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Abstract

We study the problem of learning Ising models satisfying Dobrushin’s condition in the outlier-
robust setting where a constant fraction of the samples are adversarially corrupted. Our main result
is to provide the first computationally efficient robust learning algorithm for this problem with near-
optimal error guarantees. Our algorithm can be seen as a special case of an algorithm for robustly
learning a distribution from a general exponential family. To prove its correctness for Ising models,
we establish new anti-concentration results for degree-2 polynomials of Ising models that may be
of independent interest.
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1. Introduction
1.1. Background and Motivation

Probabilistic graphical models (Koller and Friedman, 2009) provide a rich and unifying framework
to model structured high-dimensional distributions in terms of the local dependencies between the
input variables. The problem of inference in graphical models arises in many applications across
scientific disciplines, see, e.g., Wainwright and Jordan (2008). In this work, we study the inverse
problem of learning graphical models from data. Various formalizations of this general learning
problem have been studied during the past five decades, see, e.g., Chow and Liu (1968); Dasgupta
(1997); Abbeel et al. (2006); Wainwright et al. (2006); Anandkumar et al. (2012); Santhanam and
Wainwright (2012); Loh and Wainwright (2012); Bresler et al. (2013, 2014); Bresler (2015); Klivans
and Meka (2017)), resulting in general theory and algorithms for various settings.

In this work, we focus on learning Ising models (Ising, 1925), the prototypical family of bi-
nary undirected graphical models with applications in computer vision, computational biology, and
statistical physics (Li, 2009; Jaimovich et al., 2006; Felsenstein, 2004; Chatterjee, 2005).

Definition 1 (Ising Model) Given a symmetric matrix (eij)i,je[d] with zero diagonal and a vector
(0i)ic(q, the Ising model distribution Py is defined as follows: For any x € {£1}4, Py(x) =
ﬁ exp ((1/2) i jeqa bisTizs + Z?:l 0;x;), where the normalizing factor Z(0) is called the
partition function. We call the matrix (Qij)me[d] e R¥? the interaction matrix and the vector
(0i)icaq) € R? the external field.
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The majority of prior algorithmic work on learning Ising models studies the “structure learning”
problem, i.e., the problem of learning the structure of the underlying graph of non-zero entries of
the interaction matrix, see, e.g., Bresler (2015); Klivans and Meka (2017); Hamilton et al. (2017).
In this line of work, it is assumed that the true graph satisfies some structural property (typically,
a tree or bounded-degree structure) and certain (upper and lower) bounds are imposed on the un-
derlying parameters. Such assumptions are information-theoretically necessary for this version of
the problem. An emerging line of work studies the distribution learning problem, i.e., the task of
computing an Ising model that is close to the target in total variation distance, see, e.g., Dagan et al.
(2020); Daskalakis and Pan (2020); Bhattacharyya et al. (2020) for a few recent papers.

Here we study the algorithmic problem of learning Ising models in the presence of adversarially
corrupted data. We focus on the following standard data corruption model that generalizes Huber’s
contamination model (Huber, 1964).

Definition 2 (Total Variation Contamination) Given 0 < ¢ < 1/2 and a class of distributions
F on R, the adversary operates as follows: The algorithm specifies the number of samples n.
The adversary knows the true target distribution X € JF and selects a distribution F' such that
dry (F, X) < e. Then n i.i.d. samples are drawn from F and are given as input to the algorithm.

Intuitively, the parameter ¢ in Definition 2 quantifies the power of the adversary. The total variation
contamination model is strictly stronger than Huber’s contamination model. Recall that in Huber’s
model (Huber, 1964), the adversary generates samples from a mixture distribution F' of the form
F =(1—-¢€)X +eN, where X is the unknown target distribution and N is an adversarially chosen
noise distribution. That is, in Huber’s model the adversary is only allowed to add outliers.

The contamination setting we consider is standard in robust statistics (Hampel et al., 1986;
Huber and Ronchetti, 2009), a field which seeks to develop outlier-robust estimators — algorithms
that can tolerate a constant fraction of corrupted datapoints, independent of the dimension. Classical
work, starting with Tukey and Huber in the 60s, developed statistically optimal robust estimators
for a number of settings. However, these early methods lead to exponential time algorithms even
for the most basic high-dimensional estimation tasks (e.g., mean estimation).

A recent line of work, starting with Diakonikolas et al. (2016); Lai et al. (2016), has developed
the first computationally efficient and outlier-robust learning algorithms for a range of “simple”
high-dimensional probabilistic models. Since these initial algorithmic works, we have witnessed
substantial research progress on algorithmic aspects of robust high-dimensional estimation by sev-
eral communities, see, e.g., Diakonikolas and Kane (2019) for a recent survey on the topic.

Prior algorithmic work on learning graphical models has almost exclusively studied the uncon-
taminated setting, where the data are i.i.d. samples from the distribution of interest. Some recent
work (Hamilton et al., 2017; Goel et al., 2019; Katiyar et al., 2020) has developed algorithms for
structure learning in the (significantly weaker) independent failures model, where the coordinates
of each example are independently flipped/missing with some probability. On the other hand, Lind-
gren et al. (2019) point out that structure learning becomes information-theoretically impossible in
the contamination model, if an adversary is allowed to corrupt even a tiny fraction of the samples.

The only algorithmic work we are aware of in the contamination model is by Cheng et al. (2018)
who developed an outlier-robust learner for low-degree Bayes nets (directed graphical models) with
known graph structure. We also note that very recent work (Prasad et al., 2020) developed nearly
tight sample complexity bounds for learning Ising models in Huber’s contamination model under
various structural assumptions — albeit by using underlying estimators that run in exponential time.
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1.2. Our Contributions

In this work, we study the following version of the learning problem: Given a set of corrupted
samples from an unknown Ising model, our goal is to learn the underlying distribution in total
variation distance. This is a natural (and standard) formulation of distribution learning that has been
studied extensively, even in the uncontaminated setting. Our main result is the first computationally
efficient outlier-robust estimator for Ising models in this setting, under some natural assumptions.
We note that we do not make structural assumptions about the underlying graph — our algorithms
work with Ising models on the complete graph.
To state our contributions in detail, we require some additional terminology.

Definition 3 (Dobrushin’s condition) Given an Ising model Py with interaction matrix (0;5); je|a)
and external field (0;);c(q), we say that it satisfies Dobrushin’s condition if max;e(q >_; .; |0ij| <
1 — n for some constant 0 < n < 1.

Dobrushin’s condition for Ising models is a classical assumption needed to rule out certain patho-
logical behaviors. It is standard in various areas, including statistical physics, machine learning,
and theoretical CS (Kiilske, 2003; Gotze et al., 2019; Dagan et al., 2020; Adamczak et al., 2019;
Gheissari et al., 2018; Marton, 2015).

Our main result is an efficient algorithm for outlier-robust learning of Ising models with zero
external field satisfying Dobrushin’s condition.

Theorem 4 (Robustly Learning Ising Models) Let X ~ Py« be an Ising model without external
field satisfying Dobrushin’s condition for some universal constant n > 0. There is a universal
constant €y > 0 such that the following holds: Let 0 < € < €y and S’ be an e-corrupted set of N
samples from Py«. There is a poly(N, d) time algorithm that, for some N = 677 (d?/€*), on input
S’ and €, returns a symmetric matrix 0 € R4 such that with probability at least 99/100, we have
that |]§— 0|l < Oy(elog(1/€)). Moreover, the Ising model distribution Py satisfies Dobrushin’s

condition and drv (Py, Py«) < On(||§— 0*||r) < Oy(elog(1/e)).

Some comments are in order. We note that any estimator information-theoretically requires
error 2(€) in the contamination model. That is, the error guarantee of our algorithm is optimal,
within logarithmic factors. Moreover, our algorithm is proper (i.e., it outputs an Ising model) and
performs parameter learning, i.e., it estimates the desired parameters to sufficient accuracy to yield
the desired total variation distance guarantee.

Our techniques extend to yield an outlier-robust learning algorithm with the same error guar-
antee for Ising models with non-zero external field (under additional assumptions). Due to space
limitations, these extensions are deferred to Appendix C.3. For the non-zero external field case, the
value 6 that we recover unfortunately is not guaranteed to be close to 8* in Frobenius norm. In fact,
this is the wrong norm to compare them in and such an approximation is information-theoretically
impossible. However, we do still guarantee that the corresponding Ising model distribution P
satisfies Dobrushin’s condition and dry (Pj, Pp<) < O(elog(1/e)). Intuitively , as long as the de-
pendencies among each point and the external fields are sufficiently small, we can robustly learn the
Ising model distribution in total variation distance.

To achieve our results, we view the Ising model as an instance of a general exponential family.
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Definition 5 (Exponential Family) An exponential family in canonical form is a family of distri-
butions Py supported on a set X, where the parameter 0 belongs to some convex set Q C R%, with
density function Py(x) = exp ((T'(x),0) — A(0)) ,Vx € X, where A(0) is the normalizing factor
called log-partition function and the vector T'(x) is called the sufficient statistics of Py.

As one of our main contributions, we provide a computationally efficient outlier-robust param-
eter learning algorithm for exponential families under the following condition.

Condition 6 For an arbitrary 0 € S, the exponential family Py satisfies the following:

1. Covxp,[T(X)] = c11, where ¢y > 0 is a universal constant independent of 0 and the
dimension d of T'(X).

2. T(x) has sub-exponential tails for a universal constant co > 0, i.e., for any unit vector
v € RY, it holds that Prx..p,[|(v, T(X) — E[T(X)])| > t] < 2exp(—cat), forall t > 0,
where co > 0 is a universal constant independent of 6 and the dimension d of T(X).

3. There is an algorithm that, given as input 6 € Q and v > 0, it runs in poly(d, 1/~) time and
it outputs i.i.d. samples from a distribution D~ such that drv (D~, Py) < .

In addition, the diameter of ) is bounded above and we can efficiently compute approximate pro-
jections on . Specifically, it holds that diam(Q) < exp(poly(d)), and for any 6 > 0 and z € R,
there is a poly(d, 1/9) time algorithm that computes a point y € S such that ||y — Po(2)||y < 6,
where Pq is the projection operation.

Theorem 7 (Robust Learning of Exponential Families) Ler Py« be an exponential family over
X with sufficient statistics T'(x), where the parameter 6* € Q and Q C R? is convex. Assume that
Condition 6 holds. Let 0 < € < €, for some universal constant €y, and S’ be an e-cgrrupted set
of N samples from Py-. There is a poly(N,d) time algorithm that, for some N = O(d/e?), on
input S "and € > 0, returns a vector 6 € Q such that with probability at least 99 /100 we have that
10 — 0%[]2 < O(elog(1/€)). In addition, drv (Pj, Py<) < O(||0 — 0%[]2) < O(elog(1/e)).

As we will explain in the next subsection, our robust learning algorithm for Ising models is
the algorithm given in Theorem 7. The main technical challenge is in establishing correctness, i.e.,
showing that an Ising model under Dobrushin’s condition satisfies Condition 6. To achieve this, we
develop new anti-concentration results for degree-2 polynomial of Ising models that we believe may
be of independent interest (see Theorem 19).

1.3. Overview of Techniques

Our outlier-robust learning algorithm for Ising models is a special case of a robust learning algorithm
for the class of exponential families (satisfying Condition 6). We start with an intuitive description
of this algorithm followed by a brief sketch of the tools required to prove its correctness.

