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Abstract

The model selection problem in the pure ex-
ploration linear bandit setting is introduced
and studied in both the fixed confidence
and fixed budget settings The model se-
lection problem considers a nested sequence
of hypothesis classes of increasing complexi-
ties. Our goal is to automatically adapt to
the instance-dependent complexity measure
of the smallest hypothesiz class containing
the true model, rather than suffering from
the complexity measure related to the largest
hypothesis class. We provide evidence show-
ing that a standard doubling trick over di-
mension fails to achieve the optimal instance-
dependent sample complexity. —Our algo-
rithms define a new optimization problem
based on experimental design that leverages
the geometry of the action set to efficiently
identify a near-optimal hypothesis class. Our
fixed budget algorithm uses a novel applica-
tion of a selection-validation trick in bandits.
This provides a new method for the under-
studied fixed budget setting in linear bandits
(even without the added challenge of model
selection). We further generalize the model
selection problem to the misspecified regime,
adapting our algorithms in both fixed confi-
dence and fixed budget settings.

1 INTRODUCTION

The pure exploration linear bandit problem considers
a set of arms whose expected rewards are linear in
their given feature representation, and aims to identify
the optimal arm through adaptive sampling. Two set-
tings, ie , fixed confidence and fixed budget settings,
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are studied in the literature. In the fixed confidence
setting, the learner continues sampling arms until a
desired confidence level is reached, and the goal is to
minimize the total number of samples (Soare et al |
2014; Xu et al, 2018; Tao et al, 2018; Fiez et al,
2019; Degenne et al | 2020; Katz-Samuels et al |, 2020).
In the fixed budget setting, the learner is forced to
output a recommendation within a pre-fixed sampling
budget, and the goal is to minimize the error proba-
bility (Hoffman et al | 2014; Katz-Samuels et al | 2020;
Alieva et al. | 2021; Yang and Tan, 2021). Applications
of pure exploration linear bandits include content rec-
ommendation, digital advertizement and A /B/n test-
ing (see aforementioned papers for more discussions on
applications).

Al existing works, however, focus on linear models
with the given feature representations and fail to adapt
to cases when the problem can be explained with a
much simpler model, ie., a linear model based on a
subset of the features. In this paper, we introduce
the model selection problem in pure exploration lin-
ear bandits. We consider a sequence of nested linear
hypothesis classes Hy C Ha € --- C Hp and assume
that Hg_ is the smallest hypothesis class that contains
the true model Our goal is to automatically adapt
to the complexity measure related to ‘Hy_ , for an un-
known d,, rather than suffering a complexity measure

related to the largest hypothesis class Hp,.

The model selection problem appears ubiquitously
in real world applications. In fact, cross-validation
{Stone, 1974, 1978), a practical method for model se-
lection, appears in almost all successful deployments of
machine learning models. The model selection prob-
lem was recently introduced to the bandit regret min-
imization setting by Foster et al (2019), and further
analyzed by Pacchiano et al (2020); Zhu and Nowak
(2021). Zhu and Nowak (2021) prove that only Pareto
optimality can be achieved for regret minimization,
which is even weaker than minimax optimality. We
introduce the model selection problem in the pure ex-
ploration setting and, surprisingly, show that it is pos-
sible to design algorithms with near optimal instance-
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dependent complerity for both fixed confidence and
fixed budget settings. We further generalize the model
selection problem to the regime with misspecified lin-
ear models, and show our algorithms are robust to
model misspecification.

1.1 Contribution and Outline

We briefly summarize our contributions as follows:

¢ We introduce the model selection problem for pure
exploration in linear bandits in Section 2, and an-
alyze its instance-dependent complexity measure.
We provide a general framework to solve the model
selection problem for pure exploration linear ban-
dits. Our framework is based on a carefully-
designed two-dimensional doubling trick and a new
optimization problem that leverages the geome-
try of the action set to efficiently identify a near-
optimal hypothesis class.

e In Section 4, we provide an algorithm for the
fixed confidence setting with near optimal instance-
dependent unverifiable sample complexity. We ad-
ditionally provide evidence on why one cannot ver-
ifiably output recommendations.

e In Section 5, we provide an algorithm for the fixed
budget setting, which applies a novel selection
validation trick to bandits. Its probability of error
matches (up to logarithmic factors) the probabil
ity error of an algorithm that chooses its sampling
allocation based on knowledge of the true model
parameter. In addition, the guarantee of our al
gorithm is nearly optimal even in the non-model
selection case, and our algorithm also provides a
new way to analyze the understudied fixed budget
setting.

o We further generalize the model selection prob-
lem to the misspecified regime in Section 6, and
adapt our algorithms to both the fixed confidence
and fixed budget settings. Our algorithms reach
an instance-dependent sample complexity measure
that is relevant to the complexity measure of a

closely related perfect linear bandit problem.

2 PROBLEM SETTING

In the transductive linear bandit pure exploration
problem, the learner is given an action set X — RY
and a target set £ © RP. The expected reward
of any arm © € A U Z is linearly parameterized
by an unknown reward vector 8, € 8 C RP, ie,
hiz) = {#,,7). The parameter space 8 iz known to
the learner. At each round ¢, the learner/algorithm o

selects an action X; € &X', and observes a noisy reward
R, = h{X,)+&,, where £ represents an additive 1-sub-
Gaussian noise. The action X; € A can be selected
with respect to the history F; 1 = o((Xy, By)ier) up
to time . The goal is to identify the unique optimal
arm z, = argmax,ez hi(z) from the target set 2. We
assume 8 C span(A’) to obtain unbiased estimators for
arms in Z. Without loss of generality, we assume that
span(X) = R (otherwise one can project actions into
a lower dimensional space). We further assume that
span({z, — z}zez) = RP for technical reasons. We
consider both fixed confidence and fixed budget set-
tings in this paper.

Definition 1 (Fixed confidence). Fiz X, 2,0 C RV,
An algorithm & is called 3-PAC for (X, Z,0) if (1)
the algorithm has a stopping v with respect to {JF; hien
and (2) at time T it makes a recommendation T € Z

such that Py (F=2,)>1-4 for all 8, € B.

Definition 2 (Fixed budget). Fiz X', Z,0 C R” and
a budget T. A fivred budget algorithm & returns a
recommendation T € £ after T rounds.

The Model Selection Problem. In contrast toex-
isting works in pure exploration linear bandits, we
hereby consider the model selection setting where
adapting to the correct hypothesis class is of vital im-
portance. We define 83 := {# € RP : 8, = 0,Vi = d}
as the set of parameters such that for any # € By, it
only has non-zero entries on its first d coordinates. We
assume that 8, € B, for an unknown d,. We ecall d,
the intrinsic dimension of the problem and it is set as
the index of the smallest parameter space containing
the true reward vector. One interpretation of the in-
trinsic dimension is that only the first d, features (of
each arm) play a role in predicting the expected re-
ward. Cur goal is to antomatically adapt to the sam-
ple complexity with respect to the intrinsic dimension
d,, rather than suffering from the sample complexity
related to the ambient dimension ). In the following,
we write (X, Z.8y,) or 8, € B, to indicate that the
problem instance has intrinsic dimension d,. Besides
dealing with the well specified linear bandit problem
as defined in this section, we also extend our frame-
work into the misspecified setting in Section 6, with
additional setups introduced therein.

Additional Notations. For any = =
[t1,72,...,zp]T € RP and d < D, we use
Ya(r) = [T1,T2,...,74]" € R? to denote the trun
cated feature representation that only keeps its first d
coordinates. We also write ¢y3(X) = {dyg(z) : T € X'}
and Yy(Z) = {yglz) : = € Z} to represent the
truncated action set and target set, respectively. Note
that we necessarily have 13(Z) C span{vg(X)) = R

as long as Z C span(X) = RY. We use
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Y(ba(Z2)) == {dalz) — dul(z) : 22" € Z} to
denote all possible directions formed by sub-
tracted one item from another in y(Z); and
use V*(¢a(2)) = {dulz) — dalz) : z € Z}
to denote all possible directions with respect to
the optimal arm z,. For any = € Z, we use
A, = h(z,)—h(z) to denote its sub-optimality gap; we
set Amin 1= min;ez\(;,} Az As in Fiez et al (2019),
we assume max;cz A; < 2 for ease of analysis. We
denote S := {z € Z2: A; < 4. 2%} (with §; := Z).
We use Ay = {\ € RI* ; YorexAr = LA = 0}
to denote the (|X| — 1)-dimensional simplex owver
actions. For any (continmuous) design A € Ay, we
use Ag(A) = Y,exrevalz)(Wa(z))” € R
to denote the design matrix with respect
to A For any set W C RY, we denote

. 2 1
(W) = infrea, supyewllwlly, -1

3 TOWARDS THE TRUE SAMPLE
COMPLEXITY

The instance dependent sample complexity lower
bound for linear bandit is discovered/analyzed in pre-

vious papers (Soare et al | 2014; Fies et al | 2019; De-
genne and Koolen, 2019). We here consider related
quantities that take our model selection setting into
consideration. For any d € [D), we define

la(z2) — Ba(23, )
(h(z) — B2

(1)

ghi= imf  sup
e AT EN

and

. 2
Ly = Agﬁlfx E;‘:{Pﬁﬁ}""ﬁ’d{z*} — a(z)] Ag(A)-1- (2)
The lower bound for the model selection problem
(X, 2,84, ) in the fixed confidence setting is provided
in Theorem 1, following the lower bound in Fiez et al
(2019).

Theorem 1. Suppose & ~ N(0,1) for all t € F,
and § € (0,0.15]. Any §-PAC algorithm with respect
to (X, 2,04, with stopping time T satisfies Eg_[7] =
o} 1og(1/2.45).

The above lower bound only works for 4-PAC al-
gorithms, but not for algorithms in the fixed bud-
get setting or with unverifiable sample complexity
(detailed in Section 4). We now introduce another
lower bound for the best possible non-inferactive al-
gorithm & that will serve as a strong baseline for
our sample complexities. Following the discussion
in KatzSamuels et al (2020), we consider any non-
interactive algorithm as follows: The algorithm o

1A generalized inversion is used for singular matrices.
See Appendix A.l for detailed discussion.

chooses an allocation {ry,Ts,..., x5} C & and receive
rewards {ry,7q,...,7y} C R where r; is sampled from
N(h{x),1). The algorithm then recommends ¥ =
arg max,cz (0, z) where 81 = argmingegs X,_; (rs
8T 444(x,))? is the least squares estimator in R%. The
learner is allowed to choose any allocations, even with
the knowledge of 8, , and use any feature mapping such
that linearity is preserved, ie, d, <d < D.
Theorem 2. Fizr X,Z C RP 8, € B, and § €
(0,0.015]. Any non-interactive algorithm & using a
feature mappings of dimension d > d, makes a mistake
with probability at least & as long as it uses no more
than %p&_ log(1/4) samples.

One can see that the non-interactive lower bound
serves as a fairly strong baseline due to the power
provided to the learner. It also provides justifications
for (1) the 5{p§ ) unverifiable sample complexity in
fixed confidence ‘EFDE.'ttiJlg; and (2) the Qexp(—T/p7_ )
error probability in fixed budget setting: Suppose the
budget is T, one would expect an error probability of
the order (Q(exp(—T/p} )} for any non-interactive al
gorithm

Note that all lower bounds are with respect to p}
rather than pj} for d > d, due to the a.ssumptinﬁ
f#, € By, for the model selection problem. Our goal is
to automatically adapt to the complexity pjj without
knowledge of d,. Proposition 1 shows the monotonic
relation among ‘[PHE::!;

Proposition 1. The monotonic relation g < pg
holds true for any d, < dy <d; < D

The intuition behind the above Proposition is that the
model class By, i3 a superset of By, and therefore
identifying z, in B,, requires ruling out a larger set
of statistical alternatives than in 853, . While Propo-
sition 1 is intuitive, its proof is surprisingly technical
and imvolves showing the equivalence of a series of op-
timization problems.

3.1 Failure of Standard Approaches

Proposition 2. For any v > 0, there exists an in-
stance (X, Z,8a,) such that g ., > pg + 7 yet
tg 41 = 2ep

One may attempt to solve the model selection prob-
lem with a standard doubling trick over dimension,
ie, truncating the feature representations at dimen-
sion dy = 2' for i < [logs IV and gradually ex
ploring models with increasing dimension. This ap-
proach, however, iz directly ruled out by Proposi-
tion 2 since such doubling trick could end up with
solving a problem with a dimension d' < 2d, yet
Pg = py . Although doubling trick over dimensions is
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commonly used to provide worst-case guarantees in re-
gret minimization settings (Pacchiano et al | 2020; Zhu
and Nowak, 2021), we emphasize here that matching
instance-dependent complexities is important in pure
exploration setting (Soare et al., 2014; Fiez et al | 2019;
KatzSammels et al | 2020). Thus, new techniques need
to be developed. Proposition 2 also implies that trying
to infer the value of pj from &} can be quite mislead-

ing. And thus conducting a doubling trick over ¢} (or
an upper bound of it) is likely to fail as well.

