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Abstract

We consider interactive learning in the realizable setting and develop a general
framework to handle problems ranging from best arm identification to active classi-
fication. We begin our investigation with the observation that agnostic algorithms
cannot be minimax-optimal in the realizable setting. Hence, we design novel com-
putationally efficient algorithms for the realizable setting that match the minimax
lower bound up to logarithmic factors and are general-purpose, accommodating
a wide variety of function classes including kernel methods, Hölder smooth func-
tions, and convex functions. The sample complexities of our algorithms can be
quantified in terms of well-known quantities like the extended teaching dimen-
sion and haystack dimension. However, unlike algorithms based directly on those
combinatorial quantities, our algorithms are computationally efficient. To achieve
computational efficiency, our algorithms sample from the version space using
Monte Carlo “hit-and-run” algorithms instead of maintaining the version space
explicitly. Our approach has two key strengths. First, it is simple, consisting of
two unifying, greedy algorithms. Second, our algorithms have the capability to
seamlessly leverage prior knowledge that is often available and useful in practice.
In addition to our new theoretical results, we demonstrate empirically that our
algorithms are competitive with Gaussian process UCB methods.

1 Introduction

In this paper, we study interactive learning where an algorithmmakes a decision and observes feedback
that it then uses to update its behavior. Interactive learning problems are becoming increasingly
widespread in the information era. Examples include A/B/n testing where technology companies
perform large-scale experiments to adaptively collect data to optimize their products on platforms like
websites or smart phone applications [1]; active classification where learning algorithms adaptively
collect data with the hope of learning high-quality predictive models using a much smaller number
of labels than is typically required in supervised learning [2]; and environmental monitoring using
sensor networks [3].

At a high-level, there are two main algorithmic paradigms for interactive learning: agnostic algorithms
and realizability-based algorithms. Agnostic algorithms may use a model class F to guide learning,
but do not assume that the true data-generating process is well-modeled by F . Because of this,
agnostic algorithms tend to have the advantages of being robust to model misspecification and noise.
Due to these virtues, agnostic algorithms have received much attention in the literature on interactive
learning, e.g., in active classification [4, 5, 6]. By contrast, realizability-based algorithms assume
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that the model class F accurately models the real-world and leverages the structure in F to guide
and potentially accelerate learning. Computationally efficient realizability-based algorithms have
only been developed for specific model classes for problems like best arm identification [7, 8, 9] and
regret minimization [10], and the literature lacks a general framework for developing computationally
efficient minimax optimal algorithms for generic function classes in the realizable setting.

The starting point of this paper is the basic question: in the realizable setting, can agnostic algorithms
compete with realizability-based algorithms? In this paper, we begin by giving a series of negative
results that demonstrate that agnostic algorithms pay a significant cost for their robustness to model
mispecification. As an example, we show that any agnostic active classification algorithm is
minimax suboptimal for a class of realizable instances and thus has no hope of competing with
realizability-based algorithms in the realizable setting. These results motivate us to develop a general
framework for computationally efficient and sample-efficient algorithms for generic function classes
in the realizable setting. In doing so, we solve an open problem dating back to the work of [11]
on the Haystack Dimension, developing the first computationally efficient algorithm for best arm
identification with generic function classes that matches the minimax lower bound up to logarithmic
factors. Finally, we empirically demonstrate the generality and practicality of our new approach,
GRAILS, for function classes ranging from vanilla kernel methods to kernel methods with side
information and to the class of convex functions.

2 Problem Setup

Let X denote the input space and Y ⇢ R the output space. We assume that |Y| < 1, but will
relax this assumption later. Let x1, . . . , xn 2 X be a fixed pool of n measurements (or arms) with
associated scores y1, . . . , yn 2 Y . At each round t, the learner selects (or queries) It 2 [n] and
observes yIt . We assume that the learner is given a function class F ⇢ Y

X where YX denotes the
set of all functions mapping X to Y . We say that realizability holds if there exists f⇤

2 F such that
f
⇤(xi) = yi for all i 2 [n]. An algorithm is realizability-based if it assumes realizability. We focus

on the noiseless setting here, but it is straightforward to extend our algorithms to handle the case
where yIt is perturbed by independent, additive noise by simple repeated sampling.

We consider the following three objectives:

• Best arm identification: The goal is to identify an element of argmin
i2[n]yi using as few queries

as possible.
• Cumulative Loss Minimization: The goal is to identify an element of argmin

i2[n]yi while
minimizing the loss

P
T

t=1 yIt incurred where T is the round that the agent identifies an element
of argmin

i2[n]f
⇤(xi).

