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Abstract

We present a nearly-linear time algorithm for finding a minimum-cost flow in planar graphs
with polynomially bounded integer costs and capacities. The previous fastest algorithm for
this problem is based on interior point methods (IPMs) and works for general sparse graphs in
O(n1.5poly(logn)) time [Daitch-Spielman, STOC’08].

Intuitively, Ω(n1.5) is a natural runtime barrier for IPM-based methods, since they require√
n iterations, each routing a possibly-dense electrical flow. To break this barrier, we develop a

new implicit representation for flows based on generalized nested-dissection [Lipton-Rose-Tarjan,
JSTOR’79] and approximate Schur complements [Kyng-Sachdeva, FOCS’16]. This implicit
representation permits us to design a data structure to route an electrical flow with sparse
demands in roughly

√
n update time, resulting in a total running time of O(n · poly(logn)).

Our results immediately extend to all families of separable graphs.
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1 Introduction

The minimum cost flow problem on planar graphs is a foundational problem in combinatorial opti-
mization studied since the 1950’s. It has diverse applications including network design, VLSI layout,
and computer vision. The seminal paper of Ford and Fulkerson in the 1950’s [FF56] presented an
O(n2) time algorithm for the special case of max-flow on s, t-planar graphs, i.e., planar graphs with
both the source and sink lying on the same face. Over the decades since, a number of nearly-linear
time max-flow algorithms have been developed for special graph classes, including undirected pla-
nar graphs by Reif, and Hassin-Johnson [Rei83, HJ85], planar graphs by Borradaile-Klein [BK09],
and finally bounded genus graphs by Chambers-Erickson-Nayyeri [CEN12]. However, for the more
general min-cost flow problem, there is no known result specializing on planar graphs with better
guarantees than on general graphs. In this paper, we present the first nearly-linear time algorithm
for min-cost flow on planar graphs:

Theorem 1 (Main result). Let G = (V,E) be a directed planar graph with n vertices and m edges.
Assume that the demands d, edge capacities u and costs c are all integers and bounded by M in
absolute value. Then there is an algorithm that computes a minimum cost flow satisfying demand
d in Õ(n logM) 1 expected time.

Our algorithm is fairly general and uses the planarity assumption minimally. It builds on
a combination of interior point methods (IPMs), approximate Schur complements, and nested-
dissection, with the latter being the only component that exploits planarity. Specifically, we require
that for any subgraph of the input graph with k vertices, we can find an O(

√
k)-sized balanced

vertex separator in nearly-linear time. As a result, the algorithm naturally generalizes to all graphs
with small separators: Given a class C of graphs closed under taking subgraphs, we say it is α-
separable if there are constants 0 < b < 1 and c > 0 such that every graph in C with n vertices and
m edges has a balanced vertex separator with at most cmα vertices, and both components obtained
after removing the separator have at most bm edges. Then, our algorithm generalizes as follows:

Corollary 2 (Separable min-cost flow). Let C be an α-separable graph class such that we can
compute a balanced separator for any graph in C with m edges in s(m) time for some convex function
s. Given a graph G ∈ C with n vertices and m edges, integer demands d, edge capacities u and
costs c, all bounded by M in absolute value, there is an algorithm that computes a minimum cost
flow on G satisfying demand d in Õ((m+m1/2+α) logM + s(m)) expected time.

Beyond the study of structured graphs, we believe our paper is of broader interest. The study of
efficient optimization algorithms on geometrically structured graphs is a topic at the intersection of
computational geometry, graph theory, combinatorial optimization, and scientific computing, that
has had a profound impact on each of these areas. Connections between planarity testing and 3-
vertex connectivity motivated the study of depth-first search algorithms [Tar71], and using geometric
structures to find faster solvers for structured linear systems provided foundations of Laplacian
algorithms as well as combinatorial scientific computing [LRT79, Gre96]. Several surprising insights
from our nearly-linear time algorithm are:

1. We are able to design a data structure for maintaining a feasible primal-dual (flow/slack)
solution that allows sublinear time updates – requiring Õ(

√
nK) time for a batch update

consisting of updating the flow value of K edges. This ends up not being a bottleneck for the
overall performance because the interior point method only takes roughly

√
n iterations and

makes K-sparse updates roughly
√
n/K times, resulting in a total running time of Õ(n).

1Throughout the paper, we use Õ(f(n)) to denote O(f(n) logO(1) f(n)).
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2. We show that the subspace constraints on the feasible primal-dual solutions can be maintained
implicitly under dynamic updates to the solutions. This circumvents the need to track the
infeasibility of primal solutions (flows), which was required in previous works.

We hope our result provides both a host of new tools for devising algorithms for separable
graphs, as well as insights on how to further improve such algorithms for general graphs.

1.1 Previous work

The min-cost flow problem is well studied in both structured graphs and general graphs. Table 1
summarizes the best algorithms for different settings prior to this work.

Min-cost flow Time bound Reference

Strongly polytime O(m2 log n+mn log2 n) [Orl88]

Weakly polytime Õ((m+ n3/2) log2M) [vdBLL+21]

Unit-capacity m
4
3
+o(1) logM [AMV20]

Planar graph Õ(n logM) this paper

Unit-capacity planar graph O(n4/3 logM) [KS19]

Graph with treewidth τ Õ(nτ2 logM) [DLY21a]

Outerplanar graph O(n log2 n) [KN13]

Unidirectional, bidirectional cycle O(n), O(n log n) [VA10]

Table 1: Fastest known exact algorithms for the min-cost flow problem, ordered by the generality
of the result. Here, n is the number of vertices, m is the number of edges, and M is the maximum
of edge capacity and cost value. After the preliminary version of this work was published at SODA
2022, the best weakly polytime algorithm was improved to Õ(m1+o(1) log2M) by [CKL+22].

Min-cost flow / max-flow on general graphs. Here, we focus on recent exact max-flow and
min-cost flow algorithms. For an earlier history, we refer the reader to the monographs [KRT94,
AMO88]. For the approximate max-flow problem, we refer the reader to the recent papers [CKM+11,
She13, KLOS14, She17, ST18, BGS21].

To understand the recent progress, we view the max-flow problem as finding a unit s, t-flow
with minimum ℓ∞-norm, and the shortest path problem as finding a unit s, t-flow with minimum
ℓ1-norm. Prior to 2008, almost all max-flow algorithms reduced this ℓ∞ problem to a sequence
of ℓ1 problems, (shortest path) since the latter can be solved efficiently. This changed with the
celebrated work of Spielman and Teng, which showed how to find electrical flows (ℓ2-minimizing
unit s, t-flow) in nearly-linear time [ST04]. Since the ℓ2-norm is closer to ℓ∞ than ℓ1, this gives a
more powerful primitive for the max-flow problem. In 2008, Daitch and Spielman demonstrated that
one could apply interior point methods (IPMs) to reduce min-cost flow to roughly

√
m electrical

flow computations. This follows from the fact that IPMs take Õ(
√
m) iterations and each iteration

requires solving an electrical flow problem, which can now be solved in Õ(m) time due to the work
of Spielman and Teng. Consequently, they obtained an algorithm with a Õ(m3/2 logM) runtime
[DS08]. Since then, several algorithms have utilized electrical flows and other stronger primitives
for solving max-flow and min-cost flow problems.

For graphs with unit capacities, Mądry gave a Õ(m10/7)-time max-flow algorithm, the first that
broke the 3/2-exponent barrier [Mad13]. It was later improved and generalized toO(m4/3+o(1) logM)
[AMV20] for the min-cost flow problem. Kathuria et al. [KLS20] gave a similar runtime of
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O(m4/3+o(1)U1/3) where U is the max capacity. The runtime improvement comes from decreas-
ing the number of iterations of IPM to Õ(m1/3) via a more powerful primitive of ℓ2+ ℓp minimizing
flows [KPSW19].

For general capacities, the runtime has recently been improved to Õ((m+n3/2) log2M) for min-

cost flow on dense graphs [vdBLL+21], and Õ(m
3
2
− 1

328 logM) for max-flow on sparse graphs [GLP21].
These algorithms focus on decreasing the per-iteration cost of IPMs by dynamically maintaining elec-
trical flows. After the preliminary version of this work was accepted to SODA 2022, [vdBGJ+21] gave

a runtime of Õ(m
3
2
− 1

58 log2M) for general min-cost flow following the dynamic electrical flow frame-
work. Most recently, [CKL+22] improved the runtime for general min-cost flow to Õ(m1+o(1) log2M)
by solving a sequence of approximate undirected minimum-ratio cycles.

Max-flow on planar graphs. The planar max-flow problem has an equally long history. We
refer the reader to the thesis [Bor08] for a detailed exposition. In the seminal work of Ford and
Fulkerson that introduced the max-flow min-cut theorem, they also gave a max-flow algorithm for
s, t-planar graphs (planar graphs where the source and sink lie on the same face)[FF56]. This
algorithm iteratively sends flow along the top-most augmenting path. Itai and Shiloach showed
how to implement each step in O(log n) time, thus giving an O(n log n) time algorithm for s, t-
planar graphs [IS79]. In this setting, Hassin also showed that the max-flow can be computed using
shortest-path distances in the planar dual in O(n log n) time [Has81]. Building on Hassin’s work,
the current best runtime is O(n) by Henzinger, Klein, Rao, and Subramanian [HKRS97].

For undirected planar graphs, Reif first gave an O(n log2 n) time algorithm for finding the max-
flow value [Rei83]. Hassin and Johnson then showed how to compute the flow in the same runtime
[HJ85]. The current best runtime is O(n log log n) by Italiano, Nussbaum, Sankowski, and Wulff-
Nilsen [INSW11].

For general planar graphs, Weihe gave the first O(n log n) time algorithm, assuming the graph
satisfies certain connectivity conditions [Wei97]. Later, Borradaile and Klein gave an O(n log n)
time algorithm for any planar graph [BK09].

The multiple-source multiple-sink version of max-flow is considered much harder on planar
graphs. The first result of O(n1.5) time was by Miller and Naor when sources and sinks are all on
same face [MN95]. This was then improved to O(n log3 n) in [BKM+17].

For generalizations of planar graphs, Chambers, Ericskon and Nayyeri gave the first nearly-
linear time algorithm for max-flow on graphs embedded on bounded-genus surfaces [CEN12]. Miller
and Peng gave an Õ(n6/5)-time algorithm for approximating undirected max-flow for the class of
O(
√
n)-separable graphs [MP13], although this is superseded by the previously mentioned works for

general graphs [She13, KLOS14].

Min-cost flow on planar graphs. Imai and Iwano gave a O(n1.594 logM) time algorithm for
min-cost flow for the more general class of O(

√
n)-separable graphs [II90]. To the best of our

knowledge, there is little else known about min-cost flow on general planar graphs. In the special
case of unit capacities, [AKLR18, LR19] gives an O(n6/5 logM) time algorithm for min-cost perfect
matching in bipartite planar graphs, and Karczmarz and Sankowski gives a O(n4/3 logM) time
algorithm for min-cost flow [KS19]. Currently, bounded treewidth graphs is the only graph family
we know that admits min-cost flow algorithms that run in nearly-linear time [DLY21a].

1.2 Challenges

Here, we discuss some of the challenges in developing faster algorithms for the planar min-cost
flow problem from a convex optimization perspective. For a discussion on challenges in designing
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combinatorial algorithms, we refer the reader to [KNK93]. Prior to our result, the fastest min-cost
flow algorithm for planar graphs is based on interior point methods (IPMs) and takes Õ(n3/2 logM)
time [DS08]. Intuitively, Ω(n3/2) is a natural runtime barrier for IPM-based methods, since they
require Ω(

√
n) iterations, each computing a possibly-dense electrical flow.

Challenges in improving the number of iterations. The Ω(
√
n) term comes from the fact

that IPM uses the electrical flow problem (ℓ2-type problem) to approximate the shortest path
problem (ℓ1-type problem). This Ω(

√
n) term is analogous to the flow decomposition barrier: in the

worst case, we need Ω(n) shortest paths (ℓ1-type problem) to solve the max-flow problem (ℓ∞-type
problem). Since ℓ2 and ℓ∞ problems differ a lot when there are s− t paths with drastically different
lengths, difficult instances for electrical flow-based max-flow methods are often serial-parallel (see
Figure 3 in [CKM+11] for an example). Therefore, planarity does not help to improve the

√
n

term. Although more general ℓ2+ ℓp primitives have been developed [? KPSW19, AS20, ABKS21],
exploiting their power in designing current algorithms for exact max-flow problem has been limited
to perturbing the IPM trajectory, and such a perturbation only works when the residual flow value
is large. In all previous works tweaking IPMs for breaking the 3/2-exponent barrier [Mad13, Mad16,
CMSV17, KLS20, AMV20], an augmenting path algorithm is used to send the remaining flow at
the end. Due to the residual flow restriction, all these results assume unit-capacities on edges,
and it seems unlikely that planarity can be utilized to design an algorithm for polynomially-large
capacities with fewer than

√
n IPM iterations.

Challenges in improving the cost per iteration. Recently, there has been much progress
on utilizing data structures for designing faster IPM algorithms for general linear programs and
flow problems on general graphs. For general linear programs, robust interior point methods have
been developed recently with running times that essentially match the matrix multiplication cost
[CLS21, vdB20, vdBLSS20, HJST21, vdB21]. This version of IPM ensures that the ℓ2 problem solved
changes in a sparse manner from iteration to iteration. When used to design graph algorithms, the
i-th iteration of a robust IPM involves computing an electrical flow on some graph Gi. The edge
support remains unchanged between iterations, though the edge weights change. Further, if Ki is
the number of edges with weight changes between Gi and Gi+1, then robust IPMs guarantee that

∑

i

√
Ki = Õ(

√
m logM).

Roughly, this says that, on average, each edge weight changes only poly-log many times throughout
the algorithm. Unfortunately, any sparsity bound is not enough to achieve nearly-linear time. Unlike
the shortest path problem, changing any edge in a connected graph will result in the electrical flow
changing on essentially every edge. Therefore, it is very difficult to implement (robust) IPMs in
sublinear time per iteration, even if the subproblem barely changes every iteration. On moderately
dense graphs with m = Ω(n1.5), this issue can be avoided by first approximating the graph by sparse
graphs and solving the electrical flow on the sparse graphs. This leads to Õ(n) ≪ Õ(m) time cost
per step [vdBLSS20]. However, on sparse graphs, significant obstacles remain. Recently, there has
been a major breakthrough in this direction by using random walks to approximate the electrical
flow [GLP21, vdBGJ+21]. Unfortunately, this still requires m1− 1

58 time per iteration.
Finally, we note that [DLY21a] gives an Õ(nτ2 logM)-time algorithm for linear programs with

τ treewidth. Their algorithm maintains the solution using an implicit representation. This implicit
representation involves a τ × τ matrix that records the interaction between every variable within
the vertex separator set. Each step of the algorithm updates this matrix once and it is not the
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bottleneck for the Õ(nτ2 logM)-time budget. However, for planar graphs, this τ × τ matrix is a
dense graph on

√
n vertices given by the Schur complement on the separator. Hence, updating this

using their method requires Ω(n) time per step.
Our paper follows the approach in [DLY21a] and shows that this dense graph can be sparsified.

This is however subtle. Each step of the IPM makes a global update via the implicit representation,
hence checking whether the flow is feasible takes at least linear time. Therefore, we need to ensure
each step is exactly feasible despite the approximation. If we are unable to do that, the algorithm will
need to fix the flow by augmenting paths at the end like [KLS20, AMV20], resulting in super-linear
time and polynomial dependence on capacities, rather than logarithmic.

1.3 Our approaches

In this section, we introduce our approach and explain how we overcome the difficulties we men-
tioned. The min-cost flow problem can be reformulated into a linear program in the following
primal-dual form:

(Primal) = min
B⊤f=0, l≤f≤u

c⊤f and (Dual) = min
By+s=c

∑

i

min(lisi,uisi),

where B ∈ R
m×n is an edge-vertex incidence matrix of the graph, f is the flow and s is the slack

(or adjusted cost vector). The primal is the min-cost circulation problem and the dual is a variant
of the min-cut problem. Our algorithm for min-cost flow is composed of a novel application of
IPM (Section 2.1) and new data structures (Section 2.3). The IPM method reduces solving a linear
program to applying a sequence of Õ(

√
m logM) projections and the data structures implement the

primal and dual projection steps roughly in Õ(
√
m) amortized time.

Robust IPM. We first explain the IPM briefly. To minimize c⊤f , each step of the IPM method
moves the flow vector f to the direction of −c. However, such f may exceed the maximum or
minimum capacities. IPM incorporates these capacity constraints by routing flows slower when
they are approaching their capacity bounds. This is achieved by controlling the edge weights W

and direction v in each projection step. Both W and v are roughly chosen from some explicit
entry-wise formula of f and s, namely, Wii = ψ1(fi, si) and vi = ψ2(fi, si). Hence, the main
bottleneck is to implement the projection step (computing Pwv). For the min-cost flow problem,
this projection step corresponds to an electrical flow computation.

Recently, it has been observed that there is a lot of freedom in choosing the weight W and
the direction v (see for example [CLS21]). Instead of computing them exactly, we maintain some
entry-wise approximation f , s of f , s and use them to compute W and v. By updating f i, si only
when fi, si changed significantly, we can ensure f , s has mostly sparse updates. Since W and v are
given by some entry-wise formula of f and s, this ensures that W,v change sparsely and in turn
allows us to maintain the corresponding projection Pw via low-rank updates.

We refer to IPMs that use approximate f and s as robust IPMs. In this paper, we apply the
version given in [DLY21a] in a black-box manner. In Section 2.1, we state the IPM we use. The
key challenge is implementing each step in roughly Õ(

√
m) time.

Separators and Nested Dissection. Our data structures rely on the separability property of
the input graph, which dates back to the nested dissection algorithms for solving planar linear
systems [LRT79, GT87]. By recursively partitioning the graph into edge-disjoint subgraphs (i.e.
regions) using balanced vertex separators, we can construct a hierarchical decomposition of a planar
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graph G which is called a separator tree [FR06]. This is a binary search tree over the edges in G.
Each node in the separator tree represents a region in G. In planar graphs, for a region H with |H|
vertices, an O(

√
|H|)-sized vertex separator suffices to partition it into two balanced sub-regions

which are represented by the two children of H in the separator tree. The two subregions partition
the edges in H and share only vertices in the separator. We call the set of vertices in a region H
that appear in the separators of its ancestors the boundary of H. Any two regions can only share
vertices on their boundaries unless one of them is an ancestor of the other.

Nested dissection algorithms [LRT79, GT87] essentially replace each region by a graph involving
only its boundary vertices, in a bottom-up manner. For planar linear systems, solving the dense√
n×√n submatrix corresponding to the top level vertex separator leads to a runtime of nω/2 where ω

is the matrix multiplication exponent. For other problems as shortest path, this primitive involving
dense graphs can be further accelerated using additional properties of distance matrices [FR06].

Technique 1: Approximate Nested Dissection and Lazy Propagation Our representation
of the Laplacian inverse, and in turn the projection matrix, hinges upon a sparsified version of
the nested dissection representation. That is, instead of a dense inverse involving all pairs of
boundary vertices, we maintain a sparse approximation. This sparsified nested dissection has been
used in the approximate undirected planar flow algorithm from [MP13]. However, that work pre-
dated (and in some sense motivated) subsequent works on nearly-linear time approximations of
Schur complements on general graphs [KLP+16, KS16, Kyn17]. Re-incorporating these sparsified
algorithms gives runtime dependencies that are nearly-linear, instead of quadratic, in separator
sizes, with an overall error that is acceptable to the robust IPM framework.

By maintaining objects with size nearly equal to the separator size in each node of the separator
tree, we can support updating an single edge or a batch of edges in the graph efficiently. Our data
structures for maintaining the approximate Schur complements and the slack and flow projection
matrices all utilize this idea. For example, to maintain the Schur complement of a region H onto its
boundary (which is required in implementating the IPM step), we maintain (1) Schur complements of
its children onto their boundaries recursively and (2) Schur complement of the children’s boundaries
onto the boundary H. Thus, to update an edge, the path in the separator tree from the leaf node
containing the edge to the root is visited. To update multiple edges in a batch, each node in the
union of the tree paths is visited. The runtime is nearly linear in the total number of boundary
vertices of all nodes (regions) in the union. For K edges being updated, the runtime is bounded by
Õ(
√
mK). Step i of our IPM algorithm takes Õ(

√
mKi) time, where Ki is the number of coordinates

changed in W and v in the step. Such a recursive approximate Schur complement structure was
used in [GHP18], where the authors achieved a running time of Õ(

√
mKi).

Technique 2: Batching the changes. It is known that over t iterations of an IPM, the number
of coordinate changes (by more than a constant factor) in W and v is bounded by O(t2). This

directly gives
∑Õ(

√
m)

i=1 Ki = m and thus a total runtime of
√
m
(∑Õ(

√
m)

i=1

√
Ki

)
= Õ(m1.25). In

order to obtain a nearly-linear runtime, the robust IPM carefully batches the updates in different
steps. In the i-th step, if the change in an edge variable has exceeded some fixed threshold compared
to its value in the (i − 2l)-th step for some l ≤ ℓi, we adjust its approximation. (Here, ℓi is the
number of trailing zeros in the binary representation of i, i.e. 2ℓi is the largest power of 2 that
divides i.) This ensures that Ki, the number of coordinate changes at step i, is bounded by Õ(22ℓi).
Since each value of ℓi arises once every 2ℓi steps, we can prove that the sum of square roots of the

number of changes over all steps is bounded by Õ(m), i.e.,
∑Õ(

√
m)

i=1

√
Ki = Õ(

√
m). Combined with

the runtime of the data structures, this gives an Õ(m) overall runtime.
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Technique 3: Maintaining feasibility via two projections. A major difficulty in the IPM
is maintaining a flow vector f that satisfies the demands exactly and a slack vector s that can be
expressed as s = c−By. If we simply project v approximately in each step, the flow we send is not
exactly a circulation. Traditionally, this can be fixed by computing the excess demand each step and
sending flow to fix this demand. Since our edge capacities can be polynomially large, this step can
take Ω(m) time. To overcome this feasibility problem, we note that distinct projection operators
Pw can be used in IPMs for f and s as long as each projection is close to the true projection and
that the step satisfies B

⊤∆f = 0 and B∆y +∆s = 0 for some ∆y.
This two-operator scheme is essential to our improvement since one can prove that any projection

that gives feasible steps for f and s simultaneously must be the exact electrical projection, which
takes linear time to compute.

2 Overview

In this section, we give formal statements of the main theorems proved in the paper, along with the
proof for our main result. We provide a high-level explanation of the algorithm, sometimes using a
simplified setup.

The main components of this paper are: the IPM from [DLY21a] (Section 2.1); a data structure
to maintain a collection of Schur complements via nested dissection of the graph (Section 2.2);
abstract data structures to maintain the solutions s,f implicitly, notably using an abstract tree
operator (Section 2.3); a sketching-based data structure to maintain the approximations s and f

needed in the IPM (Section 2.4); and finally, the definition of the tree operators for slack and flow
corresponding to the IPM projection matrices onto their respective feasible subspaces, along with
the complete IPM data structure for slack and flow (Sections 2.5 and 2.6).

We extend our result to α-separable graphs in Section 9.

2.1 Robust interior point method

In this subsection, we explain the robust interior point method developed in [DLY21a], which is a
refinement of the methods in [CLS21, vdB20]. Although there are many other robust interior point
methods, we simply refer to this method as RIPM. Consider a linear program of the form2

min
f∈F

c⊤f where F = {B⊤f = b, l ≤ f ≤ u} (2.1)

for some matrix B ∈ R
m×n. As with many other IPMs, RIPM follows the central path f(t) from

an interior point (t≫ 0) to the optimal solution (t = 0):

f(t)
def
= argmin

f∈F
c⊤f − tφ(f) where φ(f)

def
= −

∑

i

log(fi − li)−
∑

i

log(ui − fi),

where the term φ controls how close the flow fi can be to the capacity constraints ui and li.
Following the central path exactly is expensive. Instead, RIPM maintains feasible primal and dual
solution (f , s) ∈ F × S, where S is the dual space given by S = {s : By + s = c for some y}, and
ensures f(t) is an approximate minimizer. Specifically, the optimality condition for f(t) is given by

µt(f , s)
def
= s/t+∇φ(f) = 0 (2.2)

(f , s) ∈ F × S
2Although the min-cost flow problem can be written as a one-sided linear program, it is more convenience for the

linear program solver to have both sides. Everything in this section works for general linear programs and hence we

will not use the fact m = O(n) in this subsection.
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where µt(f , s) measures how close f is to the minimizer f(t). RIPM maintains (f , s) such that

‖γt(f , s)‖∞ ≤
1

C logm
where γt(f , s)i =

µt(f , s)i

(∇2φ(f))
1/2
ii

, (2.3)

for some universal constant C. The normalization term (∇2φ)
1/2
ii makes the centrality measure

‖γt(f , s)‖∞ scale-invariant in l and u.
The key subroutine Centering takes as input a point close to the central path (f(tstart), s(tstart)),

and outputs another point on the central path (f(tend), s(tend)). Each step of the subroutine de-
creases t by a multiplicative factor of (1 − 1√

m logm
) and moves (f , s) within F × S such that

s/t +∇φ(f) is smaller for the current t. [DLY21a] proved that even if each step is computed ap-
proximately, Centering still outputs a point close to (f(tend), s(tend)) using Õ(

√
m log(tend/tstart))

steps. See Algorithm 1 for a simplified version.
RIPM calls Centering twice. The first call to Centering finds a feasible point by following

the central path of the following modified linear program

min
B

⊤(f (1)+f (2)−f (3))=b

l≤f (1)≤u, f (2)≥0, f (3)≥0

c(1)⊤f (1) + c(2)⊤f (3) + c(2)⊤f (3)

where c(1) = c, and c(2), c(3) are some positive large vectors. The above modified linear program is
chosen so that we know an explicit point on its central path, and any approximate minimizer to this
new linear program gives an approximate central path point for the original problem. The second
call to Centering finds an approximate solution by following the central path of the original linear
program. Note that both calls run the same algorithm on essentially the same graph: The only
difference is that in the first call to Centering, each edge e of G becomes three copies of the edge

with flow value f
(1)
e ,f

(2)
e ,f

(3)
e . Note that this edge duplication does not affect planarity.

We note that the IPM algorithm only requires access to (f , s), but not (f , s) during the main
while loop. Hence, (f , s) can be implicitly maintained via any data structure. We only require
(f , s) explicitly when returning the approximately optimal solution at the end of the algorithm
Line 26.

Theorem 3. Consider the linear program

min
B⊤f=b, l≤f≤u

c⊤f

with B ∈ R
m×n. We are given a scalar r > 0 such that there exists some interior point f◦ satisfying

B
⊤f◦ = b and l + r ≤ f◦ ≤ u − r.3 Let L = ‖c‖2 and R = ‖u − l‖2. For any 0 < ǫ ≤ 1/2, the

algorithm RIPM (Algorithm 1) finds f such that B⊤f = b, l ≤ f ≤ u and

c⊤f ≤ min
B⊤f=b, l≤f≤u

c⊤f + ǫLR.

Furthermore, the algorithm has the following properties:

• Each call of Centering involves O(
√
m logm log(mR

ǫr )) many steps, and t is only updated
O(logm log(mR

ǫr )) times.

3For any vector v and scalar x, we define v + x to be the vector obtained by adding x to each coordinate of v.

We define v − x to be the vector obtained by subtracting x from each coordinate of v.
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Algorithm 1 Robust Interior Point Method from [DLY21a]

1: procedure RIPM(B ∈ R
m×n, b, c, l,u, ǫ)

2: Let L = ‖c‖2 and R = ‖u− l‖2
3: Define φi(x)

def
= − log(ui − x)− log(x− li)

⊲ Modify the linear program and obtain an initial (x, s) for modified linear program
4: Let t = 221m5 · LR128 · Rr
5: Compute fc = argminl≤f≤u c⊤f + tφ(f) and f◦ = argminB⊤f=b ‖f − fc‖2
6: Let f = (fc, 3R + f◦ − fc, 3R) and s = (−t∇φ(fc), t

3R+f◦−fc
, t
3R)

7: Let the new matrix B
new def

= [B;B;−B], the new barrier

φnewi (x) =

{
φi(x) if i ∈ [m],

− log x else.

⊲ Find an initial (f , s) for the original linear program
8: ((f (1),f (2),f (3)), (s(1), s(2), s(3)))← Centering(Bnew, φnew,f , s, t, LR)
9: (f , s)← (f (1) + f (2) − f (3), s(1))

⊲ Optimize the original linear program
10: (f , s)← Centering(B, φ,f , s, LR, ǫ

4m )
11: return f

12: end procedure

13: procedure Centering(B, φ,f , s, tstart, tend)
14: Let α = 1

220λ
and λ = 64 log(256m2) where m is the number of rows in B

15: Let t← tstart, f ← f , s← s, t← t
16: while t ≥ tend do
17: Set t← max((1− α√

m
)t, tend)

18: Update h = −α/‖ cosh(λγt(f , s))‖2 where γ is defined in Eq. (2.2)
19: Update the diagonal weight matrix W = ∇2φ(f)−1

20: Update the direction v where vi = sinh(λγt(f , s)i)
21: Pick v‖ and v⊥ such that W

−1/2v‖ ∈ Range(B), B⊤W1/2v⊥ = 0 and

‖v‖ −Pwv‖2 ≤ α‖v‖2,
‖v⊥ − (I−Pw)v‖2 ≤ α‖v‖2 (Pw

def
= W

1/2
B(B⊤WB)−1B⊤W1/2)

22: Implicitly update f ← f + hW1/2v⊥, s← s+ thW−1/2v‖

23: Explicitly maintain f , s such that ‖W−1/2(f − f)‖∞ ≤ α and ‖W1/2(s− s)‖∞ ≤ tα
24: Update t← t if |t− t| ≥ αt
25: end while
26: return (f , s)
27: end procedure

11



• In each step of Centering, the coordinate i in W,v changes only if f i or si changes.

• In each step of Centering, h‖v‖2 = O( 1
logm).

• Line 18 to Line 20 takes O(K) time in total, where K is the total number of coordinate changes
in f , s.

Proof. The number of steps follows from Theorem A.1 in [DLY21b], with the parameter wi = νi = 1
for all i. The number of coordinate changes in W,v and the runtime of Line 18 to Line 20 follows
directly from the formula of µt(f , s)i and γt(f , s)i. For the bound for h‖v‖2, it follows from

h‖v‖2 ≤ α
‖ sinh(λγt(f , s))‖2
‖ cosh(λγt(f , s))‖2

≤ α = O

(
1

logm

)
.

A key idea in our paper involves the computation of projection matrices required for the RIPM.
Recall from the definition of Pw in Algorithm 1, the true projection matrix is

Pw
def
= W

1/2
B(B⊤WB)−1B⊤W1/2.