To robustly learn a family of distributions in total variation distance, one typically requires a
set of relevant parameters and a “parameter distance”, so that sufficiently accurate approximation
in parameter distance implies approximation in total variation distance. For exponential families,
a natural set of parameters present themselves: the expectation of the sufficient statistics of the
distribution. Our strategy will be to robustly estimate this expectation.
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Unfortunately, there is a wrinkle in this strategy which relates to the scale in which we are
working. On the one hand, in order to robustly estimate the mean of a distribution, one needs to
know some sort of tail bounds on the set of clean samples; and for these tail bounds to hold, we need
to know the scale at which we expect this decay to happen. On the other hand, once we learn an
approximation to the true mean of the sufficient statistics, we need to relate the sizes of these errors
to the errors we will obtain in the underlying parameters for the family, and to the total variation
distance of the final distribution that we learn. These relationships define certain natural scales for
our problem, and it is not clear how to obtain a robust algorithm if these scales disagree (in such a
case, the accuracy to which we can learn the expectation of the sufficient statistics might differ from
the accuracy to which we need to learn it to obtain good error in total variation distance) or if the
relevant scale depends on the underlying (unknown) parameters.

To resolve this issue, we need to make an assumption (Condition 6). Specifically, we need to
assume that there is a convex set {2 of parameters in our exponential family, such that any elements
of the family inside this set have sufficient statistics whose covariances are within constant multiples
of each other. This implies that the relevant scales for our problem are all comparable.

From this point, there is a relatively straightforward algorithm that achieves suboptimal error.
After a change of variables, we can assume that within 2 all of the sufficient statistics have covari-
ance proportional to the identity. This allows us to use standard robust mean estimation algorithms
(Fact 12) to estimate the mean of the sufficient statistics to error O(4/€) in fo-norm. This in turn
allows us to estimate our distribution to error O(4/€) in total variation distance.

To improve on this error guarantee, we will need to obtain better error in our robust mean
estimation algorithm. This can be achieved under the following assumptions: (1) The distribution
in question satisfies strong tail bounds. (2) We know an accurate approximation to the covariance
matrix of the distribution. As for (1), it follows for general exponential families that their sufficient
statistics will have exponential tail bounds, which is sufficient for us. For (2), we will need to
already have a good approximation of the underlying parameters of our distribution. This gives rise
to an iterative algorithm. If we know the underlying parameters of our exponential family to error 9,
we can learn the mean of the sufficient statistics — and thus new approximations to the parameters
— to error O(elog(1/€)++/d¢) (Lemma 15). Tterating this several times, we can eventually achieve
the near-optimal error of O(elog(1/e)).

Our result for Ising models is obtained via an application of the above algorithm. Ising models
are a special case of an exponential family, where the sufficient statistics are given by degree-
2 polynomials. For the above algorithm to provably work, we need to show that (under some
reasonable conditions on parameters) the covariance of the sufficient statistics is well-behaved. In
particular, we show that if the underlying parameters satisfy the Dobrushin condition, the covariance
matrix of the sufficient statistics will be proportional to the identity.

Interestingly, Dagan et al. (2020) recently showed that this holds for the covariance of the space
of degree-1 polynomials of such Ising models. We need to generalize this to show that Var[ X7 AX]
is proportional to || A||% for any symmetric matrix A with zero diagonal. To achieve this, we use a
decoupling trick to reduce the problem to the degree-1 case. We relate the variance of X7 AX to
E[|(X + Y)TA(X —Y)|?], for X and Y independent copies of our distribution. If we condition
on the set S of coordinates where X; = Y}, then (X + Y) and (X — Y) become independent Ising
models. By estimating the covariances of these linear functions of these statistics, we can get a
handle on the final bound.
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Organization After some technical preliminaries (Section 2), in Section 3 we prove Theorem 7.
In Section 4, we establish Theorem 4. Due to space limitations, our results for the non-zero external
field and several technical proofs have been deferred to the Appendix.

2. Preliminaries

Notation For d € Z,, we use [d] to denote the set {1,...,d}. Given a subset S C [d], we
will denote —S = [d] \ S. In particular, given i € [d], let —i = [d] \ {i¢}. Given a vector a =
(ai,...,aq) and S C [d], let ag denote the |S|-coordinate vector {a; : i € S}. Let S¥~! = {z ¢
R : ||z|ls = 1} be the d-dimensional unit sphere. Given a real symmetric matrix A € R%*9, let

def def def
IAllF = /X jea A let | All2 = max,cga || Av]|2, and let || Al|o =

d
= maX;c(q] Zj:l | Agj]-
For u,v € R?, we use (u,v) for the inner product of v and v. For any two symmetric matrices

A Be RA%d e say that A = B if A — B is positive semi-definite (PSD), and A < Bif B — A

is positive semi-definite. For any two distributions p, ¢ over a probability space £2, let dtv (p, q) def

supgcq [p(S) — q(S)| denote the total variation distance between p and ¢ and let dx 1 (p, q) def

Jo log (%) dp denote the KL-divergence of p and ¢. We use E[X], Var[X ], Cov[X, Y] to denote
the expectation of X, variance of X, and covariance of X and Y respectively.

Additional Technical Preliminaries Basic properties of Ising models and exponential families
are given in Appendices A.3 and A.7. We will also require sub-exponential distributions and their
basic properties (see Appendix A.1). We will use the following terminology.

Definition 8 (Bounded Ising Model) Given M, o > 0, we say that an Ising model distribution Py
is (M, a)-bounded if maxe(q) D 4; |0i;] < M and max;c(q) |0;] < o

Intuitively, the first inequality states that the dependencies among the points are weak and the
second inequality guarantees that the variance of each point is sufficiently large.

Glauber dynamics is the canonical Markov chain for sampling from undirected graphical mod-
els. The dynamics on the Ising model defines a reversible, ergodic Markov chain with stationary
distribution corresponding to the Ising model. (We describe the dynamics in Appendix A.5.) The
Glauber dynamics for an Ising model satisfying Dobrushin’s condition is rapidly mixing, i.e., it
converges fast to the underlying distribution Fp.

Fact 9 (see, e.g., Levin and Peres (2017)) Let Py be an Ising model satisfying Dobrushin’s con-
dition and v > 0. Then, after t = Q(d(log d + log(1/7))) steps of Glauber dynamics, we have that
dry (X®, Py) <.

Fact 9 tells us that given the parameter 6, we can efficiently generate approximate random samples
from the Ising model distribution Py, as long as it satisfies Dobrushin’s condition.

Maximum Likelihood Estimation Given a set of i.i.d. samples S = {x1,...,x,} € X" drawn
from an exponential family Py with sufficient statistics 7'(x) and unknown parameter 6 € (2, the
principle of maximum likelihood allows us to compute an estimate 6 €Q by maximizing the
likelihood of S, i.e., (0, S) = L 3 | In Py(x;) = L 30, ((T'(4), 0) — A(0)) = (0, fir) — A(0),

where fip = L 3" | T(x;) is the empirical mean of the sufficient statistics 7'(z) defined by the
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point set S. Define L(6, ur) = (6, ur) — A(0) and fix pur to be the empirical mean fiz. The
maximum likelihood estimator @ is chosen to maximize the objective function L(6, i) over 6 € (.

The following lemma states that under suitable conditions, if we obtain a good estimate of the
mean up of the sufficient statistics 7'(x), the maximum likelihood estimator (MLE) will be a good
approximation of the parameter 6 (see Appendix A.8 for the proof).

Lemma 10 Let Py be an exponential family such that 6* lies in a convex set  C R% Let
wi =Ex~p,. [T(X)] and X% = Covx~p,. [T(X)]. Let yu! be an approximation of |} such that
|\l — pille < 6. Let 0" € argmaxgeq L(0, p), where L(0, plp) = (0, u'n) — A(0). If there is a
universal constant ¢ > 0 such that Covx..p, [T(X)] = ¢, forall 0 € ), then |0 — 0*|| < 26/c.

3. Robust Parameter Learning of Exponential Families

In Section 3.1, we give an efficient algorithm (Lemma 11) that reduces parameter estimation of
exponential families to the task of estimating the mean of the sufficient statistics. In Sections 3.2
and 3.3, we describe and analyze our computationally efficient robust parameter learning algorithm
for exponential families satisfying Condition 6.

3.1. Learning via Estimating the Mean of Sufficient Statistics

Lemma 11 Let Py be an exponential family with sufficient statistics T'(x), where 0* € Q and
Q C R%is convex. Assume that Condition 6 holds. Let itz = Ex.p,.[T(X)] and pily be an
approximation of ji. such that ||pf — phlla < 0, for some 0 < & < 1 sufficiently small. Let
0 < ¢ < 1. Then there is a poly(d,1/6,1/() time algorithm that, given input p'., 6 and C, returns
a vector 0 € Q such that with probability at least 1 — ¢ we have that ||5— 0* |2 < O(0).

We give a proof sketch here; the details are in Appendix B.1. Let ' = argmaxgeq L(0, /).
By Lemma 10, we know that [|0" — 0*||2 < O(||p/, — ph||2) < O(6). In addition, since given any
0 € Q we can efficiently sample from a distribution within small total variation distance of Py, we
can efficiently approximate the gradient Vo(—L(0, /7)) = Ex.p,[T(X)] — p'p. Therefore, we

can apply projected gradient descent to efficiently obtain an estimate 6 of ' with ||§— 0’2 < O(0),
using the fact that —L (0, pu/.) is L-smooth and m-strongly convex for some constants L, m > 0.

3.2. Robust Parameter Learning Algorithm

The pseudocode of our algorithm is given in Algorithm 1. We make essential use of the following
previously known algorithms for robust mean estimation under bounded and approximately known
covariance assumptions.

Fact 12 (Diakonikolas et al. (2017); Steinhardt et al. (2018)) Let D be a distribution supported
on R with unknown mean w and unknown covariance ¥ such that > < 21, for some o > 0. Let
0 < € < €q, for some universal constant ey, and 6 = O(\/€). Given an e-corrupted set of N samples
drawn from D, for some N = 6(d/6), there is a poly (N, d) time algorithm that outputs a vector [i
such that ||it — pll2 < O(0d) = O(o+/€) with high probability.

Fact 13 (see, e.g., Cheng et al. (2019)) Let D be a distribution on R4 with unknown mean w and
unknown covariance .. Let 0 < € < €q, for some universal constant ¢y, T < O(ﬁ), and § =
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O(y/7e + €log(1/€)). Suppose that D has sub-exponential tails and ¥ satisfies | X — I, < 7.
Given an e-corrupted set of N samples drawn from D, for some N = O(d/€?), there is a poly (N, d)
time algorithm that outputs a vector [i such that ||t — p||2 < O(0) with high probability.

Algorithm 1 starts by applying the robust mean estimation routine of Fact 12 and Lemma 11 to
obtain an initial estimate §°) with £5-error O(+/€). Starting from this rough estimate, the algorithm
applies an iterative refinement procedure (see Fact 13 and Lemma 15) for T = O(loglog(1/¢))
iterations to achieve near-optimal {2-error of O(elog(1/e)).

Algorithm 1: Robust parameter estimation for exponential families

Input :0 < € < ¢, e-corrupted set of N = 6(d/ €2) samples from exponential family P~
satisfying Condition 6, with . = Exp,. [T'(X)] and X% = Covx~p,. [T(X)].
Output: Parameter § € R? such that H@— 0*||2 < O(elog(1/€)) with high probability.
1 Letd = O(\/e).