• Active Classification: The goal is to identify an element of argmin
f2F

P
n

i=1 {yi 6= f(xi)}
using as few queries as possible.

Best-arm identification is a well-studied problem with applications ranging from clinical trials to
A/B/n testing. Cumulative loss minimization is a new problem. Applications include running a
clinical trial to determine which of a collection of drugs is most effective while, due to ethical concerns
about giving patients ineffective drugs, minimizing the number of participants with bad outcomes. It
is closely related to regret minimization where the goal is instead to minimize

P
T0

t=1 yIt �mini2[n] yi

for a fixed time horizon T0. Finally, active classification is a mature field whose goal is to minimize
the number of labels required to learn a high-quality classifier.

Our main focus in this work is on minimax optimality for a fixed F in the realizable setting:

• Best arm identification: ⇤best(F) is the smallest integer q such that there exists some algorithm
A such that for every f⇤

2 F , A outputs an element of argmin
i2[n]f

⇤(xi) after at most q queries.
• Cumulative Loss Minimization: ⇤loss(F) is the smallest real number q such that there exists
some algorithm A such that for every f

⇤
2 F , A outputs an element of argmin

i2[n]f
⇤(xi) after

incurring a loss of at most q.
• Active Classification: ⇤class(F) is the smallest integer q such that there exists some algorithm A

such that for every f⇤
2 F , A outputs f⇤ after at most q queries.
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We emphasize that the above notion of minimax optimality is with respect to the class F . Next, we
briefly summarize our contributions:

• Best arm identification: Assuming we can sample efficiently from a distribution ⇡ with support
F , we give a greedy and computationally efficient algorithm that obtains a sample complexity
of O(log(n) log( 1

P⇡(Sf⇤ ) )�
⇤
best) where P⇡(Sf⇤) is the probability of sampling f

⇤ and �
⇤
best is

a combinatorial quantity related to the extended teaching dimension and is a minimax lower
bound. This is the first computationally efficient algorithm for best arm identification with generic
function classes that matches the minimax lower bound up to logarithmic factors.

• Loss minimization: We propose a new algorithm that achieves a loss of O(�⇤
loss log(|F|)) in the

worst case where �⇤
loss is the minimax lower bound. We show that when applied to the regret

minimization setting with general function classes, our algorithm achieves a state-of-the-art regret
bound that is always better than the prior state-of-the-art regret bound in [11], can be arbitrarily
better, and for a large set of function classes matches the minimax lower bound up to logarithmic
factors. Furthermore, using our techniques from our algorithm for best arm identification, we
make this algorithm computationally efficient by leveraging a sampling oracle.

• Active Classification: We show that there exists a class of realizable instances such that any
agnostic algorithm must query ⌦̃(

p
n) arms to identify the true classifier f⇤, but there is a

realizability-based algorithm that requires O(log(n)) queries. This demonstrates an exponential
gap between agnostic and realizability-based algorithms for active classification.

3 Related Work

Best arm identification has received much attention in the literature but predominantly for special
classes of functions (e.g., linear) [12, 13, 7, 8, 9]. By contrast, our work concerns best arm identi-
fication with general function classes, which has received much less attention, and is most closely
related to [11]. [11] introduce a combinatorial quantity HD(F) known as the haystack dimension,
and propose a greedy algorithm that achieves a sample complexity of HD(F) log(|F|), but is not
computationally efficient. We build on this work by designing a greedy algorithm that achieves
computational efficiency by appealing to [14] to sample functions from the function class F . A key
technical challenge is that the version space under a greedy algorithm is not convex and therefore
standard sampling algorithms like “hit and run” cannot be directly applied to it.

[15] gives a general computationally efficient algorithm that solves many pure exploration problems
such as active classification and clustering. Their algorithm requires specifying a distance d between
functions in the function class F and proceeds by shrinking the average diameter of F as measured
by d. Unfortunately, for problems such as best arm or ✏-good arm identification, it is unclear how to
construct the appropriate distance function to achieve optimal performance or even if such a function
exists for a given application.

Active Classification: There have been many works on active classification [6, 2], both in the
realizable setting (e.g., [16, 17, 18]) and on agnostic algorithms (e.g., [5, 19, 4, 20]). Proposition 1
shows that agnostic algorithms are minimax suboptimal in the realizable setting, suggesting that they
may never be able to match the performance of realizability-based algorithms. Our work is closely
related to the problem of Exact learning where a learning algorithm is required to identify the true
f
⇤ with probability 1 [21, 22], in contrast to the PAC requirement where a failure probability of � is

permitted. While this requirement is certainly strong, this framework enables the design of practical
algorithms, as suggested by our experiments.