We let L denote the weighted Laplacian where L = B
⊤
WB, so that

Pw = W
1/2

BL
−1

B
⊤
W

1/2. (2.4)

Lemma 4. To implement Line 21 in Algorithm 1, it suffices to find an approximate slack projec-

tion matrix P̃w satisfying
∥∥∥
(
P̃w −Pw

)
v

∥∥∥
2
≤ α ‖v‖2 and W

−1/2
P̃wv ∈ Range(B); and an ap-

proximation flow projection matrix P̃
′
w satisfying

∥∥∥
(
P̃
′
w −Pw

)
v

∥∥∥
2
≤ α ‖v‖2 and B

⊤
W

1/2
P̃
′
wv =

B
⊤
W

1/2v.

Proof. We simply observe that setting v‖ = P̃wv and v⊥ = v − P̃
′
wv suffices.

In finding these approximate projection matrices, we apply ideas from nested dissection and
approximate Schur complements to the matrix L.

2.2 Nested dissection and approximate Schur complements

In this subsection, we discuss nested dissection and the corresponding Schur complements, and
explain how it relates to our goal of finding the approximate projection matrices for Lemma 4.

As we will discuss later in the main proof, our LP formulation for the IPM uses a modified planar
graph which includes two additional vertices and O(n) additional edges to the original planar graph.
Although the modified graph is no longer planar, it has only two additional vertices. We may add
these two vertices to any relevant sets defined in nested dissection without changing the overall
complexity. As such, we can apply nested dissection as we would for planar graphs.

We first illustrate the key ideas using a two-layer nested dissection scheme. By the well-known
planar separator theorem [LT79], a planar graph G can be decomposed into two edge-disjoint (not
vertex-disjoint) subgraphs H1 and H2 called regions, such that each subgraph has at most 2n/3
vertices. Let ∂Hi denote the boundary of region Hi, that is, the set of vertices v ∈ Hi such that v
is adjacent to some u /∈ Hi. Then ∂Hi has size bounded by O(

√
n). Let FHi = V (Hi) \ ∂Hi denote

the remaining interior vertices eliminated at region Hi.
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Let C = ∂H1 ∪ ∂H2 denote the union of the boundaries, and let F = FH1 ∪ FH2 be the disjoint
union of the two interior sets. Note that C is a balanced vertex separator of G, with size

|C| ≤ |∂H1|+ |∂H2| = O(
√
n).

Furthermore, F and C give a natural partition of the vertices of G. Using block Cholesky
decomposition, we can now write4

L
−1 =

[
I −LF,CLF,F

−1

0 I

] [
LF,F

−1
0

0 Sc(L, C)−1

] [
I 0

−LF,CLF,F
−1

I

]
, (2.5)

where Sc(L, C)
def
= LC,C − LC,FLF,F

−1
LF,C is the Schur complement of L onto vertex set C, and

LF,C ∈ R
F×C is the F ×C-indexed submatrix of L.

The IPM in Algorithm 1 involves updating L
−1 in every step; written as the above decomposi-

tion, we must in turn update the Schur complement Sc(L, C) in every step. Hence, the update cost
must be sub-linear in n. Computing Sc(L, C) exactly takes Ω(|C|2) = Ω(n) time, which is already
too expensive. Our key idea here is to maintain an approximate Schur complement, which is of a
smaller size based on the graph decomposition, and can be maintained in amortized

√
n time per

step throughout the IPM.
Let L[Hi] denote the weighted Laplacian of the region Hi for i = 1, 2. Since these regions are

edge-disjoint, we can write the Laplacian L as the sum

L = L[H1] + L[H2].

Based on the graph decomposition, we have the Schur complement decomposition

Sc(L, C) = Sc(L[H1], C) + Sc(L[H2], C).

This decomposition allows us to localize edge weight updates. Namely, if the weight of edge e is
updated, and e is contained in region Hi, we only need to recompute the single Schur complement
term for Hi, rather than both terms in the sum.

For the appropriate projection matrices in the IPM, it further suffices to maintain a sparse
approximate Schur complement S̃c(L[Hi], C) ≈ Sc(L[Hi], C) for each region Hi rather than the
exact. Then, the approximate Schur complement of L on C is given by

S̃c(L, C)
def
= S̃c(L[H1], C) + S̃c(L[H2], C). (2.6)

Each term S̃c(L[Hi], C) can be computed in time nearly-linear in the size of Hi. Furthermore,

S̃c(L[Hi], C) is supported only on the vertex set ∂Hi, which is of size O(
√
n). Hence, any sparse

approximate Schur complement has only Õ(
√
n) edges. When we need to compute S̃c(L, C)−1x for

some vector x, we use a generic SDD-solver which runs in Õ(|C|) time; this is crucial in bounding
the overall runtime.

To extend the two-level scheme to more layers, we apply nested dissection recursively to each
region Hi, until the regions are of constant size. This recursive procedure naturally gives rise to a
separator tree T of the input graph G, which we discuss in detail in Section 4.2. Each node of T
correspond to a region ofG, and can be obtained by taking the edge-disjoint union of the regions of its
two children. Taking the union over all leaf regions gives the original graph G. The separator tree T
allows us to define a set FH of eliminated vertices and a set ∂H of boundary vertices for each node H,

4To keep notation simple, M−1 will denote the Moore-Penrose pseudo-inverse for non-invertible matrices.
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analogous to what was shown in the two-layer dissection. Moreover, if we let Fi denote the disjoint
union of sets FH over all nodes H at level i, and Ci denote the union of sets ∂H, then we essentially
generalize the set C from the two-layer dissection to V (G) = C−1 ⊃ C0 ⊃ · · · ⊃ Cη−1 ⊃ Cη = ∅,
where each Ci is some vertex separator of G\Ci−1, and generalize the set F to F0, . . . , Fη partitioning

V (G), where Fi
def
= Ci−1 \ Ci. With a height-η separator tree, we can write

L
−1 = U

(0)⊤ · · ·U(η−1)⊤




Sc(L, C−1)F0,F0

−1
0 0

0
. . . 0

0 0 Sc(L, Cη−1)Fη ,Fη

−1


U

(η−1) · · ·U(0), (2.7)

for some explicit upper triangular matrices U
(i). Here, Sc(L, Ci)Fi+1,Fi+1 denotes the Fi+1 × Fi+1

submatrix of Sc(L, Ci).
In the expression Eq. (2.7), the Schur complement term Sc(L, Ci) at level i can further be

decomposed at according to the nodes at the level. Then, we can obtain an approximation to L
−1

by using approximate Schur complements as follows:

Theorem 5 (L−1 approximation). Suppose for each H ∈ T , we have a Laplacian L
(H) satisfying

L
(H) ≈ǫP Sc(L[H], ∂H ∪ FH).

Then, we have
L
−1 ≈ηǫP Π

(0)⊤ · · ·Π(η−1)⊤
Γ̃Π

(η−1) · · ·Π(0), (2.8)

where

Γ̃ =




∑
H∈T (0)

(
L
(H)
FH ,FH

)−1
0 0

0
. . . 0

0 0
∑

H∈T (η)

(
L
(H)
FH ,FH

)−1


 .

and

Π
(i) = I−

∑

H∈T (i)
L
(H)
∂H,FH

(
L
(H)
FH ,FH

)−1
,

where T (i) denotes the set of nodes at level i of T , and I is the n× n identity matrix.

Compared to Eq. (2.7), we see that Γ̃ approximates the middle block-diagonal matrix, and Π
(i)

approximates U
(i).

To compute and maintain the necessary L
(H)’s as the edge weights undergo updates throughout

the IPM, we have the following data structure:

Theorem 6 (Schur complements maintenance). Given a modified planar graph G with m edges
and its separator tree T with height η = O(logm), the deterministic data structure DynamicSC

(Algorithm 3) maintains the edge weights w from the IPM, and at every node H ∈ T , maintains

two vertex sets FH and ∂H, and two Laplacians L
(H) and S̃c(L(H), ∂H ∪ FH) dependent on w. It

supports the following procedures:

• Initialize(G,w ∈ R
m
>0, ǫP > 0): Given a graph G, initial weights w, projection matrix

approximation accuracy ǫP, preprocess in Õ(ǫP
−2m) time.
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• Reweight(w ∈ R
m
>0, given implicitly as a set of changed coordinates): Update the weights to

w, and update the relevant Schur complements in Õ(ǫP
−2√mK) time, where K is the number

of coordinates changed in w.

If H is the set of leaf nodes in T that contain an edge whose weight is updated, then L
(H) and

S̃c(L(H), ∂H) are updated only for nodes H ∈ PT (H).

• Access to Laplacian L
(H) at any node H ∈ T in time Õ

(
ǫP
−2|∂H ∪ FH |

)
.

• Access to Laplacian S̃c(L(H), ∂H) at any node H ∈ T in time Õ
(
ǫP
−2|∂H|

)
.

Furthermore, the L
(H)’s maintained by the data structure satisfy

L
(H) ≈ǫP Sc(L[H], ∂H ∪ FH), (2.9)

for all H ∈ T with high probability. The S̃c(L(H), ∂H)’s maintained satisfy

S̃c(L(H), ∂H) ≈ǫP Sc(L[H], ∂H) (2.10)

for all H ∈ T with high probability.

2.3 Implicit representations using tree operator

In this section, we outline the data structures for maintaining the flow and slack solutions f , s as
needed in Algorithm 1, Line 22. Recall from Lemma 4, at IPM step k with step direction v(k), we
want to update

s← s+ thW−1/2
P̃wv(k),

f ← f + hW1/2v(k) − hW1/2
P̃
′
wv

(k),

for some approximate projection matrices P̃w and P̃
′
w satisfying Range(W−1/2

P̃w) ⊆ Range(B)
and B

⊤
W

1/2
P̃
′
w = B

⊤
W

1/2. The first term for the flow update is straightforward to maintain.
For this overview, we therefore focus on maintaining the second term

f⊥ ← f⊥ + hW1/2
P̃
′
wv

(k).

Computing P̃wv
(k) and P̃

′
wv(k) respectively is too costly to do at every IPM step. Instead, we

maintain vectors s0,f
⊥
0 ,z, and implicitly maintain two linear operators M

(slack),M(flow) which
depend on the weights w, so at the end of every IPM step, the correct current solutions s,f⊥ are
recoverable via the identity

s = s0 +M
(slack)z

f⊥ = f⊥0 +M
(flow)z.

In this subsection, we abstract away the difference between slack and flow, and give a general data
structure MaintainRep to maintain x = y +Mz for M with a special tree structure.

At a high level, MaintainRep implements the IPM operations Move and Reweight as follows:
To move in step k with direction v(k) and step size α(k), the data structure first computes z(k) as a
function of v(k), then updates z ← z+α(k)z(k), which translates to the desired overall update in x

of x← x+M(α(k)z(k)). To reweight with new weights w(new) (which does not change the value of

x), the data structure first computes M
(new) using w(new) and ∆M

def
= M

(new) −M, then updates
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M ← M
(new). This causes an increase in value in the Mz term by ∆Mz, which is then offset in

the y term with y ← y −∆Mz.
In later sections, we will define M

(slack) and M
(flow) so that M

(slack)z(k) = W
1/2

P̃wv(k) and
M

(flow)z(k) = W
−1/2

P̃
′
wv(k) for the desired approximate projection matrices. With these operators

appropriately defined, observed that MaintainRep correctly captures the updates to s and f⊥ at
every IPM step.

Let us now discuss the definition of z, which is common to both slack and flow: Recall the
DynamicSC data structure from the previous section maintains some Laplacian L

(H) for every
node H in the separator tree T , so that at each IPM step, we can implicitly represent the matrices
Π

(0), · · · ,Π(η−1), Γ̃ based on the current weights w, which together give an ηǫP-approximation of
L
−1. MaintainRep will contain a DynamicSC data structure, so we can use these Laplacians in

the definition of z:
At step k, let

z(k) def
= Γ̃Π

(η−1) · · ·Π(0)
B
⊤
W

1/2v(k),

where Γ̃, the Π
(i)’s, and W are based on the state of the data structure at the end of step k. z is

defined to be the accumulation of α(i)z(i)’s up to the current step; that is, at the end of step k,

z =
k∑

i=1

α(i)z(i).

Rather than naively maintaining z, we decompose z and explicitly maintaining c,z(step), and z(sum),
such that

z
def
= c · z(step) + z(sum),

where we have the additional guarantee that at the end of IPM step k,

z(step) = Γ̃Π
(η−1) · · ·Π(0)

B
⊤
W

1/2v(k).

The other term, z(sum), is some remaining accumulation so that the overall representation is correct.
The purpose of this decomposition of z is to facilitate sparse updates to v between IPM steps:

Suppose v(k) differ from v(k−1) on K coordinates, then we can update z(step) and z(sum) with
runtime as a function of K, while producing the correct overall update in z. Specifically, we
decompose v(k) = v(k−1) +∆v. We compute ∆z(step) = Γ̃Π

(η−1) · · ·Π(0)
B
⊤
W

1/2∆v, and then set

z(step) ← z(step) +∆z(step), z(sum) ← z(sum) − c ·∆z(step), c← c+ α,

which can be performed in O(nnz(∆z(step))) time.
Let us briefly discuss how to compute Γ̃Π

(η−1) · · ·Π(0)d for some vector d. We use the two-layer
nested dissection setup from Section 2.2 for intuition, so

Γ̃Π
(0)d =

[
L
−1
F,F 0

0 S̃c(L, C)−1

] [
I 0

−LC,FL
−1
F,F I

]
d.

The only difficult part for the next left matrix multiplication is −LC,FL
−1
F,F . However, we note

that LF,F is block-diagonal with two blocks, each corresponding to a region generated during nested
dissection. Hence, we can solve the Laplacians on the two subgraphs separately. Next, we note that
the two terms of LC,FL

−1
F,Fd are both fed into S̃c(L, C)−1, and we solve this Laplacian in time linear

in the size of S̃c(L, C). The rest of the terms are not the bottleneck in the overall runtime. In
the more general nested-dissection setting with O(log n) layers, we solve a sequence of Laplacians
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corresponding to the regions given by paths in the separator tree. We can bound the runtime of
these Laplacian solves by the size of the corresponding regions for the desired overall runtime.

On the other hand, to work with M efficiently, we define the notion of a tree operator M

supported on a tree. In our setting, we use the separator tree T . Informally, our tree operator is
a linear operator mapping R

V (G) to R
E(G). It is constructed from the concatenation of a collection

of edge operators and leaf operators defined on the edges and leaves of T . If H is a node in T with
parent P , then the edge operator for edge (H,P ) will map vectors supported on ∂P ∪FP to vectors
supported on ∂H ∪ FH . If H is a leaf node, the leaf operator for H will map vectors on ∂H ∪ FH

to vectors on E(H). In this way, we take advantage of the recursive partitioning of G via T to map
a vector supported on V (G) recursive to be supported on smaller vertex subsets and finally to the
edges. Furthermore, we will show that when edge weights update, the change to M can be localized
to a small collection of edge and leaf operators along some tree paths, thus allowing for an efficient
implementation. We postpone the formal definition of the operator until Section 5.2.

Theorem 7 (Implicit representation maintenance). Given a modified planar graph G with n vertices
and m edges, and its separator tree T with height η, the deterministic data structure MaintainRep

(Algorithm 6) maintains the following variables correctly at the end of every IPM step:

• the dynamic edge weights w and step direction v from the current IPM step,

• a DynamicSC data structure on T based on the current edge weights w,

• an implicitly represented tree operator M supported on T with complexity T (K), computable
using information from DynamicSC,

• scalar c and vectors z(step),z(sum), which together represent z = cz(step) + z(sum), such that at
the end of step k,

z =

k∑

i=1

α(i)z(i),

where α(i) is the step size α given in Move for step i,

• z(step) satisfies z(step) = Γ̃Π
(η−1) · · ·Π(0)

B
⊤
W

1/2v,

• an offset vector y which together with M,z represent x = y +Mz, such that after step k,

x = x(init) +
k∑

i=1

M
(i)(α(i)z(i)),

where x(init) is an initial value from Initialize, and M
(i) is the state of M after step i.

The data structure supports the following procedures:

• Initialize(G,T ,M,v ∈ R
m,w ∈ R

m
>0,x

(init) ∈ R
m, ǫP > 0): Given a graph G, its separator

tree T , a tree operator M supported on T with complexity T , initial step direction v, ini-
tial weights w, initial vector x(init), and target projection matrix accuracy ǫP, preprocess in
Õ(ǫP

−2m+ T (m)) time and set x← x(init).

• Reweight(w ∈ R
m
>0 given implicitly as a set of changed coordinates): Update the weights to

w. Update the implicit representation of x without changing its value, so that all the variables
in the data structure are based on the new weights.
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The procedure runs in Õ(ǫ−2
P

√
mK + T (K)) total time, where K is an upper bound on the

number of coordinates changed in w and the number of leaf or edge operators changed in M.
There are most Õ(K) nodes H ∈ T for which z(step)|FH

and z(sum)|FH
are updated.

• Move(α ∈ R, v ∈ R
n given implicitly as a set of changed coordinates): Update the cur-

rent direction to v, and then z(step) to maintain the claimed invariant. Update the implicit
representation of x to reflect the following change in value:

x← x+M(αz(step)).

The procedure runs in Õ(ǫ−2
P

√
mK) time, where K is the number of coordinates changed in v

compared to the previous IPM step.

• Exact(): Output the current exact value of x = y +Mz in Õ(T (m)) time.

2.4 Solution approximation

In the flow and slack maintenance data structures, one key operation is to maintain vectors f , s
that are close to f , s throughout the IPM. Since we have implicit representations of the solutions
of the form x = y +Mz, we now show how to maintain x close to x. To accomplish this, we will
give a meta data structure that solves this in a more general setting. The data structure involves
three steps; the first two steps are similar to [DLY21a] and the key contribution is the last step:

1. We maintain an approximate vector by detecting coordinates of the exact vector x with large
changes. In step k of the IPM, for every ℓ such that 2ℓ|k, we consider all coordinates of the
approximate vector x that did not change in the last 2ℓ steps. If any of them is off by more
than δ

2⌈logm⌉ from x, it is updated. We can prove that each coordinate of x has additive error

at most δ compared to x. The number of updates to x will be roughly O(22ℓk), where 2ℓk

is the largest power of 2 that divides k. This guarantees that K-sparse updates only happen√
m/K times throughout the IPM algorithm.

2. We detect coordinates with large changes in x via a random sketch and sampling using the
separator tree. We can sample a coordinate with probability exactly proportional to the
magnitude of its change, when given access to the approximate sum of probabilities in each
region of the separator tree and to the exact value of any single coordinate of x.

3. We show how to maintain random sketches for vectors of the form x = y + Mz, where M

is an implicit tree operator supported on a tree T . Specifically, to maintain sketches of Mz,
we store intermediate sketches for every complete subtree of T at their roots. When an edge
operator of M or a coordinate of z is modified, we only need to update the sketches along a
path in T from a node to the root. For our use case, the cost of updating the sketches at a
node H will be proportional to its separator size, so that a K-sparse update takes Õ(

√
mK)

time.

While the data structure is randomized, it is guaranteed to work against an adaptive adversary
that is allowed to see the entire internal state of the data structure, including the random bits.

Theorem 8 (Approximate vector maintenance with tree operator). Given a constant degree tree T
with height η that supports tree operator M with complexity T , there is a randomized data structure
MaintainApprox that takes as input the dynamic variables M, c,z(step),z(sum),y,D at every IPM
step, and maintains the approximation x to x

def
= y +Mz = y +M(c · z(step) + z(sum)) satisfying∥∥D1/2(x− x)

∥∥
∞ ≤ δ. It supports the following procedures:
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• Initialize(tree T , tree operator M, c ∈ R,z(step) ∈ R
n,z(sum) ∈ R

n,y ∈ R
m,D ∈ R

n×n, ρ >
0, δ > 0): Initialize the data structure with initial vector x = y + M(cz(step) + z(sum)),
diagonal scaling matrix D, target approximation accuracy δ, success probability 1 − ρ, in
O(mη2 logm log(mρ )) time. Initialize x← x.

• Approximate(M, c,z(step),z(sum),y,D): Update the internal variables to their new iterations
as given. Then output a vector x such that ‖D1/2(x− x)‖∞ ≤ δ for the current vector x and
the current diagonal scaling D.

Suppose ‖x(k+1) − x(k)‖
D(k+1) ≤ β for all k, where D

(k) and x(k) are the D and x at the k-th call
to Approximate. Then, for the k-th call to Approximate, we have

• the data structure first updates xi ← x
(k−1)
i for the coordinates i with D

(k)
ii 6= D

(k−1)
ii , then

updates xi ← x
(k)
i for O(Nk

def
= 22ℓk(β/δ)2 log2m) coordinates, where ℓk is the largest integer

ℓ with k = 0 mod 2ℓ.

• The amortized time cost of Approximate is

Θ(η2 log(
m

ρ
) logm) · T (η · (Nk−2ℓk + |S|)),

where S is the set of nodes H where either M(H,P ), JH , z(step)|FH
, or z(sum)|FH

changed, or
where ye or De,e changed for some edge e in H, compared to the (k − 1)-th step.

2.5 Slack projection

We want to use a MaintainRep data structure to implicitly maintain the slack solution s through-
out the IPM, and use a MaintainApprox data structure to explicitly maintain the approximate
slack solution s.

To use MaintainRep, it remains to define a suitable tree operator M
(slack), so that at IPM

step k, the update in MaintainRep is the correct IPM slack update; that is:

M
(slack)(t̄h · z(step)) = t̄hW−1/2

P̃wv
(k).

Let L̃
−1 denote the approximation of L−1 from Eq. (2.8), maintained and computable with a

DynamicSC data structure. We define

P̃w = W
1/2

BL̃
−1

B
⊤
W

1/2 = W
1/2

BΠ
(0) · · ·Π(η−1)

Γ̃Π
(η−1) · · ·Π(0)

B
⊤
W

1/2.

then P̃w ≈ηǫP Pw, and Range(P̃w) = Range(Pw) by definition. Hence, this suffices as our approx-
imate slack projection matrix.

Using Section 2.3, we can write

P̃wv(k) = W
1/2

BΠ
(0)⊤ · · ·Π(η−1)⊤z(step), (2.11)

where z(step) = Γ̃Π
(η−1) · · ·Π(0)

B
⊤
W

1/2v(k) at the end of IPM step k, as defined in the previous
section. The remaining matrix multiplication on the left in Eq. (2.11) can indeed be represented by
a tree operator M on the tree T . Intuitively, observe that each Π

(i) operates on level i of T and can
be decomposed to be written in terms of the nodes at level i. Furthermore, the Π

(i)’s are applied in
order of descending level in T . Finally, at the leaf level, W1/2

B maps vectors on vertices to vectors
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on edges. In Section 7, we present the exact tree operator and its correctness proof. With it, we
have

P̃wv(k) = W
1/2

Mz(step).

We set M
(slack) to be W

1/2
M, which is also a valid tree operator.

Now, we state the full data structure for maintaining slack.

Theorem 9 (Slack maintenance). Given a modified planar graph G with m edges and its separa-
tor tree T with height η, the randomized data structure MaintainSlack (Algorithm 9) implicitly
maintains the slack solution s undergoing IPM changes, and explicitly maintains its approximation
s, and supports the following procedures with high probability against an adaptive adversary:

• Initialize(G, s(init) ∈ R
m,v ∈ R

m,w ∈ R
m
>0, ǫP > 0, ǫ > 0): Given a graph G, initial solution

s(init), initial direction v, initial weights w, target step accuracy ǫP and target approximation
accuracy ǫ, preprocess in Õ(mǫ−2

P
) time, and set the representations s← s(init) and x← s.

• Reweight(w ∈ R
m
>0, given implicitly as a set of changed weights): Set the current weights to

w in Õ(ǫ−2
P

√
mK) time, where K is the number of coordinates changed in w.

• Move(α ∈ R,v ∈ R
m given implicitly as a set of changed coordinates): Implicitly update

s← s+αW−1/2
P̃wv for some P̃w with ‖(P̃w −Pw)v‖2 ≤ ηǫP ‖v‖2, and P̃wv ∈ Range(B).

The total runtime is Õ(ǫ−2
P

√
mK) where K is the number of coordinates changed in v.

• Approximate() → R
m: Return the vector s such that ‖W1/2(s − s)‖∞ ≤ ǫ for the current

weight w and the current vector s.

• Exact()→ R
m: Output the current vector s in Õ(mǫP

−2) time.

Suppose α‖v‖2 ≤ β for some β for all calls to Move. Suppose in each step, Reweight, Move and
Approximate are called in order. Let K denote the total number of coordinates changed in v and
w between the (k − 1)-th and k-th Reweight and Move calls. Then at the k-th Approximate

call,

• the data structure first sets se ← s
(k−1)
e for all coordinates e where we changed in the last

Reweight, then sets se ← s
(k)
e for O(Nk

def
= 22ℓk(βǫ )

2 log2m) coordinates e, where ℓk is the
largest integer ℓ with k = 0 mod 2ℓ when k 6= 0 and ℓ0 = 0.

• The amortized time for the k-th Approximate call is Õ(ǫ−2
P

√
m(K +Nk−2ℓk )).

2.6 Flow projection

Similar to slack, we want to use a MaintainRep data structure to implicitly maintain the flow
solution f throughout the IPM, and use a MaintainApprox data structure to explicitly maintain
the approximate flow solution f . For the overview, we focus on the non-trivial part of the flow
update at every step given by

f⊥ ← f⊥ + hW1/2
P̃
′
wv.

To use MaintainRep, it remains to define a suitable tree operator M
(flow) so that at IPM step k,

the update in MaintainRep is the correct IPM flow update; that is:

W
1/2

P̃
′
wv = M

(flow)z(step).
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Rather than finding an explicit P̃
′
w as we did for slack, observe it suffices to find some weighted

flow f̃ ≈ Pwv satisfying B
⊤
W

1/2f̃ = B
⊤
W

1/2v. (We use the term “weighted flow” to mean it is
obtained by multiplying the edge weights W to some valid flow.) Then the IPM update becomes

hW1/2
P̃
′
wv = hW1/2f̃ .

Hence, our goal is to write W
1/2f̃ = M

(flow)z(step) for an appropriate weighted flow f̃ .
Let us define demands on vertices by d

def
= B

⊤
W

1/2v. Unwrapping the definition of Pw, we
see that the condition of f̃ ≈ Pwv is actually f̃ ≈ W

1/2
BL
−1d. The second condition says f̃

is a weighted flow routing demand d. Suppose we had f̃ = W
1/2

BL
−1d exactly, then we see

immediately that the second condition is satisfied with B
⊤
W

1/2f̃ = B
⊤
WBL

−1d = d. To realize
the approximation, we make use of the approximation of L−1 from Eq. (2.8). Hence, one important
fact about our construction is that when the Schur complements are exact, our flow f̃ agrees with
the true electrical flow routing the demand.

In constructing f̃ to route the demand d, we show that f̃ can be written as Mz(step), where
M is a tree operator on the tree T , and z(step) is from MaintainRep, and in fact correspond to
electric potentials. Here we explain what M captures intuitively. For simplicity, let z denote z(step).

The first step is recognizing a decomposition of d using the separator tree, such that we have a
demand term d(H) for each node H ∈ T . Furthermore, d(H) = L

(H)z|FH
, for the Laplacian L

(H)

supported on the region H maintained by dynamicSC. This decomposition allows us to route each
demand d(H) by electric flows using only the corresponding region H, rather than the entire graph.
The recursive nature of the decomposition allows us to bound the overall runtime. To show that
the resulting flow f̃ indeed is close to the electric flow, one key insight is that the decomposed
demands are orthogonal (Lemma 74). Hence, routing them separately by electrical flows gives a
good approximation to the true electrical flow of the whole demand (Theorem 67).

Let us illustrate this partially using the two-layer decomposition scheme from Section 2.2: Sup-
pose we have a demand term d that is non-zero only on vertices of C. Then, observe that

z =

[
L
−1
F,F 0

0 S̃c(L, C)−1

][
I 0

−LC,FL
−1
F,F I

]
d

Looking at the sub-vector indexed by C on both sides, we have that

S̃c(L, C)z = d

where we abuse the notation to extend S̃c(L, C) from C × C to [n]× [n] by padding zeros. Using
Eq. (2.6), we have (

S̃c(L[H1], C) + S̃c(L[H2], C)
)
z = d

This gives a decomposition of the demand d into demand terms S̃c(L[Hi], C)z for i = 1, 2. Crucially,

each demand S̃c(L[Hi], C)z is supported on the vertices of the region Hi, and we can route the flow
on the corresponding region only. In a O(log n)-level decomposition, we recursively decompose the
demand further based on the sub-regions according to the separator tree T . This guarantees that
f̃i is the electric flow on the subgraph Hi that satisfies the demand S̃c(L[Hi], C)z. Finally, we will
let the output be f̃ =

∑
f̃i. By construction, this f̃ satisfies B

⊤
W

1/2f̃ = d = B
⊤
W

1/2v.
In Section 8, we show that this recursive operation can be realized using a tree operator. We

then present the full proof for Theorem 10 below, and implement the data structure.
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Theorem 10 (Flow maintenance). Given a modified planar graph G with m edges and its separa-
tor tree T with height η, the randomized data structure MaintainFlow (Algorithm 10) implicitly
maintains the flow solution f undergoing IPM changes, and explicitly maintains its approximation
f , and supports the following procedures with high probability against an adaptive adversary:

• Initialize(G,f (init) ∈ R
m,v ∈ R

m,w ∈ R
m
>0, ǫP > 0, ǫ > 0): Given a graph G, initial solution

f (init), initial direction v, initial weights w, target step accuracy ǫP, and target approximation
accuracy ǫ, preprocess in Õ(mǫ−2

P
) time and set the internal representation f ← f (init) and

f ← f .

• Reweight(w ∈ R
m
>0 given implicitly as a set of changed weights): Set the current weights to

w in Õ(ǫ−2
P

√
mK) time, where K is the number of coordinates changed in w.

• Move(α ∈ R,v ∈ R
m given implicitly as a set of changed coordinates): Implicitly update

f ← f + αW1/2v − αW1/2
P̃
′
wv for some P̃

′
wv, where ‖P̃′wv − Pwv‖2 ≤ O(ηǫP) ‖v‖2 and

B
⊤
W

1/2
P̃
′
wv = B

⊤
W

1/2v. The runtime is Õ(ǫ−2
P

√
mK), where K is the number of coordi-

nates changed in v.

• Approximate()→ R
m: Output the vector f such that ‖W−1/2(f −f)‖∞ ≤ ǫ for the current

weight w and the current vector f .

• Exact()→ R
m: Output the current vector f in Õ(mǫP

−2) time.

Suppose α‖v‖2 ≤ β for some β for all calls to Move. Suppose in each step, Reweight, Move and
Approximate are called in order. Let K denote the total number of coordinates changed in v and
w between the (k − 1)-th and k-th Reweight and Move calls. Then at the k-th Approximate

call,

• the data structure first sets f e ← f
(k−1)
e for all coordinates e where we changed in the last

Reweight, then sets fe ← f
(k)
e for O(Nk

def
= 22ℓk(βǫ )

2 log2m) coordinates e, where ℓk is the
largest integer ℓ with k = 0 mod 2ℓ when k 6= 0 and ℓ0 = 0.

