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Abstract

We study the differentially private Empirical Risk Minimization (ERM) and Stochastic Con-
vex Optimization (SCO) problems for non-smooth convex functions. We get a (nearly) optimal
bound on the excess empirical risk and excess population loss with subquadratic gradient com-
plexity. More precisely, our differentially private algorithm requires O(% + NTz) gradient
queries for optimal excess empirical risk, which is achieved with the help of subsampling and
smoothing the function via convolution. This is the first subquadratic algorithm for the non-
smooth case when d is super constant. As a direct application, using the iterative localization
approach of Feldman et al. [FKT20], we achieve the optimal excess population loss for stochastic
convex optimization problem, with O(min{N>/4d"/8, 1:1[13 //82 1) gradient queries. Our work makes
progress towards resolving a question raised by Bassily et al. [BFGT20], giving first algorithms
for private ERM and SCO with subquadratic steps.

We note that independently Asi et al. [AFKT21] gave other algorithms for private ERM
and SCO with subquadratic steps.
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1 Introduction

Privacy has become an important consideration for learning algorithms dealing with sensitive data.
Over the past decade, differential privacy, introduced in the seminal work of [DMNS06|, has estab-
lished itself as the defacto notion of privacy for machine learning problems. In this paper, we revisit
Empirical Risk Minimization (ERM) and Stochastic Convex Optimization (SCO) problem, which
are one of the most important and simplest problems in statistics and machine learning, in differen-
tial privacy setting. In the ERM problem, we are given a family of convex functions { f(-, z)} zc= over
a closed convex set K C R?, a data set S = {z1,--- ,zy} drawn from some unknown distribution
‘P over the universe =, and the objective is to

~ 1
minimize F(w) = N Z flw,z;) over weK,
T, €S

while in the SCO the objective is to

minimize F(w) := Epf(w,:v) over w € K,
ey

Differentially private convex optimization has been studied extensively for over a decade now
[CMO08, RBHT09, CMS11, KST12, JT14, TTZ14, BST14, TTZ15, KJ16, WLK*17, FTS17, ZZMW17,
WYX17, INST19]. Most of the previous results are focus on DP-ERM and roughly speaking, there
are three major approaches in DP-ERM: output perturbation, objective perturbation, and gradi-
ent perturbation. Output perturbation approach is based on the sensitivity method proposed by
[DMNSO06] and adds noise to the final output to the standard ERM problem [CMO08, RBHT09,
CMS11, ZZMW17]. Objective perturbation [CM08, CMS11, KST12, TTZ14| means to perturb the
objective function we want to minimize. In the gradient perturbation approach, we add noise to the
first order information using optimization algorithms such as Stochastic Gradient Descent (SGD).
This approach was first proposed in [BST14| and was later extended by [TTZ14, WYX17|, and
has lead to the state-of-the-art theoretical bounds for DP-ERM. For an experimental comparison
of various approaches to solving DP-ERM we refer the readers to [RBHT09, INST19].

DP-ERM for smooth convex functions is well understood in the sense that we know (near) linear
time algorithms that achieve optimal excess empirical risk. We refer the readers to [WYX17] for
more details. However, for the more general non-smooth convex loss functions our understanding
is not yet complete, which is the focus of this paper. A summary of the state-of-the-art results and
our contributions for the non-smooth convex loss functions is given in Table 1 (General Convex)
and Table 2 (Strongly Convex). We will discuss the concurrent work [AFKT21]| separately at the
end of the introduction, and the following discussion are only limited to the previous work.

|[KST12] used the objective perturbation method to design a DP-algorithm with O(W}

excess empirical risk. This result was improved significantly by [BST14]|, who first showed a lower
bound of Q(min{GD, G]l\)];/g}) on the excess empirical risk for DP-ERM. Further, they gave an

GDlog? (N/8)\/dlog(1/5)
3 Ne
log2(N/§). Their algorithm is based on a modification of SGD by adding Gaussian noise to the
gradients to make it DP. The privacy analysis proceeds via amplification by sampling and the strong
composition theorem. Roughly speaking, the logarithmic blowup in the excess empirical risk is due
to two reasons: 1) the strong composition theorem requires that at each step one needs to add
Gaussian noise with a larger variance; 2) They used sub-optimal convergence rate O(log T//T) for
T-step SGD.

algorithm with excess empirical risk O( ), which is sub-optimal by a factor of



However, getting the optimal bounds with small gradient complexity for non-smooth case turns
out to be a more difficult problem. This was noted by [WYX17]|, who raised it as an important open
problem. This question was answered in [BFTT19], who gave an algorithm with almost optimal
excess empirical risk. To achieve this, [BFTT19] first consider the smooth case, and give an improved
privacy analysis via the Moments Accountant technique proposed by [ACGT16]|. They extend their
result to non-smooth case by applying Moreau-Yosida envelope technique (a.k.a. Moreau envelope
smoothing) [Nes05| to make the function smooth. However, this technique is computationally
inefficient and leads to O(N*?)-gradient computations for the whole algorithm. This limitation was
overcome in a recent work of [BFGT20] who gave the optimal excess empirical risk guarantee with
O(N?)-gradient computations. The privacy analysis of this result also used Moments Accountant
method, and they used the standard online-to-batch conversion technique [CBCGO04]| to prove the
high-probability bound on the excess empirical error of SGD, which leads to the near optimal bound
in expectation. We remark that all the papers [BFTT19, BEGT20| above not only study the ERM
problem, but also consider more general DP-SCO settings and uniform stability, and in some cases,
results on ERM are byproducts of the more general results.

As we can see from Table 1 and Table 2, all the previously known results (except the concurrent
work [AFKT21]) achieving near optimal excess empirical risk bounds require at least O(N?)-gradient
computations. It is natural to ask if there are lower bounds to rule out algorithms with subquadratic
gradient complexity that can match the error bounds of the above results.

Excess Empirical gradlint
Risk omprexs
ity
GDVdlog(1/5)
[KST12] e N/A
[BST14] GDlogz(N/]g)\/W N2
£
[BFTT19] w N5
£
[BFGT20] w N2
£
[AFKT21] w N2/
£
o 3/2 2
Ours %;5(1/5) 71(\;1 =+ NT

Table 1: Comparisons with previous (e, §)-differential private algorithms when objective function

is G-Lipschitz and convex over a convex set K C R? of diameter D. The results are stated asymp-

GDvd )
Ne

totically and the big O notation is hidden for simplicity. The lower bound is Q(min{GD,
[BST14].

