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Abstract

Though data augmentation has rapidly emerged as a key tool for optimization in
modern machine learning, a clear picture of how augmentation schedules affect
optimization and interact with optimization hyperparameters such as learning rate
is nascent. In the spirit of classical convex optimization and recent work on implicit
bias, the present work analyzes the effect of augmentation on optimization in the
simple convex setting of linear regression with MSE loss.

We find joint schedules for learning rate and data augmentation scheme under which
augmented gradient descent provably converges and characterize the resulting
minimum. Our results apply to arbitrary augmentation schemes, revealing complex
interactions between learning rates and augmentations even in the convex setting.
Our approach interprets augmented (S)GD as a stochastic optimization method
for a time-varying sequence of proxy losses. This gives a unified way to analyze
learning rate, batch size, and augmentations ranging from additive noise to random
projections. From this perspective, our results, which also give rates of convergence,
can be viewed as Monro-Robbins type conditions for augmented (S)GD.

1 Introduction

Data augmentation, a popular set of techniques in which data is augmented (i.e. modified) at every
optimization step, has become increasingly crucial to training models using gradient-based optimiza-
tion. However, in modern overparametrized settings where there are many different minimizers of the
training loss, the specific minimizer selected by training and the quality of the resulting model can be
highly sensitive to choices of augmentation hyperparameters. As a result, practitioners use methods
ranging from simple grid search to Bayesian optimization and reinforcement learning [8, 9, 17] to
select and schedule augmentations by changing hyperparameters over the course of optimization.
Such approaches, while effective, often require extensive compute and lack theoretical grounding.

These empirical practices stand in contrast to theoretical results from the implicit bias and stochastic
optimization literature. The extensive recent literature on implicit bias [15, 29, 32] gives provable
guarantees on which minimizer of the training loss is selected by GD and SGD in simple settings,
but considers cases without complex scheduling. On the other hand, classical theorems in stochastic
optimization, building on the Monro-Robbins theorem in [25], give provably optimal learning rate
schedules for strongly convex objectives. However, neither line of work addresses the myriad
augmentation and hyperparameter choices crucial to gradient-based training effective in practice.

The present work takes a step towards bridging this gap. We consider two main questions for a
learning rate schedule and data augmentation policy:
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1. When and at what rate will optimization converge?
2. Assuming optimization converges, what point does it converge to?

To isolate the effect on optimization of jointly scheduling learning rate and data augmentation schemes,
we consider these questions in the simple convex model of linear regression with MSE loss:

1
LOV:D) = = Y = WX, (1.1

In this setting, we analyze the effect of the data augmentation policy on the optimization trajectory
W, of augmented (stochastic) gradient descent?, which follows the update equation

Wt+1 = Wt — ntVWE(W, Dt (12)

) ‘ W=w;"
Here, the dataset D = (X,Y’) contains N datapoints arranged into data matrices X € R™*" and
Y € RP*N whose columns consist of inputs z; € R™ and outputs y; € RP. In this context, we
take a flexible definition data augmentation scheme as any procedure that consists, at every step
of optimization, of replacing the dataset D by a randomly augmented variant which we denote by
D¢ = (X;,Y}). This framework is flexible enough to handle SGD and commonly used augmentations
such as additive noise [14], CutOut [12], SpecAugment [23], Mixup [35], and label-preserving
transformations (e.g. color jitter, geometric transformations [26])).

We give a general answer to Questions 1 and 2 for arbitrary data augmentation schemes. Our main
result (Theorem 3.1) gives sufficient conditions for optimization to converge in terms of the learning
rate schedule and simple 2" and 4" order moment statistics of augmented data matrices. When
convergence occurs, we explicitly characterize the resulting optimum in terms of these statistics. We
then specialize our results to (S)GD with modern augmentations such as additive noise [14] and
random projections (e.g. CutOut [12] and SpecAugment [23]). In these cases, we find learning rate
and augmentation parameters which ensure convergence with rates to the minimum norm optimum
for overparametrized linear regression. To sum up, our main contributions are:

1. We analyze arbitrary data augmentation schemes for linear regression with MSE loss,
obtaining explicit sufficient conditions on the joint schedule of the data augmentation policy
and the learning rate for (stochastic) gradient descent that guarantee convergence with rates
in Theorems 3.1 and 3.2. The resulting augmentation-dependent optimum encodes the
ultimate effect of augmentation on optimization, and we characterize it in Theorem 3.1.
Our results generalize Monro-Robbins theorems [25] to situations where the stochastic
optimization objective may change at each step.