• The amortized time for the k-th Approximate call is Õ(ǫ−2
P

√
m(K +Nk−2ℓk )).

2.7 Main proof

We are now ready to prove our main result. Algorithm 2 presents the implementation of RIPM
Algorithm 1 using our data structures.

We first prove a lemma about how many coordinates change in w and v in each step. This is
useful for bounding the complexity of each iteration.

Lemma 11. When updating w and v at the (k + 1)-th step of the CenteringImpl algorithm, w
and v change in O(22ℓk−1 log2m + 22ℓk log2m) coordinates, where ℓk is the largest integer ℓ with
k ≡ 0 mod 2ℓ.

Proof. Since both w and v are an entry-wise function of f , s and t, we need to examine these
variables. First, t changes every Õ(

√
m) steps, and when t changes, every coordinate of w and v

changes. Over the entire CenteringImpl run, t changes Õ(1) number of times, so we may incur
an additive Õ(m) term overall, and assume t does not change for the rest of the analysis.
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Algorithm 2 Implementation of Robust Interior Point Method

1: procedure CenteringImpl(B, φ,f , s, tstart, tend)
2: G: graph on n vertices and m edges with incidence matrix B

3: S,F : data structures for slack and flow maintenance ⊲ Theorems 9 and 10
4: α

def
= 1

220λ
, λ

def
= 64 log(256m2)

5: t← tstart, f ← f , s← s, t← t, W← ∇2φ(f )−1 ⊲ variable initialization
6: vi ← sinh(λγt(f , s)i) for all i ∈ [n]

⊲ data structure initialization
7: F .Initalize(G,f ,v,W, ǫP = O(α/ logm), ǫ = α) ⊲ choose ǫP so ηǫP ≤ α in Theorem 9

8: S.Initalize(G, t
−1

s,v,W, ǫP = O(α/ logm), ǫ = α) ⊲ and O(ηǫP) ≤ α in Theorem 10
9: while t ≥ tend do

10: t← max{(1 − α√
m
)t, tend}

11: Update h = −α/‖ cosh(λγt(f , s))‖2 ⊲ γ as defined in Eq. (2.2)
12: Update the diagonal weight matrix W = ∇2φ(f)−1

13: F .Reweight(W) ⊲ update the implicit representation of f with new weights
14: S.Reweight(W) ⊲ update the implicit representation of s with new weights
15: vi ← sinh(λγt(f , s)i) for all i where f i or si has changed ⊲ update direction v

16: ⊲ Pw
def
= W

1/2
B(B⊤WB)−1B⊤W1/2

17: F .Move(h,v) ⊲ Update f ← f + hW1/2v − hW1/2f̃ with f̃ ≈ Pwv

18: S.Move(h,v) ⊲ Update s← s+ thW−1/2s̃ with s̃ ≈ Pwv

19: f ← F .Approximate() ⊲ Maintain f such that ‖W−1/2(f − f)‖∞ ≤ α
20: s← t̄S.Approximate() ⊲ Maintain s such that ‖W1/2(s− s)‖∞ ≤ tα
21: if |t− t| ≥ αt then
22: s← tS.Exact()
23: t← t
24: S.Initalize(G, t

−1
s,v,W, ǫP = O(α/ logm), ǫ = α)

25: end if
26: end while
27: return (F .Exact(), tS.Exact())
28: end procedure
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By Theorem 3, we have h‖v‖2 = O( 1
logm) at all steps. So we apply Theorem 9 and Theorem 10

both with parameters β = O( 1
logm ) and ǫ = α = Θ( 1

logm). We use their conclusions in the following

argument. Let the superscript (k) denote the variable at the end of the k-th step.

By definition, w(k+1) is an entry-wise function of f
(k)

, and recursively, f
(k)

is an entry-wise
function of w(k). We first prove inductively that at step k, O(22ℓk log2m) coordinates of f change
to f (k) where f (k) is the exact solution, and there are no other changes. This allows us to conclude
that w(k+1) differ from w(k) on O(22ℓk log2m) coordinates.

In the base case at step k = 1, because w(1) is equal to the initial weights w(0), onlyO(22ℓ1 log2m)

coordinates fe change to f
(1)
e . Suppose at step k, a set S of O(22ℓk log2m) coordinates of f change;

that is, f |S is updated to f (k)|S , and there are no other changes. Then at step k + 1, by defini-

tion, w(k+1) differ from w(k) exactly on S, and in turn, f
(k+1)|S is set to f (k)|S again (Line 20

of Algorithm 7). In other words, there is no change from this operation. Then, O(22ℓk+1 log2m)

additional coordinates f e change to f
(k+1)
e .

Now, we bound the change in s: Theorem 9 guarantees that in the k-th step, there are O(22ℓk log2m)+
D coordinates in s that change, where D is the number of changes between w(k−1) and w(k) and is
equal to O(22ℓk−1 log2m) as shown above.

Finally, v(k+1) is an entry-wise function of f
(k)

and s(k), so we conclude that v(k+1) and v(k)

differ on at most O(22ℓk log2m) + 2 · O(22ℓk−1 log2m) coordinates.

Theorem 1 (Main result). Let G = (V,E) be a directed planar graph with n vertices and m edges.
Assume that the demands d, edge capacities u and costs c are all integers and bounded by M in
absolute value. Then there is an algorithm that computes a minimum cost flow satisfying demand
d in Õ(n logM) 5 expected time.

Proof. The proof is structured as follows. We first write the minimum cost flow problem as a linear
program of the form Eq. (2.1). We prove the linear program has an interior point and is bounded,
so to satisfy the assumptions in Theorem 3. Then, we implement the IPM algorithm using the
data structures from Sections 2.3 to 2.6. Finally, we bound the cost of each operations of the data
structures.

To write down the min-cost flow problem as a linear program of the form Eq. (2.1), we add extra
vertices s and t. Let d be the demand vector of the min-cost flow problem. For every vertex v with
dv < 0, we add a directed edge from s to v with capacity −dv and cost 0. For every vertex v with
dv > 0, we add a directed edge from v to t with capacity dv and cost 0. Then, we add a directed
edge from t to s with capacity 4nM and cost −4nM . The modified graph is no longer planar but
it has only two extra vertices s and t.

The cost and capacity on the t → s edge is chosen such that the minimum cost flow problem
on the original graph is equivalent to the minimum cost circulation on this new graph. Namely, if
the minimum cost circulation in this new graph satisfies all the demand dv, then this circulation
(ignoring the flow on the new edges) is the minimum cost flow in the original graph.

Since Theorem 3 requires an interior point in the polytope, we first remove all directed edges e
through which no flow from s to t can pass. To do this, we simply check, for every directed edge
e = (v1, v2), if s can reach v1 and if v2 can reach t. This can be done in O(m) time by a BFS from s
and a reverse BFS from t. With this preprocessing, we write the minimum cost circulation problem
as the following linear program

min
B⊤f=0, lnew≤f≤unew

(cnew)⊤f

5Throughout the paper, we use Õ(f(n)) to denote O(f(n) logO(1) f(n)).
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where B is the signed incidence matrix of the new graph, cnew is the new cost vector (with cost on
extra edges), and lnew,unew are the new capacity constraints. If an edge e has only one direction, we

set lnewe = 0 and u
(new)
e = ue, otherwise, we orient the edge arbitrarily and set −lnewe = unew

e = ue.
Now, we bound the parameters L,R, r in Theorem 3. Clearly, L = ‖cnew‖2 = O(Mm) and

R = ‖unew − lnew‖2 = O(Mm). To bound r, we prove that there is an “interior” flow f in the
polytope F . We construct this f by f =

∑
e∈E f (e), where f (e) is a circulation passing through edges

e and (t, s) with flow value 1/(4m). All such circulations exist because of the removal preprocessing.
This f satisfies the capacity constraints because all capacities are at least 1. This shows r ≥ 1

4m .
The RIPM in Theorem 3 runs the subroutine Centering twice. In the first run, the constraint

matrix is the incidence matrix of a new underlying graph, constructed by making three copies of each
edge in the original graph G. Since copying edges does not affect planarity, and our data structures
allow for duplicate edges, we use the implementation given in CenteringImpl (Algorithm 2) for
both runs.

By the guarantees of Theorem 9 and Theorem 10, we correctly maintain s and f at every step in
CenteringImpl, and the requirements on f and s for the RIPM are satisfied. Hence, Theorem 3
shows that we can find a circulation f such that (cnew)⊤f ≤ OPT − 1

2 by setting ǫ = 1
CM2m2 for

some large constant C in Algorithm 1. Note that f , when restricted to the original graph, is almost
a flow routing the required demand with flow value off by at most 1

2nM . This is because sending
extra k units of fractional flow from s to t gives extra negative cost ≤ −knM . Now we can round
f to an integral flow f int with same or better flow value using no more than Õ(m) time [KP15].
Since f int is integral with flow value at least the total demand minus 1

2 , f
int routes the demand

completely. Again, since f int is integral with cost at most OPT − 1
2 , f

int must have the minimum
cost.

Finally, we bound the runtime of one call to CenteringImpl. We initialize the data structures
for flow and slack by Initialize. Here, the data structures are given the first IPM step direction
v for preprocessing; the actual step is taken in the first iteration of the main while-loop. At each
step of CenteringImpl, we perform the implicit update of f and s using Move; we update W

in the data structures using Reweight; and we construct the explicit approximations f and s

using Approximate; each in the respective flow and slack data structures. We return the true
(f , s) by Exact. The total cost of CenteringImpl is dominated by Move, Reweight, and
Approximate.

Since we call Move, Reweight and Approximate in order in each step and the runtime for
Move, Reweight are both dominated by the runtime for Approximate, it suffices to bound the
runtime for Approximate only. Theorem 3 guarantees that there are T = O(

√
m log n log(nM))

total Approximate calls. Lemma 11 shows that at the k-th call, the number of coordinates changed
in w and v is bounded by K

def
= O(22ℓk−1 log2m + 22ℓk−2 log2m), where ℓk is the largest integer ℓ

with k ≡ 0 mod 2ℓ, or equivalently, the number of trailing zeros in the binary representation
of k. Theorem 3 further guarantees we can apply Theorem 9 and Theorem 10 with parameter
β = O(1/ logm), which in turn shows the amortized time for the k-th call is

Õ(ǫP
−2
√
m(K +Nk−2ℓk )).

where Nk
def
= 22ℓk(β/α)2 log2m = O(22ℓk log2m), where α = O(1/ logm) and ǫP = O(1/ logm) are

defined in CenteringImpl.
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Observe that K +Nk−2ℓk = O(Nk−2ℓk ). Now, summing over all T calls, the total time is

O(
√
m logm)

T∑

k=1

√
Nk−2ℓk = O(

√
m log2m)

T∑

k=1

2
ℓ
(k−2ℓk )

= O(
√
m log2m)

T∑

k′=1

2ℓk′
T∑

k=1

[k − 2ℓk = k′],

where we use [·] for the indicator function, i.e., [k − 2ℓk = k′] = 1 if k − 2ℓk = k′ is true and 0
otherwise. As there are only log T different powers of 2 in [1, T ], the count

∑
1≤k≤T [k− 2ℓk = k′] is

bounded by O(log T ) for any k′ ∈ {1, . . . , T}. Then the above expression is

= O(
√
m log2m log T )

T∑

k′=1

2ℓk′ .

Since ℓk is the number of trailing zeros on k, it can be at most log T for k ≤ T . We again rearrange
the summation by possible values of ℓk′ , and note that there are at most T/2i+1 numbers between
1 and T with i trailing zeros, so

T∑

k′=1

2ℓk′ =

log T∑

i=0

2i · T/2i+1 = O(T log T ).

So the overall runtime is O(
√
mT logm log2 T ). Combined with Theorem 3’s guarantee of T =

O(
√
m log n log(nM)), we conclude the overall runtime is Õ(m logM).

3 Preliminaries

We assume all matrices and vectors in an expression have matching dimensions. That is, we will
trivially pad matrices and vectors with zeros when necessary. This abuse of notation is unfortunately
unavoidable as we will be considering lots of submatrices and subvectors.

General Notations. An event holds with high probability if it holds with probability at least
1− nc for arbitrarily large constant c. The choice of c affects guarantees by constant factors.

We use boldface lowercase variables to denote vectors, and boldface uppercase variables to denote
matrices. We use ‖v‖2 to denote the 2-norm of vector v and ‖v‖M to denote v⊤Mv. For any vector
v and scalar x, we define v + x to be the vector obtained by adding x to each coordinate of v and
similarly v − x to be the vector obtained by subtracting x from each coordinate of v. We use 0

for all-zero vectors and matrices where dimensions are determined by context. We use 1A for the
vector with value 1 on coordinates in A and 0 everywhere else. We use I for the identity matrix
and IS for the identity matrix in R

S×S. For any vector x ∈ R
S , x|C denotes the sub-vector of x

supported on C ⊆ S; more specifically, x|C ∈ R
S, where xi = 0 for all i /∈ C.

For any matrix M ∈ R
A×B, we use the convention that MC,D denotes the sub-matrix of M

supported on C×D where C ⊆ A and D ⊆ B. When M is not symmetric and only one subscript is
specified, as in MD, this denotes the sub-matrix of M supported on A×D. To keep notations simple,
M
−1 will denote the inverse of M if it is an invertible matrix and the Moore-Penrose pseudo-inverse

otherwise.
For two positive semi-definite matrices L1 and L2, we write L1 ≈t L2 if e−tL1 � L2 � etL1,

where A � B means B−A is positive semi-definite. Similarly we define ≥t and ≤t for scalars, that
is, x ≤t y if e−tx ≤ y ≤ etx.
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Graphs and Trees. We define modified planar graph to mean a graph obtained from a planar
graph by adding 2 new vertices s, t and any number of edges incident to the new vertices. We allow
distinguishable parallel edges in our graphs. We assume the input graph is connected.

We use n for the number of vertices and m for the number of edges in the input graph. We will
use w for the vector of edge weights in a graph. We define W as the diagonal matrix diag(w).

We define L = B
⊤
WB be the Laplacian matrix associated with an undirected graph G with

non-negative edge weights W. We at times use a graph and its Laplacian interchangeably. For a
subgraph H ⊆ G, we use L[H] to denote the weighted Laplacian on H, and B[H] to denote the
incidence matrix of H.

For a tree T , we write H ∈ T to mean H is a node in T . We write TH to mean the complete
subtree of T rooted at H. We say a node A is an ancestor of H if H is in the subtree rooted at A,
and H 6= A.

The level of a node in a tree is defined so that leaf nodes have level 0, and the root has level η,
where η is the height of the tree. For interior nodes, the level is the length of the longest path from
the node to a leaf. By this definition, note that the level of a node and its child can differ by more
than 1.

For binary tree data structures, we assume there is constant time access to each node.

IPM data structures. When we discuss the data structures in the context of the IPM, step
0 means the initialization step. For k > 0, step k means the k-th iteration of the while-loop in
Centering (Algorithms 1 and 2); that is, it is the k-th time we update the current solutions. For
any vector or matrix x used in the IPM, we use x(k) to denote the value of x at the end of the k-th
step.

In all procedures in these data structures, we assume inputs are given by the set of changed
coordinates and their values, compared to the previous input. Similarly, we output a vector by
the set of changed coordinates and their values, compared to the previous output. This can be
implemented by checking memory for changes.

We use smallCaps to denote function names and data structure classes, and typewriterFont

to denote an instantiation of a data structure.
We say a data structure B extends A in the object-oriented sense. Inside data structure B, we

directly access functions and variables of A when the context is clear, or use the keyword super.
In the data structure where we write L

−1x for some Laplacian L and vector x, we imply the
use of an SDD-solver as a black box in nearly-linear time:

Theorem 12 ([ST04, JS21]). There is a randomized algorithm which is an ε-approximate Laplacian
system solver for the any input n-vertex m-edge graph and ε ∈ (0, 1) and has the following runtime
O(mpoly(log log n) log(1/ε)).

4 Nested dissection and approximate Schur complements

This section lays the foundation for a recursive decomposition of the input graph. Our goal is to
set up the machinery necessary for approximating Pw

def
= W

1/2
B(B⊤WB)−1B⊤W1/2 as needed in

the robust IPM. In particular, we are interested in the weighted Laplacian matrix L
def
= B

⊤
WB.

We begin with a discussion of nested dissection and the associated Schur complements.
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4.1 Cholesky decomposition and Schur complement

Let G be a weighted graph. Consider the partition of vertices in G into two subsets C and F =
V (G) \ C called boundary and interior vertices. This partitions L into four blocks:

L =

[
LF,F LF,C

LC,F LC,C

]
.

Definition 13 (Block Cholesky decomposition). The block Cholesky decomposition of a symmetric
L with blocks indexed by F and C defined as above is:

L =

[
I 0

LC,F (LF,F )
−1

I

] [
LF,F 0

0 Sc(L, C)

] [
I (LF,F )

−1
LF,C

0 I

]
. (4.1)

The middle matrix in the decomposition is a block-diagonal matrix with blocks indexed by F
and C, with the lower-right block being:

Definition 14 (Schur complement). The Schur complement Sc(L, C) of L onto C is the Laplacian
matrix resulting from a partial symmetric Gaussian elimination on L. Formally,

Sc(L, C) = LC,C − LC,FL
−1
F,FLF,C .

It is known that Sc(L, C) is the Laplacian of another graph with vertex set C. We further
use the convention that if H is a subgraph of G and V (H) ⊂ C, then Sc(H,C) simply means
Sc(H,C ∩ V (H)). Graph theoretically, the Schur complement has the following interpretation:

Lemma 15. Let V (G) = {v1, . . . , vn}. Let C = V (G)− v1. Let wij denote the weight of edge vivj.
Then

Sc(L, C) = G[C] +H,

where G[C] is the subgraph of G induced on the vertex set S, and H is the graph on S with edges
vivj where i, j ∈ N(v1), and wij = w1iw1j/w1, where w1 is the total weight of edges incident to v1
in G. Note that on the right hand side, we use a graph to mean its Laplacian.

Taking Schur complement is an associative operation. Furthermore, it commutes with edge
deletion, and more generally, edge weight deletion. Finally, for our purposes, it can be decomposed
under certain special circumstances.

Lemma 16. If X ⊆ Y ⊆ V (G), then Sc(Sc(L, Y ),X) = Sc(L,X).

Lemma 17. Let we denote the weight of edge e in G. Suppose C ⊆ V (G), and H is a subgraph of
G on the vertex set C with edge weights w′e ≤ we for all edges in G[C]. Let L′ denote the Laplacian
of H. Then, Sc(L− L

′, C) = Sc(L, C)− L
′.

Lemma 18. Let L be the Laplacian of graph G with the decomposition L = L1 + L2, where L1 is
a Laplacian supported on the vertex set V1 and L2 on V2. Furthermore, suppose V1 ∩ V2 ⊆ C for
some vertex set C ⊆ V (G). Then

Sc(L, C) = Sc(L1, C ∩ V1) + Sc(L2, C ∩ V2).
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Proof. We have

Sc(L, C) = Sc(L1 + L2, C)

= Sc(Sc(L1 + L2, C ∪ V2), C)

= Sc(Sc(L1, C ∪ V2) + L2, C) (by Lemma 17)

= Sc(Sc(L1, C) + L2, C) (since (C ∪ V2) ∩ V1 ⊆ C)

= Sc(L1, C) + Sc(L2, C), (by Lemma 17)

= Sc(L1, C ∩ V1) + Sc(L2, C ∩ V2) (since Li is supported on Vi for i = 1, 2)

as desired.

4.2 Separator tree

In the overview, we briefly gave the intuition for a 2-level partition of the input graph; here we extend
it to a recursive partitioning scheme with O(log n)-levels. We begin with the formal definitions.

Definition 19 (Separable graph). A graph G = (V,E) is α-separable if there exists two constants
c > 0 and b ∈ (0, 1) such that every nonempty subgraph H = (V (H) ⊆ V,E(H) ⊆ E) with
|E(H)| ≥ 2 of G can be partitioned into H1 and H2 such that

• E(H1) ∪E(H2) = E(H), E(H1) ∩ E(H2) = ∅,

• |V (H1) ∩ V (H2)| ≤ c⌈|E(H)|α⌉,

• |E(Hi)| ≤ b|E(H)|, for i = 1, 2.

We call S(H)
def
= V (H1) ∩ V (H2) the balanced vertex separator of H.

It is known that any planar graph is 1/2-separable.

Remark 20. As we discussed in Section 2.7, our LP formulation for the IPM uses a modified planar
graph which is the original planar graph with two additional vertices and O(n) additional edges
incident to them. By adding two vertices and edges incident to them to a planar graph, the
modified graph is also 1/2-separable with the constant c in Definition 19 increased by 2.

We apply nested dissection recursively to each region using balanced vertex separators, until the
regions are of constant size. The resulting hierarchical structure can be represented by a tree T ,
which is known as the separator tree of G:

Definition 21 (Separator tree T ). Let G be a modified planar graph. A separator tree T is a
binary tree whose nodes represent subgraphs of G such that the children of each node H form a
balanced partition of H.

Formally, each node of T is a region (edge-induced subgraph) H of G; we denote this by H ∈ T .
At a node H, we store subsets of vertices ∂H,S(H), FH ⊆ V (H), where ∂H is the set of boundary
vertices that are incident to vertices outside H in G; S(H) is the balanced vertex separator of H;
and FH is the set of eliminated vertices at H. Concretely, the nodes and associated vertex sets are
defined recursively in a top-down way as follows:

1. The root of T is the node H = G, with ∂H = ∅ and FH = S(H).

2. A non-leaf node H ∈ T has exactly two children D1,D2 ∈ T that form an edge-disjoint
partition of H in Definition 19, and their vertex sets intersect on the balanced separator S(H)
of H. D1 and D2 does not have any isolated vertex. Define ∂D1 = (∂H ∪ S(H)) ∩ V (D1),
and similarly ∂D2 = (∂H ∪ S(H)) ∩ V (D2). Define FH = S(H) \ ∂H.
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3. If a region H contains a constant number of edges, then we stop the recursion and H becomes
a leaf node. Further, we define S(H) = ∅ and FH = V (H) \ ∂H. Note that by construction,
each edge of G is contained in a unique leaf node.

Let η(H) denote the height of node H which is defined as the maximum number of edges on a
tree path from H to one of its descendants. η(H) = 0 if H is a leaf. Note that the height difference
between a parent and child node could be greater than one. Let η denote the height of T which is
defined as the maximum height of nodes in T . We say H is at level i if η(H) = i.

Observation 22. Using the above definition, {FH : H ∈ T } partitions the vertex set V (G).

Observation 23. Suppose H is a node in T with children D1 and D2. We have ∂D1 ∪ ∂D2 =
∂H ∪ FH .

Observation 24. Suppose H is a node in T . Then ∂H ⊆ ∪ancestor A of HFA.

Fakcharoenphol and Rao [FR06] gave an algorithm that computes the separator tree for any
planar graph.

Theorem 25 (Separator tree construction [FR06]). Given a planar graph G, there is an algorithm
that computes a separator tree T of G of height η = O(log n) in O(n log n) time.

For computing the separator tree T of a modified planar graph, we may apply their method to
the original planar graph to get the separator T ′, and add the two new vertices s, t to FG at the
root node G, and to the boundary sets ∂H at every non-root node H. The additional edges incident
to s, t can be recursively partitioned from a node to its children, which increases the height of T by
O(log n). Thus, we have the following corollary:

Corollary 26 (Separator tree construction for modified planar graph). Given a modified planar
graph G, there is an algorithm that computes a separator tree T of G of height η = O(log n) in
O(n log n) time.

To discuss the structures in the separator tree, we define the following terms:

Definition 27. Let T (i) be the subset of nodes in T at level i. For a node H, let TH be the subtree
of T rooted at H. Let PT (H) be the set nodes on the path from H to the root of T , including H.
Given a set of nodes H = {H : H ∈ T }, define

PT (H) :=
⋃

H∈H
PT (H).

Finally, we partition these nodes by their level in T , and use PT (H, i) to denote all the nodes
in PT (H) at level i in T .

Fakcharoenphol and Rao [FR06, Section 3.5] showed that for a set H of K nodes in T , the total
number of boundary vertices from the nodes in PT (H) is O(

√
mK). However, their claim is not

stated as a result we can cite here. We provide a simple, self-contained proof in Appendix A of a
slightly weaker bound that in addition requires bounding the number of separator vertices.

Lemma 28. Let G be a modified planar graph with separator tree T . Let H be a set of K nodes in
T . Then

∑

H∈PT (H)

|∂H|+ |FH | ≤ Õ(
√
mK).
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4.3 Approximating L
−1 using the separator tree

For a height-η separator tree, we generalize the sets C and F from the block Cholesky decomposition
(Eq. (4.1)) to a sequence of sets C0, . . . , Cη, and F0, . . . , Fη based on T .

Definition 29 (Ci, Fi). Let T be the separator tree from Corollary 26. For all 0 ≤ i ≤ η, we
define Fi =

⋃
H∈T (i) FH to be the vertices eliminated at level i. For all 0 ≤ i ≤ η, we define

Ci =
⋃

H∈T (i) ∂H to be the vertices remaining after eliminating vertices in Fi. We define C−1 to be
V (G).

By Observation 22, Fi is the disjoint union of FH over all nodes H at level i in the separator
tree. F0, . . . , Fη partitions V (G). By the definition of ∂H and FH , we know Fi = Ci−1 \ Ci for all
0 ≤ i ≤ η. It follows that V (G) = C−1 ⊃ C0 ⊃ · · · ⊃ Cη−1 ⊃ Cη = ∅ and Ci = ∪j>iFj .

Now, the decomposition from Eq. (4.1) can be extended and inverted as follows:

L
−1 = U

(0)⊤ · · ·U(η−1)⊤




Sc(L, C−1)F0,F0

−1
0 0

0
. . . 0

0 0 Sc(L, Cη−1)Fη ,Fη

−1


U

(η−1) · · ·U(0), (4.2)

where the U
(i)’s are upper triangular matrices with

U
(i) = I− Sc(L, Ci−1)Ci,Fi (Sc(L, Ci−1)Fi,Fi)

−1 ,

where we assume all matrices are n × n by padding zeroes when required. To efficiently compute
parts of L−1, we use approximate Schur complements instead of exact ones in Eq. (4.2).

Definition 30 (Approximate Schur Complement). Let G be a weighted graph with Laplacian L,

and let C be a set of boundary vertices in G. We say that a Laplacian matrix S̃c(L, C) ∈ R
C×C

is an ε-approximate Schur complement of L onto C if S̃c(L, C) ≈ε Sc(L, C), where we use ≈ε to
mean an eε-spectral approximation.

Definition 31 (L(H)). Let ǫP > 0. For each H ∈ T , let L
(H) be a Laplacian on the vertex set

FH ∪ ∂H such that
L
(H) ≈ǫP Sc(L[H], ∂H ∪ FH).

We show how to compute and maintain L
(H) in the next subsection.

Here, we define the necessary approximate matrices and show how to approximate L
−1.

Definition 32 (Π(i),X(H), Γ̃). To approximate U
(i), we define

Π
(i) = I−

∑

H∈T (i)
X

(H), (4.3)

where

X
(H) = L

(H)
∂H,FH

(
L
(H)
FH ,FH

)−1
(4.4)

for each H ∈ T .
To approximate the block diagonal matrix in Eq. (4.2), we define

Γ̃ =




∑
H∈T (0)

(
L
(H)
FH ,FH

)−1
0 0

0
. . . 0

0 0
∑

H∈T (η)

(
L
(H)
FH ,FH

)−1


 .
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Theorem 33 (L−1 approximation). Suppose for each H ∈ T , we have a Laplacian L
(H) satisfying

L
(H) ≈ǫP Sc(L[H], ∂H ∪ FH).

Then, we have
L
−1 ≈ηǫP Π

(0)⊤ · · ·Π(η−1)⊤
Γ̃Π

(η−1) · · ·Π(0). (4.5)

Proof. Let Ci, Fi be defined for each i according to Definition 29. Let L
(i) def

=
∑

H∈T (i) L
(H).

Note that L
(i)
Fi,Fi

def
=
∑

H∈T (i) L
(H)
FH ,FH

is a block-diagonal matrix with blocks indexed by H ∈ T (i),
since Fi is a disjoint union over FH for H ∈ T (i), and only L

(H) is supported on FH . Hence,

L
(i)
Fi,Fi

−1
=
∑

H∈T (i)

(
L
(H)
FH ,FH

)−1
.

Recall that the regions in T (i) partition the graph G. Furthermore, the intersection of H,H ′ ∈
T (i) is on their boundary, which is contained in Ci ⊆ Ci−1. Thus, we apply Lemma 18 to get

Sc(L, Ci−1) =
∑

H∈T (i)
Sc(L[H], Ci−1 ∩ V (H))

≈ǫP

∑

H∈T (i)
S̃c(L[H], ∂H ∪ FH) =

∑

H∈T (i)
L
(H) = L

(i).
(4.6)

Now, we prove inductively that

L
−1 ≈iǫP Π

(0)⊤ · · ·Π(i−1)⊤




(
L
(0)
F0,F0

)−1
0 0 0

0
. . . 0 0

0 0

(
L
(i−1)
Fi−1,Fi−1

)−1
0

0 0 0
(
L
(i)
)−1



Π

(i−1) · · ·Π(0), (4.7)

When i = 0, we have the approximation trivially as L
(0) = L.

For general i, we factor L
(i) in Eq. (4.7) recursively using Cholesky decomposition. L

(i) is
supported on Ci−1, and we can partition Ci−1 = Fi ∪Ci. Then,

L
(i) =

[
I 0

L
(i)
Ci,Fi

(L
(i)
Fi,Fi

)−1 I

][
L
(i)
Fi,Fi

0

0 Sc(L(i), Ci)

][
I (L

(i)
Fi,Fi

)−1L(i)
Fi,Ci

0 I

]
. (4.8)

For the Schur complement term in the factorization, we have

Sc(L(i), Ci) ≈iǫP Sc(Sc(L, Ci−1), Ci) (by Eq. (4.6))

= Sc(L, Ci) (by transitivity of Schur complements)

≈ǫP L
(i). (by Eq. (4.6))

So we can use L
(i) in place of the Schur complement term, and the equality becomes an approxi-

mation with factor (i+ 1)ǫP. Furthermore, in Eq. (4.8), we can rewrite

L
(i)
Ci,Fi

=
∑

H∈T (i)
L
(H)
Ci,Fi

=
∑

H∈T (i)
L
(H)
∂H,FH

.

Plugging the inverse of Eq. (4.8) into Eq. (4.7), we get the correct recursive approximation.

Finally, we note that at the η-th level, L
(η)
Fη ,Fη

= L
(η) since Cη = ∅. So we have the overall

expression.
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4.4 Recursive Schur complements on separator tree

In this section, we prove Theorem 6 which maintains approximate Schur complements onto the
boundary vertices of each node H in T .