Importance of Model Selection. Proposition 2
alzo illustrates the importance and necessity of con-
ducting model selection in pure exploration linear ban-
ditz. Consider the hard instance used in constructed
in Proposition 2 and set [? = d, + 1. All existing algo-
rithms (Soare et al |, 2014; Fiez et al |, 2019; Degenne
and Koolen, 2019; Katz-Samuels et al, 2020) that di-
rectly work with the given feature representation in
RP end up with a complexity measure scales with p?,,
which could be arbitrarily large than the true complex-
ity measure pj and even become vacuous (by sending
7 —* oa). )

Our Approaches. In this paper, we design a more
sophisticated doubling scheme over a two-dimensional
grid corresponding to the number of elimination steps
and the richest hypothesiz class considered at each
step. We design subroutines for both fixed confidence
and fixed budget settings. Our algorithms define a
new optimization problem based on experimental de-
sign that leverages the geometry of the action set
to efficiently identify a near-optimal hypothesis class.
Our fixed budget algorithm additionally uses a novel
application of a selection-validation trick in bandits.
Our guarantees are with respect to the true instance-
dependent complexity measure pj .

4 FIXED CONFIDENCE SETTING

We present our main algorithm (Algorithm 2) for the
fixed confidence setting in this section. Algorithm 2 in-
vokes GEMS-c {Algorithm 1) as subroutines and starts
to output the optimal arm after 5{;3;_ +d,) samples.
Our sample complexity matches, up to an additive d,
term and logarithmic factors, the strong baseline de-
veloped in Theorem 2.

We first introduce the subroutine GEMS-c, which runs
for n rounds and takes (roughly) B samples per-round.
GEMS-c is built on RAGE (Fiez et al, 2019), a stan-
dard linear bandit pure exploration algorithm works
in the ambient space R”. The key innovation of
GEMS-c lies in adaptive hypothesis class selection at
each round (ie., selecting dp), which allows us to
adapt to the instrinsic dimension d,. After select-

ing the working dimension dp at round k, GEMS-c
allocates samples based on optimal design (in R9:);
it then eliminate sub-optimal arms based on the es-
timated rewards constructed using least square. Fol-
lowing Fiez et al. (2019), we use a rounding procedure
ROUND({A N, d, () to round a continuous experimen-
tal design A £ A 3 into integer allocations over actions.
We use rg(() to denote the number of samples needed
for such rounding in B? with approximation factor (.
One can choose 4(¢) = (d° 4+ d + 2)/¢ (Pukelsheim,
2006; Fiez et al., 2019) or rg(¢) = 180d/¢? (Allen-Zhu
et al | 2020). We choose { as a constant throughout
the paper, eg, { = 1. When N = r4((), there ex
ist computationally efficient rounding procedures that
output an allocation {rq,Ta,. .., oy} satisfying

2
LA -1 =
uey{wd(zn”y"(Zfﬂ%m}m{r;ﬁj =

2
{1 + C} yeﬁ\ﬁZ]}llyll{Exex J\z'ﬂ"d[ﬂ-')ﬂ’d(I)Tj_le. (3]

Alpgorithm 1 GEMS-c Gap Elimination with Model
Selection (Fixed Confidence)

Input: Number of iterations n, budget for dimension
selection B and confidence parameter 4.
1: Set 5§ = 2.
2 fork=12...,ndo
3 Set dp = 4/k%
4 Define gi(d) := max{2% «(Y(¢a(Sk))), ra({)}-
5 Get dp = OPT(B,D,gi(-)), where dp. < D is
largest dimension such that gp(dy) < B (see
Eq. (4) for the detailed optimization problem);
set Ap be the optimal design of the optimization
problem
infren x sup, .35, 1a, (2) — ¥, ()5, (3)-15
set Nie = [g(di)2(1 + ¢) log(18k[?/dx)].
6:  Get allocation
{r1,....zn, } = ROUND( Mg, N, dp, ).
7:  Pull arms {x1,...,zn,} and receive rewards
{riy.cam }
8  Set O = A_'by € R,
where Ay = Y10 vy, (2)a, ()7,
and be = 3% v, (21)be _
9 Set Spyp1 =8\ {z € S A2’ st (B, Py, (2") —

e ()} > w(z',2)}, where w(z',2) =
lan(z") — dau (=)l az2y 2log(|Sx |2/ k).
10: end for

Output: Set of uneliminated arms S, ;1.

We now discuss the adaptive selection of hypothesis
class, which is achieved through a new optimization
problem: At round k, di. € [D) is selected as the largest
dimension such that the value of an experimental de-
sign is no larger than the fixed selection budget B,
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le.,

max d (4)
st d e [D],

max{2?* . inf sup
® yeVvaiSe))

The experimental design leverages the geometry of the
uneliminated set of arms Intuitively, the algorithm is
selecting the richest hypothesis class that still allows
the learner to improve its estimates of the gaps by a
factor of 2 using (roughly) B samples. When the bud-
get for dimension selection B is large enough, GEMS-
c operates on well-specified linear bandits (ie, using
dp = d,) at all rounds, guaranteeing that the output
set of arms are (2'"")-optimal. The next lemma pro-
vides guarantees for GEMS-c.

Lemma 1. Suppose B = max{64py ,ra ({)}. With
probability at least 1 — 4§, GEMS-c outputs a set of arms
Spe1 such that A; < 21" for any z € Spy1.

Alporithm 2 Adaptive Strategy for Model Selection
(Fixed Confidence)

Input: Confidence parameter 4.
1: Randomly select a 7, € £ as the recommendation
for the optimal arm.
2: for F=1,2,... do
3:  Set y¢ = 2% and 8, = 6/(26%).
1
5

fori=1,2,...,fdo
Set ny = 2, By = ¢/my = 2671, and
get S5 = GEMS'C{mth&f}

6 if S, = {Z} is a singleton set then

T Update the recommendation z, = 7.
8 break (the inner for loop over i)

0 end if
10: end for
11: end for

We present our main algorithm for model selection in
Algorithm 2, which loops over an iterate £ with roughly
geometrically increasing budget ~ = £2°. Within each
iteration £, Algorithm 2 invokes GEMS-c £ times with
different configurations (ny, By): ny is viewed as a guess
for the unknown quantity logs(l/Amin); and By is
viewed as a guess of g} , which iz then used to de
termine the adaptive selection hypothesis class. The
configurations {(n,, B;)}5_, are chosen as the diagonal
of a two dimensional gird over ny and B;. Within each
iteration £, the recommendation Z, is updated as the
arm contained in the first singleton set returned (if
any). Since By is chosen in a decreasing order, we are
recommending the arm selected from the richest hy-
pothesis class that terminates recommending a single
arm. The singleton is guaranteed to contain the opti-

Iyl 9-1,7a(¢)} < B.

mal arm once a rich enough hypothesis class is consid-
ered. We provide the formal puarantees as follows.

Theorem 3. Let 7, = logy(4/Amin) max{g} ,ra ({)}-
With probability of least 1 — 4, Algorithm 2
starts to oulput the optimal arm within itera-
tion £, = Oflogg(r,)), and takes af most N =

O(7+ loga(7:) log(| 2] loga(7:)/8)) samples.

The sample complexity in Theorem 3 is analyzed
in an unverifiable way: Algorithm 2 starts to out
put the optimal arm after N samples, but it does
not stop its sampling process. Nevertheless, up to a
rounding-related term and other logarithmic factors,?
the unverifiable sample complexity matches the non-
interactive lower bound developed in Theorem 2. The
non-interactive lower bound serves as a fairly strong
baseline since the non-interactive learner is allowed to
sample with the knowledge of #,. Computationally,
Algorithm 2 starts to output the optimal arm after
iteration £,, with at most O(f2) subroutines (Algo-
rithm 1) invoked. At each iteration £ < £, Algo
rithm 1 is invoked with configurations n,, B, such that
ny By = 2¢ < 2%+ (note that ¢, is of logarithmic order).
Up to a model selection step (ie., selecting dy.), the
per-round computational complexity of Algorithm 1 is
similar to the complexity of the standard linear bandit
algorithm RAGE

Why Not Recommend Arm WVeriflably? We
provide a simple example to demonstrate why out-
putting the estimated best arm before examining the
full vector in R” can lead to incorrect answers, in-
dicating that wverifiable sample complexity, ie., the
number of samples required to terminate the game
with a recommendation, scales with the ambient di-
mension I} (g},). We consider the linear bandit prob-
lem with action set X = Z = {g}2, and 6, =
[1,0,0,...,0,2]7 € RP. One can see that z, = ep
is the optimal arm. Let ny > 1 denote the num-
ber of samples on arm © € X. We further assume
deterministic feedback. For any d < D), we can see
that 3 . ngty(z)ty(z) " is a diagonal matrix with
its entries being n.., and the least square estimator
sy = e € RY. Asa result, the sub-optimal arm
g1 will be incorrectly selected as the best arm Es-
sentially, one cannot verifiably rule out the possibility
d, = D (before examining the full dimension). The

?We refer readers to Katz-Samuels and Jamieson (2020)
for detailed discussion on unverifiable sample complexity.
The rounding term ra_ () = Ofd. /¢?) commonly appears
in the linear bandit pure exploration literature (Fiez et al.,
2019; Katz-Samuels et al., 2020). Although we do not focus
on optimizing logarithmic terms in this paper, eg., the
logi|Z]) term, our techniques can be extended to address
this by combining techniques developed in Katz-Samuels
et al. (2020).



MNear Instance Optimal Model Selection for Pure Exploration Linear Bandits

lower bound ﬁ{p’ﬁ,] developed in Fiez et al (2019} ap-
plies when d, = D)

5 FIXED BUDGET SETTING

We study the fixed budget setting with Z C &', which
includes the linear bandit problem Z = & as a special
case. Similar to fixed confidence setting, we develop a
main algorithm (Algorithm 4) that invokes a base al-
gorithm as subroutines (GEMS-b, Algorithm 3). Algo-
rithm 4 achieves an error probability O'(exp( =T/ai 1),
which, again, matches the strong baseline develape& in
Theorem 2.

Alporithm 3 GEMS-b Gap Elimination with Model

Selection (Fixed Budget)

Input: Total budget T' (allowing non-integer input),
mumber of rounds n, budget for dimension selec-
tion B.

1: Set T = |T/n], & = Z. Set D as the largest
dimension that ensures rounding with 7" samples,
ie, D=O0OPT(T", D, f(-)), where f(d) = ra(().

2 fork=1,...,ndo _

Define function gg(d) := 2% o(V(va(Se))).

4:  Get dy = OPT(B, D, gx(-)), where where dy, <
D is largest dimension such that g,(d.) < B
(similar to the optimization problem in Eq. (4)).
Set Aj be the optimal design of the optimization
problem
infrenx sup, . 5, 1an (2) — vau (2)I%, (2y--

5 Get allocations
{r1,..., o} = ROUND{Ag, T", d.. ).

6: Pull arms {ry,...,zp} and receive rewards
{1"1..: LTI b

7: Set B = A; b, € B9
where A = 327 da (o) ()7,
and b = 3.2 da (z0)be _

8 Bet Spp1 =8\ {2z € Sp 1 d2" st (B, g, (27) —
Ya(z)) = 27}

9: end for _

Output: Any uneliminated arm z, € Spyq.

]

The subroutine GEMS-b takes sample budget T', num-
ber of iterations n and dimension selection budget B
as input, and outputs an (arbitrary) uneliminated arm
after n iterations. As in the fixed confidence setting,
GEMS-b performs adaptive selection of the hypothesis
class through an optimization problem defined simi-
lar to the one in Eq. (4). The main differences from
the fixed confidence subroutine iz as follows: the se-
lection budget B is only used for dimension selection,
and the number of samples allocated per iteration is
determined as |T'/n|. GEMS5-b is guaranteed to output
the optimal arm with probability 1 — 5{mcp|[—T,fp;* )]

when the selection budget B is selected properly, as
detailed in Lemma 2.

Lemma 2. Suppose 64pf < B < 128p; andT/n =
ra () + 1. Algorithm % outputs an arm Z, such that
As, < 2'" with probability at least

1—n|Z|? exp(-T/640n g} ).

Alpgorithm 4 Adaptive Strategy for Model Selection
(Fixed Budget)
Input: Total budget 2T
1: Step 1: Selection. Initialize an empty selection
set 4 =0

2: Set p= |W(T)| and T =T/p.

3 fori=1,...,pdo

4 SetB, =2 q=|W(T'/B))| andT" =T"/g,

5 forj=1,...,q; do

G Set ny =24,
Get zy) = GEMS-b(T",n,, B,) and insert z
into the pre-selection set A

7 end for

&: end for

9: Step 2: Validation. Pull each arm in the pre-

selection set 4 exactly |T/|.4|] times.
Output: Output arm z, with the highest empirical
reward from the validation step.