As Table 3 and Table 4 show, a similar situation arises in Stochastic Convex Optimization (SCO),
which is a closely related problem compared to ERM. In the SCO problem, we want to minimize
the objective function F(w) = E,p[f(w,z)] for some unknown distribution P over the universe
=. Many results for SCO [BST14, BFTT19, BFGT20| are directly based on ERM; that is, solving
the ERM and analyzing the generalization error. The first non-trivial result for general convex

C\%Vﬁ + %)) was given by [BST14], who

showed the result by first solving the ERM problem and bounding the generalization error. They
used the result on universal convergence directly, namely, bounding sup,,cx E[F'(w)—F'(w)]. But this

loss functions achieving excess population loss of O (GD(



Excess Empirical g(l;adlef:t
Risk oy
G?dlog(1/6
[KST12] ng%g/) N/A
[BST14] GQIOgQ(N]\/[z;)célog(l/é) N2
uNZ2e
[BFTT19] | Edloe(1/0) N5
puNZ2e
[BFGT20] | Edloe(1/o) N?
uNZ2e
G2dlog(1/5 372
Ours 7;1]\(;%22/) J;[l/s + N d

Table 2: Comparisons with previous (g, §)-differential private algorithms when objective function is
G-Lipschitz and p-strongly convex over a convex set K C R?. The results are stated asymptotically

and the big O notation is hidden for simplicity. The lower bound is Q(min{%?, M%Z‘é }) [BST14].

method has its limitations; For example, [Fel16] showed that lower bound of universal convergence
is Q(y/d/N) for some (not necessarily convex) loss functions. Later, [BFTT19|, [FKT20| and
[BFGT20| obtained near optimal excess population loss with significantly better running times
(gradient complexity). The privacy analysis in these papers relied on recent advances in the privacy
techniques such as the Moments Accountant method [ACG™16], Rényi differential privacy (RDP)
[Mir17] and the Privacy Amplification by Iteration [FMTT18| and other fast stochastic convex
optimization algorithms such as [JNN19]. The excess population loss bound in most of these works
followed by solving a (phased) convex (regularized) ERM problem and then appealing to the uniform
stability property [HRS16| or the iterative localization approach [FKT20] to do the generalization
error analysis.

Excess Population Loss Gradient Complexity
[BST14] GD( /41;%(77,/5) N dl/zlojg\;[s(n/é))) N2
[BFTTlg] (T 4 \/dlog (1/9) ) N4.5
[FKT20] GD( K + \/dlog (1/2)y N21log(1/6)
[BEGT20] | GD(L + \/dlog Vdlos(1/3), N2
[AFKT21] GD(T + \/dlog 1/6)) min{N3/2,N2/ﬁ}
Ours GD(T n \/dlog 1/5)) min{ N5/4d1/8, N3/2/q1/8)

Table 3: Comparisons with previous (g, §)-differential private algorithms when objective function is
G-Lipschitz and convex over a convex set I C R The results are stated asymptotically and the

big O notation is hidden for simplicity. The lower bound is Q(GD(\;—N + ]\/f—g)) [BST14].

Despite these impressive improvements, as the Table 3 and Table 4 suggest, the previous algo-
rithms (except the concurrent work [AFKT21]) which achieve the optimal excess population loss
still require O(N?)-gradient computations. Indeed, [BFGT20] write that



Excess Population Loss Gradient Complexity
[BETT19] | & (4 + T80 N5
[FKT20] | & (L + 250 N?log(1/5)
2
[BEGT20] | & (L + L5l N?
[AFKT21] | & (1 + TRel[o) min{N*/?, N?/v/d}
Ours %Q(J{[ + dhj)\%(;‘s)) min{ N°/4q/8 N3/2 /q1/8}

Table 4: Comparisons with previous (g, d)-differential private algorithms when objective function is
G-Lipschitz and p-strongly convex over a convex set K C R?. The results are stated asymptotically

and the big O notation is hidden for simplicity. The lower bound is €( %2(% + dl?\%(;/ 6))) [BST14].

“ Proving that quadratic running time is necessary for general non-smooth DP-SCO 1is
a very interesting open problem... ”

Understanding if the lower bound is the right answer to the above questions or one can design
algorithms with subquadratic gradient complexity is the main motivation that spurred our work.

1.1 Owur Contributions

Given the close connections between the ERM and SCO problems and the bottleneck on gradient
complexity of all known algorithms, it is natural to ask if the open question raised in [BFGT20] also
holds for the ERM problem. As noted earlier, the state-of-art algorithms for DP-ERM achieving
optimal excess empirical risk bounds require O(N?)-gradient computations.

The main contribution of this paper is to show that we can obtain subquadratic gradient com-
plexity bound for ERM when the dimension is super constant. In particular, for the important
regime of over-parameterization (d > N), we achieve a bound of N 14+3/8  Combining our private
ERM algorithm and the iterative localization approach proposed in [FKT20], we can achieve optimal

3
excess population loss with gradient complexity O(N + min{ﬁN5/4d1/8, WM}).

Let K, = {y |y = w+ z,w € K,z € R |z], < r}. We now state the main technical
contributions of this paper formally.

Theorem 1.1 (DP-ERM). Suppose K C R? is a closed convex set of diameter D and {f(-,2)}ze=

is a family of G-Lipschitz and convex functions over IC,, where r = %}5(1/6) I Fore,d <1/2,
given any sample set S consists of N samples from 2 and arbitrary initial point wg € IC, we have a

(e,9)-differentially private algorithm A which takes

eN2 N e2N?
d'/810g*(1/85)  dlog(1/9)

gradient queries and outputs wr such that

. ~ [ GD\/dlog(1/6)
E[F(WT)—F]—O< N >,

'We only need consider the non-trivial case when 7”(“2‘%]\,(1/6) < 1, or any feasible solution is good enough. This
means that » = O(D), which is a mild assumption.



where D = ||w* — woll2, F(w) = + D oees f(w,xi),ﬁ* = mingex ﬁ(w), and the expectation is taken
over the randommness of the algorithm.

Moreover, if { f(-, x) }zez is also p-strongly convex functions over IC,., we have an (g, §)-differentially
private algorithm which takes the same bound of gradient queries and outputs wr such that

~ ~ 2d1o
E[F(wr) — B = O (G ‘i;%&/ 5)> .