2 Compute ﬁg? ) with Hﬁg? ) |2 < 0 by applying the robust mean estimation algorithm of Fact 12.

Compute §(©) € Q2 by applying projected gradient descent to the function —L (0, ﬁgs))).
Let 7o = O(J) be an upper bound of ||#(®) — 6.
Let K = O(loglog(1/e€)).
fork=010 K —1do
Letn = O(d?/72) and X, ..., X be i.i.d. random samples such that
dry (XD Pyy) < O(12/d?).
s | Letp? =253 XOand S = L3770 (X — ) (XO — )"
9 Let 6 = O(/eTi, + elog(1/e)) .
10 Compute 7i with ||z7 — (Eg@)_lmuiﬂ
of Fact 13.
11 Compute §*+1) € Q by applying projected gradient descent to the function
10, (55) )
12 Let 741 = O(6) be an upper bound of ||§*T1) — §*||,.
13 end
return 6%,

N S M B W

, < 0 by applying the robust mean estimation algorithm

[y
'S

To prove correctness, we require Lemmas 14 and 15 below. Roughly speaking, in each refine-
ment step, we first apply Lemma 14 to obtain a covariance estimate Egﬂ ) given the current parameter
estimate (%), Then, by Lemma 15, we are able to obtain a more accurate parameter estimate gk+1),

Lemma 14 shows that given an estimate 6’ of the true parameter 6* of the exponential family
satisfying Condition 6 with ||¢’ — 6*||, < 4, we can efficiently compute an estimate 7 of the true
covariance 7, such that HiT — E}H2 < O(0) with high probability.

Lemma 14 Let P; be an exponential family with sufficient statistics T'(x), where §* €  and
Q C R% is convex. Assume that Condition 6 holds. Let 3% = Covx.p,.[T(X)]. Let 0'€ Q be
such that ||0' — 0*||, < 6, for some § > 0. Let 0 < ¢ < 1. There is a poly(d,1/0,1/¢) algorithm
that, given as input 0,6 and (, returns a d x d PSD matrix f]T such that with probability at least
1 — ¢, we have that HiT = Z*TH2 < 0(9).
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The algorithm establishing Lemma 14 is very simple — it corresponds to lines 7 and 8 of Algorithm 1.
Roughly speaking, we first generate i.i.d. random samples from a distribution ) which is close to
Py, and then let f]T be the empirical covariance of these samples.

Lemma 15 shows that, given a fairly accurate estimate of the covariance 7. of an exponential
family satisfying Condition 6, we can efficiently obtain a more accurate estimate of 6*.

Lemma 15 (Iterative Refinement) Ler 0 < § < &g for some universal constant ¢ sufficiently
small. Let 0 < { < 1. Assume that Condition 6 holds. Let S’ be an e-corrupted set of N samples
from Py«. There is an algorithm that, for some N = 6(d/62), given S', 5, ¢, and Egg) with
HE&?) - Ei}H2 < 6, it runs in poly(N,1/68,1/C)-time and outputs 5+Y) € Q such that with
probability at least 1 — it holds that |§%*+Y) — 6% ||y < O(Ved + elog(1/e)).

The algorithm establishing Lemma 15 corresponds to lines 9 to 12 of Algorithm 1. The main
idea is as follows: Let Y = (Egi))*lﬂT(X). We can show that the covariance of Y is close to
identity and Y is sub-exponential, for some universal constant ¢ > 0. Thus, we can apply the robust
mean estimation algorithm of Fact 13 to obtain an estimate zi of the mean of Y. In addition, we
can show that (ngz ))1/ 21 is a good estimate of ;1* = Exp,. [T'(X)], and therefore we can apply
Lemma 11 to get a new estimate gk+1),

Before we give the proofs of Lemmas 14 and 15, we show how they imply Theorem 7.

Proof [Proof of Theorem 7] Algorithm 1 starts by applying the robust mean estimation algorithm

for bounded covariance distributions (Fact 12) to obtain an estimate Mgpo ) of the true mean wp =

Ex~p,. [T(X)] such that H,ugg) — M}HQ < O(y/e€). Then it applies Lemma 11 to obtain an initial
estimate #(0) of the underlying parameter 6* with ||§(9) — 6*||y < O(y/e).

In each refinement step k, assume that we have a current estimate (%) of the true parameter 6*
such that ||§) —9*||y < 7, for some 73, > 0. Algorithm 1 first applies the algorithm of Lemma 14 to
[, < O(10®—67||2) < O(m).
Then it applies the algorithm of Lemma 15 to obtain a more accurate estimate (1) of the true
parameter 6* such that ||[0*+1) — %[y < 7511, where 7,11 = O(\/eTy, + elog(1/e)). After K =
O(loglog(1/€)) iterations, we obtain an estimate 6 = 01 such that ||§—9* ll2 < O(elog(1/€)). To
bound the sample complexity and the failure probability, we take ( = 1/1og(1/¢) in Lemmas 11, 14
and 15. Therefore, the sample complexity is N = O(dK/e?) = O(d/e®) and the total failure
probability is at most O (K/log(1/€)) < 1/100 by a union bound. Finally, by Lemma 35, it
follows that dry (Pp, Pp+) < O(]|6 — 6*||2) < O(elog(1/e)). [

compute an estimate Egﬂ ) of the true covariance ¥k with HZ¥ ) -3k

3.3. Implementing the Iterative Refinement Steps

In this subsection, we prove Lemmas 14 and 15. The following proposition connects the third
derivative of the log-partition function A(#) of the exponential family P, with the third moment of
the sufficient statistics 7'(x) (see Appendix B.2 for the proof).

Proposition 16 Let Py be an exponential family with sufficient statistics T'(x) and density Py(x) =
exp ((T'(),0) — A(9)), 0 € R Let up = Ex.p,[T(X)] and S = Covx.p,[T(X)]. Then, for

any i, j, k € [d], we have that °G10% = B _p, [(T(X) — pr)i(T(X) — pr);(T(X) — pr -
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As a consequence of Proposition 16, we can bound the difference between the covariance ma-
trices of the sufficient statistics of two exponential families with sub-exponential tails in terms of
the difference between their parameters (see Appendix B.3 for the proof).

Lemma 17 Let Q C R? be a convex set. Assume that for any 0 € ), the exponential family Py with
sufficient statistics T'(x) has sub-exponential tails for a universal constant ¢ > 0, i.e., for any 6 €
and any unit vector v € R%, Prx . p,[|(v, T(X) — Ex~p,[T(X)])| > t] < 2exp(—ct). Then there
is a constant ¢ > 0 such that for any 0%, 0 € Q, we have that | X1 (0%) — Z7(62) |2 < /(|01 — 0|2
where for any 0 € Q, ¥7(0) = Covxp,[T(X)].

Proof [Proof of Lemma 14] Let X/, = Covx.p,[T(X)]. From Lemma 17, it follows that
157 = 5%, < O(||¢ — 6*[|2) = O(6). In addition, given §’ € €2, we can efficiently sample
from a distribution within total variation distance v = 55 oz jifjg (1270 from Py.

Since Py is sub-exponential and +y is sufficiently small, by standard properties of sub-exponential
distributions and the data processing inequality, it follows that the empirical estimate Y7 satis-

fies ||Sp — Y|l < O(6) with probability at least 1 — (. (Formally, this follows by picking
= log(12/¢) and n = Cllog dt06(12/9) in Claim 38.) This implies that [S7 — S5y <
137 — X% ||2 + |27 — 3% ][2 < O(6), completing the proof. [ ]

Proof [Proof of Lemma 15] Let Y = (Egﬁ))_l/zT(X), py = Exop,.[Y] = (Egﬁ))_lm,u*T, and
Yy = Covx~p,.[Y] = (Z‘g@)_l/zZ* ( (k)) /2 From Condition 6 and Fact 21, we know that
cI <= X% < ¢ I for some universal constants ¢ > ¢ > 0. Since HE(k) — E*TH2 < 9 < §p, we have

that (¢ — do) I < E( ) < < (¢’ + 6o) I and for any unit vector v € S, we have that

‘UT(ng)) 1/2(2() ET)(E() -1/2 ’< H ET”Q H k) ~1/2 H2
< 1) = =5l 1) 25 = 1) - ETHQ (=) 1H2 <00) .

which implies that
1 0(5) _ UT(Egﬁ))fl/ngﬁ)(Egﬁ))fl/Qv _ 0(5) < UT(ny)) 1/22* (2( )) 1/2
< oT(2P)~17250 (SN -1/2) 4 0(5) = 1+ 0(6) .

Therefore, we have that || Xy — |2 = }|(Z§£€))_1/22* (E( )) 1/2—IH2 < O(0). In addition, since

T'(z) has sub-exponential tails by Condition 6 and ZEF) = (c— o) I, we know that Y also has sub-
exponential tails. Therefore, we can apply the robust mean estimation algorithm for approximately
known covariance distributions (Fact 13) to obtain an estimate /i of py such that ||z — py e <
O(V'ed + elog(1/¢)) with probability at least 1 — ¢ /2. We thus have that

[[e2 k))l/QA wrlly =|(2 k))m(ﬂ (ng)) 12 wr) |, < HE Hm I — oy |2
<\¢+60- i — pylla = O(Ved + elog(1/e)) .

Then we apply Lemma 11 by taking ((E( )) 1/2;7, O(\/T; + elog(1/€)),¢/2) as input, to obtain a

vector §¢+1D) € Q such that ||[§FTD) — 9%, < O(H(E(k )1/2A — pi|l,) < O(Ved + elog(1/e)).
This completes the proof. |
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4. Robustly Learning Ising Models

In this section, we prove Theorem 4, giving our efficient robust learning algorithm for Ising mod-
els without external field under Dobrushin’s condition. Due to space limitations, our analogous
algorithmic result for the non-zero external field case is given in Appendix C.3.

Throughout this section, we assume that X is an Ising model satisfying the Dobrushin condition
for some fixed constant 17 > 0. Therefore, we will suppress any possible dependence on 7 in our
asymptotic notation in this section.

For the zero external field case, the density of an Ising model is Py(z) = % exp((1/2) 22, jeia
where (0;;); je|q) is a d X d real symmetric matrix with zero diagonal and Z () is the partition func-
tion. By definition, P is an exponential family with sufficient statistics 7'(x) = (2;2;)1<i<j<q and
the projection of T'(z) on a fixed direction is X7 AX, where A € R%*? is a symmetric matrix with
zero diagonal and || A% = 1/2.

As already mentioned, we view the Ising model distribution as an instance of a general expo-
nential family and apply Algorithm 1. The challenge lies in proving correctness. Let €2 be the set of
all @ such that Py satisfies Dobrushin’s condition. We will show that Condition 6 is satisfied for €2,
and therefore Algorithm 1 succeeds in our context.

First note that, by our choice of €2, its diameter is bounded (diam(€2) = poly(d)), and we
can efficiently compute the projection of any point z € R*(d=1)/2 Moreover, by Fact 9, we can
efficiently approximately sample from Ising models satisfying Dobrushin’s condition.

It remains to verify the first two statement of Condition 6. For the second statement, we need the
following sub-exponential concentration inequality for quadratic functions of (1 — 7, «)-bounded
Ising models. (This inequality will also be needed for the non-zero external field case.)

Lemma 18 Let X ~ Py be an Ising model satisfying Dobrushin’s condition and max;c|q) 10:] <«
where o > 0 is an absolute constant. Let A € R be a symmetric matrix with zero diagonal
and b € RY. For any x € {£1}4, define f(x) = (v — v)TA(x — v) + b2, where v satisfies
|lv —E[X]||, <9, for some constant § > 0. Then there is a universal constant ¢ > 0 such that

Pr(|f(X) — E[f(X)]| > 1] < 2exp (—(ct)/(||AF + [[b]3)"/2).