Our main algorithm for the fixed budget setting is in-
troduced in Algorithm 4. Algorithm 4 consists of two
phases: a pre-selection phase and a validation phase.
The pre-selection phase collects a set of potentially op-
timal arms, selected by subroutines, and the validation
phase examines the optimality of the collected arms.
We provide Algorithm 4 with 2T total sample budget,
and split the budget equally for each phase. At least
one good subroutine is guaranteed to be imvoked in the
pre-selection phase (for sufficiently large T'). The vali-
dation step focuses on identifying the best arm among
the pre-selected O((logs T)*) candidates (as explained
in the next paragraph). Our selection-validation trick
can be viewed as a dimension-reduction technique: we
convert a linear bandit problem in R” (with unknown
d, ) to another linear bandit problem in IRD'[“”E!TF)TE
ie, a problem whose dimension is only polylogarith-
mic in the budget T

For non-negative variable p, we use p = W(T') to rep-
resent the solution of equation T = p- 2P One can see
that W(T) < log,T. As a result, at most (log, T)?
subroutines are imvoked with different configurations
of {(T",n;,B,)}. The use of W(.) is to make sure

ITechnically, we treat the problem as a standard multi-
armed bandit problem with O((log, T)?) arms, which is a
special case of a linear bandit problem in RO((ega T)?)_
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that T = n; B for all subroutines invoked. This pro-
vides more efficient use of budget since the error prob-
ability upper bound guaranteed by GEMS5-b scales as
Oexp(—T" /n; By)).

Theorem 4. Suppose 2 C A If T =
Q(loga(1/Amin) max{p} ,7a.(()}), then Algorithm j
outputs the optimal arm with error probability at most

T
- 2 —_—
T
+ 2(log, T)? (——)
(oa )" e\ ~Sliog, 17/,
Furthermore, if there emist universal con-

stants such that ma.x,ex||1,bd_{r}||2 < ¢ and

min;ez |, (2.) — ¥a.(2)I° > e2, the error prob-
abilify iz upper bounded by

D(max{hggl:lfﬁminﬂzﬁ(I‘JEQTF}

Xoexp| — el
max{logs(1/Amin), (loga T)2}erp. | |

Under the mild assumption discussed above, the error
probability of Algorithm 4 scales as Oexp(—T/p4 ).
Such an error probability not only matches, up*to
logarithmic factors, the strong baseline developed in
Theorem 2, but alzo matches the error bound in the
non-model-selection setting (with known d,) (Kate-
Samuels et al, 2020) (Algorithm 3 therein, which is
alzo analyzed under a mild assumption). Computa-
tionally, Algorithm 4 invokes Algorithm 3 at most
(log, T')? times, each with budget 7" < T and n;, B,
such that n;B; < T. The per-round computational
complexity of Algorithm 1 is similar to the one of AL
gorithm 3 (with similar configurations).

Compared to the fixed confidence setting, the fixed
budget setting in linear bandits is relatively less stud-
ied (Hoffman et al | 2014; KateSamuels et al | 2020;
Alieva et al, 2021; Yang and Tan, 2021). To our
knowledge, even without the added challenge of model
selection, near instance optimal error probability guar-
antee is only achieved by Algorithm 3 in Kate Samuels
et al (2020). Our Algorithm 4 provides an alternative
way to tackle the fixed budget setting, through a novel
selection-validation procedure. Our techniques might
be of independent interest.

6 MODEL SELECTION WITH
MISSPECIFICATION

We generalize the model selection problem into the
misspecified regime in this section. Our goal here is

to identify an s-optimal arm due to misspecification.
We aim to provide sample complexity/error probabil-
ity guarantees with respect to a hypothesis class that is
rich enough to allow us to identify an z-optimal arm.
Pure exploration with model misspecification are re-
cently studied in the literature [Alieva et al. | 2021;
Camilleri et al., 2021; Zhu et al | 2021). The model ze-
lection criterion we consider here further complicates
the problem setting and are not covered in previous
work.

We consider the case where the expected reward hix)
of any arm = € X U Z C RP cannot be perfectly
represented as a linear model in terms of its feature
representation ©. We use function F(d) to capture the
misspecification level with respect to truncation the
level d € [D], ie.,

7(d) = min,_max [h(z) — (Ya@),¥a()].  (5)
We use #¢ £ argmingego maxzexuz|h(z) —
{g(#),vg(x)}| to denote (any) reward parameter
that best captures the worst case deviation in RY,
and use ng(x) := h(z) — (Ya(b), va(z)) to represent
the corresponding misspecification with respect to
arm © € AU Z. We have maxyeyyz |pa(z)] < F(d)
by definition. Although the value of ng(r) depends
on the selection of the possibly non-unique 89, only
the worst-case deviation (d) is used in our analysis.
Our results in this section are mainly developed in
cases when £ C A, which contains the linear bandit
problem 2 = X as a special case.

Proposition 3. The misspecification level 5(d) is
non-increasing with respect to d.

The non-increasing property of ~(d) reflect the fact
that the representation power of the linear compo-
nent is getting better in higher dimensions. Following
Zhu et al (2021), we use v(d) to quantify the sub-
optimality gap of the identified arm, ie|

«(d) :=min {212—“ neN,Vk <n,

(2+ VI + OV @aEe) )7 < 2772}

It can be shown that, for any fixed d € [D], at least
a O(v'd5(d))-optimal arm can be identified in the ex-
istence of misspecification. Such inflation from F(d)
to v/d7(d) is unavoidable in general: Lattimore et al.
{2020) constructs a hard instance such that identify-
ing a o( vd5(d) )-optimal arm requires sample complex-
ity exponential in d, even with deterministic feedback
On the other hand, identifying a ©(v'd7(d))-optimal
arm only requires sample complexity polynomial in d.
Such a sharp tradeoff between sample complexity and
achievable optimality motivates our definition of «(d).
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We assume (d) can be made arbitrarily small for large
enough d € [D], which includes the perfect linear ban-
dit model (in R”) as a special case.? For any = > 0,
we define d, (£) := min{d € [D] : ¥d' = d,v(d’) < =}.
We aim at identifying an s-optimal arm with sample
complexity related to pj ., which is defined as an
£-relaxed version of complexity measure P Le,

I¥a(z) — Da(@II3, 5y
J\Eﬁx Z.EZ"I..{Z.,} {max{h{z*:l h{z},E}}E

We consider a closely related complexity measure
g4(g), which is defined with respect to linear compo-

nent h(z) := (Ya(8%), Ya(z)), ie.,

Palg) =

Pi(e) =

inf ltba(z:) — Yalz :lllAd.[)L)—
AR x s ety (max{($a(BD), dalz.) — Yalz)},E1)2

Proposition 4 (Zhu et al. (2021)). We have gj(c) <
Opk(e) for any = = F(d). Furthermore, if F(d) <
Amin/2, p3(0) represents the complezity measure for
best arm identification with respect to a linear bandit
instance with action set X, target set 2 and reward

function h(z) := ($a(05), Yalz))-

Azsuming Y(d.()) < min{s, Amin/2}, Proposition 4
shows that pj () is at most a constant factor larger
than g3 (<), which is the £-relaxed complexity mea-
sure of a closely related linear bandit problem (without
misspecification) in R9-(=).

Fixed Confldence Setting. A modified algorithm
{and its subroutine, both deferred to Appendix E 2 1)
is used for the fixed confidence setting with model mis-
specification. Sample complexity of the modified algo-
rithm is provided as follows.

Theorem 5. With probability at least 1 — 8, Algo-
rithm 7 starts to output 2=-optimal arms after N =
O(logy(1/e) max{p}_,(€),7a,()({)} + 1/£7) samples,
where we hide logarithmic terms besides logg(1/2) in
the O notation.

Remark 1. The edra 1/2? term comes from a val
idation step in the modified algorithm. If the goal is
to identify the optimal arm, then this term can be re-
moved with a shight modification of the algorithm. See
Appendiz E 2 § for detailed discussion.

Fixed Budget Setting. Our algorithms for the
fixed budget setting are robust to model misspecifi-
cation, and we provide the following guarantees.

“We make this assumption in order to identify an =
optimal arm for any pre-defined £ > 0. Otherwise, one can
adjust the goal and identify arms with appropriate sub-
optimality gaps.

Theorem 6. Suppose 2 C A If T =
W(logy (1/6) max{py o ().ra.0(O)),  then  Algo-
rithm J outpufs an 2c-opfimal arm with error
probability at most

logy(4/£)|Z]? exp

T
(_ 4096 log, (4/) p5 [E,{EJ)

T
e -7 )

Furthermore, if there universal con-
stants such that Mrek’"‘}-"d (Ej ||E < ¢y and

min; ez ”T.":’d.{s}{z* Tll‘ljd (E‘] ” 1,
probability is upper bounded by

exist

the error

D(mﬂ{lﬂgz{1f53|3|2:(10gﬂT}2}

x — e
P\ " max{log, (1/2), (log, T)7}erp} (0 ) )

7 EXPERIMENT

We empirically compare our Algorithm 2 with RAGE
(Fiew et al | 2019}, which shares a similar elimination
structure to our subroutine (ie., Algorithm 1) yet fails
to conduct model selection in pure exploration. To
our knowledge, besides algorithms developed in the
present paper, there is no other algorithm that can
adapt to the model selection setup for pure exploration
linear bandits.®

Problem Instances. We conduct experiments with
respect to the problem instance used to construct
Proposition 2, which we detail as follows.

We consider a problem instance with X = 2 =
{z 3%+ C RAH! such that =, = e, fori =
1.2,....d, and 4,41 = (1 — &) - &4, + €4,+1, where
£, is the i-th canonical basis in R%*!. The expected
reward of each arm is set as h{r;) = {eq , x4}, Le,
#, = e4,. One can see that d, is the intrinsic dimen-
sion and I = d, + 1 is the ambient dimension. We
alzo notice that r, = x4,  is the best arm with reward
1, ©4_4, is the second best arm with reward 1 — =
and all other arms have reward (. The smallest sub-
optimality gap is £. We choose d, = 9, D = 10, and
vary £ to control the instance-dependent complexity.
By setting £ to be a small value, we create a problem

"We defer additional experiment details/results to Ap-
pendix F. The purpose of this section is to empirically
demonstrate the importance of conducting model selection
in pure exploration linear bandits, even on simple problem
instances. We leave large-scale empirical evaluations for
future work.
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instance such that p}, = pj : we have pj = O(d,)
yet pty = (1/2?) (see Appendix B4 for proofs).

Table 1: Comparison of Success Rates

£ 102 1w?* 1wt 1w0*
RAGE 100% 98% 56%  62%
Ours  100% 100% 100% 100%

Empirical Evaluations. We evaluate the perfor
mance of each algorithm in terms of success rate, sam-
ple complexity and runtime We conduct 100 indepen-
dent trials for each algorithm. Both algorithms are
force-stopped after reaching 10 million samples (de-
noted as the black line in Fig. 1). We consider an trial
as failure if the algorithm fails to identify the best arm
within 20 million samples. For each algorithm, we cal-
culate the (unverifiable) sample complexity T as the
smallest integer such that the algorithm (1) empiri-
cally identifies the best arm; and (2) the algorithm
won't change its recommendation for any later rounds
t = 7 (up to 20 million samples). The (empirical) run-
time of the algorithm is caleulated as the total time
consumed up to round v. We average sample complex-
ities and runtimes with respect to succeeded trials.

07 uatt®? L
2
o 4
: 4 --=— RAGE
et ; —+— Qurs
= i
E o
o
L% ]

ot 5 g 5 S —X

15 107 15t 07

Figure 1: Comparizson of Sample Complexity

The success rates of RAGE and our algorithm are
shown in Table 1. The success rate of RAGE drops dra-
matically as £ (the smallest sub-optimality gap) gets
smaller. On the other hand, however, our algorithm
is not affected by the change of = since it antomati-
cally adapts to the intrinsic dimension d,: One can
immediately see that h{zg ) = h{zg _+1) when work-
ing in BR?%. Due to the same reason, our algorithm
significantly outperforms RAGE in sample complexity
as well (see Fig. 1): Our algorithm adapts to the true
sample complexity g} yet RAGE suffers from complex-
ity o5, = p3., especially when £ is small

The runtime of both algorithms are shown in Table 2.

Our algorithm is affected by the computational owver-
head of conducting model selection (e.g., the two di-
mensional doubling trick). Thus, RAGE shows advan-
tages in runtime when £ is relatively large. How-
ever, our algorithm runs faster than RAGE when =
gets smaller. This observation further shows that the
implementation overhead can be small in comparison
with the sample complexity gains achieved from model
selection.

Table 2: Comparison of runtimes

E 102 10-3 10-¢ 10—
RAGE 3.46s T7.87s 17.33s 16.81s
Ours 12125 11.17s 12.44s 1241s

It is worth mentioning that simple variations of the
problem instance studied in this section have long been
conzidered as hard instances to examine linear ban-
dit pure exploration algorithms (Soare et al | 2014; Xu
et al | 2018; Tao et al |, 2018; Fiez et al., 2019; Degenne
et al | 2020). Our results show that, both theoretically
and empirically, the problem instance becomes quite
easy when viewed from the model selection perspec-
tive.

8 DISCUSSION

We initiate the study of model selection in pure ex-
ploration linear bandits, in both fixed confidence and
fixed budget settings, and design algorithms with near
instance optimal guarantees. Along the way, we de-
velop a novel selection-validation procedure to deal
with the understudied fixed budget setting in linear
bandits (even without the added challenge of model
selection). We also generalize our algorithms into the
miszpecified regime.