As we have mentioned, combining our private ERM algorithm with the iterative localization
technique, we can also give the first algorithm achieving optimal excess population loss with (strictly)
sub-quadratic steps for all dimensions:

Theorem 1.2 (DP-SCO). Suppose £,6 < 1/2 and sample set S consists of N samples drawn i.i.d
from a distribution P over Z. Let {f(-,x)}zez is conver and G-Lipschitz with respect to ly norm

D+/dlog(1/5)

and convex over IC,., where r = N , there is an (e, d)-differentially private algorithm which
takes

€N3/2

O(N + min €N5/4d1/8,
( tve d'/81og'/4(1/6)

1)
gradient queries to get a solution wr

1 \/dlog(1/90)
E[F — F(w"] =0(GD .
[F(wr) = F(w")] = O( (\/NJr Ne )
Moreover, if {f(-,x)}zez is also u-strongly convex over K, we can meet the same gradient query
complexity and get a solution wr such that:

2 O
E[F(wr) — F(w)] = O <G dlog(1/0) | 1 )) .

u( e2N? TN

Finally, we note that our results can also capture the regularized ERM and SCO, which shows up
often in the previous work such as [RBHT09, KST12, WYX17, INST19]. Briefly, in the regularized
problem, there is one more simple (and convex) function h(w) added to the objective function
to encourage certain solutions with better structure. The objective function then takes the form
+3 sies [ (W, i) +h(w). We get asymptotically same results for the regularized ERM/SCO problem
with straightforward modifications.

1.2 Our Techniques

Most of the previous works [BST14, BFTT19, BFGT20] that achieve near optimal bounds for ERM
and SCO are based on adaptations of SGD to make it differentially private. The information
theoretic lower bound of Q(1/v/T) for T-step SGD may be one of the important reasons why we
can not get subquadratic gradient complexity for non-smooth convex ERM easily. Consider the
algorithm in [BFGT20| as an example. It needs to add Gaussian noise v ~ N(0,0214x4) with

o’ = % to each gradient. By a standard analysis of SGD, we can only show an excess
empirical risk of ©(2Y22) which requires us to set T = Q(N?) to get ideal bound, thus hitting

VT
the quadratic barrier.

We deviate from the above approaches for designing private algorithms for non-smooth functions.
eN 3 + e2N?
d/8log/4(1/8) ' dlog(1/6

First notice that the gradient complexity O( )) in Theorem 1.1 is the same

6



for both strongly convex and general non-smooth functions; same holds for DP-SCO. This is not
a coincidence; If we can achieve optimal empirical risk (population loss) for one case, then we can
achieve optimal empirical risk (population loss) for another with the same privacy guarantee and
gradient complexity. In fact, the Figure 1 shows the relationship among these different problems.

Lemma 4.10
(private) ERM: convex ———————— strongly convex

Lemma 4.7

Theorem 5.1
Lemma 4.10
(private) SCO: convex ——————— strongly convex
Lemma 5.5

Figure 1: Reductions between ERM and SCO for general convex and strongly convex cases. As the

lower bound of excess population loss is Q(GD(\}—N + Nig)) while the lower bound of empirical risk

is Q(G%‘/a), we do not know how to reduce from ERM to SCO.

£

Our result for the general convex non-smooth case is obtained by providing a reduction to
the strongly convex non-smooth case. Thus, our task becomes designing better algorithms for
the strongly convex non-smooth functions. Rather than using SGD, we let the objective function
take convolution with a sphere kernel to make it smooth. We then use the accelerated stochastic
approximation algorithm in [GL12| for solving strongly convex stochastic optimization problems.
However, this is not enough, as the required noise that needs to be added to the gradients to make
the algorithm private is too large to get subquadratic gradient complexity, even if we use the tighter
Moments Accountant technique [ACG*16]. We overcome this by increasing the batch size to an
appropriate value. Combining these ideas together, we show that the amount of noise we add can
be reduced to achieve the optimal excess empirical loss, and we get the gradient complexity of
O(max{N?/2/d'/3 N?/d}).

For SCO, we get the gradient complexity of O(min{N®/4d'/® N3/2/d'/3}) via a direct appli-
cation of the iterative localization approach of Feldman et al [BFGT20|. The intuition behind
iterative localization is using private ERM to solve regularized objective functions which have low
sensitivity, iteration by iteration. Each iteration reduces the distance to an approximate minimizer
by a multiplicative factor, so after logarithmic number of phases we are done.

1.3 Concurrent and Independent Work

In an independent and concurrent work, [AFKT21] give a new analysis of private regularized mirror
descent to do the private ERM. Then they combine the iterative localization approach to achieve the
optimal excess population loss for SCO. Their result also achieves subquaratic gradient complexity.
More formally, they get O <logN - min (N 3/2,/logd, N?/ \/ﬁ)) for SCO in query complexity. We
compare their gradient complexity with ours in Figure 2. Finally, we remark that the main motiva-
tion of [AFKT21| was to study SCO problem in more general £, norms as much of the literature has

focussed on the fo-norm. They also give news results in £,-bounded domain together with another
concurrent work [BGN21].
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Figure 2: Comparison among our results, the recent result in [AFKT21| and the previous best one

for the non-trivial regime (d < N?). Suppose ¢, are small constants. Our result is faster for the
important case d < N1t1/3,

Road map

We will give some basic definitions and theorems about convex optimization and differential privacy
in Section 2. In Section 3, we give a general algorithm framework for private convex optimization.
The results of DP-ERM are given in Section 4 and the results of DP-SCO are shown in Section 5.
Some technical proofs are left in Appendix A.

2 Preliminaries

In this section, we briefly recall some of the main definitions we use from the convex optimization
theory and differential privacy. We refer the readers to excellent books [Nes05, DR14| for more
details on these topics.

2.1 Convex Optimization

Definition 2.1 (Empirical risk minimization, Stochastic Convex Optimization). Let K C R? be a
closed convex set of diameter D. Given a family of convex loss functions {f(w,x)}zez of w over
K and a set of samples S = {1, -+ ,x,} over the universe =, the objective of Empirical Risk
Minimization (ERM) is to minimize

F)= 5 3 flw.m).

;€S

The excess empirical loss with respect to a solution w is defined by ﬁ(w) — ﬁ*, where F* =
mingei F(w).

Stochastic Convex Optimization (SCO) wants to output a solution w to minimize the ex-
pected loss (also referred to population loss) F(w) — F* where F(w) = E[z ~ P]f(w,z) and
F* = mingex F(w).