Bayesian Optimization: Our work is also related to the vast field of Bayesian optimization. We
review a few relevant theoretical results and refer readers to [3] for a thorough survey. [23] propose
and analyze GP-UCB. Although GP-UCB is applied often to best arm identification problems, [23]
only give a regret bound and optimality is unclear. Other notable works include [24] whose results
are asymptotic and the recent paper [25], which gives a new algorithm for best arm identification for
kernel bandits based on experimental design, but its optimality is unclear.
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4 No Free Lunch for Agnostic Algorithms

Many agnostic algorithms have been proposed in the active classification literature (e.g. [5, 19, 4]).
We say an algorithm A is �-agnostic if for any labeling of the data y 2 Y

n, A finds the best classifier,
argmin

f2F
P

n

i=1 {y 6= f(xi)}, with probability at least 1� �. Despite considering a much larger
class of possible labelings, agnostic algorithms have been shown to achieve the lower bound in the
realizable setting for the well-studied problem of thresholds where F = {f1, . . . , fn} and fi(xj) = 1
if j  i and fi(xj) = 0 otherwise [26]. This raises the question: can agnostic algorithms be optimal
over classes of realizable instances in general? The following result shows that the sample complexity
of agnostic algorithms is necessarily worse than the minimax lower bound by an exponential factor.

Proposition 1. Let � 2 (0,min( 1
20 ,

1
n
)). Consider the active classification setting. There exists

x1, . . . , xn and F forming a class of instances I = {(xi, f(xi))ni=1 : f 2 F} such that

• the expected number of samples of any �-agnostic algorithm is ⌦
⇣
log(1/�)

p
n

log(n/�)

⌘
on one of

the instances in I, and

• there exists a realizability-based algorithm that solves each instance in I in O(log(n)) queries.

It turns out agnostic algorithms are also minimax suboptimal for regret minimization, a problem
closely related to loss minimization as we will discuss in more detail in Section 6. Here, we say that a
regret minimization algorithmA is ✏-agnostic if for any y 2 Y

n such thatminj2[n]\{i⇤} yj � yi⇤ � ✏

where i⇤ 2 argmin
i2[n]yi, A suffers at most bounded regret independent of the time horizon.

Proposition 2. There exists F such that any 1-agnostic algorithm suffers regret at least O(|F|)
for some instance in F while there exists a realizability-based algorithm suffering regret at most
O(log(|F|)).

For best-arm identification, a fully agnostic algorithm must consider any y 2 Y
n and it is therefore

trivial that it would need to query every xi. Therefore, we consider a weaker notion of agnostic
algorithm. For k 2 N and � 2 (0, 1), we say an algorithmA is (�, k)-agnostic if for any y 2 Y

n such
that minf2F

P
n

i=1 {f(xi) 6= yi}  k, A identifies argmin
i2[n]yi with probability at least 1 � �.

Despite only allowing for small amounts of mispecification, there is still an exponential gap between
the performance of agnostic algorithms and the minimax lower bound.

Proposition 3. Let � 2 (0,min( 1
40 ,

1
n
)). There exists F such that for any algorithm A that is

(�, 1)-agnostic with respect to F , A takes ⌦
⇣

n

log(n/�)

⌘
queries in expectation on some instance in F ,

while there exists a realizability-based algorithm requiring O(1) samples on all instances in F .

Techniques: The above results rely on a novel approach for constructing instance-dependent lower
bounds for the noiseless setting. The key idea is a reduction of the noiseless setting to a setting where
observations are corrupted with a Gaussian random variable, that is, when the arm i 2 [n] is queried,
the agent observes yi + ⌘ where ⌘ ⇠ N(0, 1), instead of yi. This reduction enables the application
of the transportation Lemma from the multi-armed bandit literature [27] to the noiseless setting and
thereby to construct instances where agnostic algorithms necessarily perform poorly.

5 Best Arm Identification

Given the limitations of agnostic algorithms for interactive learning in the realizable setting established
in the prior section, we now turn to developing realizability-based algorithms that are computationally
efficient and match the minimax lower bound up to logarithmic factors. In this section, we examine
the best arm identification problem in which the goal is to identify an i⇤ 2 argmin

i2[n]yi using as few
queries as possible. Practitioners may be willing to sacrifice a bit of optimality if that makes it easier
to solve a problem and thus here we state some of our results and our algorithm in terms of ✏-good
arm identification, a strict generalization of best arm identification. In this problem, we are given
✏ � 0 and the goal is to identify an ✏-good arm, that is, an i⇤ 2 [n] such that yi⇤  mini2[n] yi + ✏.
When ✏ = 0, this reduces to best arm identification.
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We begin by introducing a new quantity, inspired by the extended teaching dimension, for quantifying
the difficulty of identifying an ✏-good arm in a worst-case sense.