Lemma 18 can be derived via machinery developed in Gotze et al. (2019) (see Appendix C.1). From
Lemma 18, it follows that the sufficient statistics 7'(x) has sub-exponential tails, for some universal
constant ¢ > 0.

It remains to verify the first statement of Condition 6, i.e., to show that for any 8 € () the
Ising model distribution Py satisfies Cov x~p,[T(X)] = ¢ I, for some universal constant ¢/ > 0.
Equivalently, it suffices to show that for any unit vector w € S#*(¢=1)/2=1 it holds

w! Covxp,[T(X)|w = Varxp,[w! T(X)]>c .

We start with some very basic intuition about this statement. Note that in the very special case
where 6;; = 0,Vi, j € [d], X ~ P is the uniform distribution on the hypercube, i.e., its coordinates
are independent Rademacher random variables. In this case, it is easy to see that for any symmetric
matrix A € R we have that Var[ X7 AX] = 2 Dot A?j. Intuitively, for any (M, «)-bounded
Ising model (possibly containing a non-zero external field) for some constants M, o > 0, the entries
of X are nearly independent, which allows us to prove the following variance lower bound.

Our result in this context is the following theorem, which may be of independent interest.

11
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Theorem 19 Let X ~ Py be an (M, «)-bounded Ising model (possibly with non-zero external
field), for some constants M, > 0. There is a constant c¢(M, «) > 0 such that for any symmetric
matrix A € R with zero diagonal and any v € RY, we have that

Var[(X — v)TA(X — )] > (M, a)||Al|% .

Due to space limitations, the proof of Theorem 19 is deferred to Appendix C.2. Here we provide a
brief outline of the proof. By definition, we can write

Var[(X — v)TA(X — v)] = %E[((X C)TAX —v) — (Y — o) TAY —v))7]

= %E[((X ~Y)TAX +Y —20))°] .

Since there are dependencies between each X; and Yj, it is not easy to bound from below the
expectation of the quadratic form directly. By Lemma 32, we know that Cov|[X| = ¢/(M, «) I, for
some universal constant (M, «) > 0. A natural idea is to reduce the original problem to lower
bounding the variance of a linear form.

Define the random variables S = {i € [d] | X; = Y;} and Afj = A;;,Vi ¢ S, €[d, W=
I[i € S)X; — v, Vi € [d]. The key observation is that conditioning on a fixed set .S, the marginal
distributions of Xg¢ and X _g are independent (2M, 2«)-bounded Ising model distributions. In
addition, conditioning on a fixed set .S, X —Y only depends on X_g, and X +Y — 2v only depends
on Xg. Therefore, we can write

Exy [(X - Y)TAX +Y —20))* | 5]
= Exox_o [(XTsA5WS)? | 8] = Ex, [Ex o [(XTsASW5)? | Xg,5] | 5]
> Exg [Mmin (Bx_4[X_sXTg | S])|AWF| 3| S]
> (M, )E[[|ASW?3 | 5],

where Apin (EX_S [X_SXTS ] S]) denotes the minimum eigenvalue of Ex [X_SXTS | S}.
Given this, we can express E[||ASW¥||3 | S] in terms of the variance of a linear form, and apply
Lemma 32 again to obtain the desired lower bound.

We are now ready to prove the main result of this section.
Proof [Proof of Theorem 4] Let Q = {(0;j)1<icj<a € RX@=D/2 | maX;e|q] E;;ll 6:] +
Z;-l:iﬂ 16;;| < 1 —mn}, where > 0 is the constant in Definition 3. Let # €  and Py be the
corresponding Ising model distribution. By definition, P! is an exponential family with sufficient
statistics T'(x) = (x;2;)1<i<j<d. In order to apply Algorithm 1, we check each statement in Con-
dition 6 one by one. By our choice of 2, we know that diam(2) = O(d) and we can efficiently
compute the projection of any point z € R¥(@=1)/2_ From Fact 9, we can sample from Py within
total variation distance ~y in time O(d(logd + log(1/7))), for any v > 0. Therefore, the third state-
ment holds. From Lemma 18, there is a universal constant ¢ > 0 such that for any symmetric matrix
A € R4 with zero diagonal and any ¢ > 0, we have that Prxp,[|[XTAX — E[XTAX]| >
t] < 2exp (—(ct)/||A||r), which implies the second statement in Condition 6. Moreover, by The-
orem 19, we know that there is a universal constant ¢ > 0 such that for any symmetric matrix

1. For simplicity, we also use 6 to denote the d x d symmetric matrix with zero diagonal.

12
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A € R4 with zero diagonal, we have that Var[ X7 AX] > /|| A

ment in Condition 6. Therefore, by Theorem 7, we can efficiently obtain an estimate 6 € Q such
that dry (P, Pp<) < O(]|0 — 07[|r) < O(elog(1/¢)) with probability at least 99/100. In addition,
by our algorithm 0 € Q, and thus the output hypothesis satisfies Dobrushin’s condition. |

2., which implies the first state-
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Appendix

Appendix A. Omitted Technical Preliminaries

A.1. Basic Facts about Sub-exponential Distributions

Here we present basic facts about sub-exponential distributions. The reader is referred to Vershynin

(2018).

Definition 20 (Sub-Exponential Distribution) A distribution D over R is sub-exponential if there
is a constant ¢ > 0 such that for any t > 0, we have Prx..p [| X — E[X]| > t] < 2exp(—ct). We
say that a distribution D' over RY is sub-exponential if there is a constant ¢ > 0 such that for any
unit vector v € S and any t > 0, we have that Prx..p [|(v, X — E[X])| > t] < 2exp(—ct).

Fact 21 Let X be a mean-zero random variable, and suppose that there is a constant K > 0 such
that for any t > 0, Pr[| X| > t| < 2exp(—t/K). Then there is a constant C > 0 such that for any
real number p > 1, E[|X|P] < (CKp)P. In addition, there is a constant C' > 0 such that for any
0 < |\ < 1/(C'K), we have that E[exp(AX)] < exp(C?K?2)\?).

The following result establishes that, for any sub-exponential distribution, the empirical mean
and empirical covariance converge fast to the true mean and covariance.

Lemma 22 (see, e.g., Vershynin (2018); Kuchibhotla and Chakrabortty (2018)) Let D be a sub-
exponential distribution over R® with mean v and covariance . Let X1, ..., Xy, be i.i.d. samples
drawn from D, i, = = 31" | X; be the empirical mean, and Sp = IS (X — i) (X — )T
be the empirical covariance. Then there exist constants c1,ca > 0 such that the following holds:

1. With probability at least 1 — 2 exp(—t2), we have that

1in — sl < e max(s,8%)

where § = \/% + ﬁ and

2. With probability at least 1 — 6 exp(—t), we have that

. 1 1 1 2
5. ], o FEEE , Ctlostinn)
n n

A.2. Basic Facts on Optimization of Smooth and Strongly Convex Functions

In this section, we provide some background on smooth and strongly convex optimization.

Definition 23 Ler Q C R be a convex set and f : Q — R be twice continuously differentiable.
Form > 0, we say that f is m-strongly convex over Q if V2 f(x) = ml, for all x € Q2. We say that
f is L-smooth over Q if —LI < V2 f(z) < LI for all x € Q.
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Algorithm 2: Projected gradient descent for strongly convex smooth optimization

Input : an m-strongly convex and L-smooth function f over a convex set {2 and a
constant § > 0.
Output: an T € Q) such that ||z — z*||2 < §, where z* = argmin,ecq f(x).
Let 20 € Q be an arbitrary initial point and 7' = O (# log (%ﬁl)) ) .
fort =0t0T —1do
rt =gt — %Vf(azt)
ot = argmingeq ||z — r'[l2.
end
return z” .

o

A N A W N

Notation Let X C R be a convex set. We denote diam(X') to be the diameter of X’ in Euclidean
norm, i.e., diam(X') = sup, yex ||z — y||2. For an arbitrary point z € R9, we denote Py (z) to be
the Euclidean projection of z to X, i.e., Py(x) = argmin,cy ||z — z||2.

The following projected gradient descent method for minimizing a smooth and strongly convex
function is standard.

Fact 24 (Nesterov (2018)) Let f : Q@ — R be L-smooth and m-strongly convex. Let x* =
argmingcq f(x). The iterates in Algorithm 2 satisfy

ot — |3 < (1= ) lla* —a*[3.
Therefore, after T = O (# log (dk%(m» iterations, we have that |z — z*||o < 6.

A.3. Basic Properties of Ising Models

Here we present some basic properties of Ising models, which will be used throughout this paper.
Our first property states that if we arbitrarily fix the states of an arbitrary set of points, the conditional
distribution of other points is still an Ising model.

Fact 25 Let X ~ Py be an Ising model supported on {£1}¢ and I C [d). For any fixed vector
vy € {£1}71, the conditional distribution of X1 over {+1}! conditioning on X_| = x_g is
an Ising model with interaction matrix (%j = 0;j, for all i,j € I, and external field 0, = 0; +
Zj¢1 Oijxj, foralli € 1.

The proof of this fact is standard, but we provide it here for completeness.
Proof Let x;, 2, € {4-1}!. We calculate the ratio of conditional probabilities for two configurations
xr and 27, as follows:

r=ag] P (Zz‘,jel Oijiz + 3 ieq Ti (9i +2 ¢ 9%‘]’”33'))
=2t) exp (S, jer Ol + Sier @) (0 + Xy 0155 ) )

Therefore, the conditional distribution of X7 conditioning on X_; = x_; is an Ising model with
interaction matrix (6;;); jer and external field 6, = 6; + 3 eI Oijx;. [ ]
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Our second property states that for an arbitrary (M, «)-bounded Ising model, every point has
sufficiently large variance.

Fact 26 Let X ~ Py be an (M, a)-bounded Ising model supported on {£1}?. Then, for every
i € [d] and x; € {£1}, we have that

exp(—2(a+ M)) . exp(2(a+ M))
T+ exp(—2(a a0 = i = ol S T e )

Therefore, we also have that

exp(—2(a 4+ M)) )2
)/

Var[X;| = 4Pr[X; = 1|Pr[X; = —1] > 4
ar[Xi] d JPr| ) <1+exp(—2(a+M

Proof By definition of the Ising model, we can write
].:)I‘P(Z = :L‘l] = Z PI'[X,i = ZC,Z‘] . PI‘{XZ = T; | X,i = l‘,i]
x_iG{:tl}dfl

exp (92'562‘ + @D eijxj)
= Z PriX_;,=u2_]-

z_;e{£1}d-1 exp (92-7% + x; Zﬁéi QijIj> + exp (—Qiazi — Ty Zﬁéi 92']'33])
exp (291361 + 2x; Zj;éi Qijl‘j)
= Z PI‘[X_i = 1'_1'] . .
z_;e{£1}d-1 1+ exp (20ixi + 2332' Zj;éi QijfL‘j)
Since X is an (M, ov)-bounded Ising model and the function f(t) = ffet is monotonically increas-

ing, we have that

exp(—2(a + M)) _ exp (292'%' + 223 )54 9751‘%‘) < exp(2(a + M))

< < ;o (D
1+exp(=2(a+M)) = 1 4 exp (29i$i 225 Y Hz‘jl’j) 1+ exp(2(a+ M))
o <p(—2(a+M)) o xp(2(at+M))
which implies that W <Pr[X; =] < %.
Let p; = Pr[X; = 1]. We directly calculate E[X;] and Var[X;] as follows.
E[XZ] = ].:)I‘[AXVZ = 1] — PI'[XZ = —1] = 2pi — 1,
Var[X;]=1-E[X;]? =1— 2p; — 1) = 4p;(1 — pi) .
Hence, from inequality (1), we have that
exp(—2(a+ M)) \?
Var X;| =4Pr X; =1|Pr|X; =-1] >4
arlXi] = 4PrlX; = PrlX; = —1] 2 (1 +exp(—2(a+ M)))
which completes the proof. |
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A.4. Dobrushin’s uniqueness condition

Here we introduce the original definition of Dobrushin’s condition through the influence between
points in general graphical model.