Definition 2.2 (L-Lipschitz Continuity). A function f : K — R is L-Lipschitz continuous over the
domain K C R? if the following holds for all w,w’ € K : |f(w) — f(w')| < L|jw — &'||2.

Definition 2.3 ($-Smoothness). A function f : K — R is -smooth over the domain K C R? if for
all w,w' € K, [[Vf(w) = Vf(w)ll2 < Bllw — o[l2.



Definition 2.4 (u-Strongly convex). A differentiable function f : K — R is called strongly convex
with parameter p > 0 if the following inequality holds for all points w,w’ € K,

(Vf(w) = VfW),w—w) > plw—o|3.

Equivalently,
F@) > fw) + V(W) (W —w)+ 5l - wll3.

2.2 Differential Privacy

Definition 2.5 (Differential privacy). A randomized mechanism M is (g, 0)-differentially private if
for any event O € Range(M) and for any neighboring databases that differ in a single data element,
one has

PrIM(S) € O] < exp(e) PrIM(S') € O] + 6.

Lemma 2.6 (Proposition 2.1 in [DR14]). (Post-Processing) Let M : NEI - R be a randomized
algorithm that is (g, d)-differentially private. Let f : R — R’ be an arbitrary randomized mapping.
Then fo M : NIEl 5 R is (e, 0)-differentally private.

Theorem 2.7 (Basic Composition). Let M; : NI=l — R; be (e;,6;)-differentially private. Then if
mechanism M : NI*l — Hle Ri is defined to be My (z) = (Mi(z),..., Mg(x)), then My is

(Zle iy Zle d;)-differentially private.

3 A Meta Algorithm for DP Convex Optimization

Many convex optimization algorithms with noisy first-order information have the following simple
format.

Algorithm 1: Meta Algorithm META

1 Input: The objective convex function F'(w) we want to minimize, an initial point wy.
2 Process: for phasest=1,---, do

3 Get the noisy gradient Gy ~ VF (w;—1);

4 Update the result by some sub-procedure: w; <— Sub-procedure(w;—1, G¢);

5 end

6 Output: Some function of {w;}i>1.

We can use the above algorithmic framework to solve ERM privately. Specifically, we make two
simple modifications to make it private. First, we compute gradients over a uniform sample of some
size B. Next, we add a carefully calibrated Gaussian noise to these gradients and take average, before
updating our results. This gives us a meta differentially private algorithm for convex optimization
problems, and is described in Algorithm 2. The DP analysis then follows from a careful accounting
of the privacy budget lost in each iteration, and the bound on excess empirical risk comes from the



property of the optimization algorithm.
Algorithm 2: Private Meta Algorithm METApp

1 Input: Sample set S = {x1,--- ,zn}, the objective convex function F(w) we want to
minimize, the initial point wy, and privacy parameter ¢, J;
2 Process: for phasest=1,---,1 do
3 Select a random sample set S; from the uniform distribution over all subsets of S of size
B.

4 Let Gy = (ZmiESt Vf(wi_1,2;) +v)/B, where v ~ N(0,0213x4q);

5 Update the result by some sub-procedure w; <— Sub-procedure(w;—1, Gy);
6 end

7 Output: Some function of {w;}i>1.

The above framework is a sub-sampled Gaussian mechanism, for which we can use tCDP pro-
posed in [BDRS18] to analyze its privacy guarantee. As this is a direct application of the main
result in [BDRS18|, we leave the proof of the following theorem in the Appendix.

Theorem 3.1. Suppose {f(-,x)}rez is a family of G-Lipschitz and convez functions over K, for

€ < c1B?T/N% B < N/10 and 1/2 > 6 > 0, by setting o = 2GByTlog(1/0) W for some constant cq
and co, METApp is (g,0)-differential private.

4 Differentially Private ERM

In this section, we present private algorithms achieving the optimal excess empirical loss with
subquadratic gradient complexity when the dimension is super constant. We consider non-smooth
strongly-convex functions first, and then show how to reduce the general non-smooth case to the
strongly-convex case in the last subsection.

4.1 Non-smooth Strongly-convex Functions

We use the framework introduced in Section 3 and give a faster private algorithm. Specifically, we
modify a stochastic convex optimization algorithm in [GL12] to fit into our framework. First we
recall some properties of that algorithm.

Suppose f: K — R is a convex function, and the objective is to get

U= min{¥(w) = f(w) + hw)},

where K is a closed convex set and h(w) is a simple convex function with known structure.
Theorem 4.1 (Proposition 9 in [GL12|). If the following conditions are met:
o For some L >0,M >0 and u > 0,

By~ wl < $) — F(@) ~ lo(@)y ) < &

where g(w) € 0f(w) and Of (w) denotes the sub-differential of f at w.

ly — w3+ Mlly — w2, Vw,y €K,

e For each call of the stochastic oracle G with the input wy € K, the stochastic oracle G can
output an independent vector G(wy) such that E[G(wy)] € Of (wy).

e Foranyt>1 and w € K, E[||G(wi) — g(we)||3] < V.

10



Then after T iterations, Algorithm 3 given below outputs wr such that

I L x||2 M2
E[\IJ((.UT) - \I/*] < O( HWO w HQ + +V> ’

T2 uT

where w* = arg min,cxc ¥(w) and ¥* = U(w*).

Algorithm 3: Accelerated stochastic approximation (AC-SA) algorithm

1 Input: Initial point wg € K.

2 Initialization: Set the initial point wg? = wo;

3 Set the step-size parameters a; = t% and v, = t(ffl);
4 Process:

5 fort=1,---,7T do

md _ (1—at)(pte), ag at[(1—ou) ptye] .

6 | Letw™ = it (—afu Y1 T T et WL

7 Query Oracle G; = G(w™);

8 | Let w = argmingex{a[(Gr,w) + h(w) + pllwi — wl3] + [(1 — ar)p + 7] lwi1 — w3}
9 wy? = gy + (1 — a)w;?y;
10 end
11 Return: w7’

T -

4.1.1 Smoothing function

From the statement of Theorem 4.1, it is clear that the Algorithm 3 gives much better convergence
rates for smooth functions. As we are considering non-smooth functions, we need an efficient way
to smooth the objective function without introducing too much error. In the next few paragraphs,
we show how to achieve that.

Recall that D denotes the diameter of the closed convex set K C R?. Suppose {f(-,z)}zez is
a family of G-Lipschitz and p-strongly convex functions over /. This implies that for any sample
set .S, the empirical loss function F (w) we consider is G-Lipschitz and u-strongly convex over the
domain .

