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Abstract

We prove the optimal rate of quantitative propagation of chaos, uniformly in time,
for interacting diffusions. Our main examples are interactions governed by convex
potentials and models on the torus with small interactions. We show that the dis-
tance between the k-particle marginal of the n-particle system and its limiting product
measure is O((k/n)?), uniformly in time, with distance measured either by relative
entropy, squared quadratic Wasserstein metric, or squared total variation. Our proof is
based on an analysis of relative entropy through the BBGKY hierarchy, adapting prior
work of the first author to the time-uniform case by means of log-Sobolev inequalities.
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1 Introduction

This paper studies interacting diffusion processes in R¢ of the form

) ) 1 n ) ) '
dx;=<bo(t,x;)+m > b(t,Xﬁ,X{))dt—i—odW,’, i=1,...,n,
J=1,j#
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where W1, ..., W" are independent d-dimensional Brownian motions and o > 0 is
scalar. Precise assumptions are deferred to Sect. 2. Typically, as n — oo, the limiting
behavior of this n-particle system is described in terms of the McKean-Vlasov equation

dX; = (bo(t, Xo) + (us, b(t, Xy, ) dt +0dW;, = Law(Xy),  (1.2)
or the associated nonlinear Fokker—Planck equation

O pus (x) = —divy (o2, x) + (e, b(t, %, Mg (X)) + (07 /2) Axpre (), (1.3)

where we abbreviate (u;, b(t, x, -)) = fRd b(t,x,y) us(dy). The large-n limit is for-
malized by the notion of propagation of chaos originating in [37, 42]. Suppose for this
introduction that the above equations are well-posed, with the law of (X!, ..., X7
being exchangeable at# = O and thus alsoateach? > 0. Let P,"’k =Law(X/, ..., X5
denote the k-particle marginal. The problem of propagation of chaos is to show that
P,"’k — ,u;@k weakly as n — oo, for each k € N and ¢ > 0, where ,u;@k denotes the
k-fold product measure (assuming that the same is true at + = 0, which is trivially
the case if the initial positions are i.i.d.). This is well known to be equivalent to the
statement that the empirical measure

n .__ 1 . 8
L; —;21: Xi
i=

converges weakly in probability to u; as n — oo, for each t > 0.

Over several decades of intensive research, propagation of chaos has been rigorously
justified in a wide variety of contexts which we do not attempt to list here, instead
referring to the comprehensive recent surveys [12, 13] as well as [34]. While the earliest
results were qualitative in nature, recent work has succeeded in quantifying propagation
of chaos in various ways. Let us first discuss some typical quantitative results which
hold on bounded time intervals. The classical synchronous coupling argument, going
back to [50] in the case where (bg, b) are Lipschitz, gives a convergence rate for
E[W%(L?, )] of the same order as if L} were an empirical measure of i.i.d. random
variables, where W, denotes the quadratic Wasserstein distance. While this estimate
deteriorates with the dimension, the same coupling argument yields the dimension-
free W%(Pt"’k , u?k) = O(k/n), and we note also the recent work [29] that gives
dimension-free estimates for E[d? (L7, pt)] for certain metrics d dominated by W;.
A recently popular approach is to estimate the relative entropy H(P"" | u®") of
the full n-particle system; if it is shown to be bounded with respect to n, then the
subadditivity of entropy yields H (P,"’k | /L,‘X’k) = O(k/n), or by Pinsker’s inequality
I Pt”’k - ,u,®k ”%V = O(k/n). Relative entropy methods have gained popularity in part
due to their ability to handle models with singular interactions relevant in physics,
which were inaccessible by other methods [8, 33, 35].