�
⇤
best,✏(F) = maxg:X 7!Y min

I⇢[n]
|I|

s.t. 9j 2 [n] : {f 2 F : f(xi) = g(xi) 8i 2 I} ⇢

⇢
f 2 F : f(xj)  min

l2[n]
f(xl) + ✏

�
.

We occasionally write �⇤
best,✏ instead of �

⇤
best,✏(F) when the context leaves no ambiguity. When ✏ = 0,

we simply write �⇤
best(F) instead of �⇤

best,✏(F). In words, �⇤
best is the minimum number of samples

required so that for any function g : X 7! Y , there is a subset of queries of size �⇤
best that can make

the best arm i⇤ 2 [n] unambiguous by eliminating all f 2 F that do not put i⇤ as the best. The
following theorem establishes �⇤

best as a lower bound to the optimal minimax sample complexity ⇤best
for best arm identification.
Theorem 1. For any F ⇢ Y

X , �⇤
best(F)  ⇤best(F).

The setting of best arm identification in general function classes was previously studied in [11] in
which the sample complexity results were quantified in terms of the Haystack dimension. Specifically,
letting F

0
⇢ F , define F

0((xi, y)) = {f 2 F : f(xi) 6= y}, the subset of functions in F
0 that

disagree with the label y on xi, and F 0(xi) = {f 2 F : i 2 argmin
j2[n]f(xj)}, the set of functions

in F
0 that are minimized at xi. Define �(F 0) := supi2[n] infy2Y

|F 0(xi)[F 0((xi,y))|
|F 0| . The Haystack

dimension is defined as:

HD(F) :=
1

infF 0⇢F �(F 0)
.

The following Proposition shows that �⇤
best(F) is never significantly less than the Haystack dimension

HD(F) and is never greater than HD(F) by more than a O(log(|F|)) factor.
Proposition 4. For any F ⇢ Y

X , HD(F)�1  �
⇤
best(F)  cHD(F) log(|F|), where c is a positive

universal constant.

5.1 Sampling Oracles for Efficient Realizable Active Learning

In this section we introduce the concept of a sampling oracle, a key tool for achieving computational
efficiency. In contrast to prior active methods that enumerate an intractably large version space (e.g.,
[11, 21]), we instead place a measure over the version space to track its size without explicitly storing
it and use sampling to approximate this measure. Let R ⇢ RX be a set of regression functions where
RX denotes the set of all functions r : X 7! R. Given R ⇢ RX , we say that we have access to a
sampling oracle forR if there exists a distribution ⇡ onR such that

• we can draw r ⇠ ⇡, and
• for any eR = {r 2 R : (r(x1), . . . , r(xn))> 2 H} where H is the intersection of poly(n, d)
halfspaces of the form {x 2 Rn : w>

x  b}, we can sample r ⇠ ⇡ eR where for any measurable
A ⇢ eR ⇡ eR(A) = ⇡(A)

⇡( eR)
.

By representing constraints on the version space as a setH in the second bullet, we can leverage sam-
pling techniques to estimate the measure over the version space efficiently. We show in Appendix B
that non-trivial sampling oracles are available for many useful function classes such as linear models,
kernel methods, and convex functions. To keep the presentation simple, we assume here that we can
compute probabilities exactly and show that approximation suffices in the appendix.

For z 2 R, let D[z] denote the y 2 Y that is closest to z, tiebreaking by rounding down. The set of
regressorsR, together with D[·], induces a set of discretized functions mapping X to Y

FR = {D[r] : r 2 R}.

Our algorithmic approach is to use FR as our predictors and to leverage the structure ofR to achieve
computational efficiency. Our algorithm relies on greedy volume reduction, which requires that the
f 2 F have nonzero measure and the discretized setting ensures this. In the appendix, we extend our
algorithms to the continuous setting but at the cost of a potentially suboptimal sample complexity. We
make the realizability assumption that there exists r⇤ 2 R such that D[r⇤(xi)] = yi for all i 2 [n].
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5.2 The Algorithm

In this section, we present the algorithm for ✏-good arm identification, a strict generalization of best
arm identification. GRAILS (see Algorithm 1) implicitly maintains a version space Rt at each round
overR and thus we define

Rt(xi, y) = {r 2 Rt : D[r(xi)] 6= y}, Rt,✏(xi) = {r 2 Rt : D[r(xi)]  min
j2[n]

D[r(xj)] + ✏},

defined analogously to the set F 0((xi, y)) and F
0(xi) above. Rt(xi, y) consists of functions in the

version space that are inconsistent with the observation (xi, y) and Rt,✏(xi) is the set of functions in
the version space for which xi is an ✏-good arm and therefore no longer need to be considered. When
✏ = 0, we writeRt(xi) instead ofRt,✏(xi).