We do a convolution on f(-, x), which is denoted by f(-, ) *mn,. The objective function after the
convolution step becomes F), (w) = + > eie5 By~n, f(w+y,xi), where n; is the uniform density on
the /3 ball of radius r. By Lemma 7 and Lemma 8 in [YNS12| while the forth result on forth item
was supplemented by Lemma E.2 in [DBW12], we know the claim below.

Claim 4.2. Suppose {f(-,x)}rez is conver and G-Lipschitz over K + Bg(0,7). For w € K, ﬁm (w)
has following properties:

o F(w) < F, (w) < F(w) + Gr;

~

o F, (w) is G-Lipschitz;
o F, (w)is GT\/a—Smooth;
e For random variables y ~ n, and x uniformly from S, one has
EIVf(w+y,2)] = VE, @)
and

E[|VFy, (@) = V(@ +y,2)[3] < G

11



Furthermore, the convolution operation preserves strong convexity, which implies the fact below.

Fact 4.3. Let n, be the uniform density on the {5 ball of radius r, and f : K — R be a u-strongly
convex function over IC,. Then Eyp, f(y+ -) is p-strongly convex over K.

4.1.2 Algorithm

Now we state the our modifications to make AC—SA private and prove its properties. Recall that
y ~ n, is a d-dimension vector drawn from the uniform density on the ¢5 ball of radius r. We start
with the description of our algorithm.

Algorithm 4: Private AC—SA

1 Input: A convex set K with diameter D, a family {f(-, ;) }ic;n] of G-Lipschitz and
pu-strongly convex functions over IC, an initial point wg € K, privacy parameters ¢, d, the

batch size B, and the number of steps 7.

D GB+/Tlog(1/6)
2 Setr%m anda%@(T)

3 Run the AC—SA with the Oracle G defined below;
4 Return: The output of AC—SA

)

5 Oracle G(w):
6 Select a random sample set .S; from the uniform distribution over all subsets of .S of size B.
7 Return: (inest Of (w+y,z;) +v)/B, where y ~ n, and v ~ N (0, gQIdXd).

4.1.3 Utility and Privacy

It is not hard to show that Private AC—SA (Algorithm 4) is an instance of METApp (see Section 3),
so we have the following guarantee directly by Theorem 3.1.

Lemma 4.4. Fore < ¢;B*T/N?,6 <1/2,B < N/10 and o = ©2GByTlog(1/9) VETNlOg(l/(S) where ¢ < 1,¢0 >1
are constants, Private AC—SA is (e,)-DP.

Now we consider the accuracy of Private AC—SA.

Lemma 4.5. Under the assumptions defined in Algorithm Private AC—SA, after T iterations, it
outputs wr such that

~ ~, G?/B +¢%d/B*> GDd'*
E[F(wT)—F]—O< T +— :

where w* = arg min,,ex ﬁ(w), and F* = min,, ﬁ(w)
Proof. By Claim 4.2, we know that ﬁnr is G-Lipschitz and GT‘/E—smooth. Furthermore, by Fact 4.3,
we know that F),, is p-strongly convex. For any tth iteration, one has that E[G,] = VE, (w/d)

and E[||G; — VE,, (w")|2] < G2/B + 02d/B2. Then by Theorem 4.1 with M =0, = GY4 v —
G?/B + o%d/B?, we get

~ oA G?/B + 0%d/B*> GD*/d
E[Fy, (wr) — min £, (w)] = O < T T 7, |

12



~

Next, by the first bullet of Claim 4.2, we know that ﬁ(w) < Fp,(w) < ﬁ(w) + Gr for any w.
Combining these together, we get

E[F(wr) — F(w")]
=E[F(wr) — Fp, (w N+Eﬁ%wﬂ—mmﬂmm+wyﬁAw—ﬁWﬂ
GWB+HWB2 GD?*\/d

<2Gr+0O .
<2Gr + O( T T2, )
By setting r = D#M, we completes the proof. O

Before stating the main result of this section, we prove two technical lemmas that can remove
the dependence on the diameter term. Lemma 4.6 below is used to prove Lemma 4.7.

Lemma 4.6. Consider a sequence x1,23,---. Suppose 0 < x1 <n and 0 < 2541 < \/x; + 1, then
for k > [loglogn], one has that xj, < 16.

Proof. Without loss of generality, let x;11 = \/z; + 1.

We construct another sequence yi,- -+, yg such that y; = x1 and y;11 = 2,/y;. Then by induc-
tion, it is easy to prove that for each i € [k], y; > x;. So we only need to prove that y; < 16.

Let z; = logy 4, then one has z;11 = 2;/2 + 1. Obviously, we know that z; = 271 (2 — 2) + 2
and zp < 4, which means that z; < y; < 16. O

G2%dlog(1/6)

PERE ) while for the general

Recall that the lower bound of strongly convex case is Q( : 4

case is Q(GD + %(1/5)). Therefore, we only need to think about the case when leQg](\% 9 < 1,

or the bound will be trivial. The following lemma says if we can achieve sum of these two lower
bounds for strongly-convex case, then we can achieve the optimal bound for the strongly-convex
case, which implies we can reduce the Strongly-Convex Case to General Convex Case.

Lemma 4.7 (Reduction to General Convex Case). Given Fis G-Lipschitz and p-strongly convez.
Suppose for any €,0 < 1/2, we have an (e, d)-differentially private algorithm A which takes wy as
the initial start point and outputs a solution wr such that

B[F(wr) - F*] = O <G2d10g o) | GDyATe1]T) )

2 N2

where w* = argmingex F(w) and D = |lwo — w*||2. Then by taking A as sub-procedure with some
modifications on parameters, we can get an (g, d)-differentially private solution with excess empirical
loss at most

~ ~ 2 o)
EW@@—FW:O(GZ;%yﬁ)

Furthermore, if A uses g(N,e,8) many gradients, the new algorithm uses Y5, g(N,e/2',6/2")
many gradients.

Remark 4.8. All algorithms in this paper uses less gradients if € and ¢ are smaller. So, the new
algorithm uses essentially as much as the given algorithm.

13



Proof. Repeat the private algorithm A for k& = [loglog N3] times. For the ith repetition, we
start from the output of the last repetition and use A as a sub-procedure with privacy parameter
g; = ¢/281=% and §; = §/2*+17%. (Note that the noise is decreasing so that the last step gives the

best solution). We show that the last output has excess empirical risk at most O (M)

ue2 N2
More specifically, let w; be the output of the ith repetition, A; = — E[F(w;) — F*] and D? =
E[|lw; — w*||?]. As the objective function F is p-strongly convex, we know that suD? < A, for all
1> 0.