Definition 27 (Influence in graphical models) Ler D be a distribution over some set of points V.
Let S; denote the set of state pairs (X,Y") which differ only at point j. Then the influence of point
j € Vonpointi €V is defined as

I(j,1) = drv(Di(- | X—i), Di(- | Y=3)) ,
(J, 1) Ay v (Di(- | X=i), Di(- | Y=4))

where D;(- | X_;), D;(- | Y_;) denote the marginal distribution of point i conditioning on X_; and
Y_, respectively.

Definition 28 (Dobrushin’s uniqueness condition) Let D be a distribution over some set of points
V. Then D is said to satisfy Dobrushin’s uniqueness condition if max;cy » jev I(5,7) < 1.

For Ising models, Chatterjee (2005) proves that max;cy » ki |6;;| < 1implies the Dobrushin’s
uniqueness condition.

A.5. Glauber Dynamics

The Glauber dynamics for Ising models proceeds as follows:
1. Start at any initial state X (©) € {£1}4.

)

2. Pick a point ¢ € [d] uniformly at random and update X i(t as follows:

x (D exp <9i~75 + 30005 X](t) x)
P (Hi 2 einJ('t)> +exp <_‘9i — Dt GinJ(’t)> |

B =z Ww.p.

A.6. Concentration and Anti-concentration of Ising models

Several recent works have studied the concentration and anti-concentration of functions of Ising
models Gheissari et al. (2018); Gotze et al. (2019); Daskalakis et al. (2017); Adamczak et al. (2019).
Here we record some results which will be used throughout this article.

The following fact states that for any (1 —17, «)-bounded Ising model, for some constants 7, o >
0, the corresponding Ising model distribution is sub-Gaussian.

Fact 29 (Gotze et al. (2019)) Let Py be an Ising model satisfying Dobrushin’s condition, and
max;e(q |0i| < o for some constant a > 0. Then there is a constant c(c,n) > 0 such that for
any b € R% and any t > 0, we have that

t2
Prx.p, [[07X —E ' X]| > 1] < 2exp (‘cmn)rbug) ’

where 11 > 0 is the constant in Definition 3.
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The following concentration property for quadratic forms of Ising models will be used to estab-
lish appropriate concentration inequalities.

Fact 30 (Gheissari et al. (2018)) Let X ~ Py be an Ising model satisfying Dobrushin’s condition.
Let A € R¥? be a symmetric matrix with zero diagonal and b € R®. For any x € {:I:l}d, define
f(x) = (x —v)T A(x —v) +b" 2, where v = E[X]. Then there is a constant c(n) > 0 such that

Var[f(X)] < c(n)(|AlF + [1bl]3) .
where 1 is the constant in Definition 3.

We will require the following fact, which states that if the Ising model satisfies Dobrushin’s
condition, then changing the state of a single point will have small influence on other ones.

Fact 31 (Dagan et al. (2020)) Let Py be an Ising model satisfying Dobrushin’s condition. Fix
i € [d] and let p'; denote the conditional expectation over z_; conditioning on z; = 1, and
uj denote the conditional expectation over x_; conditioning on x; = —1. Then, we have that
|t — ,u:ilHl <2(1—n)/n and};,;|Cov[X;, X;]| < (1 —n)/n, where n > 0 is the constant
in Definition 3.

We will also require the following anti-concentration result for linear forms on bounded Ising
models:

Fact 32 (Dagan et al. (2020)) Let X ~ Py be an (M, «)-bounded Ising model, where M, o > 0
are constants. Then there is a constant ¢(M, o)) > 0 such that for any vector b € R%, we have that

Var[b? X| > ¢(M, a)||b|3 .

As a consequence of Fact 32, for any (M, «)-bounded Ising model X, we have that Cov[X] =
c(M,a)l.

A.7. Basic Properties of Exponential Families

Here we record some basic facts about exponential families.

The first fact says that for an arbitrary exponential family, the mean of the sufficient statistics
is exactly the gradient of the log-partition function, and the covariance of the sufficient statistics is
exactly the Hessian of the log-partition function.

Fact 33 (see, e.g., Wainwright and Jordan (2008)) Let X ~ Py be an exponential family over
X with sufficient statistics T'(x) and probability density function Py(x) = exp ((T'(z),0) — A(6)),
0 € R Let pr = E[T(X)] and X7 = Cov|[T(X)]. Then, we have that VgA(0) = ur and
V3A(0) = %2 = ¥,
We include the proof for completeness.
Proof Let Z(0) = exp(A(f)) = > cxexp ((T'(x),0)). From elementary calculation, we have
that

_VZ(0) _ wexp((T(2),0))T ()

VAWB)=VInZ(0) = 70) = 20) =pur,
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and
Our 0 ([ LeexP(T(2),0)T(x)\ _ Yoexexp((T(2),0))T ()T ()"
VZA(Q)_aeT_ae< 3 Z(0) > 3 Z()
 (Ciexep((T(2),0)T(2)) (X ex exp((T(2),0)T(2)")
Z(0)?

=E[T(X)T(X)"] - prpt = Sr .
]

The following fact connects the KL-divergence between two exponential families with their
parameters in an explicit form.

Fact 34 (see, e.g., Wainwright and Jordan (2008)) Let Py, Py be exponential families with prob-
ability density functions Py(xz) = exp ((T'(z),0) — A(0)) and Py (x) = exp ((T'(z),8") — A(0")),
where the parameters 0,0/ € R Let pp = Ex.p,[T(X)], pp = Exp,[T(X)], Sp =
Covx~p,[T(X)], and X7, = Covx~p, [T(X)]. Then, we have that

dxr(Py, Py) = (0 — 9',,uT> — A(9) + A(@l).
Combining this with Fact 33, we obtain that Vg di,(Py, Py') = p'p — pr and Vg/dKL(Pg, Py) =
I
Proof From the definition of KL-divergence, we have that
Py(z
)
= Exp,[(T(X),0 - 0')] — A(6) + A(0)
— (60— 0, jur) — A(6) + A(9)) .

A.8. Proof of Lemma 10

From the definition of L(0, ur) = (0, ur) — A(6) and Fact 33, it follows that for any 6 € €2, we
have that
V3L(0, jr) = —~V3A(6) = ~Covxup, [T(X)] < —cT .

Hence, for any fixed 7 € R? the objective function L(, ur) is c-strongly concave and therefore
has a unique maximizer 6,,,. € €. From Fact 34, we have that

L0, 453) — L(8', ) = (6" — 0/, i) — A(8") + A(8') = dic1(Pp-, Pyr), and
0< L(O', 1) — L(6%, 1) = (0 — 0%, i) — A(8) + A(67)

where we used the fact that, given p/» € R%, L(6, 1)) attains its maximum at § = ¢’ over Q. Adding
the above two equations together, we get

(0 =0 g — pp) = (L0, wp) — L(O, ) + (L0, wp) — L(O*, py)) > dir(Po-, Pyr) -
2)
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In addition, from Taylor’s theorem, we can rewrite di ,(Py+, Pyr) as follows

dxr,(Py=, Py) = dxr(Pp+, Por) — dicr,(Py+, Po~)

1
= Vordicr(Po-, Py)|,_ + S0 = 0*)'V2, d 1. (Py+, Pyr) 9/:0”(9’ -0

1 *
= 5(0’ — 0")TCovx~p,, [T(x))(0' —6%)
> 2o - 613, 3)

where 0" = A0’ + (1 — X\)#* for some 0 < A < 1 and we apply Fact 34 in the third equality.
Combining (2) and (3), we obtain that

10" = 'll2 |n7 — prll2 = (0% = 0", n — pp) > dxr(Po-, Pyr) > *HH' 03,

which implies that

i} 2 26
16— )12 < =l — piglla < =

This completes the proof.

A.9. From Parameter Distance to Total Variation Distance

The following lemma shows that for any exponential family Py, if the sufficient statistics T'(x) is
sub-exponential, then a good estimate for the parameter 6* yields a good estimate in total variation
distance.

Lemma 35 Let Py« be an exponential family over X with parameter 0" € R? and sufficient statis-
tics T(x). Let & € R? such that ||§ — 0*||o < 0, for some sufficiently small constant § > 0. If for
any unit vector v € R, Prx.p,. [|(v, T(X) — E[T(X)])| > t] < 2exp(—ct), for all t > 0, then
dTv(Pg, Py+) < c/Hé\— o*

9, for some constant ¢’ > 0.

Proof Let =6 — 0 Define g(x) = (T'(x),0) — Ex~p,.[(T(x),0)]. By definition, we have that

Ex~p,. [9(X)] ,and forany z € X,
Py(z) _ exp(T(2),0) — A(B) _  exp((T(x),6) _ exp((T(x),6))
P () exp((T( ),0%) — A(0)  exp(A(B) — A(0%)) S ,ex exp((T(x),0) — A(6%))
_ exp((T'(z),6)) _ exp((T'(x), 6))
> wex exp((T(2),0)) - exp((T'(z),0%) — A(0%))  Ex~p,. [exp((T(X),0))]

(
_ exp(g())
Ex~p,.[exp(g(X))]

= exp(g(z))/w ,

where w = Ex.p,.[exp(g(X))]. In order to bound the total variation distance, we bound the

x2-distance between Pg and Py-. Recall that for any two distributions p, ¢ over X, X2 (p,q) def
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2
[ (%’ - ) dg, we have that

_ Ex.p, (exp(g(X)) — w)?
2

PiX) 1’
X*(Py Py-) = Exery. <P:*(X) B 1)
_ Ex.p,. [exp(29(X))]

U]2

w

~ 1< Exop, [exp(29(X))] ~ 1.,
where we apply w > 1 in the last inequality, since

w = Ex.p, [exp(9(X))] = exp (Ex~py, [9(X)]) =1

by Jensen’s inequality. By our assumption, there is a constant ¢; > 0 such that

Clt
Prcep [lo0X) - Blg(0)] > 1 < 20 (~ 50 )
Hence, from Fact 21, there is a constant co > 0 such that as long as |A| < Qﬁ%, we will have

that Exp,, [exp(Ag(X))] < exp(c3N2||0]|3/c3). Now we assume that ||0]|3 = 16 — 0|13 < 6% <
c3/4c3 and derive that

V(By. Pre) < Exep, exp(29(X))] — 1 < exp(4c3[6]3/3) — 1 < 83[6]13/¢3 .

where we apply the elementary inequality e” < 1 + 2z, for x < 1. Therefore,

2
X (PA7P9*) -~ %
0P <200 0o/

dTV(P§7 PQ*) <

Appendix B. Omitted Proofs from Section 3
B.1. Proof of Lemma 11

The following simple claim shows that under Condition 6, the likelihood function of the exponential
family is smooth and strongly convex.

