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Abstract

We study the problem of testing the covariance matrix of a high-dimensional Gaussian in a robust
setting, where the input distribution has been corrupted in Huber’s contamination model. Specifi-
cally, we are given i.i.d. samples from a distribution of the form Z = (1 — €)X + B, where X is
a zero-mean and unknown covariance Gaussian A/(0, X)), B is a fixed but unknown noise distribu-
tion, and € > 0 is an arbitrarily small constant representing the proportion of contamination. We
want to distinguish between the cases that X is the identity matrix versus y-far from the identity in
Frobenius norm.

In the absence of contamination, prior work gave a simple tester for this hypothesis testing task
that uses O(d) samples. Moreover, this sample upper bound was shown to be best possible, within
constant factors. Our main result is that the sample complexity of covariance testing dramatically
increases in the contaminated setting. In particular, we prove a sample complexity lower bound of
Q(d?) for € an arbitrarily small constant and v = 1/2. This lower bound is best possible, as O(d?)
samples suffice to even robustly learn the covariance. The conceptual implication of our result
is that, for the natural setting we consider, robust hypothesis testing is at least as hard as robust
estimation.

Keywords: Robust High-Dimensional Statistics, Hypothesis Testing

1. Introduction
1.1. Background and Motivation

This work can be viewed as a confluence of two research areas: distribution testing and high-
dimensional robust statistics. To put our contributions in context, we provide the necessary back-
ground.

Distribution Property Testing Distribution property testing Goldreich and Ron (2000); Batu
et al. (2000, 2013) is a field at the intersection of property testing Rubinfeld and Sudan (1996);
Goldreich et al. (1998) and statistical hypothesis testing Neyman and Pearson (1933); Lehmann and
Romano (2005). The standard question in this area is the following: Given sample access to an un-
known probability distribution (or, more generally, collection of distributions), how many samples
do we need to determine whether the underlying distribution(s) satisfies a pre-specified property
or is far, in a well-defined sense, from satisfying the property? This TCS style definition turns
out to be essentially equivalent to the minimax view of statistical hypothesis testing, pioneered in
mathematical statistics by Ingster and coauthors (see, e.g., Ingster and Suslina (2003).)

During the past few decades, distribution property testing has received significant attention
within the computer science and statistics communities. The reader is referred to Rubinfeld (2012);
Canonne (2015) for two surveys on the topic. The classical setting typically studied in the relevant
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literature concerns testing properties of discrete distributions, where the only available information
is an upper bound on the domain size. This setting is fairly well understood. For a range of natu-
ral and important properties, there exist testers that require provably minimum sample complexity
(up to universal constant factors). See Paninski (2008); Chan et al. (2014); Valiant and Valiant
(2014); Diakonikolas et al. (2015a); Acharya et al. (2015); Canonne et al. (2016); Diakonikolas and
Kane (2016); Diakonikolas et al. (2016a, 2017a); Canonne et al. (2017b); Neykov et al. (2020);
Diakonikolas et al. (2020) for some representative works. A key conceptual message of this line of
work is that the sample complexity of testing is significantly lower than the sample complexity of
learning the underlying distribution(s).

More recently, a body of work in computer science has focused on leveraging a priori structure
of the underlying distributions to obtain significantly improved sample complexities, see, e.g., Batu
etal. (2004); Daskalakis et al. (2013); Diakonikolas et al. (2015a,b); Canonne et al. (2017a); Daskalakis
and Pan (2017); Daskalakis et al. (2018); Diakonikolas et al. (2017b, 2019); Canonne et al. (2019).
Specifically, a line of work has established that it is possible to efficiently test various properties of
high-dimensional structured distributions — including high-dimensional Gaussians, discrete prod-
uct distributions, and various graphical models — with sample complexity significantly better than
learning the distribution. Importantly, these algorithmic results are fragile, in the sense that they
crucially rely on thee assumption that the underlying distribution satisfies the given structure ex-
actly.