We use the following result as a black-box for computing sparse approximate Schur complements:

Lemma 34 (ApproxSchur procedure [DKP+17]). Let L be the weighted Laplacian of a graph
with n vertices and m edges, and let C be a subset of boundary vertices of the graph. Let γ =
1/n3 be the error tolerance. Given approximation parameter ε ∈ (0, 1/2), there is an algorithm

ApproxSchur(L, C, ε) that computes and outputs a ε-approximate Schur complement S̃c(L, C)
that satisfies the following properties with probability at least 1− γ:

1. The graph corresponding to S̃c(L, C) has O(ε−2|C| log(n/γ)) edges.

2. The total running time is O(m log3(n/γ) + ε−2n log4(n/γ)).

First, we prove the correctness and runtime of ApproxSchurNode(H). We say Approx-

SchurNode(H) runs correctly on a node H at level i in T , if at the end of the procedure, the
following properties are satisfied:

• L
(H) is the Laplacian of a graph on vertices ∂H ∪ FH with Õ(δ−2|∂H ∪ FH |) edges,

• L
(H) ≈(i−1)δ Sc(L[H], ∂H ∪ FH),

• S̃c(L(H), ∂H) ≈iδ Sc(L[H], ∂H), and the graph is on ∂H with Õ(δ−2|∂H|) edges.

Lemma 35. Suppose L
(D) and S̃c(L(D), ∂D) are computed correctly for all descendants D of H,

then ApproxSchurNode(H) runs correctly.

Proof. When H is a leaf, the proof is trivial. L
(H) is set to the exact Laplacian matrix of the

induced subgraph H of constant size. S̃c(L(H), ∂H) δ-approximates Sc(L(H), ∂H) = Sc(L[H], ∂H)
by Lemma 34.

Otherwise, suppose H is at level i with children D1 and D2. By construction of the separator
tree and Observation 23, we have ∂D1 ∪ ∂D2 = ∂H ∪ FH . For each j = 1, 2, we know inductively
S̃c(L(Dj), ∂Dj) has Õ(δ−2|∂Dj |) edges. Since we define L

(H) to be the sum, it has Õ(δ−2(|∂D1|+
|∂D2|)) = Õ(δ−2|∂H ∪ FH |) edges, and is supported on vertices ∂H ∪ FH , so we have the first
correctness property.

Inductively, we know S̃c(L(Dj), ∂Dj) ≈(i−1)δ Sc(L[Dj ], ∂Dj) for both j = 1, 2. (The height of
Dj may or may not equal to i− 1 but it is guaranteed to be no more than i− 1.) Then

L
(H) = S̃c(L(D1), ∂D1) + S̃c(L(D2), ∂D2)

≈(i−1)δ Sc(L[D1], ∂D1) + Sc(L[D2], ∂D2)

= Sc(L[D1], (∂H ∪ FH) ∩ V (D1)) + Sc(L[D2], (∂H ∪ FH) ∩ V (D2))
(by construction of the separator tree, ∂Dj = (∂H ∪ FH) ∩ V (Dj) for j = 1, 2)

= Sc(L[H], ∂H ∪ FH), (by Lemma 18)

so we have the second correctness property.
Line 43 returns S̃c(L(H), ∂H) with Õ(δ−2|∂H|) edges by Lemma 34. Also,

S̃c(L(H), ∂H) ≈δ Sc(L
(H), ∂H)

≈(i−1)δ Sc(Sc(L[H], ∂H ∪ FH), ∂H)

= Sc(L[H], ∂H), (by Lemma 16)
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Algorithm 3 Data structure to maintain dynamic approximate Schur complements

1: data structure DynamicSC

2: private: member
3: Graph G with incidence matrix B

4: w ∈ R
m, W ∈ R

m×m: Weight vector and diagonal weight matrix, used interchangeably
5: ǫP > 0: Overall approximation factor
6: δ > 0: Fast Schur complement approximation factor
7: T : Separator tree of height η. Every node H of T stores:
8: FH , ∂H: Interior and boundary vertices of region H
9: L

(H) ∈ R
m×m: Laplacian supported on FH ∪ ∂H

10: S̃c(L(H), ∂H) ∈ R
m×m: δ-approximate Schur complement of L(H)

11:

12: procedure Initialize(G, w ∈ R
m, ǫP > 0)

13: B← incidence matrix of G
14: T ← separator tree of G of height η constructed by Theorem 25
15: δ ← ǫP/(η + 1)
16: w ← w

17: for i = 0, . . . , η do
18: for each node H at level i in T do
19: ApproxSchurNode(H)
20: end for
21: end for
22: end procedure
23:

24: procedure Reweight(w(new) ∈ R
m)

25: H ← set of leaf nodes in T that contain each edge e whose weight is updated
26: w ← w(new)

27: PT (H)← set of all ancestor nodes of H in T and H
28: for i = 0, . . . , η do
29: for each node H at level i in PT (H) do
30: ApproxSchurNode(H)
31: end for
32: end for
33: end procedure
34:

35: procedure ApproxSchurNode(H ∈ T )
36: if H is a leaf node then
37: ⊲ B[H] is the incidence matrix for the induced subgraph H with edge set E(H)
38: L

(H) ← (B[H])⊤WE(H)B[H]

39: S̃c(L(H), ∂H)← ApproxSchur(L(H), ∂H, δ) ⊲ Lemma 34
40: else
41: Let D1,D2 be the children of H
42: L

(H) ← S̃c(L(D1), ∂D1) + S̃c(L(D2), ∂D2)

43: S̃c(L(H), ∂H)← ApproxSchur(L(H), ∂H, δ)
44: end if
45: end procedure
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giving us the third correctness property.

Lemma 36. The runtime of ApproxSchurNode(H) is Õ(δ−2|∂H ∪ FH |).

Proof. When H is a leaf node, computing L
(H) = L[H] takes time proportional to |H| = ∂H ∪FH .

Computing S̃c(L(H), ∂H) takes Õ(δ−2|H|) time by Lemma 34.

Otherwise, when H has children D1,D2, computing L
(H) requires accessing S̃c(L(Dj), ∂Dj) for

j = 1, 2 and summing them together, in time Õ(|∂D1|+ |∂D2|) = Õ(|∂H ∪FH |). Then, computing

S̃c(L(H), ∂H) take Õ(δ−2|∂H ∪ FH |) by Lemma 34.

Next, we prove the overall data structure correctness and runtime:

Theorem 6 (Schur complements maintenance). Given a modified planar graph G with m edges
and its separator tree T with height η = O(logm), the deterministic data structure DynamicSC

(Algorithm 3) maintains the edge weights w from the IPM, and at every node H ∈ T , maintains

two vertex sets FH and ∂H, and two Laplacians L
(H) and S̃c(L(H), ∂H ∪ FH) dependent on w. It

supports the following procedures:

• Initialize(G,w ∈ R
m
>0, ǫP > 0): Given a graph G, initial weights w, projection matrix

approximation accuracy ǫP, preprocess in Õ(ǫP
−2m) time.

• Reweight(w ∈ R
m
>0, given implicitly as a set of changed coordinates): Update the weights to

w, and update the relevant Schur complements in Õ(ǫP
−2√mK) time, where K is the number

of coordinates changed in w.

If H is the set of leaf nodes in T that contain an edge whose weight is updated, then L
(H) and

S̃c(L(H), ∂H) are updated only for nodes H ∈ PT (H).

• Access to Laplacian L
(H) at any node H ∈ T in time Õ

(
ǫP
−2|∂H ∪ FH |

)
.

• Access to Laplacian S̃c(L(H), ∂H) at any node H ∈ T in time Õ
(
ǫP
−2|∂H|

)
.

Furthermore, the L
(H)’s maintained by the data structure satisfy

L
(H) ≈ǫP Sc(L[H], ∂H ∪ FH), (2.9)

for all H ∈ T with high probability. The S̃c(L(H), ∂H)’s maintained satisfy

S̃c(L(H), ∂H) ≈ǫP Sc(L[H], ∂H) (2.10)

for all H ∈ T with high probability.

Proof of Theorem 6. Because we set δ ← ǫP/(η + 1) in Initialize, combined with Lemma 35, we
conclude that for each H ∈ T ,

L
(H) ≈ǫP Sc(L[H], ∂H ∪ FH)

and
S̃c(L(H), ∂H) ≈ǫP Sc(L[H], ∂H).

We next prove the correctness and runtime of Initialize. Computing the separator tree costs
O(n log n) time by Theorem 25. Because ApproxSchurNode(H) is called in increasing order of
level of H, each ApproxSchurNode(H) runs correctly and stores the initial value of L

(H) by
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Lemma 35. The runtime of Initialize is bounded by running ApproxSchurNode on each node,
i.e:

Õ(δ−2
∑

H∈T
|∂H ∪ FH |) = Õ(δ−2m) = Õ(ǫP

−2m).

Where we bound the sum using Lemma 28 with K = O(m), since T has O(m) nodes in total.
The proof for Reweight is similar to Initialize. Let K be the number of coordinates changed

in w. Then PT (H) contains all the regions with an edge with weight update. For each node H
not in PT (H), no edge in H has a modified weight, and in this case, we do not need to update
L
(H). For the nodes that do require updates, since ApproxSchurNode(H) is called in increasing

order of level of H, we can prove inductively that all ApproxSchurNode(H) for H ∈ PT (H)
run correctly. The time spent is bounded by Õ(δ−2

∑
H∈PT (H) |∂H ∪ FH |). By Lemma 28, this is

further bounded by Õ(ǫP
−2√mK).

For accessing L
(H) and S̃c(L(H), ∂H), we simply return the stored values. The time required

is proportional to the size of L(H) and S̃c(L(H), ∂H) respectively, by the correctness properties of
these Laplacians, we get the correct size and therefore the runtime.

5 Maintaining the implicit representation

In this section, we give a general data structure MaintainRep.
At a high level, MaintainRep implicitly maintains a vector x throughout the IPM, by explicitly

maintaining vector y, and implicitly maintaining a tree operator M and vector z, with x
def
= y+Mz.

MaintainRep supports the IPM operations Move and Reweight as follows: To move in step k
with direction v(k) and step size α(k), the data structure computes some z(k) from v(k) and updates
x← x+M(α(k)z(k)). To reweight with new weights w(new) (which does not change the value of x),
the data structure computes M

(new) using w(new), updates M ← M
(new), and updates y to offset

the change in Mz. In Section 5.1, we define z(k) and show how to maintain z =
∑k

i=1 z
(i) efficiently.

In Section 5.2, we define tree operators. Finally in Section 5.3, we implement MaintainRep for a
general tree operator M.

Our goal is for this data structure to maintain the updates to the slack and flow solutions at
every IPM step. Recall at step k, we want to update the slack solution by t̄hW1/2

P̃wv
(k) and the

partial flow solution by hW−1/2
P̃
′
wv(k). In later sections, we define specific tree operators M

(slack)

and M
(flow) so that the slack and flow updates can be written as M(slack)(t̄hz(k)) and M

(flow)(hz(k))
respectively. This then allows us to use two copies of MaintainRep to maintain the solutions
throughout the IPM.

To start, recall the information stored in the DynamicSC data structure: at every node H we
have Laplacian L

(H). In the previous section, we defined matrices Γ̃ and Π
(i)’s as functions of the

L
(H)’s, in order to approximate L

−1. MaintainRep will contain a copy of the DynamicSC data
structure; therefore, the remainder of this section will freely refer to Γ̃ and Π

(0), · · · ,Π(η−1).

5.1 Maintaining the intermediate vector z

We define a partial computation at each step of the IPM, which will be shared by both the slack
and flow solutions:

Definition 37 (z(k)). At the k-th step of the IPM, let v(k) be the step direction. Let d
def
=

B
⊤
W

1/2v(k). Define z(k) to be the partial computation

z(k) def
= Γ̃Π

(η−1) · · ·Π(0)d. (5.1)

36



Observe that this is a partial projection: If we apply W
1/2

BΠ
(0)⊤ · · ·Π(η−1)⊤ to z(k), then by

Theorem 33, the result is an approximation to Pwv(k).
We first show how to multiply Γ̃Π

(η−1) · · ·Π(0) to a vector efficiently. The main idea is to take
advantage of the hierarchical structure of the separator tree T in a bottom-up fashion. If d is a
sparse vector with only K non-zero entries, then we can apply the operator while avoiding exploring
parts of T that are guaranteed to contain zero values.

Algorithm 4 Data structure to maintain the intermediate vector z, Part 1

1: data structure MaintainZ

2: private: member
3: G: input graph G with incidence matrix B

4: T : separator tree of G of height η
5: c ∈ R,z(step),z(sum) ∈ R

n: coefficient and vectors to be maintained
6: u ∈ R

n: vector to be maintained such that u = Π
(η−1) · · ·Π(0)

B
⊤
Wv

7: v ∈ R
m: direction vector from the current iteration

8: w ∈ R
m: weight vector ⊲ we sometimes also use W

def
= diag(w)

9: dynamicSC: an instance of DynamicSC struct ⊲ gives read access to L
(H) for H ∈ T

10:

11: procedure Initialize(G,v ∈ R
m,w ∈ R

m
>0, ǫP > 0)

12: w ← w, v ← v

13: dynamicSC.Initialize(G,w, ǫP)
14: u← PartialProject(B⊤W1/2v)
15: z(step) ← Γ̃u

16: z(sum) ← 0

17: c← 0
18: end procedure
19:

20: procedure PartialProject(d ∈ R
n,H = {H ∈ T : d|FH

6= 0})
21: ⊲ if H is not given in the argument, then it takes the default value above
22: u← d

23: for i from 0 to η − 1 do

24: u← u−∑H∈PT (H,i) L
(H)
∂H,FH

(L
(H)
FH ,FH

)−1 · u|FH

25: end for
26: return u

27: end procedure
28:

29: procedure InversePartialProject(u ∈ R
n,H)

30: for i from η − 1 to 0 do

31: u← u+
∑

H∈PT (H,i) L
(H)
∂H,FH

(L
(H)
FH ,FH

)−1 · u|FH

32: end for
33: d← u

34: return d

35: end procedure

Lemma 38. Given a vector d ∈ R
n, let H ⊇ {H ∈ T : d|FH

6= 0} and suppose |H| = K. Then
the procedure PartialProject(d,H) in the MaintainZ data structure (Algorithm 4) returns the
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vector
u = Π

(η−1) · · ·Π(1)
Π

(0)d,

where the Π
(i)’s and ǫP are from the DynamicSC data structure in MaintainZ.

The procedure runs in Õ(ǫ−2
P

√
mK) time, and u|FH

is non-zero for at most Õ(K) nodes H ∈
PT (H).

Proof. First, we consider the runtime. We remark that the creation of vector u is for readability;
the procedure can in fact be computed using d in-place.

The bottleneck of PartialProject is Line 24. For each H ∈ PT (H), recall from Theorem 6
that L

(H) is supported on the vertex set FH ∪ ∂H and has Õ(ǫP
−2|FH ∪ ∂H|) edges. Hence,

(L
(H)
FH ,FH

)−1u|FH
can be computed by an exact Laplacian solver in Õ(ǫP

−2|FH ∪∂H|) time, and the

subsequent left-multiplying by L
(H)
∂H,FH

also takes Õ(ǫP
−2|FH ∪ ∂H|) time. Finally, we can add the

resulting vector to u in time linear in the sparsity. Summing this over all H ∈ PT (H), we get that
the total runtime is Õ(ǫP

−2√mK) by Lemma 28.
To show the correctness of PartialProject, we have the following claim:

Claim 39. Let u(−1) = d be the value of u in PartialProject(d,H) before the first double
for-loop. Let u(i) be the value of u after iteration i of the outer loop (Line 23) for 0 ≤ i < η. Then

u(i) = Π
(i) · · ·Π(0)d.

Furthermore, u(i)|FH
6= 0 only if H ∈ PT (H).

Proof. We prove the claim by induction. For i = −1, we are given u(−1)|FH
= d|FH

6= 0 exactly for
all H ∈ H ⊆ PT (H).

For i+ 1, we have, by inductive hypothesis and definition of Π(i),

Π
(i+1)

Π
(i) · · ·Π(0)d = Π

(i+1)u(i)

=


I−

∑

H∈T (i+1)

X
(H)


u(i).

Since X
(H) ∈ R

∂H×FH and u(i)|FH
6= 0 only if H ∈ PT (H), the summation above can be taken over

the smaller set T (i+ 1) ∩ PT (H) def
= PT (H, i+ 1), giving

= u(i) −
∑

H∈PT (H,i+1)

X
(H)u(i)|FH

.

This is exactly what is computed as u after iteration i of the outer loop at Line 23. Hence, this is
equal to u(i+1) by definition.

For the sparsity condition, we note that if u(i+1)|F ′
H

differs from u(i)|F ′
H

at a node H ′, then
it was changed by a term in the summation above, and so we must have FH′ ∩ ∂H 6= ∅ for some
H ∈ PT (H, i+1). By construction of the separator tree, this occurs only if H ′ is an ancestor of H,
which implies H ′ ∈ PT (H). Combined with the inductive hypothesis, we have that u(i+1)|FH

6= 0

only if H ∈ PT (H).

Setting i = η − 1 in the above claim immediately shows that at the end of the first double
for-loop in PartialProject, we have u = Π

(η−1) · · ·Π(1)
Π

(0)d.
Finally, to complete the sparsity argument, we have |H| = K, and consequently |PT (H)| =

O(K · η) = Õ(K). Combined with the claim, we get the overall sparsity guarantee.
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For the correctness of our data structure, we will need a more specific structural property of
PartialProject:

Lemma 40. Let H be any subset of nodes in T . Let H1, . . . ,Hr be any permutation of all nodes
from PT (H) such that if Hi is an ancestor of Hj, then i < j. Then

PartialProject(d,H) = (I −X
(H1)) . . . (I−X

(Hr))d.

Proof. First, we observe that I−X(Hi) and I−X(Hj) are commutative if Hi and Hj are not ancestor-
descendants. The reason is that X

(Hi)X(Hj) = 0, since X
(Hi) ∈ R

∂Hi×FHi , and FHi ∩ ∂Hj 6= ∅ only
if Hi is an ancestor of Hj.

From the proof of Claim 39, we observe that iteration i of the for-loop in PartialProject

applies the operator

I−
∑

H∈PT (H,i)

X
(H) =

∏

H∈PT (H,i)

(I−X
(H)),

where the equality follows from expanding the RHS and applying the property X
(Hi)X(Hj) = 0.

Thus, we have a stricter version of the claim:

PartialProject(d,H) = (I −X
(H1)) . . . (I−X

(Hr))d,

where H1, . . . ,Hr is any permutation of PT (H) such that nodes at lower levels come later. Then
we apply commutativity to allow H1, . . . ,Hr to be any permutation such that if Hi is an ancestor
of Hj then i < j.

Next, we show there is a procedure that reverses PartialProject using select nodes of T .

Lemma 41. Given a set of K nodes H in T and a vector u, InversePartialProject(u,H) in
the MaintainZ data structure (Algorithm 4) is a procedure that returns d such that

d = (I +X
(Hr)) . . . (I+X

(H1))u,

where H1, . . . ,Hr is any permutation of all nodes from PT (H) such that if Hi is an ancestor of Hj,

then i < j. The procedure runs in Õ(ǫ−2
P

√
mK) time, where K = |H|.

Proof. Intuitively, observe that InversePartialProject is reversing all the operations in Par-

tialProject. The runtime analysis is analogous to PartialProject. The proof of the equation
is also analogous to PartialProject. We first observe that iteration i of the for-loop applies the
operator

I+
∑

H∈PT (H,i)

X
(H) =

∏

H∈PT (H,i)

(I+X
(H)).

Then by commutativity as in Lemma 40, we have

d = (I +X
(Hr)) . . . (I+X

(H1))u.

where H1, . . . ,Hr is any permutation of PT (H) such that nodes at lower levels come later. Then
we apply commutativity to allow H1, . . . ,Hr to be any permutation such that if Hi is an ancestor
of Hj then i < j.

Finally, we have the data structure for maintaining a vector z dependent on v throughout the
IPM. For one IPM step, there is one call to Reweight followed by one call to Move.
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Algorithm 4 Data structure to maintain the intermediate vector z, Part 2

36: procedure Reweight(w(new) ∈ R
m
>0)

37: w ← w(new)

38: H ← set of leaf nodes in T that contain all the edges of G whose weight has changed
39: ∆u← PartialProject(B⊤(W(new)1/2 −W

1/2)v)
40: u← u+∆u

41: d← InversePartialProject(u,H) ⊲ revert projection with old weights
42: dynamicSC.Reweight(w(new)) ⊲ update L

(H)’s to use the new weights
43: ⊲ specifically, L(H) changes for each H ∈ PT (H)
44: u← PartialProject(d,H) ⊲ apply projection with new weights
45: y ← z(step) ⊲ backup copy of z(step)

46: for H in PT (H) do

47: z(step)|FH
← (L

(H)
FH ,FH

)−1u|FH

48: end for
49: z(sum) ← z(sum) − c · (z(step) − y) ⊲ update z(sum) to maintain the invariant
50: end procedure
51:

52: procedure Move(α ∈ R,v(new) ∈ R
m)

53: ∆v ← v(new) − v

54: v ← v(new)

55: ∆u← PartialProject(B⊤W1/2∆v)
56: u← u+∆u

57: y ← z(step) ⊲ backup copy of z(step)

58: for H in PT (H) do

59: z(step)|FH
← (L

(H)
FH ,FH

)−1u|FH

60: end for
61: z(sum) ← z(sum) − c · (z(step) − y)
62: c← c+ α
63: end procedure
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Theorem 42 (Maintain intermediate vector z). Given a modified planar graph G with n vertices
and m edges and its separator tree T with height η, the deterministic data structure MaintainZ

(Algorithm 4) maintains the following variables correctly at the end of each IPM step:

• the dynamic edge weights w is and current step direction v from the IPM

• a DynamicSC data structure on T based on the current edge weights w

• scalar c and vectors z(step),z(sum), which together represent z = cz(step) + z(sum), such that at
the end of IPM step k,

z =
k∑

i=1

z(i). (5.2)

• z(step) satisfies z(step) = Γ̃Π
(η−1) · · ·Π(0)

B
⊤
W

1/2v.

The data structure supports the following procedures:

• Initialize(G, separator tree T ,v ∈ R
m,w ∈ R

m
>0, ǫP > 0): Given a graph G, its separator

tree T , initial step direction v, initial weights w, and target projection matrix accuracy ǫP,
preprocess in Õ(ǫP

−2m) time and initialize z = 0.

• Reweight(w ∈ R
m
>0 given implicitly as a set of changed coordinates): Update the current

weight to w and update DynamicSC, and update the representation of z. The procedure runs
in Õ(ǫ−2

P

√
mK) total time, where K is the number of coordinates updated in w. There are

most Õ(K) nodes H ∈ T for which z(step)|FH
and z(sum)|FH

are updated.

• Move(α ∈ R, v ∈ R
n given implicitly as a set of changed coordinates): Update the current

direction to v, and set z ← z + αΓ̃Π(η−1) · · ·Π(0)
B
⊤
W

1/2v with the correct representation.
The procedure runs in Õ(ǫ−2

P

√
mK) time, where K is the number of coordinates changed in v

compared to the previous IPM step.

Proof. If Move is implemented correctly, then by the definition of the update to z, the invariant
in Eq. (5.2) is correctly maintained.

For the runtime analysis, recall {FH : H ∈ T } partition the vertex set of G. Therefore v has K

non-zero entries, then d
def
= B

⊤
W

1/2v has O(K) non-zero entries, and consequently d|FH
6= 0 for

O(K) nodes H. There are O(m) total nodes in the separator tree T .
We maintain a vector u with the invariant u = Π

(η−1) · · ·Π(0)
B
⊤
W

1/2v. We now prove the
correctness and runtime of each procedure separately.

Initialize: By the guarantee of Lemma 38, at the end of Initialize, we have

u = Π
(η−1) · · ·Π(0)

B
⊤
W

1/2v

and
z(step) = Γ̃u = Γ̃Π

(η−1) · · ·Π(0)
B
⊤
W

1/2v.

Since c and z(sum) are initialized to zero, we have z = cz(step) + z(sum) = 0.
We initialize the DynamicSC data structure in (ǫP

−2m) time. There is no sparsity guarantee
for v, but the call to PartialProject takes at most O(ǫP

−2m) time because of the size of T . To

calculate Γ̃u, we solve a Laplacian system (L
(H)
FH ,FH

)−1u|FH
in time Õ(|L(H)|) for each node H. The

total time is Õ(ǫP
−2m) as well by |L(H)| = Õ

(
ǫP
−2|FH ∪ ∂H|

)
from Theorem 6 and by Lemma 28.
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Move: Let v,u be the variables at the start of Move, and let v′,u′ denote them at the end.
Similarly, let z = cz(step) + z(sum) denote z and the respective variables at the start of Move, and
let z′ = c′z(step)′ + z(sum)′ denote these variables at the end.

First, after Line 56, we have

u′ = u+∆u

= Π
(η−1) · · ·Π(0)

B
⊤
W

1/2(v +∆v)

= Π
(η−1) · · ·Π(0)

B
⊤
W

1/2v′,

where the second equality follows from the guarantee of PartialProject and the guarantee from
the previous IPM step. By Lemma 38, u′ is updated only on FH where H ∈ PT (H). Thus,

to update z(step)′ = Γ̃u′, we only need to update z(step)′|FH
for H ∈ PT (H), which happens on

Line 59. Observe that the update in value to z(step) is cancelled out by the update in z(sum) at
Line 61, so that the value of z does not change overall up to that point. But we have

z = cz(step)′ + z(sum)′ = cΓ̃Π(η−1) · · ·Π(0)
B
⊤
W

1/2v′ + z(sum)′.

Then in Line 62, incrementing c by α represents increasing the value of z by αz(step)′, which is
exactly the desired update.

For the runtime, first note nnz(∆v) = K. So PartialProject runs in Õ(ǫP
−2√mK) time by

Lemma 38. Line 59 takes Õ(ǫP
−2√mK) time in total by Theorem 6 and Lemma 28. The remaining

operations in the procedure are adding vectors with bounded sparsity.

Reweight: Let w(old) denote the weight vector immediately before this procedure is called, and
w(new) is the new weight passed in as an argument.

Let Γ̃ and Π
(i) denote these matrices defined using the old weights, and let Γ̃

′ and Π
(i)′ denote

the matrices using the new weights. Similarly let u be the state of the vector at the start of the
procedure call and u′ at the end.

In Reweight, we do not change the value of z, but rather update z(step) and z(sum) so that at
the end of the procedure,

z(step) = Γ̃
′
Π

(η−1)′ · · ·Π(0)′
B
⊤
W

(new)1/2v,

so that we maintain the invariant claimed in the theorem statement.
To see that the value of z does not change at the end of the procedure, observe that we modify

z(step) during the procedure, and cancel all the changes to z(step) by updating z(sum) appropriately
at the last line (Line 49).

Immediately before Line 40, the algorithm invariant guarantees

u = Π
(η−1) · · ·Π(0)

B
⊤
W

(old)1/2v.

By Lemma 38,

∆u = Π
(η−1) · · ·Π(0)

B
⊤
(
W

(new)1/2 −W
(old)1/2

)
v.

Therefore, after executing Line 40, we have

u← u+∆u = Π
(η−1) · · ·Π(0)

B
⊤
W

(new)1/2v.

Next, we need to update u to reflect the changes to Γ̃,Π(i). Updating these matrices is done
via dynamicSC. However, calling PartialProject(B⊤W(new)1/2v) afterwards is too costly if done
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directly, since the argument is a dense vector. To circumvent this problem, we make the key obser-
vation that the change to u is restricted to a subcollection of nodes on T (in fact a connected subtree
containing the root), and it suffices to partially reverse and reapply the operator Γ̃Π

(η−1) · · ·Π(0).
Intuitively, InversePartialProject revert all computations in PartialProject that are re-
lated to the changes to W.

Let H1, . . . ,Ht be a permutation of all nodes in T , such that the nodes in PT (H) is a prefix
of the permutation, and it satisfies that for any node Hi with descendant Hj, i < j. Then by
Lemma 40, after executing Line 40, we have

u = PartialProject(B⊤W(new)1/2v,T )
= (I −X

(H1)) . . . (I−X
(Ht))B⊤W(new)1/2v. (5.3)

Let r = |PT (H)|. Then InversePartialProject(u,H) on Line 41 returns d by Lemma 41
satisfying

d = (I+X
(Hr)) . . . (I +X

(H1))u.

Plugging in u from Eq. (5.3), we have

d = (I+X
(Hr)) . . . (I +X

(H1))(I −X
(H1)) . . . (I−X

(Ht))B⊤W(new)1/2v.

We use the fact that each I−X
(Hi) is nonsingular and has inverse I+X

(Hi) to get

d = (I−X
(Hr+1)) . . . (I−X

(Ht))B⊤W(new)1/2v.

We then call dynamicSC.Reweight, which updates L
(H) and in turn X

(Hi) for precisely all
nodes in PT (H) = {H1, . . . ,Hr}. Let X

(H)′ denote the matrix after reweight. Next, we call
PartialProject again. Let us denote it by PartialProject(new) to emphasize that it runs with
new weights. This gives

u′ = PartialProject(new)(d,H)
= (I−X

(H1)′) . . . (I−X
(Hr)′)d

= (I−X
(H1)′) . . . (I−X

(Hr)′)(I −X
(Hr+1)) . . . (I−X

(Ht))B⊤W(new)1/2v

= (I−X
(H1)′) . . . (I−X

(Ht)′)B⊤W(new)1/2v (since X
(Hi)′ = X

(Hi) for all i > r)

= PartialProject(new)(B⊤W(new)1/2v,T ).

Because u′|FH
is updated on H ∈ PT (H), and L

(H) is updated on H ∈ PT (H) by Theorem 6,

running Line 47 on H ∈ PT (H) correctly sets z(step)′ = Γ̃
′u′.

For the runtime, the first call to PartialProject has a vector with O(K) sparsity as the argu-
ment, and therefore runs in Õ(ǫP

−2√mK). Next, we know |H| = O(K). The call to InversePar-

tialProject and the subsequent call to PartialProject both have H as an argument, so they
run in Õ(ǫP

−2√mK). The DynamicSC.Reweight call runs in Õ(ǫP
−2√mK). Updating z(step)

(Line 47) takes Õ(ǫP
−2√mK) time in total by Theorem 6 and Lemma 28. And finally we can

update z(sum) in the same time.
We remark that although InversePartialProject returns a vector d that is not necessarily

sparse, and we then assign u ← PartialProject(d,H), this is for readability. d is in fact an
intermediate state of u, on which we perform in-place operations.
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5.2 Tree operator

At IPM step k, our goal is to write the slack update P̃wv
(k) as M

(slack)z(k), and similarly, write
the partial flow update P̃

′
wv(k) approximately as M

(flow)z(k), where z(k) is defined in the previous
subsection, and M

(slack) and M
(flow) are linear operators that are efficiently maintainable between

IPM steps.
In this section, we define a general class of operators called tree operators and show how to

efficiently compute and maintain them. In later sections, we show that M
(slack) and M

(flow) can be
defined as tree operators.

We begin with the formal definitions. Recall for a tree T and node H ∈ T , we use TH to denote
the subtree rooted at H.