Algorithm 1 takes the greedy approach. At each round t, our algorithm queries a point It 2 [n] that
maximizes the measure of the functions removed from the version space under a distribution Pk,
namely Pr⇠Pk

(r 2 Rt(xi) [Rt,✏(xi, y)), for the worst case observation y 2 Y . Once the algorithm
queries It, it adds It to Ot, the set of observations up to time t.

Now, we describe our sampling approach. To keep the presentation simple and to capture the main
ideas, we assume here R is convex. Define better✏ = maxy<mini2Ot

yi�✏y, the largest value that is
smaller than any observation by more than ✏, which is well-defined since Y is discrete. Note that
r 2 Rt only if there exists l 2 [n] \ Ot such that D[r(xl)]  better✏. We may decompose the
version spaceRt as the union of O(n) sets:

Rt = [l2[n]\Ot
{r 2 R : D[r(xi)] = yi 8i 2 Ot, and D[r(xl)]  better✏} = [l2[n]\Ot

Cl(Ot)

where

Cl(Ot) := {r 2 R : D[r(xi)] = yi 8i 2 Ot, and D[r(xl)]  better✏}.

Each set Cl(Ot) is an intersection of R with O(n) halfspaces and is a convex set. Unfortunately,
a union of convex sets need not be convex so one cannot hope to directly apply algorithms like
hit-and-run to efficiently sample from Rt. To overcome this, the algorithm samples from a mixture
with each component supported on Cl(Ot), a convex set. Operating in stages, in stage k, it puts the
measure Pk over the remaining functions in the version spaces where

Pk :=
1

n� |Ot|

X

l2[n]\Ot

⇡Cl(Ot).

Sampling from the mixture Pk is a key algorithmic innovation in this work and enables efficient
sampling from a non-convex version space.

We make two final remarks. First, STOP(FR,Ot) is a subroutine for terminating the algorithm. It
essentially checks whether the version spaceRt is empty by checking whether each of the Cl(Ot)
sets is feasible. For many function classes of interest such as linear models, kernel methods, and the
class of convex functions, this can be formulated as a convex feasibility problem (see the Appendix
for a concrete instance). Second, in practice, one may not know the true model class precisely apriori,
but it is straightforward to do model selection through the standard doubling technique. For example,
for the class of Lipschitz functions, one may not know the true Lipschitz constant. In these situations,
one can apply a standard doubling trick on the Lipschitz constant.

5.3 The Upper Bound

We now introduce some notation necessary to state our upper bound. Define for every f 2 FR the set

Sf = {r 2 R : D[r(xi)] = f(xi) 8i 2 [n]}.

The sets Sf induce a partition ofR.
Theorem 2. FixR. Let ✏ � 0. There exists a universal constant c > 0 such that if t is greater than

c�
⇤
best,✏(FR) log(

1

P⇡(Sf⇤)
) log(n),

then Algorithm 1 has pulled an arm Is at some s  t such that yIs  mini2[n] yi + ✏.

6



P1  � ⇡,R1  � R, k  � 1, t1 = 1, O1  � ;;
for t = 1, 2, . . . do

Let It 2 argmax
i2[n]\Ot

miny2Y Pr⇠Pk
(r 2 Rt,✏(xi) [Rt(xi, y));

Query xIt and observe yIt and set Ot+1  � Ot [ {It} ;
LetRt+1  � Rt \ (Rt,✏(xIt) [Rt(xIt , yIt));
if Pr⇠Pk

(r 2 Rt+1)  1
2n then

k  � k + 1;
tk  � t+ 1, Pk+1  � 1

n�|Otk
|
P

l2[n]\Otk

⇡Cl(Otk
);

if STOP(FR,Ot) then
return argmin

i2Ot
yi

Algorithm 1: GRAILS (GReedy Algorithm for Interactive Learning using Sampling)

When ✏ = 0, Algorithm 1 and Theorem 2 together solve the open problem from [11] of developing a
computationally efficient optimal algorithm for best arm identification for generic function classes
that matches the minimax lower bound up to logarithmic factors.