2. We specialize our results to (stochastic) gradient descent with additive input noise (§4) or
random projections of the input (§5), a proxy for the popular CutOut and SpecAugment
augmentations [12, 23]. In each case, we find that jointly scheduling learning rate and
augmentation strength is critical for allowing convergence with rates to the minimum norm
optimizer. We find specific schedule choices which guarantee this convergence with rates
(Theorems 4.1, 4.2, and 5.1) and validate our results empirically (Figure 4.1). This suggests
explicitly adding learning rate schedules to the search space for learned augmentations as in
[8, 9], which we leave to future work.

2 Related Work

In addition to the extensive empirical work on data augmentation cited elsewhere in this article, we
briefly catalog other theoretical work on data augmentation and learning rate schedules. The latter
were first considered in the seminal work [25]. This spawned a vast literature on rates of convergence
for GD, SGD, and their variants. We mention only the relatively recent articles [1, 11, 4, 27, 22] and
the references therein. The last of these, namely [22], finds optimal choices of learning rate and batch
size for SGD in the overparametrized linear setting.

A number of articles have also pointed out in various regimes that data augmentation and more
general transformations such as feature dropout correspond in part to /o-type regularization on model
parameters, features, gradients, and Hessians. The first article of this kind of which we are aware is [3],

>Both GD and SGD fall into our framework. To implement SGD, we take D, to be a subset of D.



which treats the case of additive Gaussian noise (see §4). More recent work in this direction includes
[5, 30, 19, 21]. There are also several articles investigating optimal choices of ¢y-regularization
for linear models (cf e.g. [33, 31, 2]). These articles focus directly on the generalization effects of
ridge-regularized minima but not on the dynamics of optimization. We also point the reader to [20],
which considers optimal choices for the weight decay coefficient empirically in neural networks and
analytically in simple models.

We also refer the reader to a number of recent attempts to characterize the benefits of data augmenta-
tion. In [24], for example, the authors quantify how much augmented data, produced via additive
noise, is needed to learn positive margin classifiers. [6], in contrast, focuses on the case of data
invariant under the action of a group. Using the group action to generate label-preserving augmenta-
tions, the authors prove that the variance of any function depending only on the trained model will
decrease. This applies in particular to estimators for the trainable parameters themselves. [10] shows
augmented k-NN classification reduces to a kernel method for augmentations transforming each
datapoint to a finite orbit of possibilities. It also gives a second order expansion for the proxy loss
of a kernel method under such augmentations and interprets how each term affects generalization.
Finally, the article [34] considers both label preserving and noising augmentations, pointing out the
conceptually distinct roles such augmentations play.

3 Time-varying Monro-Robbins for linear models under augmentation

We seek to isolate the impact of data augmentation on optimization in the simple setting of augmented
(stochastic) gradient descent for linear regression with the MSE loss (1.1). Since the augmented
dataset D, at time ¢ is a stochastic function of D, we may view the update rule (1.2) as a form of
stochastic optimization for the proxy loss at time t

Ly(W) := Ep, [L(W;D;)] G.D

which uses an unbiased estimate of the gradient of £(W;D,) from a single draw of D;. The
connection between data augmentation and this proxy loss was introduced in [3, 5], but we now
consider it in the context of stochastic optimization. In particular, we consider scheduling the
augmentation, which allows the distribution of D, to change with ¢ and thus enables optimization to
converge to points which are not minimizers of the proxy loss £;(W) at any fixed time.

Our main results, Theorems 3.1 and 3.2, provide sufficient conditions for jointly scheduling learning
rates and general augmentation schemes to guarantee convergence of augmented gradient descent
in the linear regression model (1.1). Before stating them, we first give examples of augmentations
falling into our framework, which we analyze using our general results in §4 and §5.

e Additive Gaussian noise: For SGD with batch size B; and noise level o, > 0, this
corresponds to X; = ¢;(XA; + 04 - G¢) and Y; = ¢;Y A;, where G is a matrix of i.i.d.
standard Gaussians, A; € R™V>*P¢ has i.i.d. columns with a single non-zero entry equal to 1
chosen uniformly at random and ¢; = y/ N/ B; is a normalizing factor. The proxy loss is

L:(W) = L(W;D) + o} |W][7, (3.2)

which adds an /5 penalty. We analyze this case in §4.

e Random projection: This corresponds to X; = I[;X and Y; = Y, where II; is an
orthogonal projection onto a random subspace. For +; = tr(Il;)/n, the proxy loss is

_ 1 1 1 _
L) = IV =W X[E + (L =70 IX I (W3 + 0,

adding a data-dependent /> penalty and applying Stein-type shrinkage on input data. We
analyze this in §5.