Definition 43 (Tree operator). Suppose T is a rooted tree with constant degree. Let each node
H ∈ T be associated with two sets V (H) and FH ⊆ V (H). Let each leaf node H ∈ T be further
associated with a non-empty set E(H) of constant size, where the E(H)’s are pairwise disjoint

over all leaf nodes. For a non-leaf node H, define E(H)
def
=
⋃

leaf D∈TH E(D). Finally, define

E
def
= E(G)

⋃
leaf H∈T E(H) and V

def
= V (G) =

⋃
H∈T V (H), where G is the root node of T .

Let each node H with parent P be associated with a linear edge operator M(H,P ) : RV (P ) 7→
R
V (H). In addition, let each leaf node H be associated with a constant-time computable linear leaf

operator JH : RV (H) 7→ R
E(H). We extend all these operators trivially to R

V and R
E respectively,

in order to have matching dimensions overall. When a edge or leaf operator is not given, we assume
it to be 0.

For a path Ht → H1
def
= (Ht, . . . ,H1), where each Hi is the parent of Hi−1 and H1 is a leaf node

(call these tree paths), we define

MH1←Ht = M(H1,H2)M(H2,H3) · · ·M(Ht−1,Ht).

If t = 1, then MH1←Ht

def
= I.

We define the tree operator M : RV 7→ R
E supported on T to be

M
def
=

∑

leaf H, node A : H∈TA
JHMH←AIFA

. (5.4)

We always maintain a tree operator implicitly by maintaining

{JH : leaf H} ∪ {M(H,P ) : edge (H,P )} ∪ {FH : node H}.

Remark 44. Although we define the tree operator in general and hope it will find applications in
other problems, we have used suggestive names in the definition to suit our min-cost flow setting.
In particular, our tree operators will be supported on the separator tree T . For each node H, the
sets V (H), FH , E(H) associated with the tree operator are, respectively, ∂H ∪ FH of region H,
the eliminated vertices FH of region H, and the edge set of region H, all from the separator tree
construction.

To maintain M using the tree efficiently, we also need some partial operators:

Definition 45 (M(H),M(H)). For notational convenience, define TH to be the subtree of T rooted
at H.

We define the subtree operator M
(H) : V (H) 7→ E(H) at each node H to be

M
(H) def

=
∑

leaf D∈TH
JDMD←H . (5.5)
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We also define the partial sum

M(H) def
=
∑

D∈TH
M

(D)
IFD

. (5.6)

We state a straightforward corollary based on the definitions without proof.

Corollary 46. For any node H ∈ T ,

M =
∑

H∈T
M

(H)
IFH

= M(G),

where G is the root node of T .
Furthermore, if H has with children D1,D2, then

M
(H) = M

(D1)M(D1,H) +M
(D2)M(D2,H). (5.7)

We define the complexity of a tree operator to be parameterized by the number of tree edges.

Definition 47 (Complexity of tree operator). Let M be a tree operator on tree T . We say M has
complexity function T , if for any k > 0, for any set S of k distinct edges in T and any families
of vectors {ue : e ∈ S} and {ve : e ∈ S}, the total cost of computing {u⊤e Me : e ∈ S} and
{Meve : e ∈ S} is bounded by T (k).

Without loss of generality, we may assume T (0) = 0, T (k) ≥ k, and T is concave.

We can show the structure of a tree operator by the procedure ComputeMz(M,z) to compute
Mz. Intuitively, z is given as input to each node H. The edge operators are concatenated in the
order of tree paths from H to a leaf, but we apply them level-wise in descending order.

Algorithm 5 Compute Mz for a tree operator M

1: procedure ComputeMz(M,z)
2: H ← set of all nodes H in T such that M(H,P ) or JH is nonzero
3: PT (H)← set of H and all ancestor nodes of H in T
4: vH ← 0 for each H ∈ T ⊲ sparse vectors for intermediate computations
5: for each node H ∈ PT (H) do
6: vH ← IFH

z = z|FH
⊲ apply the IFH

part of the operator
7: end for
8: for each node H ∈ PT (H) by decreasing level do
9: Let P be the parent of H

10: vH ← vH +M(H,P )vP ⊲ apply M(H,P ) as we move from P to H
11: end for
12: for each leaf node H ∈ PT (H) do
13: x|E(H) ← JHvH ⊲ apply the leaf operator
14: end for
15: return x

16: end procedure

Corollary 48. Suppose M : R
V → R

E is a tree operator on tree T with complexity T , where
|V | = n and |E| = m. Then for z ∈ R

V , Exact(M,z) outputs Mz in O(T (K)) = O(T (m)) time
where K is the total number of non-zero edge and leaf operators in M.
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Proof. Note only non-zero edge and leaf operators contribute to Mz. We omit the proof of correct-
ness as it is simply an application of the definition.

Since E = ∪leaf DE(D), and each E(D) has constant size, we know there are at most O(m)
leaves in T . Hence, there are O(m) edges in T , and K = O(m). Since we define each leaf operator
to be constant time computable, applying JH for leaves in PT (H) costs O(K) time in total. The
bottleneck of the procedure is to apply the edge operator Me to some vector exactly once for each
edge e in T ; the time cost is O(T (K)) by definition of the operator complexity.

5.3 Proof of Theorem 7

Finally, we give the data structure for maintaining an implicit representation of the form y +
Mz throughout the IPM. For an instantiation of this data structure, there is exactly one call to
Initialize at the very beginning, and one call to Exact at the very end. Otherwise, each step of the
IPM consists of one call to Reweight followed by one call to Move. Note that this data structure
extends MaintainZ in the object-oriented programming sense.

Theorem 7 (Implicit representation maintenance). Given a modified planar graph G with n vertices
and m edges, and its separator tree T with height η, the deterministic data structure MaintainRep

(Algorithm 6) maintains the following variables correctly at the end of every IPM step:

• the dynamic edge weights w and step direction v from the current IPM step,

• a DynamicSC data structure on T based on the current edge weights w,

• an implicitly represented tree operator M supported on T with complexity T (K), computable
using information from DynamicSC,

• scalar c and vectors z(step),z(sum), which together represent z = cz(step) + z(sum), such that at
the end of step k,

z =

k∑

i=1

α(i)z(i),

where α(i) is the step size α given in Move for step i,

• z(step) satisfies z(step) = Γ̃Π
(η−1) · · ·Π(0)

B
⊤
W

1/2v,

• an offset vector y which together with M,z represent x = y +Mz, such that after step k,

x = x(init) +

k∑

i=1

M
(i)(α(i)z(i)),

where x(init) is an initial value from Initialize, and M
(i) is the state of M after step i.

The data structure supports the following procedures:

• Initialize(G,T ,M,v ∈ R
m,w ∈ R

m
>0,x

(init) ∈ R
m, ǫP > 0): Given a graph G, its separator

tree T , a tree operator M supported on T with complexity T , initial step direction v, ini-
tial weights w, initial vector x(init), and target projection matrix accuracy ǫP, preprocess in
Õ(ǫP

−2m+ T (m)) time and set x← x(init).
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• Reweight(w ∈ R
m
>0 given implicitly as a set of changed coordinates): Update the weights to

w. Update the implicit representation of x without changing its value, so that all the variables
in the data structure are based on the new weights.

The procedure runs in Õ(ǫ−2
P

√
mK + T (K)) total time, where K is an upper bound on the

number of coordinates changed in w and the number of leaf or edge operators changed in M.
There are most Õ(K) nodes H ∈ T for which z(step)|FH

and z(sum)|FH
are updated.

• Move(α ∈ R, v ∈ R
n given implicitly as a set of changed coordinates): Update the cur-

rent direction to v, and then z(step) to maintain the claimed invariant. Update the implicit
representation of x to reflect the following change in value:

x← x+M(αz(step)).

The procedure runs in Õ(ǫ−2
P

√
mK) time, where K is the number of coordinates changed in v

compared to the previous IPM step.

• Exact(): Output the current exact value of x = y +Mz in Õ(T (m)) time.

Proof. First, we discuss how M is stored in the data structure: Recall M is represented implicitly by
a collection of edge operators and leaf operators on the separator tree T , so that each edge operator
is stored at a corresponding node of T , and each leaf operator is stored at a corresponding leaf
node of T . However, the data structure does not store any edge or leaf operator matrix explicitly.
We make a key assumption that each edge and leaf operator is computable using O(1)-number
of L(H) matrices from DynamicSC. This will be true for the slack and flow operators we define.
As a result, to store an edge or leaf operator at a node, we simply store pointers to the matrices
from DynamicSC required in the definition, and an O(1)-sized instruction for how to compute the
operator. The computation time is proportional to the size of the matrices in the definitions, but
crucially the instructions have only O(1)-size.

Now, we prove the correctness and runtime of each procedure separately. Observe that the in-
variants claimed in the theorem are maintained correctly if each procedure is implemented correctly.

Initialize: Line 12 sets y ← x(init), and Super.Initialize sets z ← 0. So we have x = y+Mz

at the end of initialization. Furthermore, the initialization of z correctly sets z(step) in terms of v.
By Theorem 42, Super.Initialize takes Õ(ǫP

−2m) time. Storing the implicit representation of
M takes O(m) time.

Reweight: By Theorem 42, Super.Reweight updates its current weight and DynamicSC, and
updates z(step) correspondingly to maintain the invariant, while not changing the value of z. Because
M is stored by instructions, no explicit update to M is required. Line 20 updates y to zero out the
changes to Mz.

The instructions for computing ∆M require the Laplacians from DynamicSC before and after
the update in Line 17. For this, we monitor the updates of dynamicSC and stores the old and new
values. The runtime of this is bounded by the runtime of updating dynamicSC, which is in turn
included in the runtime for Super.Reweight.

Let K upper bound the number of coordinates changed in w and the number of edge and leaf
operators changed in M. Then Super.Reweight takes Õ(ǫP

−2√mK) time, and Exact(∆M,z)
takes O(T (K)) time. Thurs, the total runtime is Õ(ǫP

−2√mK + T (m)).
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Algorithm 6 Implicit representation maintenance

1: data structure MaintainRep extends MaintainZ

2: private: member
3: T : separator tree
4: y ∈ R

m: offset vector
5: M: instructions to compute the tree operator M ∈ R

m×n

6: ⊲ z = cz(step) + z(sum) maintained by MaintainZ, accessable in this data structure
7: ⊲ DynamicSC: an accessable instance of DynamicSC maintained by MaintainZ

8:

9: procedure Initialize(G,T ,M,v ∈ R
m,w ∈ R

m
>0,x

(init) ∈ R
m, ǫP > 0)

10: M←M ⊲ initialize the instructions to compute M

11: Super.Initialize(G,T ,v ∈ R
m,w ∈ R

m
>0, ǫP > 0) ⊲ initialize z

12: y ← x(init)

13: end procedure
14:

15: procedure Reweight(w(new))
16: Let M

(old) represent the current tree operator M

17: Super.Reweight(w(new)) ⊲ update representation of z and DynamicSC

18: ⊲ M is updated as a result of reweight in DynamicSC

19: ∆M←M−M
(old) ⊲ ∆M is represented implicitly

20: y ← y −ComputeMz(∆M, cz(step) + z(sum)) ⊲ Algorithm 5
21: end procedure
22:

23: procedure Move(α,v(new))
24: Super.Move(α,v(new))
25: end procedure
26:

27: procedure Exact()
28: return y + ComputeMz(M, cz(step) + z(sum)) ⊲ Algorithm 5
29: end procedure
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Move: The runtime and correctness follow from Theorem 42.

Exact: ComputeMz computes Mz correctly in O(T (m)) time by Corollary 48. Adding the
result to y takes O(m) time and gives the correct value of x = y+Mz. Thus, Exact returns x in
O(T (m)) time.

6 Maintaining vector approximation

Recall at every step of the IPM, we want to maintain approximate vectors s,f so that

∥∥∥W−1/2(f − f)
∥∥∥
∞
≤ δ and

∥∥∥W1/2(s− s)
∥∥∥
∞
≤ δ′

for some additive error tolerances δ and δ′.
In the previous section, we showed how to maintain some vector x implicitly as x

def
= y +Mz

throughout the IPM, where x should represent s or part of f . In this section, we give a data
structure to efficiently maintain an approximate vector x to the x from MaintainRep, so that at
every IPM step, ∥∥∥D1/2 (x− x)

∥∥∥
∞
≤ δ,

where D is a dynamic diagonal scaling matrix. (It will be W
−1 for the flow or W for the slack.)

In Section 6.1, we reduce the problem of maintaining x to detecting coordinates in x with large
changes. In Section 6.2, we detect coordinates of x with large changes using a sampling technique
on a binary tree, where Johnson-Lindenstrauss sketches of subvectors of x are maintained at each
node the tree. In Section 6.3, we show how to compute and maintain the necessary collection
of JL-sketches on the separator tree T ; in particular, we do this efficiently with only an implicit
representation of x. Finally, we put the three parts together to prove Theorem 8.

We use the superscript (k) to denote the variable at the end of the k-th step of the IPM; that
is, D(k) and x(k) are D and x at the end of the k-th step. Step 0 is the state of the data structure
immediately after initialization.

6.1 Reduction to change detection

In this subsection, we show that in order to maintain an approximation x to some vector x, it
suffices to detect coordinates of x that change a lot.

Here, we make use of dyadic intervals, and at step k of the IPM, for each ℓ such that k = 0 mod 2ℓ,

we find the set I
(k)
ℓ that contains all coordinates i of x such that x

(k)
i changed significantly compared

to x
(k−2ℓ)
i , that is, compared to 2ℓ steps ago. Formally:

Definition 49. At step k of the IPM, for each ℓ such that k = 0 mod 2ℓ, we define

I
(k)
ℓ

def
= {i ∈ [n] :

√
D

(k)
ii · |x

(k)
i − x

(k−2ℓ)
i | ≥ δ

2 ⌈logm⌉
and xi has not been updated since the (k − 2ℓ)-th step}.

We say that xi has not been updated since the (k − 2ℓ)-th step if x
(j)
i = xi and D

(j)
ii = D

(k−2ℓ)
ii for

j ≥ k − 2ℓ, i.e. xi was not updated by Line 20 or Line 29 in the (k − 2ℓ + 1), . . . , (i− 1)-th steps.
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Algorithm 7 Data structure AbstractMaintainApprox, Part 1

1: data structure AbstractMaintainApprox

2: private : member
3: T : constant-degree rooted tree with height η and m leaves ⊲ leaf i corresponds to xi

4: w
def
= Θ(η2 log(mρ )): sketch dimension

5: Φ ∼ N(0, 1
w )

w×m: JL-sketch matrix
6: δ > 0: additive approximation error
7: k: current IPM step
8: x ∈ R

m: current valid approximate vector
9: {x(j) ∈ R

m}kj=0: list of previous inputs

10: {D(j) ∈ R
m×m}kj=0: list of previous diagonal scaling matrices

11:

12: procedure Initialize(T ,x ∈ R
m,D ∈ R

m×m
>0 , ρ > 0, δ > 0)

13: T ← T , δ ← δ, k ← 0
14: x← x,x(0) ← x,D(0) ← D

15: sample Φ ∼ N(0, 1
w )

w×m

16: end procedure
17:

18: procedure Approximate(x(new) ∈ R
m,D(new) ∈ R

m×m
>0 )

19: k ← k + 1, x(k) ← x(new), D(k) ← D
(new)

20: xi ← x
(k−1)
i for all i such that D

(k)
ii 6= D

(k−1)
ii

21: I ← ∅
22: for all 0 ≤ ℓ < ⌈logm⌉ such that k ≡ 0 mod 2ℓ do

23: I
(k)
ℓ ← FindLargeCoordinates(ℓ)

24: I ← I ∪ I(k)ℓ

25: end for
26: if k = 0 mod 2⌈logm⌉ then
27: I ← [m] ⊲ Update x in full every 2⌈logm⌉ steps
28: end if
29: xi ← x

(k)
i for all i ∈ I

30: return x

31: end procedure
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We show how to find the sets I
(k)
ℓ with high probability in the next subsection. Assuming the

correct implementation, we have the following data structure for maintaining the desired approxi-
mation x:

Lemma 50 (Approximate Vector Maintenance). Suppose FindLargeCoordinates(ℓ) is a proce-

dure in AbstractMaintainApprox that correctly computes the set I
(k)
ℓ at the k-th step. Then the

deterministic data structure AbstractMaintainApprox in Algorithm 7 maintains an approxi-
mation x of x with the following procedures:

• Initialize(T ,x ∈ R
m, D ∈ R

m×m
>0 , ρ > 0, δ > 0): Initialize the data structure at step 0 with

tree T , initial vector x, initial diagonal scaling matrix D, target additive approximation error
δ, and success probability 1− ρ.

• Approximate(x(new) ∈ R
m, D(new) ∈ R

m×m
>0 ): Increment the step counter and update vector

x and diagonal scaling matrix D. Output a vector x such that ‖D1/2(x − x)‖∞ ≤ δ for the
latest x and D.

Furthermore, if ‖x(k) − x(k−1)‖
D(k) ≤ β for all k, then at the k-th step, the data structure first

updates xi ← x
(k−1)
i for the coordinates i with D

(k)
ii 6= D

(k−1)
ii , then updates xi ← x

(k)
i for

O(22ℓk(β/δ)2 log2m) coordinates, where ℓk is the largest integer ℓ with k ≡ 0 mod 2ℓ.

Remark 51. In our problem setting of maintaining approximate flows and slacks, we do not have
full access to the exact vector. The algorithms in the next two subsections however will refer to
the exact vector x for readability and modularity. We observe that access to x is limited to two
types: accessing the JL-sketches of specific subvectors, and accessing exact coordinates and other
specific subvectors of sufficiently small size. In later sections, we show how to implement these
oracle accesses to x.

Proof of Lemma 50. We first prove the correctness of Approximate in AbstractMaintainApprox.

Fix some coordinate i ∈ [m] and fix some IPM step k. Suppose the latest update to xi is xi ← x
(k′)
i .

This may happen in Line 29 at step k′ or in Line 20 at step k′+1. In both case, we have that D
(d)
ii is

the same for all k ≥ d > k′ and that i is not in the set I
(d)
ℓ returned by FindLargeCoordinates

for all k ≥ d > k′. (In the former case, we further have D
(k′+1)
ii = D

(k′)
ii but this is not required in

the proof.) Since we set x← x every 2⌈logm⌉ steps by Line 27, we have k− 2⌈logm⌉ ≤ k′ < k. Using
dyadic intervals, we can write k′ = k0 < k1 < k2 < · · · < ks = k such that kj+1 − kj is a power of
2, kj+1 − kj divides kj+1, and |s| ≤ 2 ⌈logm⌉. Hence, we have that

x
(k)
i − x

(k)
i = x

(ks)
i − x

(k0)
i = x

(ks)
i − x

(k0)
i =

s−1∑

j=0

(x
(kj+1)
i − x

(kj)
i ).

We know that D
(d)
ii is the same for all k ≥ d > k′. By the guarantees of FindLargeCoordinates,

we have √
D

(k)
ii · |x

(kj+1)
i − x

(kj)
i | =

√
D

(kj+1)
ii · |x(kj+1)

i − x
(kj)
i | ≤ δ

2 ⌈logm⌉
for all 0 ≤ j < s. ( Summing over all j = 0, 1, . . . , s− 1 gives

√
D

(k)
ii · |x

(k)
i − x

(k)
i | ≤ δ.

Hence, we have ‖D1/2(x− x)‖∞ ≤ δ.
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Next, we bound the number of coordinates changed from x(k−1) to x(k). Fix some ℓ with

k = 0 mod 2ℓ. For any i ∈ I(k)ℓ , we know D
(j)
ii = D

(k)
ii for all j > k − 2ℓ because xi did not change

in the meanwhile. By definition of I
(k)
ℓ , we have

√
D

(k)
ii ·

k−1∑

j=k−2ℓ
|x(j+1)

i − x
(j)
i | ≥

√
D

(k)
ii · |x

(k)
i − x

(k−2ℓ)
i | ≥ δ

2 ⌈logm⌉ .

Using D
(j)
ii = D

(k)
ii for all j > k − 2ℓ again, the above inequality yields

δ

2 ⌈logm⌉ ≤
k−1∑

j=k−2ℓ

√
D

(j+1)
ii |x(j+1)

i − x
(j)
i |

≤

√√√√2ℓ
k−1∑

j=k−2ℓ
D

(j+1)
ii |x(j+1)

i − x
(j)
i |2. (by Cauchy-Schwarz)

Squaring and summing over all i ∈ I(k)ℓ gives

Ω

(
2−ℓδ2

log2m

)
|I(k)ℓ | ≤

∑

i∈I(k)ℓ

k−1∑

j=k−2ℓ
D

(j+1)
ii |x(j+1)

i − x
(j)
i |2

≤
m∑

i=1

k−1∑

j=k−2ℓ
D

(j+1)
ii |x(j+1)

i − x
(j)
i |2

≤ 2ℓβ2,

where we use ‖x(j+1) − x(j)‖
D(j+1) ≤ β at the end. Hence, we have

|I(k)ℓ | = O(22ℓ(β/δ)2 log2m).

Recall this expression is for a fixed ℓ. At the k-th step, summing over all ℓ with k = 0 mod 2ℓ, we
have that the total number of coordinates changed, excluding those induced by a change in D, is

ℓk∑

ℓ=0

|I(k)ℓ | = O(22ℓk(β/δ)2 log2m).

6.2 From change detection to sketch maintenance

Now we discuss the implementation of FindLargeCoordinates(ℓ) to find the set I
(k)
ℓ in Line 23

of Algorithm 7. We accomplish this by repeatedly sampling a coordinate i with probability propor-

tional to D
(k)
ii · |x

(k)
i − x

(k−2ℓ)
i |2, among all coordinates i where xi has not been updated since 2ℓ

steps ago. With high probability, we can find all i ∈ I(k)ℓ in this way efficiently. To implement the
sampling procedure, we make use of a data structure based on segment trees [CLRS09] along with
sketching based on the Johnson-Lindenstrauss lemma.
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Formally, we define the vector q ∈ R
m where qi

def
= D

(k)
ii

1/2
(x

(k)
i − x

(k−2ℓ)
i ) if xi has not been

updated after the k − 2ℓ-th step, and qi = 0 otherwise. Our goal is precisely to find all large
coordinates of q.

Let T be a constant-degree rooted tree with m leaves, where leaf i represents coordinate qi. For
each node u ∈ T , we define E(u) ⊆ [m] to be set of indices of leaves in the subtree rooted at u. We
make a random descent down T , in order to sample a coordinate i with probability proportional to
q2i . At a node u, for each child u′ of u, the total probability of the leaves under u′ is given precisely

by
∥∥q|E(u′)

∥∥2
2
. We can estimate this by the Johnson-Lindenstrauss lemma using a sketching matrix

Φ. Then we randomly move from u down to child u′ with probability proportional to the estimated
value. To tolerate the estimation error, when reaching some leaf node representing coordinate i,
we accept with probability proportional to the ratio between the exact probability of i and the
estimated probability of i. If i is rejected, we repeat the process from the root again independently.

Algorithm 7 Data structure AbstractMaintainApprox, Part 2

32: procedure FindLargeCoordinates(ℓ)
33: ⊲ D and q are symbolic definitions
34: ⊲ D: diagonal matrix such that

Dii =

{
D

(k)
ii if xi has not been updated after the (k − 2ℓ)-th step

0 otherwise.

35: ⊲ q
def
= D

1/2
(x(k) − x(k−2ℓ)) ⊲ vector to sample coordinates from

36:

37: I ← ∅ ⊲ set of candidate coordinates
38: for N

def
= Θ(22ℓ(β/δ)2 log2m log(m/ρ)) iterations do

39: ⊲ Sample coordinate i of q w.p. proportional to q2i by random descent down T to a leaf
40: while true do
41: u← root(T ), pu ← 1
42: while u is not a leaf node do
43: Sample a child u′ of u with probability

P(u→ u′)
def
=

‖ΦE(u′)q‖22∑
child u′′ of u ‖ΦE(u′′)q‖22

⊲ let ΦE(u)
def
= ΦIE(u) for each node u

44: pu ← pu ·P(u→ u′)
45: u← u′

46: end while
47: break with probability paccept

def
=
∥∥q|E(u)

∥∥2 /(2 · pu · ‖Φq‖22)
48: end while
49: I ← I ∪E(u)
50: end for
51: return {i ∈ I : qi ≥ δ

2⌈logm⌉}.
52: end procedure

Lemma 52. Assume that ‖x(k+1) − x(k)‖
D(k+1) ≤ β for all IPM steps k. Let ρ < 1 be any given
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failure probability, and let N
def
= Θ(22ℓ(β/δ)2 log2m log(m/ρ)) be the number of samples Algorithm 7

takes. Then with probability ≥ 1− ρ, during the k-th call of Approximate, Algorithm 7 finds the

set I
(k)
ℓ correctly. Furthermore, the while-loop in Line 40 happens only O(1) times in expectation

per sample.

Proof. The proof is similar to Lemma 6.17 in [DLY21b]. We include it for completeness. For a set
S of indices, let IS be the m×m diagonal matrix that is one on S and zero otherwise.

We first prove that Line 47 breaks with probability at least 1
4 . By the choice of w, Johnson–

Lindenstrauss lemma shows that ‖ΦE(u)q‖22 = (1 ± 1
9η )‖IE(u)q‖22 for all u ∈ T with probability at

least 1− ρ. Therefore, the probability we move from a node u to its child node u′ is given by

P(u→ u′) =

(
1± 1

3η

) ‖IE(u′)q‖22∑
u′′ is a child of u ‖IE(u′′)q‖22

=

(
1± 1

3η

) ‖IE(u′)q‖22
‖IE(u)q‖22

.

Hence, the probability the walk ends at a leaf u ∈ T is given by

pu =

(
1± 1

3η

)η ‖Iuq‖22
‖q‖22

= (1± 1

3η
)η
∥∥q|E(u)

∥∥2

‖q‖22
.

Now, paccept on Line 47 is at least

paccept =

∥∥q|E(u)

∥∥2

2 · pu · ‖Φq‖22
≥

∥∥q|E(u)

∥∥2

2 · (1 + 1
3η )

η ‖q|E(u)‖2
‖q‖22

· ‖Φq‖22
≥ ‖q‖22

2 · (1 + 1
3η )

η‖Φq‖22
≥ 1

4
.

On the other hand, we have that paccept ≤ ‖q‖22
2(1− 1

3η
)η‖Φq‖22

< 1 and hence this is a valid probability.

Next, we note that u is accepted on Line 47 with probability

pacceptpu =

∥∥q|E(u)

∥∥2

2 · ‖Φq‖22
.

Since ‖Φq‖22 remains the same in all iterations, this probability is proportional to
∥∥q|E(u)

∥∥2.
Since the algorithm repeats when u is rejected, on Line 49, u is chosen with probability exactly∥∥q|E(u)

∥∥2 /‖q‖2.
Now, we want to show the output set is exactly {i ∈ [n] : |qi| ≥ δ

2⌈logm⌉}. Let S denote the set

of indices where x did not update between the (k − 2ℓ)-th step and the current k-th step. Then

‖q‖2 = ‖IS(D(k))1/2(x(k) − x(k−2ℓ))‖2

≤
k−1∑

i=k−2ℓ
‖IS(D(k))1/2(x(i+1) − x(i))‖2

=

k−1∑

i=k−2ℓ
‖IS(D(i+1))1/2(x(i+1) − x(i))‖2

≤
k−1∑

i=k−2ℓ
‖(D(i+1))1/2(x(i+1) − x(i))‖2

≤ 2ℓβ,
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where we used ISD
(i+1) = ISD

(k), because xi changes whenever Dii changes at a step. Hence, each
leaf u is sampled with probability at least

∥∥q|E(u)

∥∥2 /(2ℓβ)2. If |qi| ≥ δ
2⌈logm⌉ , and i ∈ E(u) for a

leaf node u, then the coordinate i is not in I with probability at most

(
1−

∥∥q|E(u)

∥∥2

(2ℓβ)2

)N

≤
(
1− 1

22ℓ+2(β/δ)2 ⌈logm⌉2
)N

≤ ρ

m
,

by our choice of N . Hence, all i with |qi| ≥ δ
2⌈logm⌉ lies in I with probability at least 1 − ρ. This

proves that the output set is exactly I
(k)
ℓ with probability at least 1− ρ.

Remark 53. In Algorithm 7, we only need to compute ‖ΦE(u)q‖22 for O(N) many nodes u ∈ T .
Furthermore, the randomness of the sketch is not leaked and we can use the same random sketch Φ

throughout the algorithm. This allows us to efficiently maintain ΦE(u)q for each u ∈ T throughout
the IPM.

6.3 Sketch maintenance

In FindLargeCoordinates in the previous subsection, we assumed the existence of a constant
degree tree T , and for the dynamic vector q, the ability to access ΦE(u)q at each node u ∈ T and
q|E(u) at each leaf node u ∈ T (0).

In this section, we consider when the required tree is the separator tree T of the overall input
graph, and the vector q is of the form q = y+Mz, where M is a tree operator supported on T , and
each of y,M,z undergo changes at every IPM step. We present a data structure that implements
two features efficiently on T :

• access (y +Mz)|E(H) at every leaf node H, where E(H)
def
= Range(JH).

• access ΦE(H)(y + Mz) at every node H, where ΦE(H) is Φ restricted to columns given by

E(H)
def
=
⋃

leaf D ∈ TH E(D).

Remark 54. As seen in the pseudocode, sketches for y and Mz can be maintained separately. We
collected them together to represent x as a whole for simplicity.

First, we present some lemmas about the structure of the expression Mz which will help us to
implement the requirements above. For any node H ∈ T , let TH be the subtree of T rooted at H.

Lemma 55. At any leaf node H ∈ T (0), we have

(Mz)|E(H) =
∑

A:H∈TA
JHMH←AIFA

z = JHIFH
z +

∑

ancestor A of H

JHMH←AIFA
z.

Proof. Recall from the definition of the tree operator that Range(JH) are disjoint. So to get
(Mz)|E(H), it suffices to only consider the terms corresponding to the leaf H in the expression
Eq. (5.4) for M; this gives the first equality. The second equality simply splits the sum into two
parts. (We do not consider a node to be its own ancestor.)

Lemma 56. At any node H ∈ T , we have

ΦE(H)Mz = ΦM(H)z +ΦM
(H)

∑

ancestor A of H

MH←AIFA
z.
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Intuitively, the lemma shows that the sketch of Mz restricted to E(H) can be split into two
parts. The first part involves some sum over all nodes in TH , ie. descendants of H and H itself,
and the second part involves a sum over all ancestors of H.

Proof. First, note that since Φ is restricted to E(H), it suffices to consider the terms in the sum
for M that map into to E(H). In particular, this is the set of leaf nodes TH in the subtree rooted
at H.

ΦE(H)Mz = Φ

∑

leaf D∈TH

∑

A:D∈TA
JDMD←AIFA

z.

The right hand side involves a sum over the set {(D,A) : D ∈ TH is a leaf node,D ∈ TA}. Observe
that (D,A) is in this set if and only if A ∈ TH or A is an ancestor of H. Hence, the summation can
be written as

∑

leaf D ∈ TH

∑

A∈TH
JDMD←HIFH

z +
∑

leaf D ∈ TH

∑

ancestor A of H

JDMD←AIFA
z.