By the guarantee of the algorithm, there exists some constant ¢ > 1 such that
Aiy1 =E[F(wit1) — F7]

GD \/dlog 1/6;) G2dlog (1/6;)

pei N2
< G dlog(l/(si) 2A; n E;
¢ =
- eiN H c’
where we define F; = 2 2%(12/6)-
pe; N
As E;/F;jj = %ﬁf& < 8, we can rearrange the above function and get
JAVES < VAE + &
64EZ‘+1 - 64Ei+1
< T [2id
64Ei+1 Ez c
A;
1.
64L; +

By strong convexity one has that Ay < G?/u, and E; = Q(G?log® N/(uN?)) = Q(G?/(uN?3))
by the definition, so A;/E; < N3. Then by Lemma 4.6, after k = [loglog N3] repetitions, we get

6?& < 16. This further implies that there is a solution with expected error

~ G?dlog(1/9)
E[F(wg) — F*] = O(w)
The privacy guarantee comes directly from the basic composition theorem (See Theorem 2.7). [

We did not optimize constants in the calculations above. Now we are ready to state the main
result for the strongly-convex case.

Theorem 4.9 (Strongly Convex Case for Theorem 1.1). Suppose K C R? is a closed convex set
of diameter D and {f(-,x)}ze= is a family of G-Lipschitz and p-strongly convex functions over

K, where r = Diw'lsl})\}g(l/é). For e,0 < 1/2, given any sample set S consists of N samples from =

and arbitmry initial point wy € K, we have an (g,0)-differentially private algorithm A which takes

( 5N2 4 e2N?
d/81ogt/%(1/8) ' dlog(1/9)

) gradient queries and outputs wr such that

~ ~ 2 lo)
B{F(r) - 7= 0 (LG,

where ﬁ(w) =% Yoeies f(w, i), F* = mingex ﬁ(w), and the expectation is taken over the random-
ness of the algorithm itself.

14



Proof. By Lemma 4.5, the output w of Private AC—SA satisfies

. N G2 | o%d 1/4
E[F(w)—F*]:O(B ~ | GDd )

wl T

@G%@ and T = [— 100N

By setting o = c1d1/44/log(1/6)

1 (1, co are defined in Lemma 4.4), one

has
~ ~ G?  GZ%dlog(1/6) GDdY*
E[F(w) — F*] =

{ (UJ) ] 0 (/LBT + M62N2 T
_0 G? n G?dlog(1/9) GD\/dlog 1/6)
N uBT pe2 N2

. . 2772 .
To ensure that Private AC—SA is (g,0)-DP, we set B = [ ECJIV; + WW By our choice

of T, we have B < N/10 and ¢ < ¢; B?T/N?. Hence, we can apply Lemma 4.4 to conclude the
guarantee of (g,0) differential privacy.
Furthermore, we get a solution w such that

Mﬁm—ﬁﬂ:oCyﬂﬁﬂé GD%MgUé)

pue2 N2

As for the total gradient complexity of our algorithm, we are under the assumption that

dlog(1/5) eN 1/4 _ 100eN — eN
—nz~ < 1, which means that v log(l/a) >d'/% and T = [cwll/‘*\/bgil/tﬂ = @(d1/4 log(1/5))’
As for the batch size, we know /<= = ﬁ = w(1) and thus B = [/ 55 NPy le;]lVZ;

O(y/ =7 eN? dlog(l / 5)T from which we get the gradient complexity is

3
eN? e2N?
BT =0 + .
<dl/8 log/*(1/6) leg(1/5)>

By Lemma 4.7 we can adjust Private AC—SA and get a final solution wr such that

~ ~ 2 lo)
BfF(r) - 71 = 0 (L8,

. . . loglog N3 (¢/2¢)N3/? (e/20)2N%\ _ N3 e2 N2
with gradient complexity ©(> ;7% 4175 10g/3(2/5) dlog(Qi/(;)) (d1/8 l§g1/4(1/6) + dlog(l/é))

which completes the proof.
4.2 General Non-smooth Convex Functions

In the general non-smooth case, we only assume that the family of functions {f(-,x)},ez is G-
Lipschitz and convex over K. We now give a reduction from this case to the strongly-convex case,
which completes our second main result.

Lemma 4.10. Suppose K C R? is a convex set of diameter D and let {f(-,z)}ze= be a family of
conver functions over IC, which are G-Lipschitz and p-strongly convex. Given any sample set S

15



consists of N samples from Z and other necessary inputs, suppose we have a (,6)-DP algorithm A
which can output a solution wp such that

~ ~ 2 0
BfF(r) - 71 = 0 (L),

where F* = mingex F(w).
Then when {h(-,z)}re= is only G-Lipschitz and convex with necessary inputs, for any sample
set S of size N, we also have a (g,0)-DP algorithm A" which can get a solution wr such that

_ _(aD\/dog(1)5)
E[H(wT)—H]_O< S >

where ﬁ(w) = % > wies P(w, Ti), H* = mingex H(w). The gradient complexity and privacy guaran-
tee of A and A" are the same.
Moreover, the reduction also holds in the context of SCO.

Proof. We only consider this lemma in the context of ERM, as we can use the nearly the same
argument for SCO.

The proof of this reduction is rather simple: After getting {h(-, z;)}+,cs, we only need to consider
hy(w, ) = h(w, ) + ullw||?. Then hy(-, ) is u-strongly convex and O(G + uD)-Lipschitz for any =
with ||z]|2 < 2D.

For the case uD < G, we run A on {hy(-, z;) }z,es to get a solution wyr with loss

G2dlog(1 /5))

E[H,(wr) — H}] = O < P

where H, (w) = % ines h(w, x;)+uljw|/? and H} = mingyex Hy(w). Now by setting u = © (G%lg%l/a))

one has

G?dlog(1/6) 9

—_— D
ue2 N2 tu

(GD\/dlog(l/(S))
=0 eN '

E[H(wr) — H] =0 <

For the case uD > G, we have GDy/dlog(1/9) W > (GD and hence we can simply output the initial
point wg as the solution with a loss no more than GD. 0l

The above reduction completes the main result of this subsection.