High-Dimensional Robust Statistics Robust statistics is the subfield of statistics focusing on the
design of estimators that are robust to deviations from the modeling assumptions (see, e.g., Hampel
et al. (1986); Huber and Ronchetti (2009) for introductory statistical textbooks on the topic). A
learning algorithm is robust if its performance is stable to deviations from the idealized assumptions
about the input data. The precise form of this deviation depends on the setting and gives rise to
various definitions of robustness. Here we focus on Huber’s contamination model Huber (1964),
which prescribes that an adversary generates samples from a mixture distribution P of the form
P = (1 —€)D + eB, where D is the unknown target distribution and B is an adversarially chosen
noise distribution. The parameter € € [0, 1/2) is the proportion of contamination and quantifies the
power of the adversary. Intuitively, among our samples, an unknown (1 — €) fraction are generated
from a distribution of interest and are called inliers, and the rest are called outliers.

It is well-known that standard estimators (e.g., the empirical mean) crucially rely on the as-
sumption that the observations are generated from the assumed model (e.g., an unknown Gaussian).
The existence of even a single outlier can arbitrarily compromise their performance. Classical work
in robust statistics developed robust estimators with optimal sample complexity for several basic
high-dimensional learning tasks. For example, the Tukey median Tukey (1975) is a sample-efficient
robust mean estimator for spherical Gaussian distributions. These early robust estimators are not
computationally efficient, in particular they incur runtime exponential in the dimension. More re-
cently, a successful line of work in computer science, starting with Diakonikolas et al. (2016b);
Lai et al. (2016), has lead to computationally efficient robust learning algorithms in a wide range
of high-dimensional settings. The reader is referred to Diakonikolas and Kane (2019) for a recent
survey.

This Work In sharp contrast to the sample complexity of robust learning (which is fairly well-
understood for several natural settings), the sample complexity of robust testing in high dimensions
is poorly understood. While various aspects of robust hypothesis testing have been studied in the
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robust statistics literature Wilcox (1997), a number of basic questions remain wide-open. A natural
research direction is to understand how the robustness requirement affects the complexity of high-
dimensional testing in various parametric settings. In particular, if the underlying distribution nearly
satisfies the assumed structural property (e.g., is almost a multivariate Gaussian, as opposed to
exactly one) can we still obtain testers with sub-learning sample complexity?

In this paper, we focus on the fundamental problem of testing the covariance matrix of a high-
dimensional distribution. This is a classical question that has seen renewed interest from the statis-
tics community, see, e.g., Cai and Ma (2013); Cai et al. (2016a,b) and Cai (2017) for an overview
article. The most basic problem formulation is the following: We are given n samples from an
unknown Gaussian distribution A/(0, ) on R? with zero mean and unknown covariance. We want
to distinguish, with probability at least 2/3, between the cases that ¥ = I versus | — I||p > 7,
where || - || 7 denotes Frobenius norm.

In the noiseless setting, this testing question was studied in Cai and Ma (2013); Cai et al.
(2016a), where it was shown that ©(d/~?) samples are necessary and sufficient. On the other hand,
the sample complexity of learning the covariance within error +y in Frobenius norm is ©(d?/2).

In the rejoinder article Cai et al. (2016b) of Cai et al. (2016a), Balasubramanian and Yuan gave
a counterexample for the tester proposed of Cai et al. (2016a) in the presence of contamination and
explicitly raised the question of understanding the sample complexity of robust covariance testing
in Huber’s model. They write

“Much work is still needed to gain fundamental understanding of robust estimation
under e-contamination model or other reasonable models.”

The robust covariance testing question is the following: We are given n samples from an un-
known distribution on R? of the form (1 — €)A(0,%) + eB, where B is an unknown noise distri-
bution. We want to distinguish, with probability at least 2/3, between the cases that ¥ = I versus
I — I||F > ~. Importantly, for this statistical task to be information-theoretically possible, we
need to assume that the contamination fraction e is significantly smaller than the “gap” v between
the completeness and soundness cases.

In summary, we ask the following question:

Question 1.1 What is the sample complexity of robustly testing the covariance matrix of a high-
dimensional Gaussian with respect to the Frobenius norm?