We conclude the paper with some directions for future
work. Animmediate next step is to conduct large-scale
evaluations for model selection in pure exploration lin-
ear bandits. Omne may need to develop practical version
of our algorithms to bypass the computational owver-
heads of conducting model selection. Another interest-
ing direction is provide guarantees to general transduc-
tive linear bandits, i e, not restricted to cases 2 C &,
in fixed budget setting (and in misspecified regimes).
We believe one can use a selection-validation proce-
dure similar to the one developed in Algorithm 3, but
with the current validation step replaced by another
linear bandit pure exploration algorithm Note that
the number of arms to be validated iz of logarithmic
order.
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Supplementary Material:
Near Instance Optimal Model Selection for Pure Exploration Linear
Bandits

A SUPPORTING MATERIALS

A1 Matrix Inversion and Rounding in Optimal Design

Owur treatments are similar to the ones discussed in Zhu et al. (2021). We provide the details here for completeness.

Matrix Inversion. The notation ”y”i.;[l)“ iz clear when Ag(A) is invertible. For possibly singular A(A),
pseudo-inverse is used if y belongs to the range of A,4,,; otherwise, we set ||*5,|'||idl[‘,¢|_1 = oo. With this (slightly
abused) definition of matrix inversion, we discuss how to do rounding next.

Rounding in Optimal Design. For any & C 2, the following optimal design

inf  sup |yl
AeAx yeyiparsy

will select a design A* € Ay such that every y € Y(173(S)) lies in the range of A4(A*).5 If span(YV(¥,(S))) = RY,
then A,(A*) is positive definite (recall that Az(A*) =%, Artg(x)g(x) T and span(yy(X)) = R? comes from
the assumption that span(1/(X)) = R”). Thus the rounding guarantees in Allen-Zhu et al. (2020) goes through
{Theorem 2.1 therein, which requires a positive definite design; with additional simple modifications dealt as in
Appendix B of Fiez et al. (2019)).

We now consider the case when Ag(A\*) is singular. Since span(1g(X)) = R?, we can always find another A’ such
that Ag()\') is invertible. For any ¢; > 0, let A* = (1 —¢1)A* + (1), We know that A* leads to a positive definite
design. With respect to {1, we can find another {3 > 0 small enough (e g , smaller than the smallest eigenvalue
of (1 A4(A")) such that Ag(A*) = Ag((1 — ¢1)A*) + Cal. Since Ag((1 — ¢1)A*) + (ol is positive definite, for any
y € Y(¢a(S)), we have

3 2
ol iz = Illiasi-cas)+eary-1-

Fix any y € V(1g(S8)). Since y lies in the range of A3(A*) (by definition of the objective and matrix inversion)
we clearly have

¥

2 2 2
I¥lasa-corrsean- = IWliasa-corn-+ = 75 Wlasoe -

To summarize, we have

1

2 2
”yllAd,[j-)—l ':_: 1 —f;l "y”A.,.{JL-}—“

where ¢; can be chosen arbitrarily small. We can thus send the positive definite design A* to the rounding
procedure in Allen-Zhu et al. (2020). We can incorporate the additional 1/(1 — () overhead, for {; > 0 chosen
sufficiently small, into the sample complexity requirement r;(() of the rounding procedure.

“If the infimum is not attained, we can simply take a design A" with associated value 7°° < (1 +
o) infaca p SUP ey, sy ||y||";v (-1 for a ¢p > 0 arbitrarily small. This modification is used in our algorithms as
d

well, and our results (bounds on sample complexity and error probability) goes through with changes only in constant
terms.
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A.2 Supporting Theorems and Lemmas

Lemma 3 ((Kaufmann et al., 2016)). Fized any pure erploration algorithm w. Let v and v" be two bandit
instances with K arms such that the distribution vy and v} are mutually absolutely continuous for all 1 € [K].

For any almost-surely finite stopping time T with respect to the filtration {Fi},~q, let No(T) be the number of
pulls on arm i at time 7. We then have -

ZEv[Nwr | KL(vy, ]) = sup d(Py(€), Bur(€),

i=1

;ul:f;-er]'-s:l d’.{:r':: y) = zlog(z/y) + (1 — ) log((1 — =)/(1 — y)) for z,y € |0,1] and with the convention that 4(0,0) =

The following two lemmas largely follow the analysis in Fiez et al (2019).
Lemma 4. Let Sp = {z € Z: A; < 4-27%} We then have

sup  {2%u(V(Pa(Sk)))} < 64p4(<), (6)
ke[| logy(4/2]]]

and

sup  {max{2*4(V(a(Sk))), ra({)}} < max{64pj(c), ra(()}, (7)
ke[| logz(4/e)]

where { is the rounding parameter.

Proof. For y = va(z.) — ¢alz), we define Ay = A; = h(z.) — hiz). We have that

2
lylla gy
. : (0
pale) = inf sup @ —————
AcAy PEP* (PaiZN max{ﬂy, E}Z

Iyl -
= Jn.ui'if sup sup +")l
€A% ke|loga(4/5)|] ye- (Wa(Se)) Max{Ay, £}
Iyl -
ke[|loga(4/5)]] Ao AX yey- (parse)) max{Ay, £}

||’£J'||A,I{A;. 1

= sup inf sup — = (8)
ke[ [log, (4/2)]) MeAx yey- (va(Se) (4-2-F)
a4
> cup inf ”y”Ad[Jl.j 1/ (9)

sup
ke[ |Iog,(4/2)]) *eAx yeywa(s))  (4-27F)°
= sup  2R(V(¢a(Sk)))/64,

ke(|loga(4/2)]]

where Eq. (8) comes from the fact that 4-27% > z when k < |logy(4/2)]; Eq. (9) comes from the fact that
va(z) — Palz") = (Ya(z) — valz.)) + (Yalz.) — va(z")). This implies that, for any & € [[logy(4/2)]],

max{2% (Y ($a(Sk))), ra(()} < max{64p3(c), ra(()}-

And the desired Eq. (7) immediately follows. |
Lemma 5. Let Sp = {z € Z: A; < 4-27%} We then have
sup {2%u(V(%a(Sk)))} < 64pj, (10)

ke[[logy (4/ Amia)]]

and

sup {max{2%*t(V(¥a(Sk))), 7a(¢)}} < max{64p}, ra(()}, (11)
ke[[logy {4/ A mia)]]

where { is the rounding parameter.
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Proof Take £ = Ampp in Lemma 4. O

The following lemma largely follows the analysis in Soare et al (2014), with generalization to the transductive
setting and more careful analysis in terms of matrix inversion.

Lemma 6. Fiz Z C X C RY. Suppose mﬂzex"Illﬂ < c1 and minzezy{z. } ||z — z||2 = o with some absolute
constant c; and ca. We have

) < ot inf 2. — z"iu}—l
—a— <= sup  ———
e1An AEAX ze 2\ (2.) AZ ’

where Amin = minzezy{z {A:}

Proof Let A* be the optimal design that attains p*;” and let z' € Z be any arm with the smallest sub-optimality
gap Amin. We then have

. llze — 3"1{»}—1
pr= max ———
zeZ\{z.} .ﬂz
- [EA _z’”i(}l-j—l
=7 AT

Az,

" Zy — z’”i(}‘.j_l (12]
-
‘&min ’
where z, — z’ necessarily lie in the range of A(A*) according to the definition of matrix inversion in Appendix A 1.

We now lower bound ||z, —z’||i Aey-1- Note that A(A*) is positive semi-definite. We write A(A*) = QEQ T where
() iz an orthogonal matrix and ¥ is a diagonal matrix storing eigenvalues. We assume that the last k eigenvalues
of ¥ are zero. Let ymax = [ A(AN)|[s = [|E]l; be the largest eigenvalue, we have ymax < mﬂgexllIllz < ¢y since

AN) =2 cx A(z)zz" and Yozex M(x) =1 Let w= Q7 (z, —z'). Since z, — 2’ is in the range of A(A*), we
know that the last k entries of w must be zero. We then have
l|ze — ZFHEA{»}—I = (2, —2)TAN*) Yz — 2)
—w 7 'w
> [lwll*/ex
= eafey, (13)

where Eq. (13) comes from fact that ||w|® = ||z, — 2||* and the assumption ||z, —z||> > @ forallz€ 2. [0

Lemma 7. The following statements hold

I. T>4dalog2a = T ZalogsT forT a0

2 T > 16a(log16a)? — T > a(logy T)? for T,a > L.

Proof We first recall that T = 2aloga = T > alogT for T, a > 0 (Shalev-Shwartz and Ben-David, 2014).
Since loga T =logT /log2 < 2logT, the first statement immediately follows.

To prove the second statement, we only need to find conditions on T such that T > 4a(logT)?. Note that we
have /T > 8, /alog4d\/a = 4,/alogl6a — T = 4,/alog T = 2,/alogT. For T,a > 1, this is equivalent to
T = 16a(logl6a)? — T = 4a(logT)? = a (logs T)?, and thus the second statement follows. A

TIf the infimum is not attained, one can apply the argument that follows with a limit sequence. See footnote in
Appendix Al for more details on how to construct an approximating design.
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A.3 Supporting Algorithms

Alporithm 5 OPT
Input: Selection budget B, dimension upper bound I and selection function g{-) (which is a function of the
dimension d € [D]).
1: Get dg such that

dp = maxd
st g(d) < B, and d € [D].

Output: The selected dimension dy..

B OMITTED PROOFS FOR SECTION 3

B.1 Proof of Theorem 1

Theorem 1. Suppose & ~ N(0,1) for all t € My and § € (0,0.15]. Any §-PAC algorithm with respect to
(X, Z,84,) with stopping time T safisfies By [7] = Py, log(1/2.44).

Proof The proof of the theorem mostly follows the proof of lower bound in Fiezs et al. (2019). We additionally
consider the model selection problem (X', 2,0, ) and carefully deal with the matrix inversion.

Consider the instance (X, Z,8,), where X = {z1,..., 1} and span(X) = R, Z = {z1,..., 2}, and 8, € B4_.
Suppose that z; = arg max,_z(f,,z). We consider the alternativeset Cg, :== {# € 0,4, : i € [m] s.t. (f,z21—2;) <
0}, where zy iz not the best arm for any # € Cy, . Following the “change of measure” argument in Lemma 3, we
know that Eg_[r] > 7*, where 7* is the solution of the following constrained optimization

™= m ehzh (14)

st e:.'.,., Z ty KL{vg, 4, vp,4) = log(1/2.45),
where we use the notation ve; = N({#,x:),1) = N({ta_(#), ¥a_(z:1)), 1) (due to the fact that 8 € Cg_ ). We also
have KL(vp, 1, v0,1) = {¥a. (64) — va.(6), va. (z:))™

We next show that for any t = (t1,...,t,)" € R? satisfies the constraint of Eq. (14), we must have 9y, (z1) —
. (z1) € span({ia, (z;) : t; = 0}),¥2 < i < m. Suppose not, there must exists a 1y, (u) € B% such that (1)
{1ha, (u), v, (x4)) = 0 for all 1 € [n| such that ¢; > 0; and (2) there exists a 2 < 7 < m such that {4 (z1) —
. (z9), g, (u)) # 0. Suppose (g, (21) — ta, (27),vba, ()} > 0 (the other direction is similar), we can choose a
B € B4 such that the first d, coordinates of #' equals to ¥q_(#.) — a1bg_(u) for a a = 0 large enough (so that
8" € Cy,). With such &', however, we have

n

n
1
Zt;KLI{VSH.‘_,Vgr Zt‘g u), ¥a_(x4))* = 0 < log(1/2.46),
i=1 i=1
which leads to a contradiction. As a result, we can safely calculate ||:;f1d_{z1}—i,bd*{zi}||id (-1 OF

Ag, {t}_ll[t,'fld_ (z1) — thg, (z;)) where Ay (t) := E?:l tythg, (xy)tha, (I,;:ITft_ and £ := E?:l t;. The rest of the proof
follows from the proof of theorem 1 in Fiez et al. (2019). O

B.2 Proof of Theorem 2

Theorem 2. Fiz X, Z C RP 6, € 8, and & € (0,0.015]. Any non-interactive algorithm of using a feature
mappings of dimension d > d, makes a mistake with probability at least § as long as it uses no more than

%pﬁﬁ log(1/4) samples.
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Proof The proof largely follows from the proof of Theorem 3 in Kats-Samuels et al. (2020) (but ignore the +*
term therein. We are effectively using a weaker lower bound, yet it suffices for our purpose. ). The non-interactive
MLE uses at least %p; log(1/4) with respect to any feature mapping () for d, < d < D). The statement then
follows from the monotonicity of {p&}f‘;d' as shown in Proposition 1. O

B.3 Proof of Proposition 1

Proposition 1. The monotonic relation py < pg holds true for any d, <d; <ds < D.
Proof We first prove equivalence results in the general setting in Step 1, 2 and 3; and then apply the results to
the model selection problem in Step 4 to prove monotonicity over {pﬁ}f’:d‘..