Theorem 4.11 (General Convex Case for Theorem 1.1). Suppose K C R? is a convex set of diameter

Dy/dlog(1/6)

D and { f(-,z)}zez is a family of G-Lipschitz and conver functions over KC; where r = ——x——.
For e,6 < 1/2, given any sample set S consists of N samples from = and arbitrary initial point

3
wo € IC, we have a (g, 6)-differentially private algorithm A which takes O <d1/8 125/24(1/6) + dleg](\f/é)

gradient queries and outputs wr such that

~ ~, GD+/dlog(1/6)
E[F(wT)—F]=O< N >

where F* = ming,ex F\(w), and the expectation is taken over the randomness of the algorithm.
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5 Differentially Private SCO

In this section we study SCO. We can use the iterative localization technique in [FKT20] to reduce
the SCO problem to an ERM problem. More specifically, if we can solve private ERM and get
a (nearly) optimal empirical loss, then we can solve private SCO with (nearly) optimal excess
population loss with the following algorithm framework (Algorithm 5). See Theorem 5.1 for the
corresponding formal statement.

Algorithm 5: Iterative Localized Algorithm Framework A’

1 Input: A family of G-Lipschitz and p-strongly convex function f : K x = — R, initial

point wy € K and privacy parameter ¢, §.

Process: Set k = [log N7;

fori=1,---,k do

Set g; = /2%, N; = N /2%, m; = n/2%;

Apply (g;,6;)-DP ERM algorithm A, 5, over K; = {w € K : ||w — wi—1|ly, < 2Gn;N;}
with the function Fj(w) = N% >jes; flw zj) + ﬁ”w — wj_1]|? where S; consists of N;
samples with replacement from P;

6 Let w; be the output of the ERM algorithm;

7 end

8 Return: The final iterate wy;

Theorem 5.1. Suppose we have an algorithm A whzch can solve ERM under strongly convex case
and gets a solution with excess empirical loss O( ) by using g(N') many gradients, then we have
an algorithm A’ which can solve SCO under geneml case and gets a solution with excess population
loss O(9R) by using Zlﬂzolgm g(N/2%) many gradients.

VN
Moreover, fore, 6 <1/2,if A5 is (g, 0)-differentially private with excess empirical loss O(%Q(%—i—
dlggg](\%d))) under the strongly convez case by using g(N,e,0) many gradients, then we can get (£,0)-

\/dlog(l/é)))

differentially private A" with excess population loss O(GD(\F + by querying gradients
at most y ;Y [log V] g(N/2% ¢/2¢,5/2%) times.

We only prove the bound with privacy guarantee, as the (non-private) bound can be proved
with similar argument. Two technical lemmas will be proved at first, after which we will complete
the proof.

Lemma 5.2. Let &; = arg ming,cx E(w), then

GPn?dlog(1/6)
2

Ef|jw; — @;]l3] < O( + G2 N;).

%

Proof. At first, we prove that @; € K;. The definition of @; implies that

1 1 1
. 2
i < ).
¥ EZ (@i, x5) 77iNi 1@ — wi—1|l5 < N, ]Elf(wz 1,%5)
Then we know that

@5 — wi1]l3 < G@; — wi—1ll2,

nlNZ
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which implies @; € K;.
Next, note that F; is A\; = ﬁ-s‘crongly convex, by the guarantee of our ERM algorithm, we
know that

by . ~ ~
5 Ell|e; — wil[3] <E[F(@) — Fy(w:)]
Grdlos(1/5) | G*

G?nidlog(1/6;)
EZZNZ

<O(

ZO( + G2m),

which implies

G*ndlog(1/6;)
2

E[||@; — will3] < O( + G2 N;).

2

Lemma 5.3. For any y € K, we know that

mn@ww@ﬂsmwgiwﬁ+om%ﬂ

Proof. Let r(w,z) = f(w,z) + ﬁ“w —wi—1|3, R(w) = Epupr(w,x) and y* = argmingex R(w).
By Theorem 6 in [SSSSS09|, one has that

~ (e Lo o 2 B 2
EIR(@) ~ R(y)] =EIF@) + —= 3~ wina | = F&) ~ —lly = wi ]
<E[R(@;) — R(y")]
SO(GQTIZ)a
which implies that
E[F(®;) — F(y)] <O(G?*n;) — E[|@; — wi1|? Ellly — wi_1||?
(F(@) ~ F)] 0(G%n) ~ = B{J: — win | + = Elly — wina |
2 1 2
<O(G"mi) + N Ellly — wi—1]l3]-

Having these two lemmas, we can begin the proof.

Proof of Theorem 5.1. The privacy guarantee comes directly from the basic composition theorem
(See Theorem 2.7).

Let Sl = {LUj}N_N/Qi—lstN_N/Qi. Let Nl == N/Qz,&‘i == 5/22752' = (5/2Z and N, = 7’]/251 where n
will be defined soon. For i € [k], let Fj(w) = > f(w,mj) + ﬁ“w —wi_1]3.

Let &y = w*, we have
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First, Lemma 5.2 implies that

E[F(wy) — F(@r)] <O(Gy/Ellwy — @k |13])
<O(G2ﬁk\/dlog(1/5k) + G/ NR)

< -
:O(GQn\/dlog(N/é) N Gzn)’

eN3 N4

which is negligible.
Then one has

. . . E[l|@i—1 — wi1l3] 2
Y E[F(@) - F(@i-1)] < Z N, +O(G™m)

i=1 =1

k

D? 9 Gdelog(l/cSi) 9
<O(=— = 895\ 1/ %) .
_O(HN +nG* + ;:2( 2N, +G*n;))

D? 2ndlog(1/8

Y e?N )

By setting n = g . min{ﬁ, \/ﬁm}, we get the excess population loss:

B[ (@) — Plu)] = 0(GD(— + YR

As for the gradient complexity, as we use g(Ny, &;, d;) queries of gradients in i-th iteration, the total
gradient complexity is Zle g(Ni, €i,0;) as claimed. O

Note that Theorem 5.1 allows the ERM algorithm has an extra G?/(uN) loss. This allows us
to design a faster ERM algorithm compared Theorem 4.9 by choosing a different set of parameters.

Lemma 5.4. Under the assumption defined in Algorithm Private AC—SA, with
eN3
" dV/81og/*(1/6)

O(N + min{y/eN*/*q"/8 )

gradient complexity, one can get a solution wr such that

~ ~ 2 lo)
B[F(r) - ) = 0(S (5 + o).