In addition to these augmentations, the augmentations below also fit into our framework, and
Theorems 3.1 and 3.2 apply. However, in these cases, explicitly characterizing the learned minimum
beyond the general description given in Theorems 3.1 and 3.2 is more difficult, and we thus leave
interpretion of these specializations to future work.
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Figure 3.1: Schematic diagrams of augmented optimization in the parameter space R™*?.

e Label-preserving transformations: For a 2-D image viewed as a vector x € R", geometric
transforms (with pixel interpolation) or other label-preserving transforms such as color jitter
take the form of linear transforms R™” — R"™. We may implement such augmentations in
our framework by X; = A; X and Y; = Y for some random transform matrix A;.

e Mixup: To implement Mixup, we can take X; = X A; and Y; = Y A;, where A; € RV*B:
has i.i.d. columns containing two random non-zero entries equal to 1 — ¢; and ¢; with mixing
coefficient ¢; drawn independently from a Beta(c, cv;) distribution for a parameter «;.

3.1 A general time-varying Monro-Robbins theorem

Given an augmentation scheme for the overparameterized linear model (1.1), the time ¢ gradient
update at learning rate 7 is

2
Wt+1 = Wt + % . (}/f — WtXt)XtT7 (33)

where D; = (X, Y;) is the augmented dataset at time ¢. The minimum norm minimizer of the
corresponding proxy loss £; (see (3.1)) is

W =RV, X E[X, X][]T, (3.4)

where E[X; X" denotes the Moore-Penrose pseudo-inverse (see Figure 3.1a). In this section
we state a rigorous result, Theorem 3.1, giving sufficient conditions on the learning rate 7; and
distributions of the augmented matrices X, Y; under which augmented gradient descent converges.
To state it, note that (3.3) implies that each row of W;; — W, is contained in the column span of the
Hessian X; X, of the augmented loss and therefore almost surely belongs to the subspace

V] := column span of E[X, X] C R", (3.5)

as illustrated in Figure 3.1a. The reason is that, in the orthogonal complement to V), the augmented
loss L(W;Dy) has zero gradient with probability 1. To ease notation, we assume that V| is inde-
pendent of ¢. This assumption holds for additive Gaussian noise, random projection, MixUp, SGD,
and their combinations. It is not necessary in general, however, and we refer the interested reader to
Remark B.2 in the Appendix for how to treat the general case.

Let us denote by Q| : R™ — IR™ the orthogonal projection onto V) (see Figure 3.1a). As we already
pointed out, at time ¢, gradient descent leaves the matrix of projections W, (Id —Q) of each row of
W, onto the orthogonal complement of V unchanged. In contrast, ||W;Q — W|| decreases at a
rate governed by the smallest positive eigenvalue Amin, v, (E [XtXtT ] ) of the Hessian for the proxy




loss £;, which is obtained by restricting its full Hessian E [ X, X/ | to V. Moreover, whether and at
what rate W; Q) — W;* converges to 0 depends on how quickly the distance

B =W, - W (3.6)
between proxy loss optima at successive steps tends to zero (see Figure 3.1b).

Theorem 3.1 (Special case of Theorem B.1). Suppose that V) is independent of t, that the learning
rate satisfies ;. — 0, that the proxy optima satisfy

Y IEF < oo, 3.7)
t=0
ensuring the existence of a limit W2 := lim;_,, W[, that
> e dminy; (B[X: X[]) = 00 (3.8)
t=0
and finally that
(oo}
SORE[IXXT - B XTI + [V XT — B, XT3 < oo (39)
t=0

Then, for any initialization Wy, we have that WtQH converges in probability to WZ,.