We consider (X, Z, 8, ) in the general setting, where X = {zy,..., 75} C R? span(X) = R Z = {z1,...,2m} and
6, € RY. We suppose that z; = argmax_.z(#,, z) is the unique optimal arm and span({z; — Z}zezx{zl}:l Re
We use the notations y; == z; — z; for j =2,...,m, and vg; :== N(z8,1). For any t = (t1,...,t,) € R, we
also use the notation A(t) = 3 [, tyryr] € B?*? to denote a design matrix with respect to ¢ ( doesn't need to
be inside the simplex Ax). We consider any fixed 4 < (0,0.15].

Step 1: Closure of constraints. Let C denote the set of parameters where z; is no longer the best arm
anymore, i.e_,
C:={fcR?:Jic|m|st. 87 (21 —=z) <0}

Using the “change of measure” argument from Kaufmann et al. (2016), the lower bound is given by the following
optimization problem (Audibert et al |, 2010; Fiez et al | 2019)

T Z t-g
t1, .tn ER+

s.t. mthiKL{yg 1 Vag) = log(1/2.48).
i=1

First, we show that the value 7* equals to the value of another optimization problem, ie |
n
. .
T i, 2
i
st ];]]é_l Z ty KL{vg, 1.v84) = log(1/2.48),
= i=1

where C = {# € R : 3i € [m]| st. #7 (21 — z) < 0}. Note that that we must show that the minimum in the
constraint is attained, ie., the ming - part. We first show the equivalence between the original problem and
the problem with respect to infg.s; and then show the equivalence between problems with respect to infy-7 and
mingee. We fix any t = (t1,...,t,)7 € RT.

Step 1.1: We claim that infeec ", £ KL(vg, 1, vo,¢) > log(1/2.45) if and only if infoce ™, £, KL(vo_s,va.4) >
log(1/2.45).

Since € O C, the +— direction is obvious.
Now, suppose infy_z 37 | t, KL(vg_,,1p,) < log(1/2.44). By definition of inf, there exists #; € C such that
i
> "t KL(va, 4, v8q,4) < log(1/2.43).
i=1

Since C is the closure of an open set C, there exists a sequence {#;} in C approaching f. Note that

i i

1 1
St KL(vs, i, v80) = 3 :tia{z;r{ﬂ* _g))? = 516, - A% ce)-
i=1 i=1
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Then, by the continuity of %HE* - E"i{;} in 8, there exists a # € C such that 3 ), ; KL(vg, 4,v84) < log(1/2.48).
This gives a contradiction and thus proves the = direction.

Step 1.2: Now, we must show that the infimum is attained whenever inf;_s E:;l ty KL{va_ «||vas) = log(1/2.45),
that is, there exists fy € C such that

n n
>t KL(ve, 4,v8,4) = inf Y t, KL(va, 1,v8,)-
i=1 HEE{=1

Claim: Fixt = (t;,...,tn)" € RT. If span({z, : t; > 0}) # B, then infy o 31 | £, KL(vo_ 1, vp.1) < log(1/2.43).

First, we show the claim. Fix t = (#1,...,t5)" € R? and suppose span({z, : {; > 0}) # R?. Since span({z, :
t; > 0}) # RY, there exists u € R such that u"x, = 0 for all i such that ¢, > 0. Since {z1 —z; : i € [m|} spans
R? by assumption, there exists i € [m] such that u'(z; — z;) # 0. Suppose that u'(zq — z;) < 0 (the other
case is similar). Then, there exists a sufficiently large o = 0 such that (8, 4+ au)” (z; — %) < 0, implying that
#, + ou € C. Moreover, by construction of u, we have

thKL(w.,s,w ma—Zt: (z (0uw))® = Y ti3 {zf (au))? = 0 < log(1/2.45),

=1 €10
and thus leads to the claim.
Now, suppose infy_s %" | £, KL(vg, 4, v5,) = log(1/2.48). Then, span({z, : t, = 0}) = R Then, "'”i(t) is a

norm, and the set

1
{oere: G100 <<

is compact for every . Then, since C is closed and %"H‘ — H‘*Him has compact sublevel sets, there exists a 8y = C
such that

n n
>t KL(ve, 4,v8,4) = inf Y t, KL(va, 1,v8,)-
i=1 beC i=1

This shows the equivalence between problems with respect to infy-- and ming;.
Step 2: Rewrite the optimization problem. Define

C,={PeR: 0 (z; — =) <0},
and note that £ = U ,C;. Observe that

e, i, Do
st ];:IE]él Z ty KL{vo_ 1, v9,4) = log(1/2.48)

emzt‘

min mlnz ty KL(vg, 4,v8,4) = log(1/2.45).
1e[m) Eeﬂ:

E1 yeeerbm

Consider the optimization problem:

.1 a
f,,';‘é‘ E (z] (0. — 8)) ;l;lé:zll e — Bllaey



MNear Instance Optimal Model Selection for Pure Exploration Linear Bandits

Note that since the objective is convex and there exists # € R? such that 87 (z; — z,;) < 0, Slater’s condition
holds and, therefore, strong duality holds. We form the Lagrangian with lagrange multiplier v € B to obtain

1
(8,7) = 5116, — 85y +7- vl B
2

Differentiating with respect to # and ~, we have that (note that A(t) is invertible from the claim in Step 1)

8 =0, —A() s,
y 8 =10

These imply that fp == 8, — % and 90 == g%y € Ry satisfy the KK.T. conditions, and 8 = 6o
is the minimizer (primal optimal solution) of the constrained optimization problem (note that it's a convex
program). Therefore, we have

13 (¥76.)2
mins Y t(z] (6, — 8))? = L
= Z: Iyl gy

In conclusion, we have

T t.nE R+ Z t-g

¢11 -

" {yj *}

- = log(1/2.46),¥2 < j < m.
||'£J'j||A[c)—1

Step 3: Re-express the optimization problem. Furthermore, we have that

T = min _ s (15)
801 ,...,tnERY

st (y] 0,)? = log(1/2.48) |y 1, ¥2 < j < m
i
s>t
i=1

Rearranging these constraints, we have that

T 2
>t > log(1/2.43) Zn””ﬂ""“; = lugufz.eu:l"y’”;‘%..vz <j<m.
=1 i=1 |: 8:) ':!J'j 6,)
We do a change of variables A € Ay and A, = E" , and the optimization problem is equivalent to
7= min s
seRy AEA x
st s> max log(1/2 4&}—””"1{“‘1
T T =2 m : (y;l'g*jz
Thus, we have that
_— TRy
T Aglﬁxj 1313:'{'.,.“ ( Tg:l g(1/2.45).
Now let
lys I a2y ||y;||,m 1
* JaSRAAT —

LA ey A T B T ey

log(1/2.43),
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where A* is the optimal design of the above optimization problem.® Set t = 7*A* & R% with L =TA" c Ry, we
can then see that

n ki
Y hE=7= Z’””y’”"” ! log(1/2.46),¥2 < j < m.
i=1 i=1
and such {;} satisfies the constraints in the original optimization problem described in Eq. (15). As a result,

we have 7% < 7.

We now can write

s 115
*_ inf Ma-1

Step 4: Monotonicity. We now apply the established equivalence to the model selection problem and prove
monotonicity over {p;}d[":d‘.

Now, define

".I' 11, ,t“ER+ Zt

st mf Z ty KL{ve_ 1. v84) = log(1/2.48),

“"':1

where Cg, = {# € RV : Vj > dy : B, =0A € [m] st 8T (z1 —z) < 0}. Let d, <d; <ds < D. Then, since the
optimization problem in 7; has fewer constraints than the optimization problem in 77 , we have that 7; <77 .
The established equivalence in Eq. (16) can be applied with respect to feature mappings ty4(-) for d, <d < D
(note that we necessarily have span({ta(z.) — Ya(z)}zez\(z,}) = R? as long as span({z, — z}zez{z,}) = R

Therefore, we have

P, log(1/2.48) = 73, <73, = pa, log(1/2.44),
leading to the desired result. O
B.4 Proof of Proposition 2

Proposition 2. For any v > 0, there erists an instance (X, 2,0y, ) such that py > p) +vyet oy 3 =25 .

Proof For any A € Ay, we define

Ia(ze) — val@)I2, 0

A) = max
PN BT (G - hG)?
and
. 2
N == g () — V() o
We consider an instance X' = {I{}d -+l C Re.+! and expected reward function h(-). The action set is

constructed as follows:
ry=ey fori=12....d,, zg,41=I(1—2)-eq, +ed4+1,
where e, is the i-th canonical basis in R%1!. The expected reward of each action is set as

hizy) 1= {xy, eq. ).

®Again, if the infimum is not attained, one can apply the argument that follows with a limit sequence. See footnote in
Appendix Al for more details on how to construct an approximating design.
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One can easily see that d, is the intrinsic dimension of the problem (in fact, it is the smallest dimension such
that linearity in rewards is preserved).

We notice that 8, € R%; =, = x4, is the best arm with reward 1, 4 41 is the second best arm with reward
1 — = and all other arms have reward 0. The smallest sub-optimality gap is Apin = . £ € (0,1/2] is selected
such that 1/4s? > 2d, + ~ for any given v > 0.°

We first consider truncating arms into B9 For any A € A, we notice that 4, (A) = Yozex AeWa, (T)g, (x)7 is
a diagonal matrix with the d,-th entry being Ay, +(1- .';‘}2.31.:,‘!'4_1 and the rest entries being A;,. We first show
that 13 > d, —1 by contradiction as follows. Suppose ¢j < d, — 1. Since ||¢q, (z4) — ¥, {Iﬂ"id -1 = 1/Az

fori =1,2,...,d, — 1, we must have Ay > 1/(d, — 1) fori =1,2,...,d, — 1. Thuszi_ LA = 1, which
leads to a mntrﬂdlctlon for A € Ay We next analyze p}. Let A € ﬂx be the design such that Ay, = 1/d,
for i = 1,...,d.. With design X', we have |vg_(z.) — T"‘I‘ld.{If}”Ad (-1 =2, fori = 1,2,. d — 1 and

. (x2) = . (24,4113, ()1 = %ds- As a result, we have g (V) < 2d,, and thus pj_< pa, (V) < 24,

We now consider arms in the original space, ie., R%-+!. We first upper bound tg +1- With an uniform design A"
such that Af = 1/(d,+1),Vi € [d.+1], weha.ve th 41 = ta,+1(A") < max{(3— E:I,J’{E £),82/(2—e)+1}-(d. +1) <
5(d, +l}j'3when£ e (0, 1}"2] In fact, with the same design, we can also upper bound o ¥ityg, +1(A))) < 3(d,+1).
We analyze gj ., now. Since m,zi.}i::,;e;;_-||:lr||2 < 4 and minge x (2, } I — ]2 = 1, Lemma 6 leads to the fact that

Pa, 41 = 1/422. Note that we only have mingex{r. } |V, (T:) — Ya, (z)||* = £? when truncating arms into B9

To summarize, for any given > 0, we have pj ., > pj +7vyet ;g oy <2y (when d, > 11). Further more, we
also have ¢(V(b, +1(X))) < 4V (Y, (X)) (when d, >'7) since «(V(¥a, (X)) < 15, I

C OMITTED PROOFS FOR SECTION 4

C.1 Proof of Lemma 1

Lemma 1. Suppose B = max{64p] ,7q (()}. With probability at least 1 — 4§, GEM5-c outputs a set of arms
3,-,4_1 such that A; < 2™ for any z € S,H_1

Proof We consider event
Ek = {2 € 8k C Sk},
and prove through induction that
P(Ekyr | Ne<i&s) = 1 — by,

where d; := 0. Recall that §, = {z € Z: A, < 4-27%} (with §; = Z).

Step 1: The induction. We have {z, € §; C &} since S = & = Z by definition for the base case (recall
that we assume max.cz A; < 2). We now assume that My<p€; holds true and we prove for iteration & + 1. We
only need to consider the case when |S;| > 1, which implies |S;| > 1 and thus k < |logs(4/Amin) |-

Step 1.1: dy > d, (Linearity is preserved). Since S C S, we have

gr(dy) = max{2%(P(dha. (S))), ra. (O)}
< max{2%*(Y(ta. (Sk))), ra. ()}
< max{64p]_,ra. (()} (17)
< B, (18)

where Eq. (17) comes from Lemma 5 and Eq. (18) comes from the assumption. As a result, we know that dp. = d,
since dj. is selected as the largest integer such that gp(dy) < B.