The recent paper [38] of the first named author showed that the previous three
estimates can actually be improved from O (k/n) to O((k /n)z) in many cases, with
a simple Gaussian example showing that the latter cannot be further improved, thus
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obtaining the sharp rate of propagation of chaos. The broad class of models treated in
[38] includes bounded or uniformly continuous interaction functions, among others,
but nothing too singular. The novelty of the approach of [38], which is also based
on relative entropy estimates, is its local character, estimating Htk =H (Pt"’k | ,u,;@k )
hierarchically in terms of Htk‘|r1 for each k < n rather than estimating the global
quantity H/'. Interestingly, both of the estimates H;' = O(1) and Htk = 0((k/n)2)
are typically sharp, which means that something is lost in using subadditivity to pass
from global to local bounds. Note by Pinsker’s inequality that the latter estimate
implies that P,”’k has total variation distance at most O (k/n) from the i.i.d. measure
u;@k , which is interesting to contrast with the well known result of Diaconis-Freedman
[20, Theorem 13] about finite exchangeable measures on general spaces; the Diaconis-
Freedman bound, which is sharp at its level of generality, implies merely that the total
variation distance between P,”’k and some mixture of i.i.d.’s is O (k? /n).

In this paper, we adapt the O ((k/ n)?) estimate of [38] to be uniform in time, under
an additional assumption of a log-Sobolev inequality (LSI) for u;, uniformly in ¢.
Before discussing the results in more detail, let us briefly review some typical prior
uniform-in-time results, which were all obtained by global methods. First, it is an
important and well known fact that McKean-Vlasov equations may admit multiple
invariant measures even when the n-particle system is uniquely ergodic for each n,
which precludes a uniform-in-time convergence; see [16, 31] for examples. Early
results on uniform-in-time propagation of chaos appeared in [40, 41], based on the
synchronous coupling approach combined with a uniform-in-n LSI for the n-particle
system, in the case of uniformly convex potentials:

bo(t,x) = —=VU ), bt,x,y)=—-VWkx—y), VU>al, VW >0, a > 0.
(1.4)

In particular, it is shown in [40, 41] that W3 (P}, u®) and H(P;"* | u®*) are both
O (k/n), uniformly in time. This approach was extended in [11] to relax the uniform
convexity to mere convexity-at-infinity. More recent developments have managed to
obtain similar rates under weaker convexity requirements, as long as the interaction
strength is small or the temperature o sufficiently large [17, 21, 47, 48]. A different but
still global method is adopted in the recent paper [18] dealing with models on the torus
T9 via analysis of a PDE (“master equation”) set on P(TY), obtaining estimates like
sup,~o [EF(L})—F ()| = O(1/n) for sufficiently smooth functionals F. The recent
papers [26, 45] treat specific physically relevant models with singular interactions,
again working globally and thus not obtaining our optimal rate.

A noteworthy source of recent applications beyond physics is the analysis of large
neural networks trained by stochastic gradient descent [14, 43, 49], which is well
approximated by particle systems of the form (1.1) and for which long-time behavior
is particularly important. On a more mathematical note, uniform-in-time propagation
of chaos can also be used to derive the rate of convergence of p; to equilibrium as
t — oo, asin [11, 40, 41].

The main contribution of this paper is to identify the sharp rate of propagation of
chaos, along with a methodology that is amenable to further development. On purely
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qualitative grounds, though, we do not claim to cover any notable models for which
propagation of chaos was not already known. As in [38], we state general results
(Theorems 2.1 and 2.5) under somewhat abstract assumptions, which highlight the
key a priori estimates one needs in order to implement our method. Most important
among them are that 1, obeys a transport-type inequality, which already appeared in
[38], as well as a LSI, with constants uniform in time; the latter was not needed in
the finite-time results of [38]. The main examples that we cover are convex-at-infinity
potentials as in (1.4) with V2W also being bounded from above, and certain models
on the torus with by = 0 and b(¢, x, y) = K(x — y) for a vector field K of small
divergence.