If the same augmentation is applied with different strength parameters at each step ¢ (e.g. the noise
level o7 for additive Gaussian noise), we may specialize Theorem 3.1 to this augmentation scheme.
More precisely, translating conditions (3.7), (3.8), (3.9) into conditions on the learning rate and
augmentation strength gives conditions on the schedule for 7; and these strength parameters to ensure
convergence. In §4 and §5, we do this for additive Gaussian noise and random projections.

When the augmentation scheme is static in ¢, Theorem 3.1 reduces to a standard Monro-Robbins
theorem [25] for the (static) proxy loss £;(W). As in that setting, condition (3.8) enforces that the
learning trajectory travels far enough to reach an optimum, and the summand in Condition (3.9)
bounds the variance of the gradient of the augmented loss £(W; D;) to ensure the total variance of
the stochastic gradients is summable. Condition (3.7) is new and enforces that the minimizers W;* of
the proxy losses £;(W) change slowly enough for augmented optimization procedure to keep pace.

3.2 Convergence rates and scheduling for data augmentation

Refining the proof of Theorem 3.1 gives rates of convergence for the projections W; Q) of the weights
onto V| to the limiting optimum W5,. When the quantities in Theorem 3.1 have power law decay, we
obtain the following result.

Theorem 3.2 (Special case of Theorem B.4). Suppose V) is independent of t and the learning rate
satisfies n; — 0. Moreover assume that for some 0 < o < 1 < 81, B2 and v > « we have

Medmin vy (BX X)) = Q) Il = O™ (3.10)
as well as
nE( X X{ — E[X.X/[][I3] = O(t™) (3.11)
and
RE[[EWI(XXT ~EXXT]) - (BXT ~EWXTDIR] =0 ™). 612
Then, for any initialization Wy, we have for any € > 0 the following convergence in probability:
B2

tmin{ﬁl—lv T }_EHWtQ” - W;o”F £> 0.

It may be surprising that E[W;] appears in condition (3.12). Note that E[W;] is the gradient descent
trajectory for the time-varying sequence of deterministic proxy losses L£;(W). To apply Theorem 3.2,
one may first study this deterministic problem to show that E[TV;] converges to W at some rate and
then use (3.12) to obtain rates of convergence of the true stochastic trajectory W; to WZ .

In §4 and §5 below, we specialize Theorems 3.1 and 3.2 to obtain rates of convergence for specific
augmentations. Optimizing the learning rate and augmentation parameter schedules in Theorem 3.2
yields power law schedules with convergence rate guarantees in these settings.



4 Special Case: Additive Gaussian Noise

We now specialize our main results Theorem 3.1 and 3.2 to the commonly used additive noise
augmentation [14]. Under gradient descent, this corresponds to taking augmented data matrices

X; =X +0:Gy and Y, =Y,

where G; € R"*¥ are independent matrices with i.i.d. standard Gaussian entries, and o; > 0is a
strength parameter. Under SGD (with replacement), this corresponds to augmented data matrices

Xt = Ct(XAt + oy - Gt) and Y} = CtYAt7

where A; € RV*5t has i.i.d. columns with a single non-zero entry equal to 1 chosen uniformly at
random and ¢; = \/N/B; is a normalizing factor. In both cases, the proxy loss is

1
Lo, (W) i= SV = WX[[E + o7 [WI[E, @.1)

which to our knowledge was first discovered in [3].

Before stating our precise results, we first illustrate how jointly scheduling learning rate and augmen-
tation strength impacts GD for overparameterized linear regression, where

N = #data points < input dimension = n. 4.2)

The inequality (4.2) ensures £(W; D) has infinitely many minima, of which we consider the minimum
norm minimizer
Whin == Y X (XX T)*
most desirable. Notice that steps of vanilla gradient descent
2

Wigr = W, — % (Y - W X)XT 4.3)
change the rows of the weight matrix W; only in the column space V} = colspan(X X T C R™
Because V|| # R" by the overparameterization assumption (4.2), minimizing £(W; D) without
augmentation cannot change W; |, the matrix whose rows are the components of the rows of W;
orthogonal to V). This means that GD converges to the minimal norm optimizer Wy,;,, only when
each row of Wy belongs to V. As this explicit initialization may not be available for more general
models, we seek to find augmentation schedules which allow GD or SGD to converge to Wy,
without it, in the spirit of recent studies on implicit bias of GD.