Claim 36 Fix i € R% Forany 0 € Q, define L(9, pur) = (0, ur) — A(6), where A(0) is the log-
partition function for the exponential family Py with sufficient statistics T'(x). If Condition 6 holds,
then —L(60, ur) is L-smooth and m-strongly convex, for some constants L, m > 0 independent of
the vector pi.

Proof Let f(8) = —L(0, ur) and we have that Vf(0) = Exp,[T(X)] — pr and V2f(0) =
Covx.p,[T(X)]. From the first statement in Condition 6, we know that Cov x..p,[T(X)] >
m I for some universal constant m > 0, and thus f(6#) is m-strongly convex. In addition, from
the second statement in Condition 6, we know that there exists a constant ¢ > 0 such that for
any parameter § € Q and any unit vector v € S L, Pry.p,[[(v, T(X) — E[T(X)])| > t] <
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2exp(—ct),Vt > 0. From Fact 21, we have that Covx.p,[T'(X)] < LI, for some universal
constant L > 0 and thus f(6) is L-smooth. [ |

Since —L(0, ur) is L-smooth and m-strongly convex, one can apply Projected Gradient De-
scent (PGD) to efficiently compute the maximum likelihood estimator arg maxgeq L(6, ur) for
any fixed pup € R%. A small wrinkle is that, in order to apply vanilla PGD (Algorithm 2), we need
access to exact gradients and projections. In our setting, this is not possible in general: For general
exponential families, it is computationally hard to compute V(—L(0, ur)) = Exp, [T(X)] — pr
exactly. To address this minor issue, we need to slightly modify Algorithm 2 and its analysis, where
we use sufficiently accurate approximations to the gradient and the projection.

Algorithm 3: Projected gradient descent for strongly convex smooth optimization with
approximate gradient and projection
Input : L-smooth and m-strongly convex function f over €2 and parameters 4, d1, do > 0.

Output: 7 € Q such that |7 — 2*||2 < 0 + %, where z* = arg mingeq f().

-

Let 20 € Q be an arbitrary initial point and T = O (# log <di%(m> )

2 fort=0t0T —1do

3 | Compute ¢' such that ||g' — V f(2!)]]2 < 1.

a | rt=at— 14"

5 | Compute z'T! € Q such that ||2!*! — Pqy(r!)|2 < 62, where
Po(rt) = argmingeq ||z — rt]|o.

6 end

7 return z7;

The following simple claim adapts the analysis of PGD to work with approximate gradients and
projections.

Claim 37 Let f : Q — R be L-smooth and m-strongly convex and x* = argmingcq f(x). The
iterates in Algorithm 2 satisfy

||{Et+1 — l’*HQ < 9 + 51/L + 11— m/L||mt — :L‘*HQ .

Therefore, after T = O (# log (dk%(Q))) iterations, we have that ||z —x*|| < §+ L V.

1—y/1—m/L"

Proof From Fact 24, we have that

o1 =27, < a1 = Pl +

< [l — Por?

Port) — Pa (+ = 1971

2

Pq (96 —*Vf( )) - " ,

o ) o
~ 1 B+ ot = V5O, + 2o (o - 195) -
< 8+ 61/L+ /1 —m/L||z" — "2,

25
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where we apply || Po(z) — Po(y)ll2 < [z — yll2, V2, y € R? in the second inequality. Therefore,
we can write

T * 2 1 / T T—1 * 2+ 01
H ||2 1-—+/1 —m/L o m/ (H H2 1-— \/1—m/L>

< (1-m/L)"" (nxo —aa - /L>

< (1 —m/L)"?diam(Q) .
|

Claim 37 tells us that if we are able to efficiently approximate the projection of an arbitrary
point in R? to § and the gradient of the function, then we can efficiently solve the underlying
minimization problem. From Condition 6, we can efficiently approximate the projection of any
point in R? within error 1/poly(d). Note that for any fixed i € R?, the gradient of the negative
likelihood is equal to V(—L(0, 1)) = Ex~p,[T(X)] — pr. Therefore, it suffices to show that for
any given parameter #, we can efficiently estimate the mean E x . p, [T'(X )] within small error. This
is done in the following claim:

Claim 38 Let P, Q be distributions on R?. Assume that Q is sub-exponential and that dry (P, Q) <
~ for some parameter v > 0. Let yu and % denote the mean and covariance of distribution
612 respectively. ALet X1, X , Xy, be i.i.d. samples drawn from P and [, = %ZLI X, Xp =
LS (X — in)(X; — fin) " be the empirical mean and covariance. Then there exist constants
c1,co > 0 such that the following holds:

1. With probability at least 1 — 2 exp(—t*) — ny, we have that ||fi, — pll, < ¢1 max(d,5?),
where § = \/g + ﬁ

2. With probability at least 1 — 6 exp(—t) — n~y, we have that

N 2
HEN_EHZ < 02d< [t +logd N ((t + logd)logn) ) .
n n

Proof Let Y7,...,Y, benii.d. samples drawn from (). Let

1o 1o
Hn = EZ}/M and Yn = ﬁZ(Y;‘_NTL)(E_Nn)T'
i=1 i=1

By the data processing inequality for the total variation distance, we can write

dTV(Mna :an) < dTV((Xla s ?Xn)v (Yla v 7Yn)) < ndTV(Pa Q) < ny
and similarly

dry (Zn, Sn) < dov (X1, .., X0), (Y1, ..., Ya)) < ndry (P, Q) < ny .
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We pick optimal couplings (i, ftr,) and ( S, ¥.,,). From Lemma 22, there exist constants c1, ca > 0
such that

Pr ([ — lly > e max(6,6%)] < Pr [fin # ] + Pr [[1tn — ply > c1 max(5, )]
< 2exp(—t%) +ny,

and

Pr

> 2
|80~ 5], > o \/W+((t+10gd)logn)
2 n n
t+logd ((t+logd)logn)?
IIEn—zyQ>02d<\/?+(( gn) g ))]

<Pr [f]n #* En} + Pr

< 6exp(—t) +ny.

We are now ready to prove Lemma 11.

Proof [Proof of Lemma 11] Let L(0, p/.) = (0, p)—A(0),V0 € Qand 0" = argmaxgeq L(6, /).
By Lemma 10, we have that |6/ — 6*||2 < O(d). If we pick §; = d2 = § and apply Algorithm 3
to the function —L(6, pu/.), it will return a point 6 € Qwith |6 — 0[]z < O(6), since by Claim 36
—L(0, /) is L-smooth and m-strongly convex, for some universal constants L,m > 0. This

implies that [|§ — 6*[|2 < |8 — /|2 + |6/ — 6% |2 < O(5).

Now we show that the above process is efficient and bound the failure probability. By Condi-
tion 6, diam(f2) < exp(d€) for some constant ¢ > 0. Given an arbitrary 6 € (), we can sample
§2¢

from a distribution within total variation distance v = _
! 2d(<12+1c>g(1/5))hﬂw

) from Py in

time poly (%). Hence, if we pick t = \/log (w) and n = Q(t2d/6?) in Claim 38, we
are able to estimate the gradient Vy(—L(0, 1)) = Exp,[T(X)] — p/ within error ¢ with proba-
bility at least 1 — O (Wg(lﬁ))’ Since there are ' = O (% log (dl%(m» = O(d®+1log(1/9))

iterations, by union bound, the algorithm will output a 6 with Ha — 0*||2 < O(6) with probability at
least 1 — C. |
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B.2. Proof of Proposition 16

Let Z(0) = exp(A(0)) be the normalizing factor. Fix 7, j, k € [d]. We calculate the partial deriva-

tive 6%5 )i a5 follows.
k

WD — o B [(T(X) = ) (T(X) — ar);)
_ (EM o) D) ) (00—
00y, Z(9)
_ exp(T(2).0) (T @) — pr)u(T(@) - pr),
erX 261 ( Z(0) ]>

oo (exp((T(2), 0)(T(x) = pr)i(T(z) — pr);)
B w;( - Z(0)
_0Z(0) 3 exp((T'(2), 0))(T(x) — pr)i(T(x) — pr);
00y, ’

Noting that

= exp(T(@), 0)T@(T () — pr)i(T(@) — pr); — S0 (), 00)(T() - pir),

00,
- exp((T (@), 0))(T(x) = prr)s

= exp((T'(x), )T (2)(T(x) = pr)i(T(x) — pr)j — (Er)i exp((T(2), 0))(T(2) — pr);
— (X7)jk exp((T' (), 0))(T (x ) i s

we have that

3 (exp({T(x), 0))(T'(x) — pr)i(T(z) — pr);)
TeEX Z(H)
-y exp((T'(2), )T (2)s(T(x) — pr)i(T(x) — pr)j  (Er)ik Dgea exP((T(x),0))(T'(x) — pr);
rex Z(9) Z(0)
~ (Er)jk 2sex exp((T'(2),0))(T'(x) — pr)i
Z(0)

=Exp[T(@)k(T(2) — pr)i(T(2) — pr);] — (Er)iEx~p, [(T(x) — pr);]
= (E0)jxEx~p, [(T(z) — pr)i]
= Ex~p, [T(@)k(T(x) — pr)i(T(x) — pr);] -

28



ROBUST LEARNING OF ISING MODELS

Therefore,

O(Zr)ij _ 3 ao; (exp((T(x),0)(T(x) — pr)i(T(x) — pir);)

aek reX

(

9Z(9) 3 exp((T'(x), ) (T (x) — pur)i(T(x) — pr);

89k TeX
= Exp[T(2)r(T(x) — pr)i(T(x) — pr);]

_ (erx exp((T'(z), 9>)T($)k> (Z exp((T'(x),0))(T'(x) — pr)i(T(x) — M)j)
Z(0) Z(0)

=Exp,[T(2)1(T(z) — pr)i(T(x) — pr);j] — Exop, [T(@)k]Ex~p, [(T(2) — pr)i(T(z) — pir);]
=Ex~p, [(T(z) — pr)i(T(x) — pr);(T() — pr )] -

This completes the proof.

TeEX

B.3. Proof of Lemma 17

Let # € Q and Py be the corresponding exponential family with sufficient statistics 7'(z). Let
pr(0) = Exop,[T(x)] and X7(0) = Covy.p,[T(z)]. Let v € S¥! be a unit vector such that
127(0) = S0(62) |2 = [T (S1(0') — Sr(6%))v|. Define f(6) = vTS1(0)v. By the mean value
theorem, we have that
IS7(0Y) = £7(6%)]l2 = [v" Sr(6")v — 0" Z7(67)0] = [ f(61) — f(6°)]
= [(V£(9),0" — 6°)]
< |[vr@)|,- 10" =%z

where § = A' + (1 — A\)62 for some 0 < A < 1. Therefore, we only need to show that va(g)Hz

is upper bounded by a universal constant ¢ > 0. Let w € S?! be the unit vector such that
’Vf(g) H2 = (w, V f(6)). By our definition of function f(f), we have that

d d e
|V1@)||, = (w.vr@ g Z:: (a?§k> =Y v a;;x@)

i,5,k€[d]

= " vwuExer, (D00 = prB)i(T(X) = pr@),(T(X0) = pr(B)i]
i,5,k€d]

= Exp,[(T(X) — p7(0),v)(T(X) — pu7(6), w)]
< VExer, (T(X) = pr(8),0)4) - \/Exop, [(T(X) — pr(0), w)?],

where we apply Proposition 16 in the fifth equality and the last inequality comes from Cauchy—Schwarz.
From Fact 21, we know that both Ex . p,[(T'(X) — pr(6), v)4] and Exp[(T(X) — ur(6), w)?]

are upper bounded by universal constants. Hence we obtain that HV f (5) H < ¢ for some universal
2

constant ¢’ > 0.
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Appendix C. Omitted Proofs from Section 4

C.1. Proof of Lemma 18

Fact 39 (Gotze et al. (2019)) Let X ~ Py be an Ising model satisfying Dobrushin’s condition and
max;e(q |0i] < o, where a > 0 is an absolute constant. Let f : {£1}¢ — R be an arbitrary
function. Define function Df : {£1}¢ — R? as Df(z); = M,Vu’c c {£1}4,Vi € [d],
where x;4 is the vector obtained from x by replacing the i-th coordinate with 1 and x;_ is the one
that is obtained by replacing the i-th coordinate with —1. Define the function H f : {£1}¢ — R9*d
as H f(x)ij = D(Df(x);)(x)i, Vo € {£1}9,¥i,5 € [d]. FE[|Df(X)[3] < 1and [|H f(z)|3 <
1,Vx € {£1}%, then there is a constant c(c,n) > 0 such that

Pr(|f(X) = E[f(X)]| > 1] < 2exp(—c(a,n)t),
where 1 > 0 is the constant in Definition 3.