The first term is precisely M(H)z. For the second term, we can use the fact that A is an ancestor
of H to expand MD←A = MD←HMH←A. Then, the second term is

∑

leaf D ∈ TH

∑

ancestor A of H

JDMD←HMH←AIFA
z

=
∑

leaf D ∈ TH
JDMD←H

(
∑

ancestor A of H

MH←AIFA
z

)

= M
(H)

(
∑

ancestor A of H

MH←AIFA
z

)
,

by definition of M(H).

Lemma 57. Let T be a rooted tree with height η supporting tree operator M with complexity T .
Let w = Θ(η2 log(mρ )) be as defined in Algorithm 7, and let Φ ∈ R

w×m be a JL-sketch matrix. Then
MaintainSketch (Algorithm 8) is a data structure that maintains Φ(y + Mz), as y, M and z

undergo changes in the IPM. The data structure supports the following procedures:

• Initialize(rooted tree T , Φ ∈ R
w×m, tree operator M

(init) ∈ R
m×n, z(init) ∈ R

n, y(init) ∈
R
m): Initialize the data structure with tree operator M ← M

(init), and vectors z ← z(init),
y ← y(init), and compute the initial sketches in O(w ·m) time.

• Update(M(new),z(new),y(new)): Update M ← M
(new), z ← z(new), y ← y(new) and all the

necessary sketches in O(w · T (η · |S|)) time, where S is the set of all nodes H where one of
M(H,P ),JH ,z|FH

,y|E(H) is updated.

• SumAncestors(H ∈ T ): Return
∑

ancestor A of H MH←AIFA
z.

• Estimate(H ∈ T ): Return ΦE(H) (y +Mz).

• Query(H ∈ T ): Return (y +Mz)|E(H).
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Algorithm 8 Data structure for maintaining Φ(y +Mz), Part 1

1: data structure MaintainSketch

2: private : member
3: T : rooted constant degree tree, where at every node H, there is

4: ΦM
(H) : sketch of partial tree operator

5: ΦM(H)z : sketched vector ⊲ This gives ΦMz at the root

6: Φy|E(H) : sketched subvector of y

7: Φ ∈ R
w×m : JL-sketch matrix

8: M : tree operator on T
9: z ∈ R

n : vector z

10: y ∈ R
n : vector y ⊲ M,z,y are pointers to read-only memory

11:

12: procedure Initialize(rooted tree T , Φ ∈ R
w×m, tree operator M, z, y)

13: Φ← Φ, T ← T
14: ΦM

(H) ← 0, ΦM(H)z ← 0, Φy|E(H) ← 0 for all H ∈ T
15: Update(M,z,y, V (T ))
16: end procedure
17:

18: procedure Update(M(new),z(new),y(new),S def
= set of nodes admitting changes)

19: M←M
(new), z ← z(new), y ← y(new)

20: for H ∈ PT (S) by increasing node level do
21: if H is a leaf then

22: ΦM
(H) ← ΦJH

23: ΦM(H)z ← ΦJHz|FH

24: Φy|E(H) ← Φy|E(H)

25: else

26: ΦM
(H) ←∑

child D of H ΦM
(D)

M(D,H)

27: ΦM(H)z ← ΦM
(H) z|FH

+
∑

child D of H ΦM(D)z

28: Φy|E(H) ←
∑

child D of H Φy|E(D)

29: end if
30: end for
31: end procedure
32:

33: procedure SumAncestors(H ∈ T )
34: if Update has not been called since the last call to SumAncestors(H) then
35: return the result of the last SumAncestors(H)
36: end if
37: if H is the root then return 0

38: end if
39: return M(H,P )(z|FP

+ SumAncestors(P )) ⊲ P is the parent of H
40: end procedure
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Algorithm 8 Data structure for maintaining Φ(y +Mz), part 2

41: procedure Estimate(H ∈ T )
42: Let u be the result of SumAncestors(H)

43: return ΦM
(H) u+ ΦM(H)z + Φy|E(H)

44: end procedure
45:

46: procedure Query(leaf H ∈ T )
47: return y|E(H) + JH(z|FH

+ SumAncestors(H))
48: end procedure

If we call Query on N nodes, the total runtime is O(w · T (ηN)).
If we call Estimate along a sampling path (by which we mean starting at the root, calling

estimate at both children of a node, and then recursively descending to one child until reaching a
leaf), and then we call Query on the resulting leaf, and we repeat this N times with no updates
during the process, then the total runtime of these calls is O(w · T (ηN)).

Proof. First, we note that each edge operator Me should be stored implicitly. In particular, it
suffices to only support the operation of computing u⊤Me and Mex for any vectors u and x.

We prove the running time and correctness for each procedure.

Initialize: It sets the sketches to 0 in O(w ·m) time. It then calls Update with the initial M,
z, y, and updates the sketches everywhere on T . By the runtime and correctness of Update, this
step is correct and runs in Õ(w · T (m)) time.

Update(M(new),z(new),y(new)): Let S denote the set of nodes admitting changes as defined in
the theorem statement. If a node H is not in S and it has no descendants in S, then by definition,
M

(H) and M(H)z are not affected by the updates in M and z. Similarly, in this case, y|E(H) is not
affected by the updates to y. Hence, it suffices to update the sketches only at all nodes in PT (S).
We update the nodes from the bottom level of the tree upwards, so that when we’re at a node H,
all the sketches at its descendant nodes are correct. Hence, by definition, the sketch at H is also
correct.

To compute the runtime, first note |PT (S)| = O(η|S|), since for each node H ∈ S, the set
includes all the O(η) nodes on the path from H to the root. For each leaf node H ∈ PT (S), we can
compute its sketches in constant time. For each non-leaf node H ∈ S with children D1,D2, Line 26

multiplies each row of ΦM
(D1) with M(D1,H), each row of ΦM

(D2) with M(D2,H), and sums the
results. For a fixed row number, the total time over all H ∈ PT (S) is bounded by O(T (|PT (S)|)).
So the total time for Line 26 in the procedure is O(w · T (η|S|)).

Line 27 multiply each row of ΦM
(H) with a vector and then performs a constant number of

additions of O(w)-length vectors. Since ΦM
(H) is computed for all H ∈ T (|PT (S)|) in O(w ·

T (η|S|)) total time, this runtime must also be a bound on the number of total non-zero entries.

Since each ΦM
(H) is used once in Line 27 for a matrix-vector multiplication, the total runtime

over all H is also O(w · T (η|S|)). Lastly, the vector additions across all H takes O(w · η|S|) time.
Line 28 adds two vectors of length w. This is not the bottleneck.
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SumAncestors(H): At the root, there are no ancestors, hence we return the zero matrix.
When H is not the root, suppose P is the parent of H. Then we can recursively write

∑

ancestor A of H

MH←AIFA
z = M(H,P )

(
IFP

z +
∑

ancestor A of P

MP←AIFA
z

)
.

The procedure implements the right hand side, and is therefore correct.

Estimate and Query: Their correctness follow from Lemmas 55 and 56, and the correctness

of Φy|E(H) maintained by Update.

Overall Estimate and Query time along N sampling paths: We show that if we call
Estimate along N sampling paths each from the root to a leaf, and we call Query on the leaves,
the overall cost for these calls is O(w · T (ηN)):

Suppose the set of nodes visited is given by H, then |H| ≤ ηN . Since there is no update, and
Estimate is called for a node only after it is called for its parent, we know that SumAncestors(H)
is called exactly once for each H ∈ H. Each SumAncestor(H) multiplies a unique edge operator
M(H,P ) with a vector. Hence, the total runtime of SumAncestors is T (|H|). Furthermore, the
total number of non-zero entries of the return values of these SumAncestors is also O(T (|H|)).

Finally, each Query applies a constant-time operator JH to the output of a unique SumAnces-

tors call, so the overall runtime is certainly bounded by O(T (|H|)). Adding a constant-sized

y|E(H) can be done efficiently. Similarly, each Estimate multiplies ΦM
(H) with the output of a

unique SumAncestors call. This can be computed as w-many vectors each multiplied with the
SumAncestors output. Then two vectors of length w are added. Summing over all H ∈ H, the
overall runtime is O(w · T (|H|)) = O(w · T (ηN)).

Query time on N leaves: Since this is a subset of the work described above, the runtime must
also be bounded by O(w · T (ηN)).

6.4 Proof of Theorem 8

We combine the previous three subsections for the overall approximation procedure. It is essentially
AbstractMaintainApprox in Algorithm 7, with the abstractions replaced by a data structure
implementation. We did not provide the corresponding pseudocode.

Theorem 8 (Approximate vector maintenance with tree operator). Given a constant degree tree T
with height η that supports tree operator M with complexity T , there is a randomized data structure
MaintainApprox that takes as input the dynamic variables M, c,z(step),z(sum),y,D at every IPM
step, and maintains the approximation x to x

def
= y +Mz = y +M(c · z(step) + z(sum)) satisfying∥∥D1/2(x− x)

∥∥
∞ ≤ δ. It supports the following procedures:

• Initialize(tree T , tree operator M, c ∈ R,z(step) ∈ R
n,z(sum) ∈ R

n,y ∈ R
m,D ∈ R

n×n, ρ >
0, δ > 0): Initialize the data structure with initial vector x = y + M(cz(step) + z(sum)),
diagonal scaling matrix D, target approximation accuracy δ, success probability 1 − ρ, in
O(mη2 logm log(mρ )) time. Initialize x← x.
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• Approximate(M, c,z(step),z(sum),y,D): Update the internal variables to their new iterations
as given. Then output a vector x such that ‖D1/2(x− x)‖∞ ≤ δ for the current vector x and
the current diagonal scaling D.

Suppose ‖x(k+1) − x(k)‖
D(k+1) ≤ β for all k, where D

(k) and x(k) are the D and x at the k-th call
to Approximate. Then, for the k-th call to Approximate, we have

• the data structure first updates xi ← x
(k−1)
i for the coordinates i with D

(k)
ii 6= D

(k−1)
ii , then

updates xi ← x
(k)
i for O(Nk

def
= 22ℓk(β/δ)2 log2m) coordinates, where ℓk is the largest integer

ℓ with k = 0 mod 2ℓ.

• The amortized time cost of Approximate is

Θ(η2 log(
m

ρ
) logm) · T (η · (Nk−2ℓk + |S|)),

where S is the set of nodes H where either M(H,P ), JH , z(step)|FH
, or z(sum)|FH

changed, or
where ye or De,e changed for some edge e in H, compared to the (k − 1)-th step.

Proof. The data structure AbstractMaintainApprox in Algorithm 7 performs the correct vec-
tor approximation maintenance, however, it is not completely implemented. MaintainApprox

simply replaces the abstractions with a concrete implementation using the data structure Main-

tainSketch from Algorithm 8.
First, for notation purposes, let z

def
= cz(step) + z(sum), and let x

def
= y +Mz, so that at step k,

Approximate procedure has x(k) (in implicit form) as input, and return x.
Let ℓ ∈ {1, . . . , O(logm)}. We define a new dynamic vector xℓ symbolically, which is represented

at each step k for k ≥ 2ℓ by

x
(k)
ℓ

def
= y

(k)
ℓ +M

(k)
ℓ z

(k)
ℓ ,

where the new tree operator Mℓ at step k is given by

• M
(k)
ℓ (H,P ) = diag

(
M

(k)
(H,P ),M

(k−2ℓ)
(H,P )

)
for each child-parent edge (H,P ) in T ,

• J
(k)
ℓ H

= DE(H),E(H)

[
J
(k)
H J

(k−2ℓ)
H

]
for each leaf node H ∈ T ,

where D is the diagonal matrix defined in FindLargeCoordinates, with Di,i = D
(k)
i,i at step k if

xi has not been updated after step k − 2ℓ, and zero otherwise.

At step k, the vector yℓ is given by y
(k)
ℓ = D

1/2
(
y(k) − y(k−2ℓ)

)
, and zℓ by z

(k)
ℓ

def
=
[
z(k) z(k−2ℓ)

]⊤
.

Then, at each step k with k ≥ 2ℓ, we have

x
(k)
ℓ

def
= y

(k)
ℓ +M

(k)
ℓ z

(k)
ℓ (6.1)

=
(
D

1/2
y(k) +D

1/2
M

(k)z(k)
)
−
(
D

1/2
y(k−2ℓ) +D

1/2
M

(k−2ℓ)z(k−2ℓ)
)

= D
1/2

(x(k) − x(k−2ℓ)).

Note this is precisely the vector q for a fixed ℓ in FindLargeCoordinates in Algorithm 7. It
is straightforward to see that Mℓ indeed satisfies the definition of a tree operator. Furthermore,
Mℓ has the same complexity as M. MaintainApprox will contain O(logm) copies of the Main-

tainSketch data structures in total, where the ℓ-th copy sketches xℓ as it changes throughout the
IPM algorithm.

We now describe each procedure in words, and then prove their correctness and runtime.
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Initialize(T ,M, c,z(step),z(sum),y,D, ρ, δ): This procedure implements the initialization of Ab-

stractMaintainApprox, where the dynamic vector x to be approximated is represented by
x

def
= y+M(cz(step)+ z(sum)). The initialization steps described in Algorithm 7 takes O(wm) time.

Let Φ denote the JL-sketching matrix.
We initialize two copies of the MaintainSketch data structure, ox_cur and ox_prev. At step

k, ox_cur will maintain sketches of Φx(k), and ox_prev will maintain sketches of Φx(k−1). (The
latter is initialized at step 1, but we consider it as part of initialization.)

In addition, for each 0 ≤ ℓ ≤ O(m), we initialize a copy sketchℓ of MaintainSketch. These are
needed for the implementation of FindLargeCoordinates(ℓ) in Approximate. Specifically, at

step k = 2ℓ of the IPM, we initialize sketchℓ by calling sketchℓ.Initialize(T ,Φ,M(k)
ℓ ,z

(k)
ℓ ,y

(k)
ℓ ).

(Although this occurs at step k > 0, we charge its runtime according to its function as part of
initialization.)

The total initialization time is O(wm logm) = O(mη2 logm log(mρ )) by Lemma 57. By the
existing pseudocode in Algorithm 7, it correctly initializes x← x.

Approximate(M(new), c(new),z(step)(new)
,z(sum)(new)

,y(new),D(new)): This procedure implements
Approximate in Algorithm 7. We consider when the current step is k below.

First, we update the sketch data structures sketchℓ for each ℓ by calling sketchℓ.Update.

Recall at step k, sketchℓ maintains sketches for the vector x
(k)
ℓ = D

1/2
(x(k) − x(k−2ℓ)), although

the actual representation in sketchℓ of the vector xℓ is given by xℓ = yℓ + Mℓzℓ as defined in
Eq. (6.1).

Next, we execute the pseudocode given in Approximate in Algorithm 7:

To update xe to x
(k−1)
e for a single coordinate (Line 20 of Algorithm 7), we find the leaf node H

containing the edge e, and call ox_prev.Query(H). This returns the subvector x(k−1)|E(H), from

which we can make the assignment to xe. To update xe to x
(k)
e for single coordinates (Line 29 of

Algorithm 7), we do the same as above, except using the data structure ox_cur.
In the subroutine FindLargeCoordinates(ℓ), the vector q defined in the pseudocode is ex-

actly x
(k)
ℓ . We get the value of ΦE(u)q at a node u by calling sketchℓ.Estimate(u), and we get

the value of q|E(u) at a leaf node u by calling sketchℓ.Query(u).

Number of coordinates changed in x during Approximate. In Line 20 of Approxi-

mate in Algorithm 7, x is updated in every coordinate e where De differs compared to the previous
step.

Next, the procedure collect a set of coordinates for which we update x, by calling Find-

LargeCoordinates(ℓ) for each 0 ≤ ℓ ≤ ℓk, where ℓk is defined to be the number of trailing
zeros in the binary representation of k. (These are exactly the values of ℓ such that k ≡ 0
mod 2ℓ). In each call of FindLargeCoordinates(ℓ), There are O(22ℓ(η/δ)2 log2m log(m/ρ))
iterations of the outer for-loop, and O(1) iterations of the inner while-loop by the assumption of
‖x(k+1) − x(k)‖

D(k+1) ≤ β and Lemma 52. Each iteration of the while-loop adds a O(1) sized set
to the collection I of candidate coordinates. So overall, FindLargeCoordinates(ℓ) returns a set
of size O(22ℓ(η/δ)2 log2m log(m/ρ)). Summing up over all calls of FindLargeCoordinates, the
total size of the set of coordinates to update is

Nk
def
=

ℓk∑

ℓ=0

O(22ℓ(β/δ)2 log2m log(m/ρ)) = O(22ℓk(β/δ)2 log2m). (6.2)

We define ℓ0 = N0 = 0 for convenience.
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Changes to sketching data structures. Let S(k) denote the set of nodes H, where one of
(when applicable) M(H,P ), JH , z(step)|FH

, z(sum)|FH
, yFH

, DE(H) changes during step k. (They are

entirely induced by changes in v and w at step k.) We store S(k) for each step.
For each ℓ, the diagonal matrix D is the same as D, except Dii is temporarily zeroed out for

2ℓ steps after xi changes at a step. Thus, the number of coordinate changes to D at step k is the
number of changes to D, plus Nk−1 +Nk−2ℓ: Nk−1 entries are zeroed out because of updates to xi

in step k − 1. The Nk−2ℓ entries that were zeroed out in step k − 2ℓ + 1 because of the update to
xi in step k − 2ℓ are back.

Hence, at step k, the updates to sketchℓ are induced by updates to D, and the updates to x at
step k, and at step k−2ℓ. The updates to the two x terms are restricted to the nodes S(k−2ℓ)∪S(k)
in T for Algorithm 8. Updates to ox_cur and ox_prev can be similarly analyzed.

Runtime of Approximate. First, we consider the time to update each sketchℓ: At step
k, the analysis above combined with Lemma 57 show that sketchℓ.Update with new iterations of
the appropriate variables run in time

O
(
w · T

(
η · (|S(k)|+ |S(k−2ℓ)|+Nk−1 +Nk−2ℓ)

))

≤ w ·O
(
T (η · (|S(k)|+Nk−1 +Nk−2ℓ))

)
+ w ·O

(
T (η · |S(k−2ℓ)|)

)
,

where we use the concavity of T . The second term can be charged to step k − 2ℓ. Thus, the
amortized time cost for sketchℓ.Update at step k is

w ·O(T (η · (|S(k)|+Nk−1 +Nk−2ℓk ))).

Summing over all 0 ≤ ℓ ≤ O(logm) for the different copies of sketchℓ, we get an extra O(logm)
factor in the overall update time.

Similarly, we can update ox_prev and ox_cur in the same amortized time.
Next, we consider the runtime for Line 20 in Algorithm 7: The number of coordinate ac-

cesses to x(k−1) is |{i : D(k)
ii − D

(k−1)
ii 6= 0}| = O(S(k)). Each coordinate is computed by calling

ox_cur.Query, and by Lemma 57, the total time for these updates is w ·O(T (η · |S(k)|).
Finally, we analyze the remainder of the procedure, which consists of FindLargeCoordi-

nates(ℓ) for each 0 ≤ ℓ ≤ ℓk and the subsequent updates to entries of x: For each FindLargeCo-

ordinates(ℓ) call, by Lemma 52, Nk,ℓ
def
= Θ(22ℓ(β/δ)2 log2m log(m/ρ)) sampling paths are explored

in the sketchℓ data structure, where each sampling path correspond to one iteration of the while-
loop. We calculate ‖ΦE(H)xℓ‖22 at a node H in the sampling path using sketchℓ.Estimate(H),
and at a leaf node H using sketchℓ.Query(H). The total time is w ·O(T (η ·Nk,ℓ)) by Lemma 57.
To update a coordinate i ∈ E(H) that was identified to be large, we can refer to the output of
sketchℓ.Query(H) from the sampling step.

Summing over each 0 ≤ ℓ ≤ ℓk, we see that the total time for the FindLargeCoordinates

calls and the subsequent updates fo x is

ℓk∑

ℓ=0

w ·O(T (η ·Nk,ℓ)) = w · O(T (η ·Nk)),

where Nk is the number of coordinates that are updated in x as shown in Eq. (6.2).
Combined with the update times, we conclude that the total amortized cost of Approximate

at step k is

Θ(η2 log(
m

ρ
) logm) · T (η · (|S(k)|+Nk−1 +Nk−2ℓk )).
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Observe that Nk−1 = Nk−20 and Nk−2ℓ are both bounded by O(Nk−2ℓk ): When ℓ 6= ℓk, the number

of trailing zeros in k − 2ℓ is no more than ℓk. When ℓ = ℓk, the number of trailing zeros of k − 2ℓk

is ℓk−2ℓk . In both cases, ℓk−2ℓ ≤ ℓk−2ℓk . So we have the desired overall runtime.

7 Slack projection

In this section, we define the slack tree operator as required to use MaintainRep. We then give
the full slack maintenance data structure.

7.1 Tree operator for slack

The full slack update at IPM step k with step direction v(k) and step size t̄h is

s← s+W
−1/2

P̃w(t̄hv
(k)),

where we require P̃w ≈ Pw and P̃wv(k) ∈ Range(W1/2
B).

Let L̃
−1 denote the approximation of L−1 from Eq. (2.8), maintained and computable with a

DynamicSC data structure. If we define

P̃w = W
1/2

BL̃
−1

B
⊤
W

1/2 = W
1/2

BΠ
(0)⊤ · · ·Π(η−1)⊤

Γ̃Π
(η−1) · · ·Π(0)

B
⊤
W

1/2.

then P̃w ≈ηǫP Pw, and Range(P̃w) = Range(Pw) by definition, where η and ǫP are parameters
in DynamicSC. Hence, this suffices as our approximate slack projection matrix. In order to use
MaintainRep to maintain s throughout the IPM, it remains to define a slack tree operator M(slack)

so that
W
−1/2

P̃wv
(k) = M

(slack)z(k),

where z(k) def
= Γ̃Π

(η−1) · · ·Π(0)
B
⊤
W

1/2v(k) at IPM step k. We proceed by defining a tree operator
M satisfying P̃wv(k) = Mz(k). Namely, we show that M

def
= W

1/2
BΠ

(0)⊤ · · ·Π(η−1)⊤ is indeed a
tree operator. Then we set M

(slack) def
= W

−1/2
M.

For the remainder of the section, we abuse notation and use z to mean z(k) for one IPM step k.

Definition 58 (Slack projection tree operator). Let T be the separator tree from data structure

DynamicSC, with Laplacians L(H) and S̃c(L(H), ∂H) at each node H ∈ T . We use B[H] to denote
the adjacency matrix of G restricted to the region.

For a node H ∈ T , define V (H) and FH required by the tree operator as ∂H ∪ FH and FH

from the separator tree construction respectively. Note the slightly confusing fact that V (H) is not
the set of vertices in region H of the input graph G, unless H is a leaf node. Suppose node H has
parent P , then define the tree edge operator M(H,P ) : R

V (P ) 7→ R
V (H) as:

M(H,P )
def
= I∂H∪FH

−
(
L
(H)
FH ,FH

)−1
L
(H)
FH ,∂H = I∂H∪FH

−X
(H)⊤, (7.1)

where X
(H) is defined in Eq. (4.4).

At each leaf node H of T , define the leaf operator JH = W
1/2

B[H].

The remainder of this section proves the correctness of the tree operator.

Lemma 59. Let M be the tree operator as defined in Definition 58. We have

Mz = W
1/2

BΠ
(0)⊤ · · ·Π(η−1)⊤z.
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We begin with a few observations about the Π
(i)’s:

Observation 60. For any 0 ≤ i < η, and for any vector x, we have Π
(i)⊤x = x+ yi, where yi is

a vector supported on Fi = ∪H∈T (i)FH . Extending this observation, for 0 ≤ i < j < η,

Π
(i)⊤ · · ·Π(j−1)⊤x = x+ y,

where y is a vector supported on Fi ∪ · · · ∪ Fj−1 = ∪H:i≤η(H)<jFH . Furthermore, if x is supported
on FA for η(A) = j, then y is supported on ∪H∈TAFH .

The following helper lemma describes a sequence of edge operators from a node to a leaf.

Lemma 61. For any leaf node H ∈ T , and a node A with H ∈ TA (A is an ancestor of H or H
itself), we have

MH←Az|FA
= I∂H∪FH

Π
(0)⊤ · · ·Π(η−1)⊤z|FA

. (7.2)

Proof. For simplicity of notation, let V (H)
def
= ∂H ∪ FH for a node H.

To start, observe that for a node A at level η(A), we have Π
(i)z|FA

= z|FA
for all i ≥ η(A). So

it suffices to prove
MH←Az|FA

= IV (H)Π
(0)⊤ · · ·Π(η(A)−1)⊤z|FA

.

Let the path from leaf H up to node A in T be denoted (H0
def
= H,H1, . . . ,Ht

def
= A), for some

t ≤ η(A). We will prove by induction for k decreasing from t to 0:

MHk←Az|FA
= IV (Hk)Π

(η(Hk))⊤Π(η(Hk)+1)⊤ · · ·Π(η(A)−1)⊤z|FA
. (7.3)

For the base case of Ht = A, we have MHt←Az|FA
= z|FA

= IV (Ht)z|FA
.

For the inductive step at Hk, we first apply induction hypothesis for Hk+1 to get

MHk+1←Az|FA
= IV (Hk+1)Π

(η(Hk+1))⊤ · · ·Π(η(A)−1)⊤z|FA
. (7.4)

Multiplying by the edge operator M(Hk ,Hk+1) on both sides gives

MHk←Az|FA
= M(Hk ,Hk+1)IV (Hk+1)Π

(η(Hk+1))⊤ · · ·Π(η(A)−1)⊤z|FA
. (7.5)

Recall the edge operator M(Hk,Hk+1) maps vectors supported on V (Hk+1) to vectors supported
on V (Hk) and zeros otherwise. So we can drop the IV (Hk+1) term in the right hand side. Let

x
def
= Π

(η(Hk+1))⊤ · · ·Π(η(A)−1)⊤z|FA
. Now, by the definition of the edge operator, the above equation

becomes
MHk←Az|FA

= (IV (Hk) −X
(Hk)⊤)x. (7.6)

On the other hand, we have

IV (Hk)Π
(η(Hk))⊤ · · ·Π(η(Hk+1)−1)⊤x = IV (Hk)Π

(η(Hk))⊤
(
Π

(η(Hk)+1)⊤ · · ·Π(η(Hk+1)−1)⊤x
)

= IV (Hk)Π
(η(Hk))⊤(x+ y),

where y is a vector supported on ∪FR for nodes R at levels η(Hk) + 1, · · · , η(Hk+1) − 1 by
Observation 60. In particular, y is zero on FHk

. Also, y is zero on ∂Hk, since by Observation 24,
∂Hk ⊆ ∪ancestor A′ of Hk

FA′ , and ancestors of Hk are at level η(Hk+1) or higher. Then y is zero on
V (Hk) = ∂Hk ∪ FHk

, and the right hand side is

= (IV (Hk) −X
(Hk)⊤)x,
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where we apply the definition of Π(η(Hk))⊤ and expand the left-multiplication by IV (Hk).
Combining with Eq. (7.6) and substituting back the definition of x, we get

MHk←Az|FA
= IV (Hk)Π

(η(Hk))⊤ · · ·Π(η(A)−1)⊤z|FA
.

which completes the induction.

To prove Lemma 59, we apply the leaf operators to the result of the previous lemma and sum
over all nodes and leaf nodes.

Proof of Lemma 59. Let H be a leaf node. We sum Eq. (7.2) over all A with H ∈ TA to get

∑

A:H∈TA
MH←Az|FA

= I∂H∪FH

∑

A:H∈TA
Π

(0)⊤ · · ·Π(η−1)⊤z|FA

= I∂H∪FH
Π

(0)⊤ · · ·Π(η−1)⊤z,

where we relax the sum in the right hand side to be over all nodes in T , since by Observation 60,
for any A with H /∈ TA, we simply have I∂H∪FH

Π
(0)⊤ · · ·Π(η−1)⊤z|FA

= 0. Next, we apply the leaf
operator JH = W

1/2
B[H] to both sides to get

∑

A:H∈TA
JHMH←Az|FA

= W
1/2

B[H]I∂H∪FH
Π

(0)⊤ · · ·Π(η−1)⊤z.

Since B[H] is zero on columns supported on V (G) \ (∂H ∪ FH), we can simply drop the I∂H∪FH
in

the right hand side.
Finally, we sum up the equation above over all leaf nodes. The left hand side is precisely the

definition of Mz. Recall the regions of the leaf nodes partition the original graph G, so we have

∑

H∈T (0)

∑

A:H∈TA
JHMH←Az|FA

= W
1/2


 ∑

H∈T (0)
B[H]


Π

(0)⊤ · · ·Π(η−1)⊤z

Mz = W
1/2

BΠ
(0)⊤ · · ·Π(η−1)⊤z.

We now examine the slack tree operator complexity.

Lemma 62. The complexity of the slack tree operator as defined in Definition 65 is T (k) = Õ(
√
mk ·

ǫP
−2), where ǫP is the Schur complement approximation factor from data structure DynamicSC.

Proof. Let M(D,P ) be a tree edge operator. Applying M(D,P ) = I∂D −
(
L
(D)
FD,FD

)−1
L
(D)
FD,∂D to

the left or right consists of three steps which are applying I∂D, applying L
(D)
FD,∂D and solving for

L
(D)
FD,FD

v = b for some vectors v and b. Each of the three steps costs time O(ǫP
−2|∂D ∪ FD|) by

Lemma 34 and Theorem 12.
For any leaf node H, H has a constant number of edges, and it takes constant time to compute

JHu for any vector u. The number of vertices may be larger but the nonzeros of JH = W
1/2

B[H]
only depends on the number of edges. To bound the total cost over k distinct edges, we apply
Lemma 28, which then gives the claimed complexity.
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7.2 Proof of Theorem 9

Finally, we give the full data structure for maintaining the slack solution.
The tree operator M defined in Definition 58 satisfies Mz(k) = P̃wv

(k) at step k, by the defini-
tion of z(k). To support the proper update s← s+thW−1/2

P̃wv(k), we define M
(slack) def

= W
−1/2

M

and note it is also a tree operator:

Lemma 63. Suppose M is a tree operator supported on T with complexity T (K). Let D be a
diagonal matrix in R

E×E where E =
⋃

leaf H∈T E(H). Then DM can be represented by a tree
operator with complexity T (K).

Proof. Suppose M ∈ R
E×V . For any vector z ∈ R

V , DMz = D(Mz). Thus, to compute DMz,
we may first compute Mz and then multiply the i-th entry of Mz with Di,i. This can be achieved
by defining a new tree operator M

′ with leaf operators J
′ such that J

′
H = DE(H),E(H)JH and

M
′
(H,P ) = M(H,P ). The size of each leaf operator remains constant. All edge operators do not

change from M. Thus, the new operator M
′ has the same complexity as M.

With the lemma above, we can use MaintainRep (Algorithm 6) to maintain the implicit rep-
resentation of s and Theorem 8 to maintain an approximate vector s as required in Algorithm 2. A
single IPM step calls the procedures Reweight, Move, Approximate in this order once. Note
that we reinitialize the data structure when t changes, so within each instantiation, may assume
t̄ = 1 by scaling. t changes only Õ(1) times in the IPM.