4.1 Joint schedules for augmented GD with additive noise to converge to 1V ,;,,

We specialize Theorems 3.1 and 3.2 to additive Gaussian noise to show that when the learning rate 7
and noise strength o, are jointly scheduled to converge to 0 at appropriate rates, augmented gradient
descent can find the minimum norm optimizer Wiy, .

Theorem 4.1. Consider any joint schedule of the learning rate 1, and noise variance o7 in which

both n; and o? tend to 0 and oy is non-decreasing. If the joint schedule satisfies
o0 o0
Zntaf =00 and ana? < 00, 4.4)
t=0 t=0

then the weights Wy converge in probability to the minimal norm optimum W, regardless of the
initialization. Moreover; the first condition in (4.4) is necessary for E[W¢] to converge to Wiyin.

If we further have n; = ©(t~%) and 02 = O(t~Y) with x,y > 0, x +y < 1, and 2x + y > 1 so that
ny and o? satisfy (4.4), then for small € > 0, we have tmi“{y’%w}_8|\Wt — WainllF 2.

The conditions of (4.4) require that 7; and o; be jointly scheduled correctly to ensure convergence
to Whyin and are akin to the Monro-Robbins conditions [25] for convergence of stochastic gradient
methods. We now give an heuristic explanation for why the first condition from (4.4) is necessary. In
this setting, the average trajectory of augmented gradient descent

E[Wit1] = E[Wy] — nvwﬁgt(WﬂW:E[Wt] 4.5)
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Figure 4.1: MSE and ||W,_| || for optimization trajectories of GD with additive Gaussian noise
augmentation and SGD with additive Gaussian noise augmentation under different augmentation
schedules. For both GD and SGD, jointly scheduling learning rate and noise variance to have polyno-
mial decay is necessary for optimization to converge to the minimal norm solution W,,;,,. Gauss const,
Gauss exp, and Gauss pow have Gaussian noise augmentation with o7 = 2, 2¢ =902 2(1 4 L)=0-33,
respectively. All other details are given in §4.3.

is given by gradient descent on the ridge regularized losses L, (W). If o = o > 0 is constant, then
E[W;] will converge to the unique minimizer W of the ridge regularized loss L. This point W
has zero orthogonal component, but does not minimize the original loss L.

To instead minimize £, we must choose a schedule satisfying o; — 0. For the expected optimization
trajectory to converge to Wi, for such a schedule, the matrix E[W; | ] of components of rows of
IE [W] orthogonal to V; must converge to 0. The GD steps for this matrix yield

t

E[Wii1,1] = (1 —mo?)EW, 1] = [](1 = neod)E[Wo, L. (4.6)
s=0

Because 7,07 approaches 0, this implies the necessary condition >ico no? = oo for E[W, ;| — 0.

This argument illustrates a key intuition behind the conditions (4.4). The augmentation strength o,
must decay to 0 to allow convergence to a true minimizer of the training loss, but this convergence
must be carefully tuned to allow the implicit regularization of the noising augmentation to kill the
orthogonal component of W, in expectation. In a similar manner, the second expression in (4.4)
measures the total variance of the gradients and ensures that only a finite amount of noise is injected
into the optimization.

Although Theorem 4.1 is stated for additive Gaussian noise, an analogous version holds for arbitrary

additive noise with bounded moments. Moreover, optimizing over z, y, the fastest rate of convergence
guaranteed by Theorem 4.1 is obtained by setting 1, = ¢t~2/3+¢ 52 = t~1/3 and results in a

O(t~'/3%¢) rate of convergence. It is not evident that this is best possible, however.



4.2 Joint schedules for augmented SGD with additive noise to converge to W ,;,,

To conclude our discussion of additive noise augmentations, we present the following result on
convergence to Wy, in the presence of both Gaussian noise and SGD (where datapoints in each
batch are selected with replacement).

Theorem 4.2. Suppose o2 — 0 is decreasing, n; — 0, and we have
o0 o0
Zmaf =00 and Zn? < oo. 4.7
t=0 t=0

Then the trajectory Wy of SGD with additive noise converges in probability to W, for any initializa-
tion. If we further have ny = ©(t™%) and 0 = ©(t™Y) withz > }, y > 0 and x + y < 1, then for

any € > 0 we have that tmi“{y’%m}*EHWt — Whinll F o.