Comparison to prior work: [11] proposes a computationally inefficient algorithm for best arm iden-
tification that obtains a sample complexity of O(HD(FR) log(|FR|)). By Proposition 4, �⇤

best(FR)
is upper bounded by HD(FR) log(|FR|), and thus our sample complexity is loose by a factor of
log( 1

P⇡(Sf⇤ ) ) log(n). Although our bound is indeed looser than the bound in [11], we note that
computationally efficient algorithms for other active learning problems that match the minimax lower
bound up to logarithmic factors have a similar logarithmic dependence on the inverse probability of
sampling the true function [18, 15]. Thus, it is an important open question whether it is possible to
develop computationally efficient and nearly minimax optimal algorithms for active learning that
weaken or remove the dependence on log( 1

P⇡(Sf⇤ ) ) in their sample complexity.

We close this section with a simple instance of best arm identification in a linear function class that
provides an easy instantiation of our upper bound.
Proposition 5. Let x1, . . . , xn 2 Rn+1 such that xi = i

n
e1 + 10 · ei+1. Let Ri = {r(v) =

v1 � b + vi+1 : b 2
1
n
[i, i + 1)} where vi denotes the ith entry of v and R = [

n

i=1Ri. Define
Y = {0, 1, 10}. Let ⇡ be a uniform distribution over [0, 1]. Fix f⇤

2 FR. Then, GRAILS returns the
best arm in �

⇤
best(FR) log( 1

P⇡(Sf⇤ ) ) log(n)  O(log(n)2) samples.

By contrast, any non-adaptive algorithm would require ⌦(n) samples for the above function class.
Furthermore, we suspect that the additional logarithmic factor stemming from Theorem 2 is an artifact
of the analysis. We discuss other instances in the appendix.

6 Cumulative Loss Minimization

In this Section, we consider the task of loss minimization. To interpret each yi as a loss, we
assume miny2Y y � 0. Recall that in this setting when the learner identifies an element i⇤ 2

argmin
i2[n]f

⇤(xi), she declares that the game is over. We stress that the learner can identify an
element i⇤ 2 argmin

i2[n]f
⇤(xi) by eliminating all f 2 F such that i⇤ 62 argmini2[n] f(xi).

To begin, we introduce the following novel quantity for quantifying the worst-case difficulty of
cumulative loss minimization, inspired by the extended teaching dimension:

�
⇤
loss(F) :=maxg:X 7!Y min

I⇢[n]
min

eI⇢I:|eI|=|I|�1

X

i2eI

g(xi)

s.t. 9j 2 [n] : {f 2 F : f(xi) = g(xi) 8i 2 [I]} ⇢ {f 2 F : j 2 argmin
i2[n]f(xi)}.

We occasionally write �⇤
loss instead of �⇤

loss(F) when the context leaves no ambiguity. In words, �⇤
loss

is the loss that must be incurred (up to the penultimate round) for some scoring function g : X 7! Y

in order to identify the best arm. Next, we show that �⇤
loss is a minimax lower bound.

Theorem 3. For all F ⇢ Y
X , �⇤

loss(F)  ⇤loss(F).

The following Proposition gives an upper bound of �⇤
loss in terms of �⇤

best.
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P1  � ⇡,R1  � R, k  � 1, t1 = 1, O1  � ;;
for t = 1, 2, . . . do

Let It 2 argmin
i2[n]\Ot

maxy2Y
y

Pr⇠Pk
(r2Rt(xi)[Rt((xi,y)))

;
Query xIt and observe yIt and set Ot+1  � Ot [ {It} ;
LetRt+1  � Rt \ (Rt(xIt) [Rt((xIt , yIt)));
if Pr⇠Pk

(r 2 Rt+1)  1
2n then

k  � k + 1;
tk  � t+ 1, Pk+1  � 1

n�|Otk
|
P

l2[n]\Otk

⇡Cl(Otk
);

if STOP(FR,Ot) then
return argmin

i2Ot
yi

Algorithm 2: GRAILS for Loss Minimization

Proposition 6. For all F ⇢ Y
X , �⇤

loss(F)  �
⇤
best(F)maxy2Yy.

In words, this Proposition reflects that one strategy for cumulative loss minimization is to minimize
the number of queries to identify the best arm, ignoring the losses.

6.1 The Algorithm and Upper Bound

Algorithm 2 is similar to Algorithm 1: it is greedy and operates in phases, sampling from the mixture
Pk in the kth phase due to the nonconvexity of the version space. The main difference is the objective
for selecting It: it queries the arm It that for the worst case y 2 Y minimizes the ratio of the loss
incurred in round t and the volume of the functions removed under the measure Pk. This objective is
inspired by the greedy algorithm for weighted set cover [28].