Theorem 9 (Slack maintenance). Given a modified planar graph G with m edges and its separa-
tor tree T with height η, the randomized data structure MaintainSlack (Algorithm 9) implicitly
maintains the slack solution s undergoing IPM changes, and explicitly maintains its approximation
s, and supports the following procedures with high probability against an adaptive adversary:

• Initialize(G, s(init) ∈ R
m,v ∈ R

m,w ∈ R
m
>0, ǫP > 0, ǫ > 0): Given a graph G, initial solution

s(init), initial direction v, initial weights w, target step accuracy ǫP and target approximation
accuracy ǫ, preprocess in Õ(mǫ−2

P
) time, and set the representations s← s(init) and x← s.

• Reweight(w ∈ R
m
>0, given implicitly as a set of changed weights): Set the current weights to

w in Õ(ǫ−2
P

√
mK) time, where K is the number of coordinates changed in w.

• Move(α ∈ R,v ∈ R
m given implicitly as a set of changed coordinates): Implicitly update

s← s+αW−1/2
P̃wv for some P̃w with ‖(P̃w −Pw)v‖2 ≤ ηǫP ‖v‖2, and P̃wv ∈ Range(B).

The total runtime is Õ(ǫ−2
P

√
mK) where K is the number of coordinates changed in v.

• Approximate() → R
m: Return the vector s such that ‖W1/2(s − s)‖∞ ≤ ǫ for the current

weight w and the current vector s.

• Exact()→ R
m: Output the current vector s in Õ(mǫP

−2) time.

Suppose α‖v‖2 ≤ β for some β for all calls to Move. Suppose in each step, Reweight, Move and
Approximate are called in order. Let K denote the total number of coordinates changed in v and
w between the (k − 1)-th and k-th Reweight and Move calls. Then at the k-th Approximate

call,

• the data structure first sets se ← s
(k−1)
e for all coordinates e where we changed in the last

Reweight, then sets se ← s
(k)
e for O(Nk

def
= 22ℓk(βǫ )

2 log2m) coordinates e, where ℓk is the
largest integer ℓ with k = 0 mod 2ℓ when k 6= 0 and ℓ0 = 0.
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Algorithm 9 Slack Maintenance, Main Algorithm

1: data structure MaintainSlack extends MaintainRep

2: private: member
3: MaintainRep maintainRep: data structure to implicitly maintain

s = y +W
−1/2

M(cz(step) + z(sum)).

⊲ M is defined by Definition 58
4: MaintainApprox bar_s: data structure to maintain approximation s to s (Theorem 8)
5:

6: procedure Initialize(G, s(init) ∈ R
m,v ∈ R

m,w ∈ R
m
>0, ǫP > 0, ǫ > 0)

7: Build the separator tree T by Theorem 25
8: maintainRep.Initialize(G,T ,W−1/2

M,v,w, s(init), ǫP) ⊲ initialize s← s(init)

9: bar_s.Initialize(W−1/2
M, c,z(step),z(sum),y,W, n−5, ǫ) ⊲ initialize s approximating s

10: end procedure
11:

12: procedure Reweight(w(new) ∈ R
m
>0)

13: maintainRep.Reweight(w(new))
14: end procedure
15:

16: procedure Move(α,v(new) ∈ R
m)

17: maintainRep.Move(α,v(new))
18: end procedure
19:

20: procedure Approximate( )
21: ⊲ the variables in the argument are accessed from maintainRep

22: return s = bar_s.Approximate(W−1/2
M, c,z(step),z(sum),y,W)

23: end procedure
24:

25: procedure Exact( )
26: return maintainRep.Exact()
27: end procedure
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• The amortized time for the k-th Approximate call is Õ(ǫ−2
P

√
m(K +Nk−2ℓk )).

Proof of Theorem 9. We prove the runtime and correctness of each procedure separately.
Recall by Lemma 61, the tree operator M has complexity T (K) = O(ǫP

−2√mK).

Initialize: By the initialization of maintainRep (Theorem 7), the implicit representation of s
in maintainRep is correct and s = s(init). By the initialization of bar_f, s is set to s to start.

Initialization of maintainRep takes Õ(mǫP
−2) time by Theorem 7, and the initialization of

bar_s takes Õ(m) time by Theorem 8.

Reweight: In Reweight, the value of s does not change, but all the variables in MaintainRep

are updated to depend on the new weights. The correctness and runtime follow from Theorem 7.

Move: maintainRep.Move(α,v(k)) updates the implicit representation of s by

s← s+W
−1/2

Mαz(k).

By the definition of the slack projection tree operator M and Lemma 59, this is equivalent to the
update

s← s+ αW−1/2
P̃wv

(k),

where P̃w = W
1/2

BΠ
(0) · · ·Π(η−1)

Γ̃Π
(η−1) · · ·Π(0)

B
⊤
W

1/2. By Theorem 33, ‖P̃w−Pw‖op ≤ ηǫP.

From the definition, Range(W1/2
P̃w) ⊆ Range(B).

By the guarantees of maintainRep, if v(k) differs from v(k−1) on K coordinates, then the runtime
is Õ(ǫP

−2√mK). Furthermore, z(step) and z(sum) change on FH for at most Õ(K) nodes in T .

Approximate: The returned vector s satisfies ‖W1/2(s− s)‖∞ ≤ ǫ by the guarantee of
bar_s.Approximate from Theorem 8.

Exact: The runtime and correctness directly follow from the guarantee of maintainRep.Exact

given in Theorem 7.
Finally, we have the following lemma about the runtime for Approximate. Let s(k) denote the

returned approximate vector at step k.

Lemma 64. Suppose α‖v‖2 ≤ β for some β for all calls to Move. Let K denote the total number
of coordinates changed in v and w between the k−1-th and k-th Reweight and Move calls. Then
at the k-th Approximate call,

• The data structure first sets se ← s
(k−1)
e for all coordinates e where we changed in the last

Reweight, then sets se ← s
(k)
e for O(Nk

def
= 22ℓk(βǫ )

2 log2m) coordinates e, where ℓk is the
largest integer ℓ with k = 0 mod 2ℓ when k 6= 0 and ℓ0 = 0.

• The amortized time for the k-th Approximate call is Õ(ǫ−2
P

√
m(K +Nk−2ℓk )).

Proof. Since s is maintained by bar_s, we apply Theorem 8 with x = s and diagonal matrix
D = W. We need to prove ‖x(k) − x(k−1)‖

D(k) ≤ O(β) for all k first. The constant factor in O(β)
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does not affect the guarantees in Theorem 8. The left-hand side is
∥∥∥s(k) − s(k−1)

∥∥∥
W(k)

=
∥∥∥α(k)

W
(k)−1/2

P̃wv
(k)
∥∥∥
W(k)

(by Move)

=
∥∥∥α(k)

P̃wv
(k)
∥∥∥
2

≤ (1 + ηǫP)α
(k)‖v(k)‖2 (by the assumption that α‖v‖2 ≤ β)

≤ 2β.

Where the second last step follows from ‖P̃w−Pw‖op ≤ ηǫP and the fact that Pw is an orthogonal
projection. Now, we can apply Theorem 8 to conclude that at each step k, bar_s.Approximate

first sets se ← s
(k−1)
e for all coordinates e where we changed in the last Reweight, then set

se ← s
(k)
e for O(Nk

def
= 22ℓk(βǫ )

2 log2m) coordinates e, where ℓk is the largest integer ℓ with k = 0
mod 2ℓ when k 6= 0 and ℓ0 = 0.

For the second point, Move updates z(step) and z(sum) on FH for Õ(K) different nodes H ∈ T
by Theorem 7. Reweight then updates z(step) and z(sum) on FH for Õ(K) different nodes, and
updates the tree operator W−1/2

M on Õ(K) different edge and leaf operators. In turn, it updates y
on E(H) for Õ(K) leaf nodes H. Now, we apply Theorem 8 and the complexity of the tree operator
to conclude the desired amortized runtime.

8 Flow projection

In this section, we define the flow tree operator as required to use MaintainRep. We then give
the full flow maintenance data structure.

During the IPM, we maintain f
def
= f̂ − f⊥ by maintaining the two terms separately. For IPM

step k with direction v(k) and step size h, we update them as follows:

f̂ ← f̂ + hW1/2v(k),

f⊥ ← f⊥ + hW1/2
P̃
′
wv

(k),

where P̃
′
wv

(k) satisfies
∥∥∥P̃′wv(k) −Pwv(k)

∥∥∥
2
≤ ε

∥∥v(k)
∥∥
2

for some factor ε, and B
⊤
W

1/2
P̃
′
wv

(k) =

B
⊤
W

1/2v(k). We will include the initial value of f in f̂ .
Maintaining f̂ is straightforward; in the following section, we focus on f⊥.

8.1 Tree operator for flow

We hope to use MaintainRep to maintain f⊥ throughout the IPM. In order to do so, it remains
to define a flow tree operator M

(flow) so that

W
1/2

P̃
′
wv

(k) = M
(flow)z(k),

where P̃
′
wv satisfies the constraints mentioned above, and z(k) def

= Γ̃Π
(η−1) · · ·Π(0)

B
⊤
W

1/2v(k).

We will define a flow projection tree operator M so that f̃
def
= Mv(k) satisfies

∥∥∥f̃ −Pwv

∥∥∥
2
≤

O(ηǫP) ‖v‖2 and B
⊤
W

1/2f̃ = B
⊤
W

1/2v(k). This means it is feasible to set P̃
′
wv

(k) = f̃ . Then,

we define M
(flow) def

= W
−1/2

M.
For the remainder of the section, we abuse notation and use z to mean z(k) for one IPM step k.
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Definition 65 (Flow projection tree operator). Let T be the separator tree from data structure

DynamicSC, with Laplacians L(H) and S̃c(L(H), ∂H) at each node H ∈ T . We use B[H] to denote
the adjacency matrix of G restricted to the region.

To define the flow projection tree operator M, we proceed as follows: The tree operator is
supported on the tree T . For a node H ∈ T with parent P , define the tree edge operator M(H,P )

as:
M(H,P )

def
= (L(H))−1S̃c(L(H), ∂H). (8.1)

At each node H, we let FH in the tree operator be the set FH of eliminated vertices defined in
the separator tree. At each leaf node H of T , we have the leaf operator JH = W

1/2
B[H].

Before we give intuition and formally prove the correctness of the flow tree operator, we examine
its complexity.

Lemma 66. The complexity of the flow tree operator as defined in Definition 65 is T (k) = Õ(
√
mk ·

ǫP
−2), where ǫP is the overall approximation factor from data structure DynamicSC.

Proof. Let M(H,P ) be a tree edge operator. Note that it is a symmetric matrix. For any leaf node
H, H has a constant number of edges, and it takes constant time to compute JHu for any vector
u. The number of vertices may be larger but the nonzeros of JH = W

1/2
B[H] only depends on the

number of edges.
If H is not a leaf node, then M(H,P )u consists of multiplying with S̃c(L(H), ∂H) and solving

the Laplacian system L
(H). By Lemma 34 and Theorem 12, this can be done in Õ(ǫP

−2 · |∂H|)
time. To bound the total cost over k distinct edges, we apply Lemma 28, which gives the claimed
complexity.

Theorem 67. Let v ∈ R
m, and let z = Γ̃Π

(η−1) · · ·Π(0)
B
⊤
W

1/2v. Let M be the flow projection
tree operator from Definition 65. Suppose ǫP = O(1/ logm) is the overall approximation factor from

DynamicSC. Then f̃
def
= Mz satisfies B

⊤
W

1/2f̃ = B
⊤
W

1/2v and
∥∥∥f̃ −Pwv

∥∥∥
2
≤ O(ηǫP) ‖v‖2.

The remainder of the section is dedicated to proving this theorem.
Fix v for the remainder of this section. Let d

def
= B

⊤
W

1/2v ∈ R
n; since it is supported on the

vertices of G and its entries sum to 0, it is a demand vector. In the first part of the proof, we show
that f̃ routes the demand d. Let f⋆ def

= Pwv = W
1/2

BL
−1d. In the second part of the proof, we

show that f̃ is close to f⋆. Finally, a remark about terminology:

Remark 68. If B is the incidence matrix of a graph, then any vector of the form Bx is a flow by
definition. Often in this section, we have vectors of the form W

1/2
Bx. In this case, we refer to it

as a weighted flow. We say a weighted flow f routes a demand d if (W1/2
B)⊤f = d.

We proceed with a series of lemmas and their intuition, before tying them together in the overall
proof at the end of the section.

Lemma 69. Let z = Γ̃Π
(η−1) · · ·Π(0)

B
⊤
W

1/2v be as given in Theorem 67. For each node H ∈ T ,
let z|FH

be the sub-vector of z supported on the vertices FH , and define the demand

d(H) def
= L

(H)z|FH
.

Then d =
∑

H∈T d(H).
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Proof. In the proof, note that all I are n × n matrices, and we implicitly pad all vectors with
the necessary zeros to match the dimensions. For example, z|FH

below should be viewed as an
n-dimensional vector supported on FH . Define

X
(i) =

∑

H∈T (i)
X

(H).

We have

Π
(i) = I−X

(i) = I−
∑

H∈T (i)
L
(H)
∂H,FH

(
L
(H)
FH ,FH

)−1
.

Suppose H is at level i of T . We have

z|FH
= (L

(H)
FH ,FH

)−1Π(η−1) · · ·Π(1)
Π

(0)d

= (L
(H)
FH ,FH

)−1Π(i−1) · · ·Π(1)
Π

(0)d, (8.2)

where we use the fact Im(X(H′)) ∩ FH = ∅ if η(H ′) ≥ i. From this expression for z|FH
, we have

d(H) def
= L

(H)z|FH

= L
(H)
∂H,FH

z|FH
+ L

(H)
FH ,FH

z|FH

= X
(H)(Π(i−1) · · ·Π(1)

Π
(0)d)FH

+ (Π(η−1) · · ·Π(1)
Π

(0)d)|FH
,

where the last line follows from Eq. (8.2). By padding zeros to X
(H), we can write the equation

above as

d(H) = X
(H)

Π
(i−1) · · ·Π(1)

Π
(0)d+ (Π(η−1) · · ·Π(1)

Π
(0)d)|FH

.

Now, computing the sum, we have

∑

H∈T
d(H) =

η∑

i=0

∑

H∈T (i)
X

(H)
Π

(i−1) · · ·Π(1)
Π

(0)d+

η∑

i=0

∑

H∈T (i)
(Π(η−1) · · ·Π(1)

Π
(0)d)|FH

=

(
η∑

i=0

X
(i)
Π

(i−1) · · ·Π(1)
Π

(0)d

)
+Π

(η−1) · · ·Π(1)
Π

(0)d (FH partition V (G))

=

(
η−1∑

i=0

(I −Π
(i))Π(i−1) · · ·Π(1)

Π
(0)d

)
+Π

(η−1) · · ·Π(1)
Π

(0)d

= d, (telescoping sum)

completing our proof.

Next, we examine the feasibility of f̃ . To begin, we introduce a decomposition of f̃ based on
the decomposition of d, and prove its feasibility.

Definition 70. Let M
(H) be the flow tree operator supported on the tree TH ∈ F (Definition 45).

We define the flow f̃ (H) def
= M

(H)z = M
(H)z|FH

.

Lemma 71. We have that (W1/2
B)⊤f̃ (H) = d(H). In other words, the weighted flow f̃ (H) routes

the demand d(H) using the edges of the original graph G.
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Proof. We will first show inductively that for each H ∈ T , we have B
⊤
W

1/2
M

(H) = L
(H).

In the base case, if H is a leaf node of T , then FH is a tree with root H and a single leaf node
under it. Then M

(H) = W
1/2

B[H]. It follows that

B
⊤
W

1/2
M

(H) = B
⊤
W

1/2
W

1/2
B[H] = L

(H),

by definition of L(H) for a leaf H of T .
In the other case, H is not a leaf node of T . Let D1,D2 be the two children of H. Then

B
⊤
W

1/2
M

(H) = B
⊤
W

1/2
(
M

(D1)M(D1,H) +M
(D2)M(D2,H)

)

= L
(D1)M(D1,H) + L

(D2)M(D2,H) (by induction)

= L
(D1)(L(D1))−1S̃c(L(D1), ∂D1) + L

(D2)(L(D2))−1S̃c(L(D2), ∂D2)

= S̃c(L(D1), ∂D1) + S̃c(L(D2), ∂D2)

= L
(H).

Finally, we conclude that B
⊤
W

1/2f̃ (H) = B
⊤
W

1/2
M

(H)z|FH
= L

(H)zFH
= d(H), where the

last inequality follows by definition of d(H).

We observe an orthogonality property of the flows, which will become useful later:

Lemma 72. For any nodes H,H ′ at the same level in T , Range(M(H)) and Range(M(H′)) are
disjoint. Consequently, the flows f̃ (H) and f̃ (H′) are orthogonal.

Proof. Recall leaves of T correspond to pairwise edge-disjoint, constant-sized regions of the original
graph G. Since H and H ′ are at the same level in T , we know TH and TH′ have disjoint sets of leaves.
The range of M(H) is supported on edges in the regions given by leaves of TH , and analogously for
the range of M(H′).

Next, we set up the tools for bounding
∥∥∥f̃ −Pwv

∥∥∥
2
, involving an energy analysis drawing

inspiration from electric flow routing. We begin with the canonical definitions and properties of
electric-flow energy.

Definition 73. Let W
1/2

B be the edge-weighted incidence matrix of some graph G, and let L
def
=

B
⊤
WB be the Laplacian. Let d

def
= Lz be a demand and f be any weighted flow that routes d;

that is, (W1/2
B)⊤f = d. Then we say ‖f‖22 is the energy of the flow f .

There is a unique energy-minimizing flow f⋆ routing the demand d on G. From the study of
electric flows, we know f⋆ = W

1/2
BL
−1d. Hence, we can refer to its energy as the energy of the

demand d on the graph of L, given by

EL(d) def
= min

(W1/2B)⊤f=d
‖f‖22 = d⊤(B⊤WB)−1d = d⊤L−1d = z⊤Lz. (8.3)

We want to understanding how the energy changes when, instead of routing d using the edges of
G, we use edges of some other graphs related to G. In particular, we are interested in the operations
of graph decompositions and taking Schur complements. It turns out the energy behaves nicely:

Lemma 74. Suppose G is a weighted graph that can be decomposed into weighted subgraphs G1, G2.
That is, if L is the Laplacian of G, and L

(i) is the Laplacian of Gi, then L = L
(1) + L

(2). Suppose
d

def
= Lz is a demand on the vertices of G. Then if we decompose d = d(1)+d(2), where d(i) = L

(i)z,
then the energies are related as:

EL(d) = EL(1)(d(1)) + E
L(2)(d(2)).
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Proof. We have, by definition,

E
L(1)(d(1)) + E

L(2)(d(2)) = z⊤L(1)z + z⊤L(2)z

= z⊤Lz

= EL(d).

The following lemma shows if G′ is a graph derived from G by taking Schur complement on a
subset of the vertices C, and d is a demand supported on C, then the flow routing d on G will have
lower energy than the flow routing d on G′.

Lemma 75. Suppose G is a weighted graph with Laplacian L. Let C be a subset of vertices of G.
Let L′ = S̃c(L, C) be an ε-approximate Schur complement. Then for the demand d = L

′z supported
on C,

EL(d) ≤ε EL′(d).

Proof. We have, by definition,

EL(L′z) = z⊤L′L−1L′z

≤ z⊤L′Sc(L, C)−1L′z (since Sc(L, C) 4 L)

≈ε z
⊤
L
′
L
′−1

L
′z

= EL′(L′z).

For any H ∈ T , we know f̃ (H) routes d(H) using the original graph G. Furthermore, we know
the graph of L(H) is related to G using the graph operations considered above. Suppose f (H)⋆ is
the energy-minimizing flow routing d(H) on the graph of L(H). Then we want to relate the energies
of f̃ (H) and f (H)⋆:

Lemma 76. Let H be a node at level i in T . Given any z, let d
def
= L

(H)z be a demand. Then the
weighted flow f

def
= M

(H)z satisfies ‖f‖22 ≤iǫP EL(H)(d).

Consequently,
∥∥∥f̃ (H)

∥∥∥
2

2
≤iǫP EL(H)(d(H)).

Proof. We proceed by induction. In the base case, H is a leaf node, and we have

∥∥∥M(H)z

∥∥∥
2

2
= z⊤(B[H])⊤WB[H]z = z⊤L(H)z = E

L(H)(d).

Suppose H is at level i > 0 in T , with children D1 and D2 at level at most i− 1. Then

∥∥∥M(H)z

∥∥∥
2

2

=
∥∥∥
(
M

(D1)M(D1,H) +M
(D2)M(D2,H)

)
z

∥∥∥
2

2

73



Since Range(M(D1)) and Range(M(D2)) are orthogonal, we have

=
∥∥∥M(D1)M(D1,H)z

∥∥∥
2

2
+
∥∥∥M(D2)M(D2,H)z

∥∥∥
2

2

≤(i−1)ǫP EL(D1)

(
L
(D1)M(D1,H)z

)
+ E

L(D2)

(
L
(D2)M(D2,H)z

)

(by inductive hypothesis with z = M(Di,H)z)

= E
L(D1)

(
L
(D1)(L(D1))−1S̃c(L(D1), ∂D1)z

)
+ E

L(D2)

(
L
(D2)(L(D2))−1S̃c(L(D2), ∂D2)z

)

≤ǫP ES̃c(L(D1),∂D1)

(
S̃c(L(D1), ∂D1)z

)
+ E

S̃c(L(D2),∂D2)

(
S̃c(L(D2), ∂D2)z

)

= E
L(H)(L(H)z),

where the last two inequalities follow from Lemmas 74 and 75.

Next, we want to relate the energy of routing d(H) on the graph G and the energy on the graph
of L(H).

Lemma 77. For a node H at level i in T ,

EL(d(H)) ≈ǫP EL(H)(d(H)).

Proof. For one direction, we have

E
L(H)(d(H)) = d(H)⊤

L
(H)−1d(H)

≈ǫP d(H)⊤
Sc(L[H], ∂H ∪ FH)−1d(H) (by Theorem 6)

≤ d(H)⊤
L
−1d(H) (since Sc(L, C) < L)

= EL(d(H)).

In the other direction, we note that f̃ (H) is a weighted flow routing d(H) on G. By Lemma 76 and
the definition of energy,

EL(d(H)) ≤
∥∥∥f̃ (H)

∥∥∥
2

2
≈iǫP EL(H)(d(H)).

We need to further bound the sum of energies:

Lemma 78. We have the following approximation of the energy of d on graph G:

∑

H∈T
E
L(H)(d(H)) ≈ηǫP EL(d).

Proof. We need the following matrix multiplication property: For any matrices A,B,D,

[
A
−1

0

0 0

] [
A B

B
⊤

D

] [
A
−1

0

0 0

]
=

[
A
−1

0

0 0

]
. (8.4)

Recall in our setting, all matrices are padded with zeros so that their dimension is n × n, and
vectors padded with zeros so their dimension is n.
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Define β
def
= Π

(η−1) · · ·Π(1)
Π

(0)d for simplicity. Recall z
def
= Γ̃Π

(η−1) · · ·Π(0)
B
⊤
W

1/2v. We can
write

z|FH
=
(
L
(H)
FH ,FH

)−1
β.

Then,

E
L(H)(d(H)) = z⊤|FH

L
(H)z|FH

= β⊤
(
L
(H)
FH ,FH

)−1
L
(H)
(
L
(H)
FH ,FH

)−1
β

= β⊤
(
L
(H)
FH ,FH

)−1
β. (by Eq. (8.4))

Summing over all H ∈ T , we get

∑

H∈T
E
L(H)(d(H)) = β⊤

∑

H∈T
(L

(H)
FH ,FH

)−1β

= d⊤Π(0)⊤ · · ·Π(η−1)⊤
[
∑

H

(L
(H)
FH ,FH

)−1
]
Π

(η−1) · · ·Π(0)d

≈ηǫP d⊤L−1d

= EL(d).

where the last second step follows by Theorem 33.

Lastly, the following lemma shows that our weighted flow f̃ routing d can be orthogonally
decomposed in terms of the unique energy minimizer f⋆, which in turn allows us to bound ‖f̃−f⋆‖22.

Lemma 79. Let L be a weighted Laplacian as above, and let d be a demand. Let f⋆ = W
1/2

BL
−1d

be the weighted electric flow routing d attaining the minimum energy EL(d). For any other weighted
flow f̃ satisfying B

⊤
W

1/2f̃ = d, if ‖f̃‖22 ≤ε EL(d), then

‖f̃ − f⋆‖22 ≤ (eε − 1) ‖f⋆‖22 .

Proof. Observe that

f⋆⊤(f̃ − f⋆) = d⊤L−1B⊤W1/2(f̃ − f⋆) = d⊤L−1(d− d) = 0.

Hence, we have an orthogonal decomposition of f̃ :

‖f̃‖22 = ‖f̃⋆‖22 + ‖f̃ − f⋆‖22.

It follows that
‖f − f⋆‖2 ≤ (eε − 1) · ‖f∗‖22 .

Finally, we put all the lemmas together for the overall proof that f̃ is the desired weighted flow.

Proof of Theorem 67. We first decompose d =
∑

H∈T d(H) according to Lemma 69. By definition
of the flow tree operator,

f̃
def
= Mz

def
=
∑

H∈T
M

(H)z|FH
=
∑

H∈T
f̃ (H),
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where f̃ (H) def
= M

(H)z|FH
routes demand d(H) by Lemma 71. Hence,

(W1/2
B)⊤f̃ =

∑

H∈T
(W1/2

B)⊤f̃ (H) =
∑

H∈T
d(H) = d,

meaning f̃ is feasible for routing d on G.
For each demand term d(H), let f (H)⋆ be the weighted flow on G that attains the minimum

energy EL(d(H)) for routing it. By Definition 73 , f (H)⋆ = W
1/2

BL
−1d(H). Recall f⋆ def

= Pwv =
W

1/2
BL
−1d. Hence,

f⋆ =
∑

H∈T
f (H)⋆.

By Lemma 77, we know if H is at level i in T , then f̃ (H) satisfies

∥∥∥f̃ (H)
∥∥∥
2

2
≤iǫP EL(H)(d(H)) ≈iǫP EL(d(H)) =

∥∥∥f (H)⋆
∥∥∥
2

2
. (8.5)

This shows that in the flow tree operator, the output f̃ (H) of each tree operator M
(H) is close to

the natural corresponding term f (H)⋆. Finally, we bound the overall approximation error:

∥∥∥f̃ − f⋆
∥∥∥
2

2
=

∥∥∥∥∥
∑

H∈T

(
f̃ (H) − f (H)⋆

)∥∥∥∥∥

2

2

≤
(
∑

H∈T

∥∥∥f̃ (H) − f (H)⋆
∥∥∥
2

)2

=

η∑

i=0

∑

H∈T (i)
(e2iǫP − 1)EL(d(H)) (by Lemma 79 and Eq. (8.5))

≤
η∑

i=0

∑

H∈T (i)
(e2iǫP − 1)eiǫPE

L(H)(d(H)) (by Lemma 77)

≤ e4ηǫP
∑

H∈T
EL(d) (by Lemma 78)

= O(ηǫP) ‖f⋆‖2 ,

which concludes the overall proof.

8.2 Proof of Theorem 10

Finally, we present the overall flow maintenance data structure. It is analogous to slack, except
during each Move operation, there is an additional term of αW1/2v.

Theorem 10 (Flow maintenance). Given a modified planar graph G with m edges and its separa-
tor tree T with height η, the randomized data structure MaintainFlow (Algorithm 10) implicitly
maintains the flow solution f undergoing IPM changes, and explicitly maintains its approximation
f , and supports the following procedures with high probability against an adaptive adversary:

• Initialize(G,f (init) ∈ R
m,v ∈ R

m,w ∈ R
m
>0, ǫP > 0, ǫ > 0): Given a graph G, initial solution

f (init), initial direction v, initial weights w, target step accuracy ǫP, and target approximation
accuracy ǫ, preprocess in Õ(mǫ−2

P
) time and set the internal representation f ← f (init) and

f ← f .
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• Reweight(w ∈ R
m
>0 given implicitly as a set of changed weights): Set the current weights to

w in Õ(ǫ−2
P

√
mK) time, where K is the number of coordinates changed in w.

• Move(α ∈ R,v ∈ R
m given implicitly as a set of changed coordinates): Implicitly update

f ← f + αW1/2v − αW1/2
P̃
′
wv for some P̃

′
wv, where ‖P̃′wv − Pwv‖2 ≤ O(ηǫP) ‖v‖2 and

B
⊤
W

1/2
P̃
′
wv = B

⊤
W

1/2v. The runtime is Õ(ǫ−2
P

√
mK), where K is the number of coordi-

nates changed in v.

• Approximate()→ R
m: Output the vector f such that ‖W−1/2(f −f)‖∞ ≤ ǫ for the current

weight w and the current vector f .

• Exact()→ R
m: Output the current vector f in Õ(mǫP

−2) time.

Suppose α‖v‖2 ≤ β for some β for all calls to Move. Suppose in each step, Reweight, Move and
Approximate are called in order. Let K denote the total number of coordinates changed in v and
w between the (k − 1)-th and k-th Reweight and Move calls. Then at the k-th Approximate

call,

• the data structure first sets f e ← f
(k−1)
e for all coordinates e where we changed in the last

Reweight, then sets fe ← f
(k)
e for O(Nk

def
= 22ℓk(βǫ )

2 log2m) coordinates e, where ℓk is the
largest integer ℓ with k = 0 mod 2ℓ when k 6= 0 and ℓ0 = 0.

• The amortized time for the k-th Approximate call is Õ(ǫ−2
P

√
m(K +Nk−2ℓk )).

Proof of Theorem 10. We have the additional invariant that the IPM flow solution f can be recov-
ered in the data structure by the identity

f = f̂ − f⊥, (8.6)

where f⊥ is implicit maintained by maintainRep, and f̂ is implicitly maintained by the identity
f̂ = f̂0 + ĉWv.

We prove the runtime and correctness of each procedure separately. Recall by Lemma 61, the
tree operator M has complexity T (K) = O(ǫP

−2√mK).

Initialize: By the initialization of maintainRep (Theorem 7), the implicit representation of f⊥

in maintainRep is correct and f⊥ = 0. We then set f̂
def
= f̂0 + ĉWv = f (init). So overall, we have

f
def
= f̂ + f⊥ = f (init). By the initialization of bar_f, f is set to f = f (init) to start.
Initialization of maintainRep takes Õ(mǫP

−2) time by Theorem 7, and the initialization of
bar_f takes Õ(m) time by Theorem 8.