?One can also add an additional arm o = ep/2 so that span({z. — T}zex) = R**' (the lower bound on pj_,, will
be changed to 1/16:7).
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Step 1.2: Concentration. Let {ry,...,zy,} be the arms pulled at iteration k and {ry,...,rx, } be the

corresponding rewards. Let 8, = A;lbk € R% where A = Efi*l Y, (Te)va, (t:) T, and by = E:i"l Y, (T )by
Since dy = d, and the model is well-specified, we can write ry = (f,, =) + & = (g, (0.), g, (o)} + &, where &
is ii.d. generated 1-sub-Gaussian noise. For any y € y{:,t:di{.?,,,j}, we have

Nie
(38 — 90, (0)) =T A" Y ba (wr — y 0, (6,)
i=1

Ni
=y ALY v, (x0) (va, (20) T a, (6.) + &) — y" ¥, (62)

i=1
N
=y A" Z Y, (1)1
i=1
Since £ are independent 1-sub-Gaussian random variables, we know that the random wariable

y Ay T Y, (2,)& bas variance proxy /T0% (47 45" T v, (20))? = [yll,.1. Combining the standard
Hoeffding’s inequality with a union bound leads to

P(vy € V(¥au (8, | (.8 — ¥ (6)) < Il 21ug(|§k|ﬂxak)) >1- &, (19)

where we use the fact that |V(1bg, (Sk))| < |Sk|2/2 in the union bound.
Step 1.3: Correctness. We prove z, € Spyy C Spyq under the good event analyzed in Eq. (19).

Step 1.3.1: =, £ §&+1. For any 7 £ S such that z # z,, we have
(W () — Y (20), Be) < (P (B) — u 20), ¥ (80)) + I (2) — o (2411 2Log (15l2/61 )
— h(Z) — h(z2) + I, (2) — v, (2| o211 2o (1512/6% )

< 14 () — Y (2 o1 21og (15252 ).

As aresult, z, remains in §g+1 according to the elimination criteria.

Step 1.3.2: §k+1 C Sps1- Consider any =z € S MNS&g,y, we know that A; > 2 -2=F by definition. Since z, € gp.,,
we then have

(B (22) — Y0, (20,8) 2 (W, (22) — Y, (2), 90, (0.)) = b (=) — b, () 1y 2108 18312/
= hlz2) — h(2) — llthas (22) — Yy ()| a1 2Yos (185 12/6% )
> 2275 — ||y, (22) — i, (2)l| a2 21og (15el2/61 )

> I, (22) = b, (] 411/ 2 og (15612761 (20)

where Eq. (20) comes from the fact that |[vyg, (z.) — tjldi{z:l||A:1 ?lug(|§& |‘3JJ’£&) < 2% which is resulted from

the choice of N and the guarantee in Eq. (3) from the rounding procedure. As a result, we have =z ¢ §k+1 and
Sk41 C Sksr-

To summarize, we prove the induction at iteration £+ 1, ie,

P(Ekyr | Necky1&) = 1 — by,
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Step 2: The error probability. Let £ = ﬂ;‘:ll.f,; denote the good event, we then have

b}
P(E) = [] P& | E—1n---NE)
k=1

—s

(1 —di)

L
Il
I

=

—e

(1-48/K2)

L
Il
I

sin(wd)
wd
>1-4, (21)

where we use the fact that sin({wd)/md = 1 — 4§ for any 4 £ (0, 1) in Eq. (21). O
C.2 Proof of Theorem 3

Theorem 3. Let 1, = logs(4/Amin) max{p} ,7a, (()}. With probability at least 145, Algorithm 2 starts to output
the optimal arm within iteration £, = O(logy(7.)), ond takes at most N = O(r, logs(7.) log(| 2] logy(7.)/8))
samples.

Proaf. The proof is decomposed into three steps: (1) locating good subroutines; (2) bounding error probability
and (3) bounding unverifiable sample complexity.

Step 1: Locating good subroutines. Consider B, = max{64p} ,rq ({)} and n, = [loga(2/Amin)]. For
any subroutines invoked with By = B, and n; > n,, we know that, from Lemma 1, the output set of arms
are those with sub-optimality gap < Ampip, which is a singleton set containing the optimal arm, ie, {z,}. Let
iy = [loga(B.)], j» = [loga(n,)] and £, = i, + j,. We know that in outer loops £ > {,, there must exists at
least one subroutine invoked with By = 2+ > B, and n; = #*+ > n,. Once a subroutine, invoked with B, > B,
outputs a singleton set, it must be the optimal arm z, according to Lemma 1 (up to small error probability,
analyzed as below). Since, within each outer loop £, the value of B; = 2~ is chosen in a decreasing order,
updating the recommendation and breaking the inner loop once a singleton set is identified will not miss the
chance of recommending the optimal arm in later subroutines within outer loop £.

Step 2: Error probability. We consider the good event where all subroutines invoked in Algorithm 2 with
B, = B, and (any) n, correctly output a set of arms with sub-optimality gap < 2'~™ with probability at least
1 — &, as shown in Lemma 1. This good event clearly happens with probability at least 1 — > ;°, E:=1 & =
1-— Ezlﬁf{lﬁﬂj = 1 — 4, after applying a union bound argument. We upper bound the unverifiable sample
complexity under this event in the following.

Step 3: Unverifiable sample complexity. For any subroutine invoked within outer loop £ < £, we know,
from Algorithm 3, that its sample complexity is upper bounded by (note that |Z)? > 4 trivially holds true)

Ne < na(Bi- (25 10g(121%/82.)) +1)
< %35 log(221°6/5).

Thus, the total sample complexity up to the end of outer loop £, is upper bounded by

£,
N < EN;
£=1

[
< 3.5 1og(2)2%3/6) 3 £2*
=1

<7 lug(2|3|2£“:'f6)f*2‘*.
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Recall that 7, = loga(4/Amin) max{p}_,ra, ()} By definition of £,, we have

£, < logy(4logy(4/Amn) max{64p) .4, (()}) = Ollogy(,)),
and
of. _ gli.+1.)

< 4(logy(2/Amin) + 1) max{64p;_,ra.(()},
= 4logs(4/ Amin) max{64pz_,4.(C)},
= 0(r,).

The unverifiable sample complexity is thus upper bounded by
N < 17927, - (loga(r,) + 8) - log (212/*(loga(r,) + 8)*/5)
= O(7, loga(7:) log(| 2] logs(7:)/8)).

D OMITTED PROOFS FOR SECTION 5

D.1 Proof of Lemma 2

Lemma 2. Suppose 64p5 = B < 128p; and T'/n = vy ({) + 1. Algorithm 5 outputs an arm z, such that
Az < 27" with probability at least

1—n|Z|? exp(-T/640n g} ).

Proof We consider event
Ex = {z. € S CT Sk},
and prove through induction that
P(Ekyr | Ne<i&s) = 1 — by,
where the value of {5¢}7_, will be specified in the proof.

Step 1: The induction. The basze case {z, € 8§ C &1} holds with probability 1 by construction (thus, we
have d; = 0). Conditioned on events N¥_, £, we next analyze the event £, . We only need to consider the case
when |Sg| > 1, which implies |S| > 1 and thus & < |loga(4/Amin) |-

Step 1.1: d;. > d, (Linearity is preserved). We first notice that D is selected as the largest integer such
that r5(¢) < T", where r4(() represents the number of samples needed for the rounding procedure in R? (with

parameter {). When T'/n = rg, ({)+1, we have D > d, since T > T/n—12%=rg (). Thus, for whatever dy € [.E]]
selected, we always have ry, (() < 75(() = T" and can thus safely apply the rounding procedure described in

Eq. (3).
Since gp, C &g, we also have

g(dy) = 22u(Y(va, (Sk)))

< V(¢ (Se)
< 64p}, (22)
<B, (23)

where Eq. (22) comes from Lemma 5 and Eq. (23) comes from the assumption. As a result, we know that dp. = d,
since dj £ [f?] iz selected as the largest integer such that geidy) < B.
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Step 1.2: Concentration and error probability. Let {xi,...,zr'} be the arms pulled at iteration k
and {ry,...,77v} be the corresponding rewards. Let £ = A;lbk € R% where Ay = Ef;lilbdi{zfjilbd*{n]-r,
and by = E;r:l P, (x:)by. Since dp = d, and the model is well-specified, we can write ry = {(fo,2:) + & =

(b, (8.), ¥, (T4)) + &, where & is 1id. generated zero-mean Gaussian noise with variance 1. Similarly as
analyzed in Eq. (19), we have

P(vy € Yt (5i)): (v, — . (0))| < Lo zlug(ﬁmak)) >1-5. (24)

By setting max,y, (s, [yl a;11/2108(I8x[2/6x) = 27, we have

. 1
Ok = |Se*exp | — 3
2 . '2’3& mﬂﬂE\['nli {S'*)“y”A;'I

< |8 exp| - - S; :
< S P( 2_gﬂk{1+§}t{y(¢d*(3km) .

T
< |Z)* exp (—m)a (26)
d.

where Eq. (25) comes from the gnarantee of the rounding procedure Eq. (3); and Eq. (26) comes from combining
the following facts: (1) 2% o(V(a, (Sk))) < B < 128p} ; (2) T" = T/n — 1 = T/2n (note that T/n = rq,({) +
1 = T/n = 2 since rg_({) = 1); (3) Sk C Z and (4) consider some ¢ < 1 (¢ only affects constant terms).

Step 1.3: Correctness. We prove z, € §g+1 C 8py1 under the good event analyzed in Eq. (24).
Step 1.3.1: =, £ §&+1- For any 7 € 8, such that ¥ # z,, we have

(Va0 (2) — bau(2), B ) < (e (3) — i (20), 90, 0,)) +27*
= h(z) — h(z,) +2°F
<27k

As a result, z, remains in S, according to the elimination criteria.

Step 1.3.2: Sy C Spyy. Consider any z € 8 NSE,,, we know that A, > 2.2* by definition. Since z, € S,
we then have

(b, () — 4, (2), k) = (b, () — ta, (2), ¥a, (B2)) —27%
— h(z) — h(z) — 2%
>9.97k 9k
_ 9k, (27)

As aresult, we have = ¢ §g+1 and §i¢+1 C Spy1-

To summarize, we prove the induction at iteration £+ 1, ie,

P(Ekyr | Necky1&) = 1 — by,
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Step 2: The error probability. Let £ = ﬂ;‘:ll.f,; denote the good event, we then have

n+1

P(€) = [[ P&k | &1 ---N &)
k=1
n+l1

= [Ia-a
k=1
n+1

>1-Y 6 (28)

i=1

T
>1- H|Z|QHP(—W)5
d,

where Eq. (28) can be proved using a simple induction. O
D.2 Proof of Theorem 4

Theorem 4. Suppose Z C X IfT = ﬁ(lﬂgﬂ{l;’ﬂmin] max{p} T4, {t:jl}}, then Algorithm § oufputs the optimal
arm with error probability at most

- 2 - T
loga(4/Amin)|Z] ‘I"P( 1024 luggi:‘ifﬂminj.ﬂ;.)

R )]

min

Furthermore, if there exzist universal constants such that maxecy|va, I[I}"E < cy  and
ming ez ||, (z.) — P, (z) ||2 = ca, the error probability is upper bounded by

D(max{lﬂgglilfﬁminﬂzﬁ(I‘JEQT}E}

Xoexp| — el
max{logs(1/Amin), (loga T)2}erp. | |

Proof The proof is decomposed into three steps: (1) locate a good subroutine in the pre-selection step; (2)
bound error probability in the validation step; and (3) analyze the total error probability. Some preliminaries

We note that both pre-selection and validation steps use budget less than T in the pre-selection phase, each
outer loop indexed by i uses budget less than T'/p and there are p such outer loops; it's also clear that the
validation steps uses at most T' budget. We notice that p < log, T since p- 2P < T; and ¢, < log, T since
qi-2% <T/pBy < T. As a result, at most (logy T)? subroutines are invoked in Algorithm 4, and each subroutine
is invoked with budget T" = T/(log, T)~.

Step 1: The good subroutine. Consider
I, 1= [1052{6"11:";_” and j, 1= [IGEQ{IEEE{EIﬂmin”-l*

One can easily see that 64p; < B, < 128p; and ny, = logs(2/Amin). Thus, once a subroutine is invoked with
(is,js) and T fny = 1g_({) + 1, Lemma 2 guarantees to output the optimal arm with error probability at most

T
]Dggl::dflﬂmin}lzlﬂ exp (_ 1024 lﬂggialafﬂmm:l P;, ) ‘ {Zg]

We next show that for sufficiently large T, one can invoke the subroutine with (i,, j.) and T /ny, = rg ({) + L
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We clearly have p = i, as long as T' = log,(128p5 ) 128p); . Focusing on the outer loop with index i,, we have
gi. = Js 8s long as

log(2loga(2/Amin)) - (2loga(2/Amin)) < T'/By,,
Since T'/B,, > T/(128g}_log, T), we have g, > j, as long as T is such that
T = 256 loga(2logs(2/Amin)) - loga(2/Amin) - p3, - loga T. (30)
Since T” = T/(logy T)2, we have T” /ny, = rq.(¢) + 1 as long as T is such that
T = (ra,(¢) +1) - loga(4/Amin) - (logy T)*. (31)
According to Lemma 7, Eq. (30) and Eq. (31) can be satisfied when
T = @(loga(1/Amin) max{p}_,ra.({)}),

where lower order terms with respect to logy(1/Amin), pj and rg, ({) are hidden in the €} notation.