Define Smin = argmin
Sf :f2FR,P⇡(Sf )>0P⇡(Sf ). Smin is the subset of FR in the partition that has the

least nonzero probability under ⇡. RecallR is a set of regression functions.
Theorem 4. FixR. Algorithm 2 identifies argmin

i2[n]f
⇤(xi) after incurring a loss of at most

eO(⇤loss(FR)) = 2(�⇤
loss(FR) + maxi2[n],f2FRf(xi)) log(n) log

✓
1

P(Smin)

◆
.

The above guarantee is optimal up to a multiplicative factor of log(n) log( 1
P(Smin)

) and an additive
factor of maxi2[n],f2Ff(xi), which is typically of lower order. We also give an algorithm that
enumerates the function class and therefore is not efficient when |FR| is exponential in problem-
dependent parameters, but has a stronger guarantee. Due to space constraints and its similarity to
Algorithm 2, we defer its presentation to the supplementary material and provide the result here.
Theorem 5. Fix F . Algorithm 2 identifies argmin

i2[n]f
⇤(xi) after incurring a loss of at most

eO(⇤loss(F)) = 2(�⇤
loss(F) + maxi2[n],f2Ff(xi)) log(|F|).

Theorems 4 and 5 are the first algorithms for cumulative loss minimization that match the minimax
lower bound up to logarithmic factors. As a corollary, we obtain results for regret minimization,
in which the goal is to identify argmin

i2[n]f
⇤(xi) while minimizing the regret

P
T

t=1 f
⇤(xIt

) �
mini2[n] f

⇤(xi) incurred where T is the round that the agent identifies argmin
i2[n]f

⇤(xi).

Remark 1. If minj f(xj) = 0 for all f 2 F , then loss minimization is equivalent to regret
minimization. In this case, Theorem 5 gives nearly optimal minimax bounds for the regret minimization
metric. Furthermore, if minj f(xj) = minj f 0(xj) =: opt for all f, f 0

2 F , then by subtracting
opt from each f , we reduce to the setting where minj f(xj) = 0 for all f 2 F and obtain a nearly
optimal minimax bound.

To the best of our knowledge, these are the first regret bounds that match the minimax lower bound
up to logarithmic factors for a large and general class of function classes.

Comparison to [11]. Next, we compare our algorithm in Theorem 5 to the computationally inef-
ficient algorithm from [11] for regret minimization in the noiseless setting. Their regret scales as
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Figure 1: Varying � Figure 2: Prior Knowledge Figure 3: Convex Functions

O(�maxHD(F) ln(|F|)), ignoring lower order terms. The following Proposition shows that our
cumulative regret bound is never worse than theirs by more than a polylogarithmic factor. Let
y⇤ = argmin

y2Yy and �max = maxy2Yy � y⇤ and �min = miny2Y:y 6=y⇤ y � y⇤.

Proposition 7. Let F such that �⇤
best(F) � 1. There exists a universal constant c > 0 such that for

large enough T0, if Algorithm 3 is run for T0 rounds, the regret of Algorithm 3 is bounded above by

c�
⇤
best(F) ln(|F|)�max  cHD(F) ln(|F|)2�max.

The above Proposition says that if the horizon is long enough, then the cumulative regret in Theorem
5 is never that much worse than the cumulative regret of the algorithm in [11].

On the other hand, there exists an instance where the regret of our Algorithm in Theorem 5 is
significantly better than the regret of the algorithm in [11].
Proposition 8. For any ⇠ > 0, there exists an instance with �max � �min + ⇠ where (ignoring
logarithmic factors) the regret minimization algorithm from [11] obtains a regret of at least�maxn/2
while the guarantee in Theorem 5 is n�min +�max.

Thus, the regret of [11] scales as �maxn, while the regret of Algorithm 3 scales as �minn, and the
gap between �max and �min can be made aribtrarily large. The key advantage of our algorithm over
the work of [11] is that their algorithm is an explore-and-then-commit algorithm, ignoring the cost
of information gain, whereas our algorithm Algorithm 3 (see Appendix) is cost-aware weighing the
tradeoff between information gain and loss incurred.

Relation to Regret Minimization. We conclude this section by discussing the relationship between
loss minimization and regret minimization. Our first observation is that any minimax-optimal
regret-minimizing algorithm is also a minimax-optimal loss-minimizing algorithm, as shown by the
following Proposition.