Our main result (Theorem 1) is that for € an arbitrarily small positive constant and v = 1/2,
robust covariance testing requires €2(d?) samples. This bound is best possible, as with O(d?) sam-
ples we can robustly estimate the covariance matrix within the desired error. This answers the open
question posed in Cai et al. (2016b).

In summary, our result shows that there is a quadratic gap between the sample complexity of
testing and robust testing for the covariance. Notably, such a sample complexity gap does not exist
for the problems of learning and robustly learning the covariance. In particular, the robust learning
version of the problem has the same sample complexity as its non-robust version. That is, the
robustness requirement makes the testing problem information-theoretically harder — a phenomenon
that does not appear in the context of learning.

Prior work Diakonikolas et al. (2017¢) has shown an analogous phenomenon for the much
simpler problem of robustly testing the mean of a Gaussian. As we explain in the following section,
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the techniques of Diakonikolas et al. (2017c) inherently fail for the covariance setting, and it seemed
plausible that better robust covariance testers could exist.

1.2. Our Results and Techniques

Our main result is the following theorem:

Theorem 1 For any constants C,e > 0, any algorithm that can distinguish between the standard
Gaussian N'(0, I') on R? and a distribution X = (1—€)N(0, £) +€B, for some ¥ with |S—1I||p >
C, requires )(d?) samples.

Proof Overview and Comparison to Prior Work. Our sample complexity lower bounds will
make use of standard information-theoretic tools and, of course, the innovation is in constructing
and analyzing the hard instances.

At a very high level, our techniques are similar to those used in Diakonikolas et al. (2017c¢)
that gave a lower bound for robust mean testing. Diakonikolas et al. (2017c) defined an adversarial
ensemble D which was a distribution over noisy Gaussians with means far from 0. They proceeded
to show that the distribution D” (defined as taking a random distribution from D and then returning
N i.i.d. samples from that distribution) was close in total variation distance to GV, where G is the
standard Gaussian. This was done by bounding the x? distance between the corresponding product
distributions, and in particular showing that

Xan (DN, DY) =1+ 0(1) .
To prove this bound, one notes that
Xen (DY, DY) = Epgepxen (PN, Q) = Epgup(x&(P, Q).

The desired implication follows if it can be shown that Xé(P, Q) is close to 1 with high probability.

Such a bound could be proven relatively easily for the mean case, given the techniques devel-
oped in Diakonikolas et al. (2017c). In particular, P and @) could be chosen to be distributions that
were a standard Gaussian in all but one special direction. And in this direction they were copies of
some reference distribution A, which matched its first few moments with a Gaussian. The technol-
ogy developed in Diakonikolas et al. (2017c¢) then allowed one to show that XQG(P, @) — 1 would be
small unless the defining directions of these two distributions were close to each other (which in d
dimensions happens with very small probability for two random unit vectors).

Importantly, this kind of construction cannot be made to work for the robust covariance testing
problem. In particular, if the adversarial distributions look like standard Gaussians in all but one
direction, this can easily be detected robustly using only O(d) samples for the following reason:
Two random vectors in d-dimensions will be close to each other with probability only exponentially
small in d. In order to prove an €(d?) lower bound using these ideas, the defining “directions” for
the bad distributions must be drawn from a d?-dimensional space. Given that the covariance matrix
is d2-dimensional, it is not hard to see what this space might be, however a new analysis is needed
because one cannot readily produce a distribution that is a standard Gaussian in all orthogonal
directions.

For our new construction, we take A to be a symmetric matrix and let our hard distribution be
N(0, I + A), with noise added as a copy of N'(0, I — M A) for some appropriate constant M > 0,
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so that the average of the covariance matrices (taking the weights of the components into account)
is the identity. We call this distribution [A]. We choose our adversarial ensemble to return [A] for
an appropriately chosen random matrix A. Since we cannot use the technology from Diakonikolas
et al. (2017¢) to bound the chi-squared distance, we need new technical ideas. Specifically, we are
able to obtain a formula for xZ ([A4], [B]). This allows us to show the following: Assuming that A
and B have small operator norms (and we can restrict to only using matrices for which this is the
case), then we have that xZ([A], [B]) is small, so long as tr(AB)? and tr((AB)?) are. A careful
analysis of these polynomials in the coefficients of A and B gives that both are well concentrated
for random matrices A and B to make our analysis go through.