Step 2: The validation step. We have |.4| < (log, T')? since there are at most (log, T)? subroutines and each
subroutine outputs one arm. We view each r € A as individual arm and pull it |T/|A|] = T/(log, T)? -1 =
T/2(log, T)? (as long as T = 2(log, T')?) times. We use h(z) to denote the empirical mean of h(z). Applying
Hoeffding’s inequality with a union bound leads to the following concentration result

- T
P(Ve € A: [h(z) — h@)] = Auin/2) < Eihng}“mp(—W—)

min

Thus, as long as z, € .4 is selected in A from the pre-selection step, the validation step correctly output z, with
error probability at most

2(logy T)? exp (— m). (32)

Step 3: Total error probability. Combining Eq. (29) with Eq. (32}, we know that

- T
P(z, # z.) Elﬂgﬂidflﬂmin}lzlﬂﬂp(_ 1024 lug2(4jrﬂm'm:| F"; )

T
+ 2logs T)? ex (— )
( B2 :I P S{lﬂgﬂ T}ﬂflﬂmﬁ o
Furthermore, if there exists universial constants such that maxeecx||ta, |[:17}||2 < c;  and
ming ez ||t (z.) — 1,{!,1_{3}"2 > e, Lemma 6 implies that 1/A2. < c10y, /ea. We thus have

T
P(Z, # 24) = D(mﬂ{lﬂgﬂ;(”ﬂminﬂzﬁ (loga T)?} - exp (—mu{,%“ ; ﬂ;}, (loga T2} c1p, ))

E OMITTED PROOFS FOR SECTION 6

E.1 Omitted Proofs for Propositions

Some of the propositions are borrowed from Zhu et al. (2021), we present detailed proofs here for completeness.
Proposition 3. The misspecification level (d) is non-itncreasing with respect to d.
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Proof Consider any 1 <d < d' < [). Suppose

8% € arg min max [h(x) — (a(@), Palx)}]-
fcrD T

Since 13(#%) only keeps the first d component of #, we can choose #% such that it only has nonzero values on
its first d entries. As a result, we have (1g(8%), ¥a(x)}) = (e (89), e (), which implies that F(d') < F(d). O

Proposition 4 (Zhu et al. (2021)). We have pi(c) < 9p5(c) for any £ = F(d). Furthermore, if F(d) < Amin/2,
5(0) represents the complerity measure for best arm identification with respect to a linear bandit instance with
action set X, target set Z and reward function h(z) = (Ya(89), talx)).

Proof. To relate pj(=) with gjj(=), we only need to relate max{h(z,) — h(z),s} with ma.x{{i,{!d{z*} - 1,{!;;{3},@},5}.
From Eq. (5) and the fact that £ > 5(d), we know that
($a(2s) — val2),67) < h(z) — h(z) + 27(d) < h(z:) — h(2) + 2¢ < 3max{h(z,) — h(z),},
and thus
max{ (Va(z.) — ba(2),0%),¢} < Smax{h(z.) — h(z), ).
As a result, we have p}(s) < 955(=).

When 5(d) < Ampin/2, we know that =, is still the best arm in the perfect linear bandit model (without misspec-
ification) k() = (Walz), wa(89)). Thus, 55(0) represents the complexity measure, in the corresponding linear
model, for best arm identification. O

Proposition 5 (Zhu et al (2021)). The following inequalities hold:
v(d) < (16 + 164/ (1 + O)d)F(d) = O(VdF(d)).

Proof We first notice that
U(Y(ba(S0))) = sup_[lyll3 00

A ﬁ-f VEV (Ul Sa))

< inf  sup  yll,o
AeAx yeyaay M

- 2
< ,inf_sup 4@l
= 4d, (33)
where Eq. (33) comes from Kiefer Wolfowitz theorem (Kiefer and Wolfowitz, 1960). We then have
(2+ I+ OV BaEM)7d) < (2+ T +02)7(d).
As aresult, we can always find a n € M such that

27/2 < 2(2+/(T+ O4d)7(d),

and

(2+ T+ OV )7(d) < (2+ T+ O8d)(d) <37/2,Vk < n.
This leads to the fact that
1(d) <8 (2+ VT +04)7(d),

which implies the desired result. O

Proposition 8. If y(d) < =, we have
(2+ VI + 0P @a(S0N)7(d) < 27%/2,Vk < [loga(2/2)].

Proof. Suppose v(d) =2-27" for a 7i € M. Since v(d) < £, we have 7i > log,(2/2). Since 7 € M, we know that
7i = [loga(2/2)]. The desired result follows from the definition of ~(d). O
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E.2 Omitted Materials for the Fixed Confldence Setting with Misspecification

E.2.1 Omitted Algorithms

Alporithm 6 GEMS-m Gap Elimination with Model Selection with Misspecification (Fixed Confidence)

Input: Number of iterations n, budget for dimension selection B and confidence parameter 4.
1: Set 8 = Z.
2 fork=12...,ndo
3 Set &, = 4/k%
4:  Define function gi(d) := max{2%® 15 4. 74(()}, where 4 4 := L{y{w(.ﬁ,}j}
5  Get dp = OPT(B, D, gp(-)), where dy < D iz largest dimension such that gg(dp) < B (see Eq. (4) for the
detailed optimization problem). Set A be the optimal design of the optimization problem

Jnf - sup e, (2) — Ya, (2, y-1s and Ni = [9(di)8(1 + () log(|Se[*/8:)1-
* 2,278,

Get allocation {ry,...,zx, } = ROUND (A, Ny, dy, £).
Pull arms {z1,...,zx,} and receive rewards {ry,..., 7w, }
Set Bk = Ay, 'bi € R™ where Ay = Yu) (). (z4) T, and b = Yot ha (z)be.
9:  Set Spy1 =S\ {z €8k : 32" st (fg,a, (2") — b, (2)) = 27%)
10: end for _ _
Output: Any z, € Sp4q (or the whole set Sy 3 when aiming at identifying the optimal arm).

Alporithm 7 Adaptive Strategy for Model Selection with misspecification (Fixed Confidence)

Input: Confidence parameter 4.
1: Randomly select a z, € A" as the recommendation for the s-optimal arm.
2: for F=1,2,... do
3 Set y¢ = 2¢ and §; = §/(4F*). Initialize an empty pre-selection set 4; = {}.

4 fori=1,2,...,fdo

5 Set ny = 2!, By = 27" and get 3! = GEMS-m(ny, By, &;). Insert 3* into A,.

6: end for

7:  Validation. Pull each arm in A exactly [8log(2/4,)/?] times. Update Z, as the arm with the highest
empirical mean (break ties arbitrarily).

8: end for

E.2.2 Lemma 8 and Its Proof
We introduce function f: M, — R, as follows, which is also used in Appendix E.3.

fiy = {42 i k < [logy(2/2)] +1,
4T k> [logy(2/2)] +1.

flE) iz used to quantify the optimality of the identified arm, and one can clearly see that f(k) is non-increasing
in k.

Lemma 8. Suppose B = max{64p] ..,(2),7a,(e)(()}- With probability at least 1 — 4, Algorithm 6 oufputs an
arm z, such that Az < f(n+1). Furthermore, an c-optimal arm is output as long as n = logy(2/2).

Proof The logic of this proof is similar to the proof of Lemma 1. We additionally deal with misspecification in
the proof For fixed =, we use the notation d, = d, (=) throughout the proof.

We consider event

Ep = {2, € gﬁ: C &1
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and prove through induction that, for & < [logs(2/2)],
P(Ekyr | Ne<i&s) = 1 — by,

where 8y := 0. Recall that Sy = {z € Z: A, < 4.27%} (with §; = Z). For n > k + 1, we have S, C Sy due
to the nature of the elimination-styled algorithm, which guarantees outputting an arm such that A; < f(n+1).

Step 1: The induction. We have {z, € §; C §,} since §; = S, = Z by definition for the base case (recall we
assume that masx;c=z A; < 2). We now assume that My-p41&; holds true and we prove for iteration k + 1.

Step 1.1: dy > d,. Since S; C S, we have

gr(dy) = max{2®*:(V(va. (5i))), ra. ()}
< max{2%u(V(va. (Se))). ra. (O}
< max{64pj (£),7q, ()} (34)
< B, (35)
where Eq. (34) comes from Lemma 4 and Eq. (35) comes from the assumption. As a result, we know that dp. = d,
since dj. is selected as the largest integer such that gp(dy) < B.
Step 1.2: Concentration. Let {x,...,zy,} be the arms pulled at iteration k& and {ry,...,75, } be the

corresponding rewards. Let 8 — A 'by € R% where Ay = Y 0% by, (zo)tba, (o) 7, and by = Y% g, (x:)by.
Based on the definition of 8 € R” and 74(-), we can write r¢ = h(x;) + & = ($a, (65%), Yu. (21)) + mae (z4) + &,
where & is Li.d. generated zero-mean Gaussian noise with variance 1; we also have |ng, (z:)| = F(di) by definition

of 5(-). For any y € Y(va, (Sk)), we have

(.85 — v, 02| = v 45" S (e — ", (0%)

=1

N
= lyT A S Y, (20) (Y, (20) T a, (03%) + ma, (z0) + &) — " a, (B.)
=1

N
= v A" ta () (mae () + &)
=1

Ni
+ly ALY (z)éd|. (36)

=1

Ni
<y AR va (zma. (z0)

=1

We next bound the two terms in Eq. (36) separately. For the first term, we have

Ne
< F(dk) > _|y" Ay "a, (zo)|

=1

Ng 3
—5(d) S (57 A7 b, (20))

=1

N
y ALY, (zo)ma, ()

i=1

Ni
<)y N 3 (vT Ay v, () (37)

i=1

Ni
= )| Ne 3 uT A (s, )T ARy

i=1

= F(di)y/Nillyll 32

< F(di)y (1 + OV (i, (5e)) (38)
< 5(di) /T + OV B, (S)) (39)
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where Eq. (37) comes from Jensen’s inequality; Eq. (38) comes from the guarantee of rounding in Eq. (3); and
Eq. (39) comes from the fact that S C Sp.

For the second term in Eq. (36), since &5 are independent 1-sub-Gaussian random variables, we know that the

random variable y T A ' SNk 1by, ()¢, has variance proxy \/ e (yT A YN g, (24))2 = |yl a1~ Combin-
ing the standard Hoeffding's inequality with a union bound leads to

< ||y||,4;qfﬂug(|§k|2m)) >1-4, (40)

where we use the fact that |V(, (Sk))| < |Sk|?/2 in the union bound.
Putting Eq. (38) and Eq. (40) together, we have

N
Y AT da (e

=1

F("e’y = J’(‘i.lf’d* {Ek}j*

P(Vy € Vb, (50), | (v B — ¥, (02))| < Fi)ua + () 2 1- 54, (1)

where u = /(T + Q) (Ja. (5r))) and wi(y) = [yl -1/ 2log 15kI2/x )

Step 1.3: Correctness. We prove z, € §g+1 C 8py1 under the good event analyzed in Eq. (41).
Step 1.3.1: z, € Spp1. For any 7 € &, such that 7 # z,, we have

(V. (2) — Y (22), ) < (P (2) — Yau (), Yo (67%)) + v(die) e + wie(Va, (2) — Y, (24))
= h(Z) — 14, (2) — hlz.) + na, (2) + 7(du)ek + wi (P, (2) — P, ()
< (2 + w)F(di) + wi(a, (7) — P, (2.))
<27k 497k (42)
=927k

where Eq. (42) comes from Proposition 6 combined with the fact that dp = d, (as shown in Step 1.1}, and the
selection of N together with the guarantees in the rounding procedure Eq. (3).

Step 1.3.2: Siy1 C Sis1. Consider any z € Sp NSE, ;, we know that A; > 2.2 by definition. Since z, € S,
we then have
(e, (24) — va, (2), k) = (Va, (2) — va, (2:), Y, (05%)) — v(di)ex — wi(dha, (2) — a, (24))
= h{z.) — na, (2.) — h(z) + na, (z) — y(di)or — wi(thg, (Z) — a, (2))
>2.27% — (2 + u)F(di) — wi(tba, (2) — va, (2.))
=>92.97% _9-kp_o-ks (43)
=27k
':ihere Eq. (43) comes from a similar reasoning as appearing in Eq. (42). As a result, we have z & §k+1 and
Sgg1 C Sy

To summarize, we prove the induction at iteration £+ 1, ie,

P(Ekyr | Necky1&) = 1 — by,

Step 2: The error probability. The analysis on the error probability is the same as in the Step 2 in the proof
of Lemma 1. Let £ = N™'&; denote the good event, we then have

P(£) > 1— 4.
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E.2.3 Proof of Theorem 5
Theorem 5. With probability at least 1 — 4, Algorithm 7 starts to output 2z-optimal arms after N =
O(logy(1/2) max{pg} [E){E:I.. Ta, =€)} + 1/2%) samples, where we hide logarithmic terms besides log,(1/2) in the

O notafion.

Proaf. The proof is decomposed into four steps: (1) locating good subroutines; (2) guarantees for the validation
step; (3) bounding error probability and (4) bounding unverifiable sample complexity. For fixed =, we use
shorthand d, = d, () throughout the proof.