Proposition 9. Fix T0 2 N. Let loss(A; f ;T0) =
P

T0

t=1 f(xIt
) and regret(A; f ;T0) =P

T0

t=1 f(xIt
)�minj2[n] f(xj) denote the loss and regret incurred by an algorithmA over T0 rounds.

Let Ā be an algorithm such that maxf2F regret(Ā; f ;T0)  cminA maxf2F regret(A; f ;T0). Then,

maxf2F loss(Ā; f ;T0)  (c+ 1)min
A

maxf2F loss(A; f ;T0).

On the other hand, a minimax optimal algorithm for loss minimization can have regret that is arbtrarily
worse than the minimax lower bound, implying that regret minimization subsumes loss minimization.
Proposition 10. For any ⇠ > 0, there existsF such that the minimax regret is 1, but a loss minimizing
algorithm obtains a regret of ⇠.

As discussed above, we provide the first upper bounds for loss minimization that match the minimax
lower bound up to logarithmic factors, as well as state-of-the-art results for regret minimization with
general function classes.

7 Experiments

In this Section, we present experiments comparing GRAILS to uniform sampling (UNIF), GP-UCB [23],
and OFUL [29]. We consider a version of GRAILS that is designed for continuous output spaces, and
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which we present and analyze in the appendix. For OFUL, we construct the lower confidence bound
by solving a constrained optimization problem based on the prior feedback and the function class
structure. Our algorithm outperforms the other algorithms and demonstrates the ability to seamlessly
incorporate prior knowledge to accelerate learning, and works for function classes ranging from
kernel methods to convex functions. While OFUL tends to perform only slightly worse than GRAILS,
unlike GRAILS, it does not have general theoretical guarantees that can handle the incorporation of
constraints given by prior knowledge or specially structured spaces like the set of convex functions,
and therefore we consider it a strong, if heuristic, baseline. Indeed, in the appendix, we show
that OFUL is minimax suboptimal for some function classes. Due to space constraints, we provide
additional implementation details in the appendix.

Varying �. In Figure 1, we plot the average number of samples necessary to achieve a simple regret
of less than 0.01 with the shaded region showing 1 standard error taken over 36 independent trials.
We generated random 2d functions living in a RBF Reproducing Kernel Hilbert Space (RKHS) with
parameter � varying. We evaluate the function at 400 points taken in a grid of [0, 1]2. As � decreases
and the effective dimension increases, the performance of all methods becomes similar to uniform
sampling. Conversely, when � is large and the dimension decreases, the active methods improve
markedly upon uniform sampling. In all cases, GRAILS matches or slightly exceeds the performance
of the baseline methods.

Kernel Methods with Prior Knowledge: In many practical settings, prior knowledge is available
to practitioners, e.g., of the form f

⇤(x) � f
⇤(x0) for some pairs x, x0

2 X . It is straightforward to
incorporate into our algorithm any prior knowledge that can be expressed in terms of a polyhedron in
the output space Rn. By contrast, while there are a variety of approaches to incorporate constraints
into GP regression methods [30], it is not immediately clear how to use constrained GP models in
adaptive sampling methods. In this experiment, we use x1, . . . , xn 2 [0, 6] equally spaced with
n = 250. We use the Gaussian RBF kernel with � = 0.075. For each of the 60 trials, we draw
a random function from the RKHS. We vary the number of random pairwise constraints given to
GRAILS and OFUL. Figure 2 depicts the average number of samples required to achieve a simple
regret of 0.005 and shows that as GRAILS and OFUL obtain more prior knowledge, their performance
improves.

Convex Functions: In this experiment, the algorithms use the function class F consisting of all
convex functions. We generate 300 points in an equally spaced grid on the interval [0, 1]. f⇤(x) =
5(x � xmin)2 where for each of the 30 trials xmin is drawn uniformly at random from [0, 1]. We
only consider GRAILS, OFUL, and UNIF. Figure 3 depicts the average number of samples that each
algorithm uses to obtain an ✏-accurate solution, showing that GRAILS does slightly better than OFUL,
while, as expected, the sample complexity of UNIF blows up as ✏ decreases.

8 Conclusion

Our work leaves many open questions. First, while GRAILS is computationally efficient as evidenced
by our experiments, it becomes computationally burdensome as n grows very large. Further work
is required to scale GRAILS to the regime where n is extremely large (e.g., n ⇡ 10, 000). Second,
we have designed computationally efficient algorithms that match the minimax lower bound up to
logarithmic factors in the noiseless setting and it remains an open question how to achieve near
minimax optimality in the noisy setting. Finally, it is an important future direction to develop
computationally efficient and near minimax optimal algorithms in the continuous output setting.
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