The role of the LSI in our work warrants further discussion. Starting from [40], a
common ingredient in a proof of uniform-in-time propagation of chaos is a uniform-
in-n LSI for the invariant measure of the n-particle system. The remarkable recent
result of [19, Theorem 3.7] shows that this uniform-in-n LSI implies uniform-in-time
propagation of chaos, with minimal additional assumptions. See also the recent paper
[28] on quantitative uniform-in-time propagation of chaos for kinetic models, which
applies recent uniform LSIs for invariant measures developed in [27]. Based similarly
on a LSI for P"" uniform in n and ¢ (plus other non-trivial assumptions), we obtain
in Theorem 2.5 an estimate on the reversed entropy H (,u;@k | P,”’k) = O0((k/ n)z), and
note that this optimal rate O ((k/ n)?%) cannot be recovered from the aforementioned
results. On the other hand our first Theorem 2.1 is perhaps more novel in that it proves
the optimal rate H (P;" | u ) = O((k/n)?%) under essentially no assumptions on the
n-particle system itself, but instead we need a sufficiently high temperature and a
LSI for the measure p; uniformly in z. See Theorem 2.1 for the general result, and
Corollary 2.7 and 2.9 for the examples of convex interactions and small interactions
on the torus, respectively. Among prior work, the closest to our approach appears to be
[26], which derives the uniform-in-time estimate H (P,"" | ,u "y = O(1) for certain
singular models on the torus by using similarly a LSI for u; which is uniform in ¢; by
subadditivity, they deduce H (P;" | u ) = O(k/n) in [26, Corollary 1].

Let us briefly highlight the main new ideas of the method. We employ a well
known relative entropy calculation, formally stated as follows. Suppose (/1,;'),20 isa
probability measure flow solving the Fokker—Planck equation

Oy = —div(bjpp) + (0% /2) Apj,
for some (time-dependent) vector field b, for i = 1, 2. Then
d
EH(/L} |u2) = / ((b,‘ —b2) - Viog(du} jdu?) — (02/2)\Vlog(du}/dn,2)|2) du}.
(1.5)

See Lemma 3.1 for a rigorous version. For many purposes it is good enough to imme-
diately bound the right-hand side of (1.5) by (1/20°2)||b} —b? || 2l which is actually

precisely the time-derivative of the path-space relative entropy used in [38]. Here, we
avoid completing the square, instead using the LSI in the natural way to take advantage
of the final term in (1.5). More specifically, we apply (1.5) with 5! and b? respectively
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being the drifts of P,"’k and M;@k, the former identified using the BBGKY hierarchy.
The b! — b2 term is estimated similarly to [38], and we ultimately obtain a differential
inequality, central to our approach, of the form

d k3
—H} < —c/H} + €23 + cak(HF' — HF),  where HF := H(P,"’k | u®F),

dt
(1.6)

for certain positive constants cy, ¢z, c3 which do not depend on (n, k). The key
difference with [38] is the first term, which stems from the LSI and provides the
additional decay needed to obtain uniform-in-time bounds. Once (1.6) is established
and Gronwall’s inequality is applied, the remainder of the proof proceeds by iter-
ating the resulting integral inequality from k to n, using the crude global estimate
sup, H' = O(n) for the last step. Compared to the finite-time setting of [38], we
face new difficulties in estimating the multiple integrals arising from this iteration in
a sharp enough manner to produce the optimal exponent.

Two recent papers developed related quantitative estimates along the BBGKY hier-
archy, using (weighted) L? norms rather than relative entropy, for non-exchangeable
models in [32] and for certain singular interactions in [7]. Lastly, the very recent [30]
adapts the methods of [38] to handle certain singular interactions. These results are
all on finite time horizons.

In Sect.2 below we state precisely all of our main results. Sections 3 and 4 prove
the two mains Theorems 2.1 and 2.5, respectively, and Sect. 5 proves the corollaries.

2 Main result and examples

The space of Borel probability measures on a metric space E is denoted P(E). We use
the notation (i, f) = [, r f du for integration. For u € P(E) and k € N, we write

w®k(dxy, ..., dxg) = p(dxy) - u(dxg) for the product measure. We use the notation
x = (x1,...,xg) for general element x € E*. For example, if ¢ : EF > R, @(x)
and ¢(x1, ..., x;) denote the same quantity. Similarly, u(dx) and w(dxy, ..., dx;)

are equivalent notations for a measure u € P(E kY. For n,v € P(R¥), we define the
relative entropy and the Fisher Information between & and v respectively by

2
dv.