Theorem 4.2 is the analog of Theorem 4.1 for mini-batch SGD and provides an example where
our framework can handle the composition of two augmentations, namely additive noise and mini-
batching. The difference between conditions (4.7) for SGD and (4.4) for GD accounts for the fact
that the batch selection changes the scale of the gradient variance at each step. Finally, Theorem 4.2
reveals a qualitative difference between SGD with and without additive noise. If 7, has power law
decay, the convergence of noiseless SGD (Theorem F.1) is exponential in ¢, while Theorem 4.2 gives
power law rates.

4.3 Experimental validation

To validate Theorems 4.1 and 4.2, we ran augmented GD and SGD with additive Gaussian noise
on N = 100 simulated datapoints. Inputs were i.i.d. Gaussian vectors in dimension n = 400,
and outputs in dim p = 1 were generated by a random linear map with i.i.d Gaussian coefficients
drawn from A(1,1). The learning rate followed a fixed polynomially decaying schedule 7, =
0905 . (batch size) - (1 4 )7, and the batch size used for SGD was 20. Figure 4.1 shows
MSE and |W; | || » along a single optimization trajectory with different schedules for the variance
o? used in Gaussian noise augmentation. Complete code to generate this figure is provided in
supplement.zip in the supplement. It ran in 30 minutes on a standard laptop CPU.

For both GD and SGD, Figure 4.1 shows that the optimization trajectory reaches Wy,;, only when
both learning rate and noise variance decay polynomially to zero. Indeed, Figure 4.1 shows that if o7
is zero (blue) or exponentially decaying (green), then while the MSE tends to zero, the orthogonal
component W, | does not tend to zero. Thus these choices of augmentation schedule cause W, to
converge to an optimum which does not have minimal norm.

On the other hand, if atz remains constant (orange), then while W, | tends to zero, the MSE is
not minimized. Only by decaying both noise strength and learning rate to 0 at sufficiently slow
polynomial rates (red) prescribed by Theorem 4.1 do we find both MSE and W; | tending to 0,
meaning that augmented (S)GD finds the minimum norm optimum W;, under this choice of
parameter scheduling.

5 Special Case: Augmentation with Random Projections

We further illustrate our results by specializing them to a class of augmentations which replace each
input x in a batch by its orthogonal projection IT; X onto a random subspace. In practice (e.g. when
using CutOut [12] or SpecAugment [23]), the subspace is chosen based on a prior about correlations
between components of X, but we consider the simplified case of a uniformly random subspace of
R™ of given dimension.

At each time step ¢ we fix a dimension k; and a fixed k;-dimensional subspace S"t of R™. Define the
random subspace S; by

Sy = Qt(gt) ={Qz |z € gt},
where Q; € O(n) is a Haar random orthogonal matrix. Thus, S; is uniformly distributed among all
k;-dimensional subspaces in R”. At step ¢, we take the augmentation given by

Xt = HtX Yrt = Y7 Ht = Qtﬁth—v



where I1, is the orthogonal projection onto S, and hence I1, is the orthogonal projection onto 5.

Denoting by v = k; /n the relative dimension of S, a direct computation (see Lemma E.1) reveals
that the proxy loss £:(W) equals L(:W; D) plus

1y —)
N

1—)(1/n—2/n? 1
X0 11 + 2G2S G2 A + CIX I W) 6.0

Neglecting terms of order O(n 1), this proxy loss applies a Stein-type shrinkage on input data by -,
and adds a data-dependent ¢, penalty. For «; < 1, the minimizer of the proxy loss (5.1) is

w+1/n—2/n* ¢ L= X -\t
W :YXT(—XX Id) .
i 1+1/n—-2/n? +1+1/n72/n2 n

Again, although W7 does not minimize the original objective for any ; < 1, the sequence of these
proxy optima converges to the minimal norm optimum in the weak regularization limit. Namely,
we have lim,, ;- WJ = Wy,. Specializing our general result Theorem 3.1 to this setting, we
obtain explicit conditions under which joint schedules of the normalized rank of the projection and
the learning rate guarantee convergence to the minimum norm optimizer Wpi,.

Theorem 5.1. Suppose that n; — 0,y — 1 with v non-decreasing and

Zm(lf’yt) =00 and an(lf%) < 0. (5.2)
t=0 t=0

Then, Wy % Wiyin. Further, if 1y = Ot )andy =1—-0O(tY)withz,y >0, x+y < 1, and
2z +y > 1, then for small € > 0, we have that tmin{y’%x}faﬂwt — Wil 7 0.