Reweight: The change to the representation in f⊥ is correct via maintainRep in exactly the
same manner as the proof for the slack solution. For the representation of f̂ , the change in value
caused by the update to w is subtracted from the f̂0 term, so that the representation is updated
while the overall value remains the same.
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Algorithm 10 Flow Maintenance, Main Algorithm

1: data structure MaintainFlow extends MaintainZ

2: private: member
3: w ∈ R

m: weight vector ⊲ we use the diagonal matrix W interchangeably
4: v ∈ R

m: direction vector
5: MaintainRep maintainRep: data structure to implicitly maintain

f⊥
def
= y +W

1/2
M(cz(step) + z(sum)).

⊲ M is defined by Definition 65
6: ĉ ∈ R, f̂0 ∈ R

m: scalar and vector to implicitly maintain

f̂
def
= f̂0 + ĉ ·Wv.

7: MaintainApprox bar_f: data structure to maintain approximation f to f (Theorem 8)
8:

9: procedure Initialize(G,f (init) ∈ R
m,v ∈ R

m,w ∈ R
m
>0, ǫP > 0, ǫ > 0)

10: Build the separator tree T by Theorem 25
11: maintainRep.Initialize(G,T ,W1/2

M,v,w,0, ǫP) ⊲ initialize f⊥ ← 0

12: w ← w,v ← v

13: ĉ← 0, f̂0 ← f (init) ⊲ initialize f̂ ← f (init)

14: bar_f.Initialize(−W1/2
M, c,z(step),z(sum),−y + f̂0 + ĉ ·Wv,W−1, n−5, ǫ)

15: ⊲ initialize f ← f (init)

16: end procedure
17:

18: procedure Reweight(w(new) ∈ R
m
>0)

19: maintainRep.Reweight(w(new))
20: ∆w ← w(new) −w

21: w ← w(new)

22: f̂0 ← f̂0 − ĉ(∆W)1/2v
23: end procedure
24:

25: procedure Move(α,v(new) ∈ R
m)

26: maintainRep.Move(α,v(new))
27: ∆v ← v(new) − v

28: v ← v(new)

29: f̂0 ← f̂0 − ĉW1/2∆v

30: ĉ← ĉ+ α
31: end procedure
32:

33: procedure Approximate( )
34: ⊲ the variables in the argument are accessed from maintainRep

35: return bar_f.Approximate(−W1/2
M, c,z(step),z(sum),−y + f̂0 + ĉ ·Wv,W−1)

36: end procedure
37:

38: procedure Exact( )
39: f⊥ ← maintainRep.Exact()
40: return (f̂0 + ĉ ·Wv)− f⊥

41: end procedure
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Move: This is similar to the proof for the slack solution. maintainRep.Move(α,v(k)) updates
the implicit representation of f⊥ by

f⊥ ← f⊥ +W
1/2

Mαz(k),

where M is the flow projection tree operator defined in Definition 65. By Lemma 59, this is equiv-
alent to the update

f⊥ ← f⊥ + αW1/2f̃ ,

where
∥∥∥f̃ −Pwv(k)

∥∥∥
2
≤ O(ηǫP)

∥∥v(k)
∥∥
2

and B
⊤
W

1/2f̃ = B
⊤
W

1/2v(k) by Theorem 67.

For the f̂ term, let f̂ ′0, ĉ
′,v′ be the state of f̂0, ĉ and v at the start of the procedure, and similarly

let f̂ ′ be the state of f̂ at the start. At the end of the procedure, we have

f̂
def
= f̂0 + ĉWv = f̂ ′0 − ĉ′W1/2∆v + (ĉ′ + α)Wv = f̂ ′0 + ĉ′W1/2v′ + αW1/2v = f̂ ′ + αW1/2v,

so we have the correct update f̂ ← f̂ + αW1/2v. Combined with f⊥, the update to f is

f ← f + αW1/2v − αW1/2f̃ .

By Theorem 7, if v(k) differs from v(k−1) on K coordinates, then the runtime of maintainRep is
Õ(ǫP

−2√mK). Furthermore, z(step) and z(sum) change on FH for at most Õ(K) nodes in T .
Updating f̂ takes O(K) time where K ≤ O(m), giving us the overall claimed runtime.

Approximate: By the guarantee of bar_f.Approximate from Theorem 8, the returned vector

satisfies ‖W−1/2
(
f − (f̂ − f⊥)

)
‖∞ ≤ ǫ, where f̂ and f⊥ are maintained in the current data

structure.

Exact: The runtime and correctness follow from the guarantee of maintainRep.Exact given in
Theorem 7 and the invariant that f = f̂ − f⊥.

Finally, we have the following lemma about the runtime for Approximate. Let f
(k)

denote the
returned approximate vector at step k.

Lemma 80. Suppose α‖v‖2 ≤ β for some β for all calls to Move. Let K denote the total number
of coordinates changed in v and w between the k−1-th and k-th Reweight and Move calls. Then
at the k-th Approximate call,

• The data structure first sets fe ← f
(k−1)
e for all coordinates e where we changed in the last

Reweight, then sets fe ← f
(k)
e for O(Nk

def
= 22ℓk(βǫ )

2 log2m) coordinates e, where ℓk is the
largest integer ℓ with k = 0 mod 2ℓ when k 6= 0 and ℓ0 = 0.

• The amortized time for the k-th Approximate call is Õ(ǫ−2
P

√
m(K +Nk−2ℓk )).

Proof. The proof is similar to the one for slack. Since f is maintained by bar_f, we apply Theorem 8
with x = f and diagonal matrix D = W

−1. We need to prove ‖x(k) −x(k−1)‖
D(k) ≤ O(β) for all k

first. The constant factor in O(β) does not affect the guarantees in Theorem 8. The left-hand side
is ∥∥∥f (k) − f (k−1)

∥∥∥
W(k)−1

=
∥∥∥−α(k)

Mz(k) + α(k)v(k)
∥∥∥
2

(by Move)

≤
∥∥∥−α(k)

Mz(k)
∥∥∥
2
+
∥∥∥α(k)v(k)

∥∥∥
2

≤ (2 +O(ηǫP))α
(k)‖v(k)‖2 (by the assumption that α‖v‖2 ≤ β)

≤ 3β.

79



Now, we can apply the conclusions from Theorem 8 to get that at the k-th step, the data structure

first sets f e ← f
(k−1)
e for all coordinates e where we changed in the last Reweight, then sets

f e ← f
(k)
e for O(Nk

def
= 22ℓk(βǫ )

2 log2m) coordinates e, where ℓk is the largest integer ℓ with k = 0
mod 2ℓ when k 6= 0 and ℓ0 = 0.

For the second point, Move updates z(step) and z(sum) on FH for Õ(K) different nodes H ∈ T
by Theorem 7. Reweight then updates z(step) and z(sum) on FH for Õ(K) different nodes, and
updates the tree operator W−1/2

M on Õ(K) different edge and leaf operators. In turn, it updates y
on E(H) for Õ(K) leaf nodesH. The changes of f̂ cause O(K) changes to the vector −y+f̂0+ĉ·Wv,
which is the parameter y of Theorem 8. Now, we apply Theorem 8 and the complexity of the tree
operator to conclude the desired amortized runtime.

9 Min-Cost Flow for Separable Graphs

In this section, we extend our result to α-separable graphs.

Corollary 2 (Separable min-cost flow). Let C be an α-separable graph class such that we can
compute a balanced separator for any graph in C with m edges in s(m) time for some convex function
s. Given a graph G ∈ C with n vertices and m edges, integer demands d, edge capacities u and
costs c, all bounded by M in absolute value, there is an algorithm that computes a minimum cost
flow on G satisfying demand d in Õ((m+m1/2+α) logM + s(m)) expected time.

The change in running time essentially comes from the parameters of the separator tree which
we shall discuss in Section 9.1. We then calculate the total running time and prove Corollary 2 in
Section 9.2.

9.1 Separator Tree for Separable Graphs

Since our algorithm only exploits the separable property of the planar graphs, it can be applied to
other separable graphs directly and yields different running times. Similar to the planar case, by
adding two extra vertices to any α-separable graph, it is still α-separable with the constant c in
Definition 19 increased by 2.

Recall the definition of separable graphs:

Definition 19 (Separable graph). A graph G = (V,E) is α-separable if there exists two constants
c > 0 and b ∈ (0, 1) such that every nonempty subgraph H = (V (H) ⊆ V,E(H) ⊆ E) with
|E(H)| ≥ 2 of G can be partitioned into H1 and H2 such that

• E(H1) ∪E(H2) = E(H), E(H1) ∩ E(H2) = ∅,

• |V (H1) ∩ V (H2)| ≤ c⌈|E(H)|α⌉,

• |E(Hi)| ≤ b|E(H)|, for i = 1, 2.

We call S(H)
def
= V (H1) ∩ V (H2) the balanced vertex separator of H.

We define a separator tree T for an α-separable graph G in the same way as for a planar graph.
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Definition 81 (Separator tree T for α-separable graph). Let G be an α-separable graph. A
separator tree T is a binary tree whose nodes represent subgraphs of G such that the children of
each node H form a balanced partition of H.

Formally, each node of T is a region (edge-induced subgraph) H of G; we denote this by H ∈ T .
At a node H, we store subsets of vertices ∂H,S(H), FH ⊆ V (H), where ∂H is the set of boundary
vertices that are incident to vertices outside H in G; S(H) is the balanced vertex separator of H;
and FH is the set of eliminated vertices at H. Concretely, the nodes and associated vertex sets are
defined recursively in a top-down way as follows:

1. The root of T is the node H = G, with ∂H = ∅ and FH = S(H).

2. A non-leaf node H ∈ T has exactly two children D1,D2 ∈ T that form an edge-disjoint
partition of H, and their vertex sets intersect on the balanced separator S(H) of H. Define
∂D1 = (∂H ∪ S(H)) ∩ V (D1), and similarly ∂D2 = (∂H ∪ S(H)) ∩ V (D2). Define FH =
S(H) \ ∂H.

3. If a region H contains a constant number of edges, then we stop the recursion and H becomes
a leaf node. Further, we define S(H) = ∅ and FH = V (H) \ ∂H. Note that by construction,
each edge of G is contained in a unique leaf node.

Let η(H) denote the height of node H which is defined as the maximum number of edges on a
tree path from H to one of its descendants. η(H) = 0 if H is a leaf. Note that the height difference
between a parent and child node could be greater than one. Let η denote the height of T which is
defined as the maximum height of nodes in T . We say H is at level i if η(H) = i.

The only two differences between the separator trees for planar and α-separable graphs are their
construction time and update time (for k-sparse updates). For the planar case, these are bounded
by Theorem 25 and Lemma 28 respectively. We shall prove their analogs Lemma 82 and Lemma 83.

[GHP18] showed that the separator tree can be constructed in O(s(n) log n) time for any class of
1/2-separable graphs where s(n) is the time for computing the separator. The proof can be naturally
extended to α-separable graphs. We include the extended proofs in Appendix A for completeness.

Lemma 82. Let C be an α-separable class such that we can compute a balanced separator for any
graph in C with n vertices and m edges in s(m) time for some convex function s(m) ≥ m. Given an
α-separable graph, there is an algorithm that computes a separator tree T in O(s(m) logm) time.

Note that s(·) does not depend on n because we may assume the graph is connected so that
n = O(m).

We then prove the update time. Same as the planar case, we define PT (H) to be the set of all
ancestors of H in the separator tree and PT (H) to be the union of PT (H) for all H ∈ H. Then we
have the following bound:

Lemma 83. Let G be an α-separable graph with separator tree T . Let H be a set of K nodes in T .
Then

∑

H∈PT (H)

|∂H|+ |S(H)| ≤ Õ(K1−αmα).

By setting α as 1/2, we get Lemma 28 for planar graphs as a corollary.
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9.2 Proof of Running time

In this section, we prove Corollary 2. The data structures (except for the construction of the
separator tree) will use exactly the same pseudocode as for the planar case. Thus, the correctness
can be proven in the same way. We prove the runtimes only.

For the planar case, after constructing the separator tree by Theorem 25, Lemma 28 is the
lemma that interacts with other parts of the algorithm. For α-separable graphs, we first construct
the separator tree in O(s(m) logm) time by Lemma 82. Then we propagate the change in runtime
(Õ(
√
mK) from Lemma 28 to Õ(mαK1−α) from Lemma 83) to all the data structures and to the

complexity T (·) of the flow and slack tree operators.
We first propagate the change to the implicit representation maintenance data structure, which

is the common component for maintaining the flow and the slack vectors.

Theorem 84. Given an α-separable graph G with n vertices and m edges, and its separator tree T
with height η, the deterministic data structure MaintainRep (Algorithm 6) maintains the following
variables correctly at the end of every IPM step:

• the dynamic edge weights w and step direction v from the current IPM step,

• a DynamicSC data structure on T based on the current edge weights w,

• an implicitly represented tree operator M supported on T with complexity T (K), computable
using information from DynamicSC,

• scalar c and vectors z(step),z(sum), which together represent z = cz(step) + z(sum), such that at
the end of step k,

z =

k∑

i=1

α(i)z(i),

where α(i) is the step size α given in Move for step i,

• z(step) satisfies z(step) = Γ̃Π
(η−1) · · ·Π(0)

B
⊤
W

1/2v,

• an offset vector y which together with M,z represent x = y +Mz, such that after step k,

x = x(init) +

k∑

i=1

M
(i)(α(i)z(i)),

where x(init) is an initial value from Initialize, and M
(i) is the state of M after step i.

The data structure supports the following procedures:

• Initialize(G,T ,M,v ∈ R
m,w ∈ R

m
>0,x

(init) ∈ R
m, ǫP > 0): Given a graph G, its separator

tree T , a tree operator M supported on T with complexity T , initial step direction v, ini-
tial weights w, initial vector x(init), and target projection matrix accuracy ǫP, preprocess in
Õ(ǫP

−2m+ T (m)) time and set x← x(init).

• Reweight(w ∈ R
m
>0 given implicitly as a set of changed coordinates): Update the weights

to w(new). Update the implicit representation of x without changing its value, so that all the
variables in the data structure are based on the new weights.

The procedure runs in Õ(ǫ−2
P
K1−αmα + T (K)) total time, where K is an upper bound on the

number of coordinates changed in w and the number of leaf or edge operators changed in M.
There are most Õ(K) nodes H ∈ T for which z(step)|FH

and z(sum)|FH
are updated.
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• Move(α ∈ R, v ∈ R
n given implicitly as a set of changed coordinates): Update the cur-

rent direction to v, and then z(step) to maintain the claimed invariant. Update the implicit
representation of x to reflect the following change in value:

x← x+M(αz(step)).

The procedure runs in Õ(ǫ−2
P
K1−αmα) time, where K is the number of coordinates changed

in v compared to the previous IPM step.

• Exact(): Output the current exact value of x = y +Mz in Õ(T (m)) time.

Proof. The bottlenecks of Move is PartialProject. For each H ∈ PT (H), recall from Theorem 6
that L

(H) is supported on the vertex set FH ∪ ∂H and has Õ(ǫP
−2|FH ∪ ∂H|) edges. Hence,

(L
(H)
FH ,FH

)−1u|FH
can be computed by an exact Laplacian solver in Õ(ǫP

−2|FH ∪ ∂H|) time, and

the subsequent left-multiplying by L
(H)
∂H,FH

also takes Õ(ǫP
−2|FH ∪ ∂H|) time. By Lemma 83,

PartialProject takes Õ(ǫP
−2K1−αmα) time. Move also runs in Õ(ǫP

−2K1−αmα) time.
Reweight calls PartialProject and ReversePartialProject for O(1) times and Com-

puteMz once. ReversePartialProject costs the same as PartialProject. The runtime of
ComputeMz is still bounded by the complexity of the tree operator, O(T (K)). Thus, Partial-

Project takes Õ(ǫP
−2K1−αmα) time. Move also runs in Õ(ǫP

−2K1−αmα + T (K)) time.
Runtimes of other procedures and correctness follow from the same argument as in the proof for

Theorem 7.

Then we may use Theorem 84 and Theorem 8 to maintain vectors f , s, with the updated com-
plexity of the operators.

Lemma 85. For any α-separable graph G with separator tree T , the flow and slack operators defined
in Definitions 58 and 65 both have complexity T (K) = O(ǫP

−2K1−αmα).

Proof. The leaf operators of both the flow and slack tree operators has constant size. Let M(H,P )

be a tree edge operator. Note that it is a symmetric matrix. For the slack operator, Applying

M(D,P ) = I∂D −
(
L
(D)
FD,FD

)−1
L
(D)
FD,∂D to the left or right consists of three steps which are applying

I∂D, applying L
(D)
FD,∂D and solving for L

(D)
FD,FD

v = b for some vectors v and b. For the flow operator,

M(H,P )u consists of multiplying with S̃c(L(H), ∂H) and solving the Laplacian system L
(H).

Each of the steps costs time O(ǫP
−2|∂D ∪ FD|) by Lemma 34 and Theorem 12. To bound the

total cost over K distinct edges, we apply Lemma 83 instead of Lemma 28, which gives the claimed
complexity.

We then have the following lemmas for maintaining the flow and slack vectors:

Theorem 86 (Slack maintenance for α-separable graphs). Given a modified planar graph G with n
vertices and m edges, and its separator tree T with height η, the randomized data structure Main-

tainSlack (Algorithm 9) implicitly maintains the slack solution s undergoing IPM changes, and
explicitly maintains its approximation s, and supports the following procedures with high probability
against an adaptive adversary:

• Initialize(G, s(init) ∈ R
m,v ∈ R

m,w ∈ R
m
>0, ǫP > 0, ǫ > 0): Given a graph G, initial solution

s(init), initial direction v, initial weights w, target step accuracy ǫP and target approximation
accuracy ǫ, preprocess in Õ(mǫ−2

P
) time, and set the representations s← s(init) and x← s.
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• Reweight(w ∈ R
m
>0, given implicitly as a set of changed weights): Set the current weights to

w in Õ(ǫ−2
P
K1−αmα) time, where K is the number of coordinates changed in w.

• Move(t ∈ R,v ∈ R
m given implicitly as a set of changed coordinates): Implicitly update

s← s+ tW−1/2
P̃wv for some P̃w with ‖(P̃w −Pw)v‖2 ≤ ηǫP ‖v‖2, and P̃wv ∈ Range(B).

The total runtime is Õ(ǫ−2
P
K1−αmα) where K is the number of coordinates changed in v.

• Approximate() → R
m: Return the vector s such that ‖W1/2(s − s)‖∞ ≤ ǫ for the current

weight w and the current vector s.

• Exact()→ R
m: Output the current vector s in Õ(mǫP

−2) time.

Suppose t‖v‖2 ≤ β for some β for all calls to Move. Suppose in each step, Reweight, Move and
Approximate are called in order. Let K denote the total number of coordinates changed in v and
w between the (k − 1)-th and k-th Reweight and Move calls. Then at the k-th Approximate

call,

• the data structure first sets se ← s
(k−1)
e for all coordinates e where we changed in the last

Reweight, then sets se ← s
(k)
e for O(Nk

def
= 22ℓk(βǫ )

2 log2m) coordinates e, where ℓk is the
largest integer ℓ with k = 0 mod 2ℓ when k 6= 0 and ℓ0 = 0.

• The amortized time for the k-th Approximate call is Õ(ǫ−2
P

(mα(K +Nk−2ℓk )
1−α)).

Proof. Because T (m) = Õ(ǫP
−2m) (Lemma 85), the runtime of Initialize is still Õ(ǫP

−2m) by
Theorem 84 and Theorem 8. The runtime of Reweight, Move, and Exact follow from the
guarantees of Theorem 84. The runtime of Approximate follows from Theorem 8 with T (K) =
O(K1−αmα) (Lemma 85).

Theorem 87 (Flow maintenance for α-separable graphs). Given a α-separable graph G with n
vertices and m edges, and its separator tree T with height η, the randomized data structure Main-

tainFlow (Algorithm 10) implicitly maintains the flow solution f undergoing IPM changes, and
explicitly maintains its approximation f , and supports the following procedures with high probability
against an adaptive adversary:

• Initialize(G,f (init) ∈ R
m,v ∈ R

m,w ∈ R
m
>0, ǫP > 0, ǫ > 0): Given a graph G, initial solution

f (init), initial direction v, initial weights w, target step accuracy ǫP, and target approximation
accuracy ǫ, preprocess in Õ(mǫ−2

P
) time and set the internal representation f ← f (init) and

f ← f .

• Reweight(w ∈ R
m
>0 given implicitly as a set of changed weights): Set the current weights to

w in Õ(ǫ−2
P
α) time, where K is the number of coordinates changed in w.

• Move(t ∈ R,v ∈ R
m given implicitly as a set of changed coordinates): Implicitly update

f ← f + tW1/2v − tW1/2
P̃
′
wv for some P̃

′
wv, where ‖P̃′wv − Pwv‖2 ≤ O(ηǫP) ‖v‖2 and

B
⊤
W

1/2
P̃
′
wv = B

⊤
W

1/2v. The runtime is Õ(ǫ−2
P
K1−αmα), where K is the number of

coordinates changed in v.

• Approximate()→ R
m: Output the vector f such that ‖W−1/2(f −f)‖∞ ≤ ǫ for the current

weight w and the current vector f .

• Exact()→ R
m: Output the current vector f in Õ(mǫP

−2) time.
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Suppose t‖v‖2 ≤ β for some β for all calls to Move. Suppose in each step, Reweight, Move and
Approximate are called in order. Let K denote the total number of coordinates changed in v and
w between the (k − 1)-th and k-th Reweight and Move calls. Then at the k-th Approximate

call,

• the data structure first sets f e ← f
(k−1)
e for all coordinates e where we changed in the last

Reweight, then sets fe ← f
(k)
e for O(Nk

def
= 22ℓk(βǫ )

2 log2m) coordinates e, where ℓk is the
largest integer ℓ with k = 0 mod 2ℓ when k 6= 0 and ℓ0 = 0.

• The amortized time for the k-th Approximate call is Õ(ǫ−2
P

(mα(K +Nk−2ℓk )
1−α)).

The proof is the same as Theorem 86.
Finally, we can prove Corollary 2.

Proof of Corollary 2. The correctness is exactly the same as the proof for Theorem 1.
For the runtime, we use the data structure runtimes given in Theorem 86 and Theorem 87. We

may assume α > 1/2 because otherwise the graph is 1/2-separable and the runtime follows from
Theorem 1. The amortized time for the k-th IPM step is

Õ(ǫP
−2mα(K +Nk−2ℓk )

1−α).

where Nk
def
= 22ℓk(β/α)2 log2m = O(22ℓk log2m), where α = O(1/ logm) and ǫP = O(1/ logm) are

defined in CenteringImpl.
Observe that K +Nk−2ℓk = O(Nk−2ℓk ). Now, summing over all T steps, the total time is

O(mα logm)
T∑

k=1

(Nk−2ℓk )
1−α = O(mα log2m)

T∑

k=1

2
2(1−α)ℓ

(k−2ℓk )

= O(mα log2m)

T∑

k′=1

22(1−α)ℓk′
T∑

k=1

[k − 2ℓk = k′],

= O(mα log2m log T )

T∑

k′=1

22(1−α)ℓk′ . (9.1)

Without 1− α in the exponent, recall from the planar case that

T∑

k′=1

2ℓk′ =

log T∑

i=0

2i · T/2i+1 = O(T log T ).

The summation from Eq. (9.1) is

T∑

k=1

22(1−α)ℓk =

T∑

k=1

(2ℓk)2−2α

≤
(

T∑

k=1

11/(2α−1)
)2α−1( T∑

k=1

((
2ℓk
)2−2α)1/(2−2α)

)2−2α

(by Hölder’s Inquality)

= Õ
(
T 2α−1(T log T )2−2α

)

= Õ(
√
m logM log T ),

where we use T = O(
√
m log n log(nM)) from Theorem 3. So the runtime for CenteringImpl is

Õ(m1/2+α logM). By Lemma 82, the overall runtime is Õ(m1/2+α logM + s(m)).
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A Appendix

Lemma 28. Let G be a modified planar graph with separator tree T . Let H be a set of K nodes in
T . Then

∑

H∈PT (H)

|∂H|+ |FH | ≤ Õ(
√
mK).

Proof. Note that FH is always a subset of S(H). We will instead prove

∑

H∈PT (H)

|∂H|+ |S(H)| ≤ Õ(
√
mK).

First, we decompose the quantity we want to bound by levels in T :

∑

H∈PT (H)

|∂H|+ |S(H)| =
η∑

i=0

∑

H∈PT (H,i)

|∂H|+ |S(H)|. (A.1)

We first bound
∑

H∈PT (H,i) |∂H| + |S(H)| for a fixed i. Our main observation is that we can
bound the total number of boundary vertices of nodes at level i by the number of boundary and
separator vertices of nodes at level (i+ 1). Formally, our key claim is the following

∑

H∈PT (H,i)

|∂H| ≤
∑

H′∈PT (H,i+1)

(
|∂H ′|+ 2|S(H ′)|

)
. (A.2)

Without loss of generality, we may assume that if node H is included in the left hand sum, then its
sibling is included as well. Next, recall by the definition of T , for siblings H1,H2 with parent H ′,
their boundaries are defined as

∂Hi =
(
S(H ′) ∪ ∂H ′

)
∩ V (Hi) = (S(H ′) ∩ V (Hi)) ∪ ((∂H ′ \ S(H ′)) ∩ V (Hi)),

for i = 1, 2. Furthermore, V (H1) ∪ V (H2) = V (H). Another crucial observation is that a vertex
from ∂H ′ exists in both H1 and H2 if and only if that vertex belongs to the separator S(H ′).

|∂H1|+ |∂H2| ≤ |S(H ′)|+ |(∂H ′ \ S(H ′)) ∩ V (H1)|+ |S(H ′)|+ |(∂H ′ \ S(H ′)) ∩ V (H ′2)|
≤ |∂H ′|+ 2|S(H ′)|. (A.3)

By summing Eq. (A.3) over all pairs of siblings in PT (H, i), we get Eq. (A.2). By repeatedly
applying Eq. (A.2) until we reach the root at height η, we have

∑

H∈PT (H,i)

|∂H| ≤ 2

η∑

j=i+1

∑

H′∈PT (H,j)

|S(H ′)|. (A.4)

Summing over all the levels in T , we have

η∑

i=0

∑

H∈PT (H,i)

(|∂H|+ |S(H)|) ≤ 2

η∑

j=0

(j + 1)
∑

H′∈PT (H,j)

|S(H ′)| (by Eq. (A.4))

≤ 2c

η∑

j=0

(j + 1)
∑

H′∈PT (H,j)

√
|E(H ′)|, (A.5)

91



where c is the constant such that |S(H ′)| ≤ c (|E(H ′)|)1/2 in the definition of being 1/2-separable.
Furthermore, the set of ancestors of H at level j has size |PT (H, j)| ≤ |H| = K. Applying the
Cauchy-Schwarz inequality, we get that

∑

H∈PT (H)

(|∂H|+ |S(H)|) ≤ 2c

η∑

j=0

(j + 1)
√
|PT (H, j)| ·


 ∑

H′∈PT (H,j)

|E(H ′)|




1/2

≤ 2c

η∑

j=0

(j + 1)
√
K ·


 ∑

H′∈PT (H,j)

|E(H ′)|




1/2

≤ 2cη
√
K

η∑

j=0


 ∑

H′∈PT (H,j)

|E(H ′)|




1/2

≤ O(η2
√
mK),

where the final inequality follows from the fact that nodes at the same level form an edge partition
of G. As η = O(logm), the lemma follows.

Lemma 82. Let C be an α-separable class such that we can compute a balanced separator for any
graph in C with n vertices and m edges in s(m) time for some convex function s(m) ≥ m. Given an
α-separable graph, there is an algorithm that computes a separator tree T in O(s(m) logm) time.

Proof. First, we let G be the root node of T (G). Let G1 and G2 be the two disjoint components
of G obtained after the removal of the vertices in S(G). We define the children c1(G), c2(G) of G
as follows: V (ci(G)) = V (Gi) ∪ S(G) and E(ci(G)) = E(Gi), for i = 1, 2. Edges connecting some
vertex in Gi and another vertex in S(G) are added to E(ci(G)). For each edge connecting two
vertices in S(G), we append it to E(c1(G)) or E(c2(G)), whichever has less edges. By construction,
property 2 in the definition of T (G) holds. We continue by repeatedly splitting each child ci(G)
that has at least one edge in the same way as we did for G, whenever possible. There are O(m)
components, each containing exactly 1 edge. The components containing exactly 1 edge form the
leaf nodes of T (G). Note that the height of T (G) is bounded by O(logm) = O(logm) as for any
child H ′ of a node H, |E(H ′)| ≤ b|E(H)|.

The running time of the algorithm is bounded by the total time to construct the separator for
all nodes in the tree. Because the tree has height O(logm) and nodes with the same depth does
not share any edge, the sum of edges over all tree nodes is O(m logm). Since s(m) is convex, the
algorithm runs in no more than O(s(m) logm) time.

Lemma 83. Let G be an α-separable graph with separator tree T . Let H be a set of K nodes in T .
Then

∑

H∈PT (H)

|∂H|+ |S(H)| ≤ Õ(K1−αmα).

Proof. Using the separator tree, we have Eq. (A.5) in exactly the same way as for the planar case.

∑

H∈PT (H)

(|∂H|+ |S(H)|) ≤ 2c

η∑

j=0

(j + 1)
∑

H′∈PT (H,j)

√
|E(H ′)|

92



Applying Hölder’s Inequality instead of Cauchy-Schwarz for the planar case, we get

≤ 2c

η∑

j=0

(j + 1)|PT (H, j)|1−α ·


 ∑

H′∈PT (H,j)

|E(H ′)|




α

≤ 2c

η∑

j=0

(j + 1)K1−α ·


 ∑

H′∈PT (H,j)

|E(H ′)|




α

≤ 2cηK1−α
η∑

j=0


 ∑

H′∈PT (H,j)

|E(H ′)|




α

≤ O(η2K1−αmα),

where the final inequality follows from the fact that nodes at the same level form an edge partition
of G. As η = O(logm), the lemma follows.

93


	1 Introduction
	1.1 Previous work
	1.2 Challenges
	1.3 Our approaches

	2 Overview
	2.1 Robust interior point method
	2.2 Nested dissection and approximate Schur complements
	2.3 Implicit representations using tree operator
	2.4 Solution approximation
	2.5 Slack projection
	2.6 Flow projection
	2.7 Main proof

	3 Preliminaries
	4 Nested dissection and approximate Schur complements
	4.1 Cholesky decomposition and Schur complement
	4.2 Separator tree
	4.3 Approximating L-1 using the separator tree
	4.4 Recursive Schur complements on separator tree

	5 Maintaining the implicit representation
	5.1 Maintaining the intermediate vector z
	5.2 Tree operator
	5.3 Proof of Theorem 7

	6 Maintaining vector approximation
	6.1 Reduction to change detection
	6.2 From change detection to sketch maintenance
	6.3 Sketch maintenance
	6.4 Proof of Theorem 8

	7 Slack projection
	7.1 Tree operator for slack
	7.2 Proof of Theorem 9

	8 Flow projection
	8.1 Tree operator for flow
	8.2 Proof of Theorem 10

	9 Min-Cost Flow for Separable Graphs
	9.1 Separator Tree for Separable Graphs
	9.2 Proof of Running time

	A Appendix