dv dv dv
HW|p):= —log—du, Ivlu) = Vieg —
Rk dp ~dp Rk dp

We set H(v | ) := oo when v « , and similarly /(v | ) := oo when v &« u or
V log dv/duu does not exist in L>(v). Many measures on Euclidean space encountered
in this paper are absolutely continuous with respect to Lebesgue measure. For such
measures, we abuse notation by using the same letter to denote both a measure and its
density, e.g., it (dx) = p(x)dx. Finally, we define C2° (Rk ) to be the space of infinitely
differentiable functions with compact support on R¥.
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2.1 General setup and main result

Fix d,n € N. The n-particle system of interest (1.1) is described by a weakly
continuous flow of probability measures (P/");>( on (RY)" satisfying the following
Fokker—Planck equation, written in weak form: For every ¢ € CZ° ((R?)"y and r > 0,

(P = Py, )
t n l n 0_2
= bo(s, x;) + —— b(s,x~,x~))-Vi x)+—A (x)]
/()/(Rd)n[é(o i "_1,/=12,,/:¢i i Xj s 5 Ag
P/'(dx)ds. 2.1

The mean field limit is described by a continuous flow of probability measures (it;);>0
on RY satisfying the following nonlinear Fokker—Planck equation, again written in
weak form: For every ¢ € C c°° (]Rd Yand ¢t > 0,

t 2
(ue — o, ) Z/o /Rd [(bo(s,x) + (us, b(s, x, ~))> - Vo(x) + %Aw(x)]us(dX)ds.

2.2)

Recall that a function on a metric space is said to be locally bounded if its restriction
to any bounded set is bounded. A probability measure on (R?)" is exchangeable if
it is invariant under permutations of its n coordinates. Our first set of assumptions is
technical in nature:

Assumption E

(E.1) We are given a scalar ¢ > 0, and Borel measurable functions bg : [0, 00) x
R? - R and b : [0, 00) x RY x RY — R?, where by is locally bounded.

(E.2) There exists a weak solution (u;);>¢ to the nonlinear Fokker—Planck equation
(2.2) such that b(z, x, -) € L'(u,) for all (¢, x), and (¢, x) — (u;, b(t, x, -)) is
locally bounded.

(E.3) There exists a weak solution (P/");> to the Fokker-Planck equation (2.1) such
that P/ is exchangeable for each ¢t > 0. Moreover, for each p, T > 0,

T
/ f (Ib(t, x1. x2)1” + e, b(t, x1, ) *) P/ (dx)dt < oo,
0 (Rd)n

sup / (1bo(t, x> + 1b(t, x1, x2)[*) P"(dx) < o0.
1€[0,T] J (RE)n

Note that we prefer to assume the existence of P/' and u;, rather than placing
assumptions on (bg, b) which imply existence. The assumptions on (bo, b) are thus
mostly implicit, which makes our main result fairly general. Sections2.3 and 2.4 give
more concrete sufficient conditions, stated directly in terms of (bg, b). The assumptions
of local boundedness in (E.1,2) and the p-integrability condition in (E.3) are purely
technical, serving only to justify a relative entropy estimate (see Lemma 3.1 below).
The next set of assumptions is the more essential one.
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Assumption A

(A.1) Log-Sobolev inequality (LSI): There exists a constant n > 0 such that
HWlu) <nl@lm), YvePR), 1=0. 23)
(A.2) Transport-type inequality: There exists y > 0 such that
(v — e, b(t,x, W2 <yHO|w), YWweP®RY, xeRY, 1>0. (2.4)

(A.3) L2-boundedness: We have

M = esssup/ |b(t, x1, x2) — (s, b(t, x1, -))|2 P/ (dx) < oc. 2.5)
(R4

>0

Define P} € P((RY)) to be the k-particle marginal of P/*. That is,
<Ptk7§0> Z/ (p(x15'-'7xk)P[n(dxl9'-'5dxn)5
Ry

for bounded measurable ¢ : (R?)¥ — R. For brevity, and because n can be considered
as fixed in the following non-asymptotic results, we write P,k instead of Ptn’k as in the
introduction. The following is our first main result.

Theorem 2.1 Suppose Assumptions E and A hold. Let r. := % — 1.