Comparing the conditions (5.2) of Theorem 5.1 to the conditions (4.4) of Theorem 4.1, we see that
1 — v; is a measure of the strength of the random projection preconditioning. As in that setting, the
fastest rates of convergence guaranteed by Theorem 5.1 are obtained by setting 7, = t~2/3%¢ and
vy =1 —t1/3, yielding a O(t~'/3%¢) rate of convergence.

6 Discussion and Limitations

We have presented a theoretical framework to rigorously analyze the effect of data augmentation. As
can be seen in our main results, our framework applies to completely general augmentations and
relies only on analyzing the first few moments of the augmented dataset. This allows us to handle
augmentations as diverse as additive noise and random projections as well as their composition in a
uniform manner. We have analyzed some representative examples in detail in this work, but many
other commonly used augmentations may be handled similarly: label-preserving transformations
(e.g. color jitter, geometric transformations) and Mixup [35], among many others. Another line of
investigation left to future work is to compare different methods of combining augmentations such as
mixing, alternating, or composing, which often improve performance in the empirical literature [16].

Though our results provide a rigorous baseline to compare to more complex settings, the restriction
of the present work to linear models is a significant constraint. In future work, we hope to extend our
general analysis to models closer to those used in practice. Most importantly, we intend to consider
more complex models such as kernels (including the neural tangent kernel) and neural networks
by making similar connections to stochastic optimization. In an orthogonal direction, our analysis
currently focuses on the mean square loss for regression, and we aim to extend it to other losses such
as cross-entropy. Finally, our study has thus far been restricted to the effect of data augmentation on
optimization, and it would be of interest to derive consequences for generalization with more complex
models. We hope our framework can provide the theoretical underpinnings for a more principled
understanding of the effect and practice of data augmentation.

Broader Impact

Our work provides a new theoretical approach to data augmentation for neural networks. By giving a
better understanding of how this common practice affects optimization, we hope that it can lead to



more robust and interpretable uses of data augmentation in practice. Because our work is theoretical
and generic, we do not envision negative impacts aside from those arising from improving learning
algorithms in general.

Acknowledgments and Disclosure of Funding

It is a pleasure to thank Daniel Park, Ethan Dyer, Edgar Dobriban, and Pokey Rule for a number
of insightful conversations about data augmentation. B.H. was partially supported by NSF grants
DMS-1855684 and DMS-2133806 and ONR MURI “Theoretical Foundations of Deep Learning.”
Y. S. was partially supported by NSF grants DMS-1701654/2039183 and DMS-2054838.

References

[1] F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with con-
vergence rate o(1/n). In Advances in neural information processing systems, pages 773-781,
2013.

[2] P. L. Bartlett, P. M. Long, G. Lugosi, and A. Tsigler. Benign overfitting in linear regression.
Proceedings of the National Academy of Sciences, 2020.

[3] C. M. Bishop. Training with noise is equivalent to Tikhonov regularization. Neural computation,
7(1):108-116, 1995.

[4] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning.
Siam Review, 60(2):223-311, 2018.

[5] O. Chapelle, J. Weston, L. Bottou, and V. Vapnik. Vicinal risk minimization. In T. K. Leen,
T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13,
pages 416—-422. MIT Press, 2001.

[6] S. Chen, E. Dobriban, and J. H. Lee. Invariance reduces variance: Understanding data augmen-
tation in deep learning and beyond. stat, 1050:25, 2019.

[7] B. Collins and P. Sniady. Integration with respect to the Haar measure on unitary, orthogonal
and symplectic group. Communications in Mathematical Physics, 264(3):773-795, Mar 2006.

[8] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le. Autoaugment: Learning
augmentation strategies from data. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 113-123, 2019.

[9] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le. Randaugment: Practical automated data
augmentation with a reduced search space. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pages 702-703, 2020.

[10] T. Dao, A. Gu, A. Ratner, V. Smith, C. De Sa, and C. Re. A kernel theory of modern data
augmentation. volume 97 of Proceedings of Machine Learning Research, pages 15281537,
Long Beach, California, USA, 09—15 Jun 2019. PMLR.