Proof. By Lemma 4.5, one has

~ ~ G?/B +¢%d/B*> GDd'*
E[F —F* = .
[F(wr) =0 ( T t—
Again, setting o = 2GBy Tlog(1/9) W one has

E[F(wr) — F*] = O ( G> | G’dlog(1/s) GDd1/4> |

uBT pue2 N2 T
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Taking 7' = 400[min{N'/2q'/*

have

}] and using BT > N (which we will ensure), we

Ne
T dl/4, flog(1/6)

uN pue2 N2 VN ueN

G2
0 (Mc + GD\/Z) .

E[F(wr) — F*] = O (G2 | Gdlog(1/8)  GD GDJW)

where ( = % + dlzzg](\% %)

To ensure that Private AC—SA is (g, 6)-DP, we set B = [N/T+N+/e/T| = O(N/T+N+/e/T).
By our choice of T, we have B < N/10 and ¢ < ¢; B*T/N?. Hence, we can apply Lemma 4.4 to
conclude (g, 6)-DP.

Hence, we have a (g,9)-DP for ERM with loss O (%QC + GD\/QT> with ( = % + 5“2557](;2/‘”. Note

however that Theorem 5.1 requires us to have a DP-ERM algorithm with loss O(%QC ), namely, we
have the extra term O(GD+/C). To remove this term, we follow the reduction in Lemma 4.7.

We note that the exact same proof as Lemma 4.7 shows that for any ¢ > 0, if we can solve
strongly ERM with loss O(G?¢?/u+ GD(), then we can solve strongly ERM with loss O(G?¢?/u)
by using the same number of gradient. This completes the proof.

O

Before stating our result on SCO, we need the following variant of Lemma 4.7. The proof is
essentially the same, we state it for future reference.

Lemma 5.5 (Reduction to General Convex Case). Given F is G-Lipschitz and u-strongly convez.
Suppose for any €,0 < 1/2, we have an (e, d)-differentially private algorithm A which takes wy as
the initial start point and N samples i.i.d drawn from some distribution P, and outputs a solution
wr such that

E[F(wr) — F*] = O (G?u J dos1/8), oo 1 m)> |

uw N N2¢2 VN Ne

where w* = argmin,ex F(w) and D = |jwg — w*||. Then by taking A as sub-procedure with some
modifications on parameters, we can get an (g, d)-differentially private solution with excess population
loss at most

S P (o) ] — O (G L dlesfo))

U (N N2g2

Furthermore, if A uses g(N,e,6) many gradients, the new algorithm uses ), g(N/2% /28, §/2Y)
many gradients.

Proof. The only difference to Lemma 4.7 is that this algorithm takes N/2¥+1~% samples instead of
N samples in the i-th step for k = [loglog N3], so it may have less gradient complexity. The rest
of the proof is identical. O

Now, we can get the result for general convex case by Theorem 5.1 and Lemma 5.4, then extend
it to strongly convex case by Lemma 5.5.
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Theorem 5.6 (DP-SCO, Theorem 1.2 restated). Suppose €,6 < 1/2. Let {f(-,z)}zez is convex

and G-Lipschitz with respect to fo norm and convex over K., where r = %ﬁ(l/é), there is an

(e,9)-differentially private algorithm which takes

O(N + min{yaNs/iqs, =N )
+ minq{ve ,
d1/81og'/4(1/6)
gradient queries to get a solution wr
oy 1 dlog(1/9)
E[F(wr) — F(w")] = O(GD(\/]V + Ne ).

Moreover, if { f(+, ) }zez is also p-strongly convex over K,, we can use the same gradient complexity
and get a solution w such that:

2 O
Ew@ﬂ—F@m:o<G‘“gU®+10.

i ( g2N?2 N
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A Proof of Theorem 3.1

As mentioned before, we can use the result in [BDRS18]| to give a formal proof of our result. Before
we start, let us define something necessary.

Definition A.1 (Truncated CDP). Let p > 0 and w > 1. A randomized algorithm M : NI¥l — R
satisfies w-truncated p-concentrated differential privacy (or (p,w)-tCDP) if for all neighboring S, S’
that differ in a single entry,

Va € (1,w), Do (M(9)| M (S)) < pa,
where D, (+]|-) denotes the Rényi divergence [Rén61| of order « (in nats, rather than bits).

Similar to classic differential privacy, tCDP also enjoys a property of composition:

Lemma A.2 (Composition of tCDP). Let My : NI¥l — Ry satisfy (p,w)-tCDP and let My : NIEI x
Ry — Ry satisfy (p',w')-tCDP for all y € Ry. Difine M : NEl o Ry by M(S) = Mo (S, M;(S)).
Then M satisfies (p + p/, min{w, w'})-tCDP.

Now we state the main result of [BDRSI18|:

Theorem A.3 (Privacy Amplification By Subsampling). Let p,s € (0,0.1] and B, N € N with q =
B/N andlog(1/q) > 3p(2+logy(1/p)). Let M : N=I = R satisfy (p,w’)-tCDP for ' > W > 3.
Define the mechanism M, : NIl — R by M,(S) = M(S,) where S, € NI=l is the restriction of S
to the entries specified by a uniformly ransom subset of size B.

The algorithm M, satisfies (13¢*p,w)-tCDP for

log(1/q)

= T

This theorem can apply to our algorithm METApp directly, as we are using subsampling without

replacement. More specifically, we are using subsampling Gaussian Mechanism, and for Gaussian
Mechanism we have the following fact:

Fact A.4. Let P = N(1,1/2p) and Q = N(0,1/2p). Then Do (P | Q) = pa for all a € (1,00). In
other word, the Gaussian Mechanism with sensitive 1 satisfies (p,00)-tCDP.

Now we can start our proof.

Proof of Theorem 3.1. For the t-th phase of METApp, let M(S) = >, ¢ Vf(wi—1, ) + v where
v~ N(0,0%14%4). As we are considering G-Lipschitz function f, then we know that ||V (f)|2 < G,
which means that M is (p, 00)-tCDP where p = G?/(20?).

Assume our parameters satisfy the precondition of Theorem A.3 first, then we know that the
t-th phase of METApp is (13¢p, 1/p)-tCDP. By the composition property (Lemma A.2), we know
that METApp is (13T¢%p, 1/p)-tCDP.

When T'q?p - M < O(e) and M < O(%), we know that METApp is (g, d)-differentially
private [BDRS18].

. By/T1 B . .
By setting o = CQGS;NOE{(I/), we have that p = %. Together with the assumption

e < ¢1B2T/N?, we have both Tq¢?p - M < O(¢e) and w < O(%) as claimed. This completes
the proof.
U
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