(1) Suppose that r. > 1 and that there exists a constant Co > 0 such that
H(PE 1 n§") < Cotk/n)?, forallk=1,...,n.
Then there exists a constant C > 0 depending only on (o, vy, n, M, Cy) such that
H(PFIu$*) < Ck/n)?, forallT =0, k=1,...,n.

(2) Suppose that 0 < r. < 1 and that for each 0 < €| < € < r. there exists a

constant CS‘ 2 > 0 such that

H(PE | u8) < CEh2kM e =2 forallk =1,...,n.

Then, for any 0 < €] < €3 < r, there exists a constant C > 0 depending only on
(0,y.n. M, €1, €, Cy" 2, C(()EZ_EI)/Z’GZ_GI) such that:

H(PE | u$5) < kM et ¥ forall T >0, k=1,...,n.
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Note that Theorem 2.1 only applies at sufficiently high temperature, as it does
not cover the case % < 4y (equivalently, r. < 0). For high enough temperature,
o* > 8yn, Theorem 2.1(1) achieves the optimal order (k/n)?. See [38, Example
2.8 and Section 3] for a simple example (with linear coefficients) showing that the
exponent 2 cannot be improved. In the intermediate regime 4y n < o < 8yn, we do
not know if our rate is sharp.

The assumption H(Pé‘ | n®%) < Co(k/n)? holds trivially in the case of i.i.d. initial
conditions Py = uff’”. See the main results of [39] for natural families of Gibbs
measures for which this assumption holds non-trivially. The non-degenerate noise
o > 0 will ensure that the measures P;* and u, are absolutely continuous for each
t > 0 (see Remark 3.2), but they need not be at r = 0; in particular, Theorem 2.1 can
accommodate Dirac initial conditions.

Remark 2.2 For small temperature, uniform-in-time propagation of chaos can fail, for
the simple reason that the mean field equation may admit multiple invariant measures
which all satisfy a LSI. In other words, the presence of Assumptions A and E alone are
not enough to guarantee uniform-in-time propagation of chaos, without an additional
smallness condition. For a simple example, consider the Kuramoto model

, K < . ; .
dXj=— > sin(X] — X])dt + d B, (2.6)
j=1

where K > 0 is a constant, and particles take values in the circle R/27x7Z = [0, 27 ].
This n-particle system is uniquely ergodic. The uniform measure is always an invariant
measure for the corresponding mean field model; i.e., u;(dx) = dx /2w for all ¢ solves
(2.2). In the supercritical case K > 1, the mean field limit admits an infinite set Syp of
invariant measures, obtained as the rotations of a common density which is bounded
from above and below away from zero. See [4] for details. In particular, all invariant
measures admit a LSI by the Holley-Stroock perturbation argument [3, Proposition
5.1.6]. One easily checks that Assumptions A and E hold when u; = p forallz > 0
for some 11 € Sy, but uniform-in-time propagation of chaos cannot hold in the sense
of Theorem 2.1 when K > 1. If it did, it would lead to the absurd conclusion that the
1-particle marginal of the unique invariant measure of the n-particle system converges
to u, for each u € Syvr. However, we highlight the remarkable recent results of [18,
Section 4], which show that uniform-in-time propagation of chaos still holds modulo
rotations, if one initializes away from the uniform measure which is unstable when
K > 1.

Remark 2.3 The entropy bounds of Theorem 2.1 imply similar bounds in Wasserstein
distance. To be precise, recall first the definition of the p-Wasserstein distance between
two measures (i, V € P(Rd), forp > 1:

1/p
Wp<u,u)=inf(/ |x—y|f’n(dx,dy>) , 2.7
T Rd xR4
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where the infimum is over 7 € P(R? x R%) with marginals ¢ and v. By a famous
theorem of Otto-Villani [44] (see also [25, Theorem 8.12]), the LSI (2.3) implies the
quadratic transport inequality

Wi, ) < 4nH v up). Yv e PRY, 1> 0. 2.8)
The quadratic transport inequality tensorizes [25, Proposition 1.9], in the sense that
Wi, u*) < dnH© | uP), VkeN, ve P(RHY, 1 > 0.

In particular, in case (1) of Theorem 2.1, sup, Wh(Pk, M;®k) = O(k/n).

