeMC: A system for the design and

evaluation of mode change protocols. In RTAS, 2018.
[3] L. T. X. Phan, I. Lee, and O. Sokolsky. Compositional analysis of

multi-mode systems. In ECRTS, 2010.
[4] L. T. X. Phan, I. Lee, and O. Sokolsky. A semantic framework for

mode change protocols. In RTAS, 2011.
[5] R. G. Sanfelice. Analysis and Design of Cyber-Physical Systems: A

Hybrid Control Systems Approach, pages 3–31. CRC Press, 2015.
[6] H. T.A., M. M., and P. V. Assume-guarantee reasoning for hierarchical

hybrid systems. In HSCC, 2001.
[7] M. Xu, L. T. X. Phan, I. Lee, O. Sokolsky, S. Xi, C. Lu, and

C. Gill. Cache-aware compositional analysis of real-time multicore
virtualization platforms. In RTSS, 2013.