Proof [Proof of Lemma 18] Let A € R%*% pe a symmetric matrix with zero diagonal and b € RY
be such that 2||A||% + [|b]|3 = 1. Let f(X) = (X — v)TA(X — v) + b X. From Fact 30, we can
write

E [|Df(X)|3] = ZE[ (Xi—))ﬂ = iE (b +22AU j— Yy )

J#i
d 2
=> E (bi +2)  Ay(X; - E[X)]) +2)  Ay(E[X)] - Uﬁ) ]

1=1 J#i J#i
d d r 7 d 2
gSbe+12ZVar ZAUX] +12Z (ZA”(E[XJ}—U])>
i=1 i=1 i

L j#i J i=1
d d ]

<3) bF+12) Var| Y AyX;| + 12] A7 BX] - 3
i i L j#i i

< 3|bll3 + (¢ +126%) || All%

where in the first inequality we used the elementary identity 3(a?+b%+c?) > (a+b+c)?,Va, b, c €
R, and ¢’ > 0 is an absolute constant. In addition, we have that
Df(@iy); — Df(wi=); _ [f(@ivv) = f@iv-) — f(@iojs) + f@ij-)

Hf(x)i; = 5 = 1 = Ajj ,

which implies that || H f[|% = > Afj = || Al|%.

i,j€ld]
Hence, after a renormalization by 1/\/max(3, d +1262)(||Al|% + ||b]|3), the assumptions in

Fact 39 are satisfied, and we have that

Pr(|f(X) — B[f(X)]| > ] < 2exp | ——u | |
IAIIZ + ]2

where ¢ > 0 is an absolute constant. [ |
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C.2. Proof of Theorem 19

By definition, we have that

Var[(X — v)TA(X —v)] = %E [((X ~)TAX —v) — (Y —0)TAY — v))ﬂ

_ %E (X =V)TAX +Y = 20))°] )

where Y is an independent copy of X. Let S = {i € [d] | X; = Y;}. Then we can write

E [((X ~VYTAX +Y - 2u))2} — 16E |E 5

<ZXi<ZAij(Xj —vj) — Zvinj)y

i¢S jes jgs

— 16E [E [(XTSASWS)2 | SH :

where Afj = A;;foralli ¢ S, j € [d] and W2 =1[i € S]X; — v;, foralli € [d].
Now for a fixed subset S C [d], we calculate the conditional probability Pr[X = z | S]. By
our definition of S, we have that

PI‘[X:x | S] :PI‘[sz/\YS:$S/\Y_5 =—2_g ‘ S]
o PI’[[X =xANYs=2xgNY g= fxfg]
N Pr[S]

exp (ZieS,jeS Oijxix; + Zi¢5,j¢S Oijrix; + 2 ZieS 9,‘.%,‘)

B Z(0)2Pr[9] ’

where Z () is the partition function of Ising model P». Therefore conditioning on .S, the marginal
distribution of X is exactly an Ising model distribution with parameters

o5 20, iESJ'ESori%S,j%S, and 65— 20; i€S,
0 otherwise , 0 ¢S5,

which implies that conditioning on S, the marginal distribution Xg and X_g are independent
(2M, 2cv)-bounded Ising model distributions and E[X_g | S] = 0. Therefore, from Fact 32, there
is a universal constant ¢1 (M, «) > 0 such that

E [(XTSASWSf | 5} = Ey, [Exfs [(XZ“SASWSf | XS,S} |5}
> Exg [Amin (Ex_g [X—SXTS | 5]) | ASW 23 | S]
> ei(M, )E [| AW | 5]

where Apin (Ex_ g [X-sXTg | S]) denotes the minimum eigenvalue of Ex ¢ [X_ X' | S]
and in the first inequality, we use the fact that conditioning on .S, Xg and X_g are independent.
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Therefore, we have that

E[((X - Y)TAX +Y - 20))°| = 16E [E |(XZs4%W") | 5| 5)
2
> 1661(M, Oz)E [E [HASWSH% ’ SH = 1601(M, a)E E Z ( Z CLZ](]I[] € S]X] — Uj)) S
¢S \jeld]
=4e1(M,)E [|A(X +Y - 20)[3] , (6)

where A}, = ]I[XZ-' # Yi]A;; for all i,j € [d]. Now we write A’ = [[[X; # Yi]al, - | [[ X, #
Yyla?]”, where (a’)” denotes the i-th row vector of matrix A. By linearity of expectation, we have
that

d
E[[|4(X+Y —20)[3] =Y E[{I[X; # Yila", X +Y — 20)?] . (7)
=1

By the law of total expectation, we can write
E [(I[X; # Yi]a', X +Y — 20)?] (8)
=Pr[X; =1Y;=-1]-E[(d" ., X +Y —20)* | X; = 1.Y; = 1]
+PrX;=-1Y;=1]-E[{(", X +Y —20)* | X; = -1,Y; = 1]

exp(—2(a+ M)) \? . o
22<1+6Xp(_2(a+M))> E[(a, X+Y -20)* | X;=1Y;=-1], 9)

where the inequality comes from Proposition 26 and the fact that Y is an independent copy of X.
Now we try to bound E [(a’, X +Y — 2v)? | X; = 1,Y; = —1]. From Fact 25, conditioning
on X; = q € {£1}, X_; is an Ising model with parameter 6’ satisfying the following property

max 0| < M+ «, max 9. <M,
sy ! je[d]\“}ke%%ij} i

which implies that conditioning on X; = ¢, X_; is an (M, M + «)-bounded Ising model. Note that
X_; and Y_; are independent, conditioning on X; = —1,Y; = 1, from Fact 32, there is a constant
c2(M, o) > 0 such that

E[(a, X +Y —20)2 | X; =1, = 1] > Var [(d/, X + V) | X; = 1,Y; = —1]
= Var[(a', X) | X; = 1] 4+ Var[(a",Y) | Y; = —1]
> ca(M, a)|a’[[3 (10)
Combine (7), (8) and (10), we obtain that

E [||A (X +Y —20)|3] ZE I[X; # Vila", X +Y — 2v)?]

exp(=2(0+ M) \'§~p 1 Cvi-
Z2<1—|—exp(—2(a+]\4))> ZE[<Q7X+Y_QU>2\Xi—l,Y;__l]

exp(—2(a+ M)) 2
2 <1+exp(—2(a+M))> CQ<M704)HAH%' . (11)
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Combine (4), (5) and (11), we know that there exists a constant ¢(M, «) > 0 such that

Var[(X —v)TA(X —v)] = %E [((X -TAX+Y - 2v))2} > ¢(M,a)||A|% .

C.3. Robustly Learning Ising Models with Non-zero External Field

In this section, we provide an efficient algorithm that robustly learns an Ising model with nonzero-
external field. The main theorem of this section is the following:

Theorem 40 Let Py~ be an Ising model. Let oo > 0 and 0 < M < 1 be universal constants such
that max;c(q >, ,; 107;| < M and max;e|q |07 < . Let 0 < € < € for some universal constant
€0 and S’ be an e-corrupted set of samples from Py«. Let N be the size of S'. If there is a constant
co > 0 such that

M 2 exp(—2(a+2M)) \? 2M
4 <1 - M +O(ﬁ)> < (1-c) (8 (1 +exp(—2(a+2M))> 1M ) (12)

then there is a poly(d/e) time algorithm that, for some N = O(d2/e%)?, on input S' and ¢, re-
turns an Ising model Pj such that with probability at least 99/100, we have that dry (Pj, Py+) <
O(elog(1/¢)). In addition, Py satisfies the Dobrushin’s condition.

Intuitively, the theorem states that as long as the dependencies among each point and the external
fields are sufficiently small, we can properly learn the Ising model distribution within small total
variation distance in the strong contamination model. However, due to technical reasons, the con-
straint (12) is much stronger than the Dobrushin’s condition and we are not able to obtain an efficient
algorithm that learns the parameter 6* here.

Similar to the zero-external field case, we view the Ising model distribution Py as an instance of
an exponential family and try to apply Algorithm 1. However, if we choose the sufficient statistics
T(x) = ((7i75)1<i<j<d> (Ti)ie[q)) in the straightforward way, the first statement in Condition 6 will
not hold. For instance, consider the Ising model Py with 6;; = 0,Vi,j € [d] and 0; = 8,Vi € [d]

for some B8 > 0, such that Ex..p,[X;] = 1/2,Vi € [d]. Let A € R be such that 4;; =

1 . . _ d—1 . . 2 9
W,Vz # jand b; = —\/7 m,w € [d]. In this case, we have that 2||A||% + ||b]|5 = 1
and

Var[XTAX + b7 X] = Var[(X —v)TA(X —v) + (24v + b)T X]

= Var[(X — v)TA(X —v)]

< CHAH%«“ = m )

where the last inequality comes from Fact 30 and ¢ > 0 is an absolute constant.

2. Here we fix M, o and ¢y to be universal constants. Therefore we will suppress any possible dependence on M, o and
co in our asymptotic notation in this section.
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To address this issue, we rewrite the density of an Ising model as the following “v-centered
form”. Let v € R be an arbitrary fixed vector. By definition of the Ising model, we have that

d
1 1
Pg(ﬁ?) = Z(Q) exp 5 E Qijxixj—&- E 0;z;
i=1

i,j€d]
1 1 d
= 20 exp B Z Hij(xi — Ui)(CCj — vj) + (91‘ + Z 9@‘%‘) T;
i,5€ld] i=1 Jj€ld]
1 7 _ T
=200 exp (2(3: v)" J(8)(z —v) + h(0) :1:> ,

where J(0)i; = 0;,Vi, j € [d] and h(6); = 0; + > ;1 0ijv;- If we write the probability density
function Py(z) in the “v-centered form™ as an instance of an exponential family, the sufficient
statistics 7'(z) will be

T(z) = ((z; — vi)(zj — vj)1<icj<a, (Ti)1<i<d)
and the projection of T'(z) on a fixed direction is
(X —0)TAX —v)+ 07X,

where A € R¥? is a symmetric matrix with zero diagonal and b € R? with 2[|A[|% + ||b]|3 = 1.

In this way, by taking v to be an estimate of Ex . p,. [X], we are able to prove the following
lower bound for covariance of the sufficient statistics 7'(z) and then apply Algorithm 1 to robustly
learn the parameter J(6*) and h(6*) in the “v-centered form”.