2. Proof of Main Result

Throughout this proof, we will treat € and C' as constants and will thus suppress dependence on then
in our asymptotic notation.

We will require a few definitions and basic facts.

Definition 2 We begin by recalling the chi-squared inner product. For distributions A, B, C we
have that

dBdC
2(B :/.
Xa(B,C) JA

We also note the following elementary fact:

Fact 3 For distributions A and B we have that dry (A, B) > \/x%4(B, B) — 1/2.

Proof Itis easy to see that X124(B, B)-1=] w. By Cauchy-Schwartz, this is bigger

than
dB — dA|dA\? | [ dAdA
(/‘m’) //dA_MTV(A’B)z'

We are now ready to proceed with our proof. We begin by directly computing the formula for
the chi-squared distance of two mean zero Gaussians with respect to a third.

Lemma 4 Let 31,2 < 21 be positive definite symmetric matrices. Then,

Xxo.n NV (0,21), N(0,52)) = (det(Z1 + Ty — £152)) /2,

5
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Proof Letting p(z),p1(x), p2(x) be the probability density functions for A/(0, 1), N'(0,%;) and
N (0, 35), respectively. We then have that

0. N (0, 1), N(0, 22))
_ /Pl(x)p2<37)dx

p(x)
B (2m)~42(det (1)) "2 exp(—aT 21t /2) (2m) =2 (det(Xe)) /2 exp(—2T 85 2 /2)
a / (2m)~4/2 exp(—2Tx/2)
— (det(T1 %)) 2 / (27) Y2 exp(—aT (S0 + 551 — Da/2)da

= (det(2159)) Y2 (det(S7 ! + 551 — 1)) ~/?
= (det(E) + 52 — £,59)) 2.

dx

This completes the proof. n

We can then approximate this quantity using Taylor expansion. The result is particularly nice if
the covariances are [ + A and I + B, where A and B have small operator norms.

Lemma 5 If A, B are symmetric matrices with | A||2, || B||2 = O(1/V/d), then
Xar.n N (0,1 + A),N(0,1+ B)) = (14 tr(AB)/2+ O(tr(AB)* + tr((AB)?) + 1/d?)).
Proof Applying Lemma 4 gives that the term in question is
(det((I+A)+(I+B)— (I +A)(I+B)) /? = (det(I — AB))""/%.

Suppose that AB has eigenvalues A1, Ao, ..., A,. Then

n

det(I — AB) = [J(1 = Xi) = exp(—=>_ > A"/m + O(A?))

i=1 i=1 m=1

=exp(= ) > A"/m+O00)

m=1 i=1
= exp(— 3 tr((AB)™)/m).
m=1

We note that tr((AB)™) = O(1/d)™~!. Thus, this expression is
exp(—tr(AB))(1 — tr((AB)?)/2)(1 + O(1/d?)).
Therefore,
Xar.n N (0,14 A), N (0,1 + B)) = (1+tr(AB)/2+ O(tr(AB)* + tr((AB)?) + 1/d*)) .
This proves our lemma. |

The key noisy Gaussians that will show up in our adversarial ensemble will be of the following
form:
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Definition 6 Let A be a symmetric matrix. Define the probability distribution [A] as follows:

[A] = (1 — ON(0,T +2CA) + eN(0,T — (2C(1 — €)/€) A) .

Notice that this is carefully chosen so that the average covariance of these two components is
exactly the identity.

Next we need to compute the chi-squared inner product of two of these [A] distributions with
respect to the standard Gaussian. This is not hard as we already know the inner products of the
Gaussian components.