[11] A. Défossez and F. Bach. Averaged least-mean-squares: Bias-variance trade-offs and optimal
sampling distributions. In Artificial Intelligence and Statistics, pages 205-213, 2015.

[12] T. DeVries and G. W. Taylor. Improved regularization of convolutional neural networks with
cutout. arXiv preprint arXiv:1708.04552, 2017.

[13] P. Goyal, P. Dollér, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia,
and K. He. Accurate, large minibatch SGD: Training Imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017.

[14] Y. Grandvalet and S. Canu. Noise injection for inputs relevance determination. In Advances in
intelligent systems, pages 378-382. IOS Press, 1997.

[15] S. Gunasekar, J. Lee, D. Soudry, and N. Srebro. Characterizing implicit bias in terms of
optimization geometry, 2020.

10



[16] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and B. Lakshminarayanan. AugMix:
A simple data processing method to improve robustness and uncertainty. Proceedings of the
International Conference on Learning Representations (ICLR), 2020.

[17] D. Ho, E. Liang, X. Chen, L. Stoica, and P. Abbeel. Population based augmentation: Efficient
learning of augmentation policy schedules. In International Conference on Machine Learning,
pages 2731-2741, 2019.

[18] D. Huang, J. Niles-Weed, J. A. Tropp, and R. Ward. Matrix concentration for products, 2020.

[19] D. Leleune, R. Balestriero, H. Javadi, and R. G. Baraniuk. Implicit rugosity regularization via
data augmentation. arXiv preprint arXiv:1905.11639, 2019.

[20] A.Lewkowycz and G. Gur-Ari. On the training dynamics of deep networks with L regulariza-
tion. arXiv preprint arXiv:2006.08643, 2020.

[21] F. Liu, A. Najmi, and M. Sundararajan. The penalty imposed by ablated data augmentation.
arXiv preprint arXiv:2006.04769, 2020.

[22] S.Ma, R. Bassily, and M. Belkin. The power of interpolation: Understanding the effectiveness of
SGD in modern over-parametrized learning. In International Conference on Machine Learning,
pages 3325-3334. PMLR, 2018.

[23] D.S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk, and Q. V. Le. SpecAugment:
A simple data augmentation method for automatic speech recognition. Proc. Interspeech 2019,
pages 2613-2617, 2019.

[24] S. Rajput, Z. Feng, Z. Charles, P.-L. Loh, and D. Papailiopoulos. Does data augmentation lead
to positive margin? arXiv preprint arXiv:1905.03177, 2019.

[25] H. Robbins and S. Monro. A stochastic approximation method. Ann. Math. Statist., 22(3):400-
407, 09 1951.

[26] P. Simard, D. Steinkraus, and J. Platt. Best practices for convolutional neural networks applied
to visual document analysis. In Seventh International Conference on Document Analysis and
Recognition, 2003. Proceedings., volume 2, pages 958-958, 2003.

[27] S. L. Smith, P.-J. Kindermans, C. Ying, and Q. V. Le. Don’t decay the learning rate, increase
the batch size. In International Conference on Learning Representations, 2018.

[28] S. L. Smith and Q. V. Le. A Bayesian perspective on generalization and stochastic gradient
descent. In International Conference on Learning Representations, 2018.

[29] D. Soudry, E. Hoffer, M. S. Nacson, S. Gunasekar, and N. Srebro. The implicit bias of gradient
descent on separable data, 2018.

[30] S. Wager, S. Wang, and P. S. Liang. Dropout training as adaptive regularization. In Advances in
neural information processing systems, pages 351-359, 2013.

[31] D. Wu and J. Xu. On the optimal weighted Ly regularization in overparameterized linear
regression. arXiv preprint arXiv:2006.05800, 2020.

[32] J. Wu, D. Zou, V. Braverman, and Q. Gu. Direction matters: On the implicit bias of stochastic
gradient descent with moderate learning rate, 2021.

[33] L. Wu, C. Ma, and E. Weinan. How SGD selects the global minima in over-parameterized
learning: A dynamical stability perspective. In Advances in Neural Information Processing
Systems, pages 82798288, 2018.

[34] S. Wu, H. R. Zhang, G. Valiant, and C. Ré. On the generalization effects of linear transformations
in data augmentation, 2020.

[35] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk mini-
mization. arXiv preprint arXiv:1710.09412, 2017.

11