Step 1: The good subroutines. Consider B, = max{64p} , 74, ({)} and n, = [logs(2/z)]. For any subroutines
invoked with By > B, and n; > n,, we know that, from Lemma 8 the output set of arms are those with sub-
optimality gap < £. Let i, = [loga(B.)], js» = [loga(n,)]| and £, = i, + j.. We know that in outer loops £ = £,,
there must exists at least one subroutine invoked with By = 2!+ > B, and n; = 27 > n,. As a result, A; contains
at least one c-optimal arm for £ = £,

Step 2: The validation step. For any © € 4;, we use EI:I:I to denote its sample mean after [8log(2/d;)/7]
samples. With 1-sub-Gaussian noise, a standard Hoeffding's inequality shows that and a union bound gives

F(‘e’z € Ae: [h(z) — h(z)| > E('?) < €5, (44)
As aresult, a 2s-optimal arm will be selected with probability at least 1 — £4;, as long as at least one s-optimal
arm is contained in Ag.

Step 3: Error probability. We consider the good event where all subroutines invoked in Algorithm 2 with
B; = B, and (any) n; correctly output a set of arms with sub-optimality gap < f(n;+ 1), as shown in Lemma 8,
together with the confidence bound described in Eq. (44) in the validation step. This good event clearly happens

with probability at least 1 —3 ;- | Ef:l 28 =135~ 8/(26%) > 1—4, after applying a union bound argument.
We upper bound the unverifiable sample complexity under this good event in the following.

Step 4: Unverifiable sample complexity. For any subroutine invoked within outer loop £ < £, we know,
from Algorithm 6, that its sample complexity is upper bounded by (note that |Z)? > 4 trivially holds true)

Ne < ng(By- (10 log(1Z1°/62.)) +1)
< 11 log(42°6/5).

The validation step within any outer loop £ < £, takes at most £ [8log(2/8:)/c7] < 9log(8€2 /8)£, /= samples.
Thus, the total sample complexity up to the end of outer loops £ < £, is upper bounded by

L.
N < (ENg+£- [8log(2/5)/=])
=1

£,
< 11 log(421°6/8) 3 2° + 910g(863/5)3 <

=1
< 22 log (4126 /5) £,2% + 9log(8E2 /6)£3 /<.

By definition of £, we have

£, < logy(4log,(4/e) max{64p] ,7q, (()}),
and
E'Et- — 2(‘«-4‘3«-]’

< 4(logy(2/2) + 1) max{64p4_,ra_({)},
= 4logy(4/2) max{64p; ,7a,({)}
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Set 7, = loga(4/2) max{p] ,r4.(()}. The unverifiable sample complexity is upper bounded by (we only consider
the case when £ < 1 in simplifying the bound: otherwise there is no need to prove anything since masx, -y A, < 2)
N < 56327, - (loga(ry) + 8) - log (42 (loga(r2) + 8)°/5) + 9/2% - (loga(rs) + 8)? - log(8(loga(r.) +8)°/5)

= O(logs(1/¢) max{ph, ,ra, (()} +1/¢%),
where we hide logarithmic terms besides log(1/2) in the O notation. O

E.2.4 Identifying the Optimal Arm under misspecification

When the goal is to identify the optimal arm under misspecification, i.e., by choosing £ = Apjy, one can apply
Algorithm 2 together with Algorithm 6 as the subroutine (thus removing the 1/22 term in sample complexity).
This combination works since, with appropriate choice of B, Algorithm 6 is guaranteed to output a subset of
arms Sy with optimality gap < Apjp when n > loga(2/Anmin). This implies that § = {z,} and thus the one
can reuse the selection rule of Algorithm 2 by recommending arms contained in the singleton set. Note that we
can work with the general transductive linear bandit setting in this case, ie., we don’t require Z C A" anymore.

E.3 Omitted Proofs for the Fixed Budget Setting with Misspecification

E.3.1 Lemma 9 and Its Proof

Lemma 9. Suppose 64p; _ (2) < B < 128p) ,(£) and T/n = ry (o(() + 1. Algorithm 3 outputs an arm Z,
such that As < f(n 4+ 1) with probability at least

T
1-n]Zexp| ———n— .
25601 05, ()

Furthermore, an z-optimal arm is output as long as n = logs(2/=).

Proof The proof is similar to the proof of Lemma 2, with main differences in dealing with misspecification. We
provide the proof here for completeness. We consider event

Ee={z € gﬁ: C &l
and prove through induction that, for & < [logs(2/2)],
P(Ekyr | Ne<i&s) = 1 — by,

where the value of {ﬁﬁ}LE%’[wEﬂ will be specified in the proof. For n > k + 1, we have §; C 8,1 due to the
nature of the elimination-styled algorithm, which guarantees outputting an arm such that A; < fin + 1). We
use the notation d, = d,(=) throughout the rest of the proof.

Step 1: The induction. The base case {z, € 8§ C &1} holds with probability 1 by construction (thus, we
have §; = 0). Conditioned on events NF_, £, we next analyze the event &, .
Step 1.1: d = d,. We first notice that D is selected as the largest integer such that () = T'. When

T/n = ra. () + 1, we have D > d, since T" > T//n — 1 > r4,(¢). We remark here that for whatever d; € [D]
selected, we always have ry_(() < r5(() = T' and can thus safely apply the rounding procedure described in
Eq. (3).

Sinnegp,ESkTwea]sahmre

ar(ds) = 220V (a. (Sk)))
< 2254 V(e (Sk)))
< 64p5 (€) (45)
<B, (46)
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where Eq_ (45) comes from Lemma 4 and Eq. (46) comes from the assumption. As a result, we know that dp. = d,
since dj £ [f.'-‘] iz selected as the largest integer such that geidy) < B.

Step 1.2: Concentration and error probability. Let {xi,...,zr'} be the arms pulled at iteration k
and {ry,...,rr} be the corresponding rewards. Let 8 — Ay 'b; € R where Ay = Y0 tha, (Te)vha, ()7,
and b, = EE;I g, (x;)by. Since dp = d, and the model is well-specified, we can write ry = {#,,1,) + & =

(tha, (8.), a, (z4)) + &, where & is iid. generated zero-mean Gaussian noise with variance 1. Similarly as
analyzed in Eq. (41), we have

P(Vy € Y, (50), | (3.8 — ¥4, 02))] < Fld + we®) 21— 8, (47

where 1 1= /(1 + ()e(V(tq, (Se))) and wg(y) := [lyll 4 ?hg(lgklﬂfﬁk)-

By setting max,_, s [lyll - Qlug(|§k|2,f§k) —9-*/2 we have

= 1
O = Isﬁ:lﬂexp - 3
8. 92 ma%E‘[,di{g*)”y”A?

Cep ) T _ 48
< Skl JEP’( 8_225:{1+C}L{yw’d*(‘gk”}) -

2 T
= |Z| GJ‘TP(—W): (49)

where Eq. (48) comes from the guarantee of the rounding procedure Eq. (3); and Eq. (49) comes from combining
the following facts: (1) 2%* L(y{:,t:d,{.?,.,j}} < B <1285 (£); () T" 2 T/n —1 = T/2n (note that T/n >
ra, ({)+1 = T/n = 2 since rg_({) = 1); (3) Sk C Z and (4) consider some ¢ < 1 ({ only affects constant
terms).

Step 1.3: Correctness. We prove z, € §g+1 C 841 under the good event analyzed in Eq. (47).
Step 1.3.1: z, € Spp1. For any 7 € &, such that 7 # z,, we have

(a, (2) — va, (2:), Ok) < (tha, (2) — va, (2.), ¥, (09%)) + F(di)u +275/2
= h(Z) — na, (2) — h(zs) + 14, () + F(de)ee +27%/2
< (24 ) Fldi) + 27572
<27k 9k (50
=92k
where Eq. (50) comes from comes from Proposition 6 combined with the fact that d > d, (as shown in Step
1.1). As a result, z, remains in Sg;y according to the elimination criteria.
Step 1.3.2: Sy C Sis1. Consider any z € Sp NSE, ,, we know that A; > 2.2F by definition. Since z, € S,
we then have
(tha, (22) — a, (2), B} = (a, (2) — P, (24), 0, (%)) — F(de)ee — 27%/2
= h(z) — 4, (2:) — h(z) + ma, (z) — F(de)ee — 27572
>2.27% (24 u)F(de) — 2752
=2-27% —(di) — 272
=27k, (51)

where Eq. (51) comes from a similar reasoning as appearing in Eq. (50). As a result, we have z & §k+1 and
Sgg1 C Sy
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To summarize, we prove the induction at iteration £+ 1, ie,

P(Ekyr | Necky1&) = 1 — by,

Step 2: The error probability. This step is exactly the same as the Step 2 in the proof of Lemma 2. Let
£ = ﬂ:‘:llfi denote the good event, we then have

P(£) 21 —n|Z|?exp (_#M) '

E.3.2 Proof of Theorem 6

Theorem 6. Suppose 2 C X, IfT = ﬁ{lﬂgﬂ{lej ma:c{pl(Ejl[E},rd_[E){C}}], then Algorithm J oufputs an
2z_optimal arm with error probability at most

. B T
loga(4/2)\ 21 “"P( mgslugzws}fs;.mffi')

T
+ s o0~ 77 )

Furthermore, if there erist wuniversal constants such that ma:cIE,t-”t,'de_ [E}{I}"2 < ¢ and
m.i.uzez”t,'fld_{s}{z*:l — ﬁJd*(Ej{z]”E = o, the error probability is upper bounded by

D(max{lﬂgel[l!ﬁllzlﬂ-. (logy 1)}

x - cal
P\ " max{log,(1/2), (loga T)%}erpy o, 6) ) |

Proof The proof follows similar steps as the proof of Theorem 4. Although we are dealing with a misspecified
model, guarantees derived in Lemma 9 is similar to the ones in Lemma 2. When £ < Ap,, the proof goes
almost exactly the same as the proof of Theorem 4 (with pj replaced by pj (=), and Algorithm 4 identifies
the optimal arm. When £ > A, , we additionally replace A, by £ and equally split the 2= slackness between
selection and validation steps. We also slightly modify Lemma 6 to an s-relaxed version (e.g | in the derivation
of Eq. (12), select a 2z’ € £ with sub-optimality gap < £ and then replace Mgy by 2). O

F ADDITIONAL EXPERIMENT DETAILS AND RESULTS

We set confidence parameter § = 0.05 in our experiments, and generate rewards with Gaussian noise & ~ N (0, 1).
We parallelze our simulations on a cluster consists of two Intel(®) Xeon(®) Gold 6254 Processors.

Similar to Fiez et al. (2019), we use a Frank-Wolfe type of algorithm (Jaggi, 2013) with constant step-size ki-rz
{we use k to denote the iteration counter in the Frank-Wolfe algorithm) to approximately solve optimal designs.
We terminate the Frank-Wolfe algorithm when the relative change of the design value is smaller than 0.01 or
when 1000 iterations are reached. We use the rounding procedure developed in Pukelsheim (2006) to round
continuous designs to discrete allocations (with { = 1, also see Fiez et al. (2019) for a detailed discussion on the
rounding procedure). In the implementation of Algorithm 2, we set v = 4%, ny, = 4 and B, = 4*~*, which only
affect constant terms in our theoretical guarantees. We use a binary search procedure to select dp in Algorithm 1.

Additional Experiment Results. We consider a problem instance with & = Z being 100 randomly
selected arms from the D) dimensional unit sphere. We set reward function hiz) = (#,,z) with 8, =
[%;, Qla-, e ,m;-,ﬂ ...,0]T € RP. We filter out instances whose smallest sub-optimality gap is smaller than (.08
We set d, = 5 and vary the ambient dimension I} € {25, 50, 75, 100}. As in Section 7, we evaluate each algorithm
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with success rate, (unverifiable) sample complexity and runtime. We run 100 independent random trials for each
algorithm. Due to computational burdens, we force-stop both algorithms after 50, 000 samples; we also force-stop
the Frank-Wolfe algorithm when 500 iterations are reached.

Table 3: Comparison of Success Rates

D 25 a0 7™ 100

RAGE 100% 100% 08% 05%
Ours 01%  98% 97% O8%

Success rates of both algorithms are shown in Table 3, and RAGE shows advantages over our algorithm when D

is small. Fig 2 shows the sample complexity of both algorithms: Our algorithm adapts to the true dimension
d, yet RAGE is heavily affected by the increasing ambient dimension D
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Figure 2: Comparizson of Sample Complexity

The runtime of both algorithms are shown in Table 4. RAGE shows clear advantage in runtime and our algorithm
suffers from computational overheads of conducting model selection.

Table 4: Comparison of runtimes

E 102 10-3 104 10—+

RAGE 8509s 144.7THs 240.70s 357.08s
Ours  287.00s 339.67s 480.50s 678.93s

We remark that, for the current experiment setups with d, and D € {25 50, 75, 100}, our algorithm does not
perform well if 8, is chosen to be flat, eg | 8, = [ﬁ ey %, 0,...,0]" € RP. However, we believe that one
will eventually see model selection gains if I} is chosen to be large enough (and allowing each algorithm takes
more samples before force-stopped). One may need to overcome the computational burdens, e g developing
practical (or heuristic-based) implementations of our algorithm and RAGE, before running experiments in higher
dimensional spaces. We leave large-scale evaluations for future work.
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