Lemma 7 For A and B matrices with || Al|2, | B||z = O(1/v/d), we have that

Xxro.n (AL [B]) = 1+ O(((tr(AB)? + tr((AB)?) + 1/d%)).

Proof Letting C’ = C(1 — €) /¢, we have that XJQ\/(O [)([/Xﬂ, [B]) equals

(1= *XXr0.y V(0,1 +2CA),N(0,1+ B) + e(1 — )Xo, (N (0, I +2CA), N(0,I —2C'B))
+e(1 = )Xoy V(0,1 = 2C"A), N (0,1 + 2CB) + € X301y (N (0, I — 2C"A), N(0, I — 2C'B)).

We expand each term using Lemma 5 and note that the tr(AB) terms all cancel. The remaining
terms are as desired. |

We can now define our adversarial ensemble that will be hard to distinguish from a standard
Gaussian.

Definition 8 Ler D be the following ensemble. Pick a symmetric matrix A whose diagonal entries
are 0 and whose off-diagonal entries are N'(0,1/d) random variables, independent except for the
symmetry, all conditioned on ||Ally = O(1/+v/d) and ||A||r = O(1) (note that these both happen

with high probability). Let D return the distribution [A]. Note that with high probability [A] is of
the form (1 — €)N(0,X) + €B for some distribution B and some ¥ with ||X — I||p > C.

Let DN denote the distribution over RN obtained by picking a random distribution X from
D and taking N i.i.d. samples from it.

Let G = N(0,1) and GV denote the distribution obtained by taking N i.i.d. samples from G.

We prove the following crucial proposition:
Proposition 9 For N = o(d?), we have that
Xew (DN, DY) =1+ 0(1) .

Proof We begin by noting that

—~N —~N —~

2 N DNy _p__ 2 . 2 N
XGN(D 7D ) - E[A}, B]ND[XGN([A] ) [B] )] - E[AHB]ND[XG([A]’ [B]) ]
Applying Lemma 7, this is

E~

e+ O(tr(AB)? 4 tr((AB)?) + O(1/d®)))M].



DIAKONIKOLAS KANE

In order to bound this quantity, we wish to show that tr(AB)? and tr((AB)?) are both small with
high probability. We note that A and B are both random Gaussian symmetric matrices conditioned
on some high probability event C'.

We first note that fixing A that without conditioning on C' we have that tr(AB) is distributed as
a normal random variable with standard deviation O(||A||z/d) = O(1/d). Therefore, tr(AB)? < t
except with probability exp(—Q(d?t)).

Next we wish to similarly understand the distribution of tr((AB)?). We note that

tr((AB)?) = Z AijBji Ao By
Y.

is a quadratic polynomial in each of A and B. All of the terms except for those with {i,j} =
{k, ¢} have mean 0, and the remaining terms have mean O(1/d?). Thinking of B as fixed, A;; Axe
has coefficient Bj;By; + BiyBje. Thus, as a polynomial in A, the variance is O(||B||%/d?) =
O(1/d?). Therefore, by standard concentration inequalities, the probability that tr((AB)?) > t is
exp(—Q(d?t)).

Hence, we have shown that tr(AB)? + tr((AB)?) > t with probability exp(—Q(d?t)). In
particular, it is stochastically dominated by O(AN(0, 1)%/d?).

Back to our original problem, we wish to bound

E—~

[A],['BV]ND[(l -+ O(tr(AB)2 + tr((AB)2)) 4 O(l/dQ))N]‘

By the above, this is less than
E[(1 + OWN(0,1)?/d*) + O(1/d*))"] < E[exp(O(N/d*)N(0,1)? + O(N/d?))] = 1 + o(1) ,
which completes the proof. |

We can now prove our main theorem:

Theorem 10 For any C,e > 0, there is no algorithm that distinguishes between N (0,1) and a
distribution X obtained by adding € additive noise to N'(0,X) for some ¥ with |X — I||p > C,
using N = o(d?) samples.

Proof We note that such an algorithm could reliably distinguish between a sample from GV and
DN, which contradicts our proposition. |
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