Theorem 41 Let X ~ Py be an Ising model. Let o > 0 and 0 < M < 1 be absolute constants

such that max;c(q >, 10ij| < M and maxic(q |0;| < . Letv € RY be a vector such that
lv — E[X]|l2 < d for some constant § > 0. If there is a constant co > 0 such that

M 2 exp(—2(a+2M)) \? 2M
4(1—M+5> <(1-a) <8<1+exp(—2(a+2M))> _1—M_CO>’

then there exists another constant c(c, M, cg) > 0 such that

Var[(X — v)TA(X — v) + 57 X] = e(a, M, co)(| A% + [b]]3)
holds for all symmetric A € R with zero diagonal and b € R,
Proof By definition, we have that
Var[(X — )T A(X — v) + b7 X] = %E (X = )T A ) = (¥ —)TAY —0) + 57X 7Y )’]

:%E (X =Y (AX +Y —20)+1))] | (13)
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where Y is an independent copy of X. Let S = {i € [d] | X; = Y;} and we can write

E [((X “VT AKX +Y —20) + b))Q]

<2Xi (bi +) 205X —v) = > 2vjal-j) ) 2]

i¢S jES ¢S

=E|E S

_ 4E [E [(XZ“S (ASWS +b_5))? | SH :

where Af;- = Aj;foralli ¢ S,j € [d] and W2 =2 (I[i € S]X; — v;) foralli € [d].
Now for a fixed subset S C [d], we calculate the conditional probability Pr[X = z | S]. By
definition of S, we have that

PriX=x|S=Pr[X=0AYs=0sANY_g=—2_g|9]

PI‘[[X =xANYg=xgNY_g= —37_5]
N Pr[S]

exp (2 Dicsjes Tty + 23 06 e 0ijTit; + 23 g 913%’)

Z(0)2Pr[S] ’

where Z(60) is the partition function of Ising model P». Therefore conditioning on .S, the marginal
distribution of X is exactly an Ising model distribution with parameters

9;5;: 201‘]’ iES,j.ESOTi¢S,j¢S, and 9;9: 20, 1€ 8,
0 otherwise , 0 i¢5,
which implies that conditioning on S, the marginal distribution Xg and X_g are independent
(2M, 2cv)-bounded Ising model distributions and E[X_g | S] = 0. Therefore, from Fact 32, there
is a constant ¢1 (M, ) > 0 such that
E |(XT5 (A5W5 +b))" | 8] = Exy [Bx_ [(XT5 (A5W5 +b5))" | Xs, 5] | 8]
> Exg [Mmin (Bx_ [X-sXTs | S]) [ AW +b_s]3 | ]
> e1(M, Q)E [[|IA°WS +b_s3 | 5],
where Amin (Ex_ g [X-sX7Tg | S]) denotes the minimum eigenvalue of Ex ¢ [X_ X' | 5]

and in the first inequality, we use the fact that conditioning on .S, Xg and X_g are independent.
Therefore, we have that

E [((X—Y)T (A(X +Y — 2v) +b))2} (14)
—4E [B | (XZg (450 + b)) | 8|
> 4e1 (M, a)E [E [[|ASWS +b_5]3 | S]] (15)
2
=a(M,0)E [E| ) <bi + ) 24515 € SIX; - uj)> S
i¢s jeld]
=c(M,0)E [|A(X +Y —2v) +V|3], (16)
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where A}, = I[X; # Yj]A;; forall i, j € [d] and b = [[X; # Y;]b; for all i € [d]. Now we write
A" = [I[X; # Yilat,- - 1[Xy # Yg)a]?, where (a®)T denotes the i-th row vector of matrix A.
By linearity of expectation, we have that

d
E[|4(X+Y —20) +¥3] =Y E [(a[xi £Yi]a, X +Y — 2v) + bg)z} . an
=1

Fix some i € [d]. Note that Y is an independent copy of X, we can write
E [((H[Xi ;é}g]ai,X+Y—2u>+bg)2] (18)
—Pr[X,=1,Y,= —1]-E [(<ai,X+Y —o)+ b)) | X =1, = —1}
+Pr[X, = -1V, =1]-B|((@", X +Y —20) + )% | X; = —1,¥; = 1]

exp(—2(a+ M))
22 (1 +exp(—2(a+ M

)))Q‘E[(<ai,X+Y—2v>+b,-)2]XZ-—_Ly;_l}? (19)

where the inequality comes from Proposition 26.

Now we bound E [((ai,X +Y —2v) + bl-)2 | X; = —-1,Y; = 1} as follows. From Proposi-
tion 25, we know that conditioning on X; = ¢ € {£1}, X_; is an Ising model over {£1}¢~! with
parameter 0’ satisfying the following property

max 0 <M + a, max 0| < M,
it 1% je[d]\{z‘}%%%ij}' o

which implies that conditioning on X; = ¢, X_; is an (M, M + «)-bounded Ising model. Let ulﬂ-
denote the conditional expectation over x_; conditioning on x; = 1 and M:} denote the conditional
expectation over x_; conditioning on x; = —1. Note that X_; and Y_; are independent conditioning
on X; = —1,Y; = 1, we have that

E [((ai,X—I—Y—2v)+bi)2 | X;=1,Y; = _1}

— Var [(d’, X+Y—2v>+b-|X:1 Yi=—1]+E[(, X +Y —20) + b | X; = 1,Y; = —1]?
i _ 2

— Var{{a;, X ) | X; = 1]+ Var[(a' ;. Y0) | Vi = —1] 4 (b + {al s iy + p=) — 20_))

> Var[(a’ ;, X ;) | X; = 1]+ Var[(a’;,Y_,) | Y; = —1] + b7 + 2b;(a’ ;, " —i—,ul—2v i)

> Var[(al;, X_;) | X; = 1] + Var[(a’;, Yoi) | Yi = =1] + 8] = 2[bs @’ 2|l + p=i = 2042,

where we use A;; = 0,Vi € [d].
Let 4 = E[X] and thus ||u — v||2 < § by our assumption. From Fact 31, we know that
Il + =i = 2v-ill2 < lluky + 2y = 202 + 2 pmi — v—ill2
= (1= Pr[X; = )lud; = n7ill2 + 2llp—i — v-ill2

< ki —nZili+26
2M

< 20.

ST +
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From Fact 31 and Proposition 25, we have that

Var[(a;, X i) | X; = q] = Z AijAiCov (X, Xy, | Xi = q)

JAik#i

>N ALVar(X; | Xi=q - > |Ay|lAxl|Cov(X;, Xk | Xi = q)|

J#1 G4 kA k#]

(A3 + A%)|Cov (X, Xy | X; = g

>N A VarlX; | Xi=q - > >

J#1 G4, kA k#]
_ZA (VarX | X; =q] — Z |Cov(Xj,Xk|Xi:q)|)

J#i k#j,k#i
> A% VarlX; | Xi =q] - M

JFi 1-M

exp(=2(a+2M)) \*> M ;
= <4 <1+exp(—2(a+2M))> B 1—M> o'l

Therefore, we have that

E[(<ai,X+Y—2v)+b) | X;=1,Y; = —

;1

> Var[(a';, X_i) | X; = 1] + Var[(a ;. Yo) | Vi = =1+ 6 = 20bil o’ 2]l pts + pZ) — 202
exp(—2(a +2M)) \* 2M ) | 2M

= \® - 3 + 87 = 2bil o’ 2

—< (ol et 2 ) — o ) W+ 22 = 2l (2 +

as long as

M 2 exp(—2(a+2M)) \? 2M
< - - - .
4<1—M+5> < (1-c) (8(1+exp(—2(a+2M))> 1-m @
Combine (17), (18) and (20), we obtain that

E[|A(X+Y —20) + V|3 ZE[ I[X; # Yia', X+Y—2v>+b’)]

22< exp(—2(a + M))

2 d
2
E[ X LY —20) 4 b Xi:—l,Y»:l}
1 +exp(—2(a+ M) ) Z @A o)+ bi)" | '

exp(—2(a+ M))
2 260 <1 +exp(—2(a+ M

Combine (13), (14) and (21), we know that there is a constant ¢(a, M, ¢y) such that

2
))) (A% + 1512 - e

Var((X — 0)TA(X — v) + b7 X] = %E (X = V)T (AX +Y —20) +0)°]
> c(a, M, co) (|| AlIF + [1013)-
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Proof [Proof of Theorem 40] From Fact 29, we know that X ~ Py« is sub-Gaussian, and thus
Covx~p,. = col, for some universal constant ¢y > 0. Hence, we can apply the robust mean
estimation algorithm for bounded covariance distributions (Fact 12) to obtain an estimate v & R4
with HU —Ex~p,. [X]H2 < O(Ve).

Let © = {((6ij)1<i<j<a € R*WD/2 (0);c(q) € R | maierg Y52y (053] + 30— 055 <
M, max;ciq |0;| < a}. Forany 6 € €, define J(0);; = 0;;,V1 < i < j < dand h(0); =
0; + 30 055 + 0y Oijvp. Vi € [d)]. Let Qup = {(J(0),h(6)) | 6 € Q}. Note that for
any 01,6? € Qand any 0 < \ < 1, we have that J(\O! + (1 — \)6?) = A\J(01) + (1 — \)J(6?)
and h(AO! + (1 — X\)6?) = AR(0Y) + (1 — A\)h(6?), which implies that €2, is convex because
of the convexity of €2. Let # € 2 and Py be the corresponding Ising distribution. We write P
in the “v-centered form”, i.e., Py(z) = % exp (3(z — )T J(0)(z — v) + h(0)Tz)?, where Z(0)
is the partition function. In this way, Py is an exponential family with sufficient statics 7'(x) =
(i —vi) (2 — vi)i<icj<d, (Ti)1<i<a)-

Now we check the statements in Condition 6 one by one in order to apply Algorithm 1 to obtain
an estimation of J(0*) and h(6*). By our choice of €2, we know that diam(€2;5) = O(d) and
we can efficiently compute the projection of any point z € R4*(4=1)/2_ From Fact 9, we can sample
from Py within total variation distance +y in time O(d(log d + log(1/7))) for any v > 0. Therefore
the third statement holds. From Lemma 18, there is a universal constant ¢ > 0 such that for any
symmetric matrix A € R4*? with zero diagonal and b € R?, we have that

ct

VIAIE + 1613

where f(z) = (x — v)TA(x — v) + bT2, Vo € {£1}9. This implies the second statement in
Condtion 6. Moreover, From Theorem 19, we know that there is a universal constant ¢ > 0 such
that for any symmetric matrix A € R%*? with zero diagonal and b € R?, we have that

Pr.p, [£(X) ~ E[f(X)]| > ] < 2exp | -

Var[(X — )T A(X —v) + 0" X] > ¢ (Al + [b3) |

which implies the first statement in Condition 6. Then, we apply Algorithm 1 to obtain an estimation
J, h with \/||f— J(09)|12 + |h — h(6%)|2 < O(elog(1/e)). Let 0;; = Jij,Vi,j € [d] and 6; =

iALi — Z;l:l jijvj. From Theorem 7, we have that

dry (Py, Pp+) < O (\/Ilj— J(O)E + |17 — h(9*)||%) < O(elog(1/e)),

where P denotes the Ising model distribution corresponding to parameter 9. In addition, by our

algorithm, we have that max;e(q > ot |§”\ < 1 — 7, and thus the output hypothesis satisfies Do-
brushin’s condition. [ |

3. For simplicity, we also use J(0) to note the d x d symmetric matrix with zero diagonal.
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