Remark 2.4 We have not optimized or reported a precise value of the constant C in
Theorem 2.1, which is complicated and not very informative in general. However, in
the case o > 12y, it is not difficult to track the constants in our proof to obtain

H(PE | ) < (C1 4 Coe T/ (k/n)?, VT, k,
10000M oy 2y
(1 = 12yno—H2’

where C| =

ST C ey —4 8

Cy = 1250 (co 4 YyMCono ) 7
1 —12yno—* ) y2n?

This reveals that the term containing the constant C¢, which controls the initial entropy,
decays as T — oo. Thus, as one would expect, the effect of the initial condition
disappears over long time horizons. By being even more careful in the proof, we
can obtain n-dependent constants C(n) and C(n) in place of C; and C», which are
bounded in n and have the advantage of vanishing as either n — 0, M — 0, or
o — oo, for any fixed n (but not uniformly in n). Similar bounds are possible but
much more involved in the remaining case 4yn < o* < 12y7.

2.2 Reversing the relative entropy estimate

This section presents a similar result for H (,u;@k | P,k ). We need a similar set of assump-
tions as before, essentially with the roles of the measures P" and u inverted. We also
add a simplifying assumption that the interaction function b is bounded, which is a
major limitation; see Remark 2.6 for discussion.

Assumption R

(R.1) We are given a scalar o > 0, and Borel measurable functions by : [0, c0) X
R?Y — R4 and b : [0, 00) x R? x R — R where b is bounded and by is
locally bounded.

(R.2) There exists a weak solution (P/");>¢ to the Fokker—Planck equation (2.1) such
that P/ is exchangeable for each r > 0.

(R.3) There exists a weak solution (u;);>0 to the nonlinear Fokker—Planck equation
(2.2) with

sup / bo(t, x)|* s (dx) < o0, T > 0. (2.9)
t€[0,7] JR4
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(R.4) Log-Sobolev inequality (LSI): There exists a constant > 0 such that
HW|PY <nl(v|P"), YveP(RH), t>0, neN. (2.10)

Theorem 2.5 Suppose that Assumption R holds. Define

o

Pe= g5
8l

(1) Suppose that p. > 2 and that there exists a constant Co > 0 such that
Hp§* | P < Cotk/n)?, forallk=1,...,n.

Then there exists a constant C > 0 depending only on (o, |||b|*|ls0, 0, Co) such
that

HuS | PEY < C(k/n)?, forallT =0, k=1,...,n.

(2) Suppose that p. < 2 and that there exist constants Co > 0 and € € (0, p.) such
that

HuS | P < CotkymyPe, forallk =1,...,n.

Then there exists a constant C > 0 depending only on (o, |||b|?|ls0, 11, Co, €) such
that

HuS | P < Clh/myP, forallT =0, k=1,...,n.

One can compare Theorems 2.5 with Theorem 2.1 by identifying y = 2|||5*|l00,
noting that (2.4) holds with this constant by Pinsker’s inequality. The advantage of
Theorem 2.5 is that it applies no matter the value of p. = o*/4yn = 1 + r., whereas
Theorem 2.1 applies only when p. > 1. Moreover, in the range 1 < p. < 2 the bound
O ((k/n)P<—€) obtained in Theorem 2.5 is better than the bound O (kP<~€1 /p?(Pe—1—€2)
of Theorem 2.1. When p. > 2, the bound of O((k /n)z) obtained in each theorem
is the same. We do not know if the exponent p. — € is sharp in Theorem 2.5(2). Let
us note, similarly to Remark 2.3, that the results of Theorem 2.5 imply the bound
on Wasserstein distance, by marginalizing the LSI (2.10) and using the Otto-Villani
theorem to get W%(/L;@k, Ptk) < 4nH(/L;®k | Ptk) fort > 0.

Remark 2.6 The assumption in Theorem 2.5 that b is bounded is difficult to relax. It
could likely be generalized to the following analogue of Assumption (A.2):

2
k+11k k+11k
(Ht_Pt,)—ci_ | ,b(t,x1,-))‘ 5)/H(,U¢|P,’;_ | )’
Vi<k<n, x=(x1...,x5) € RHE 1 >0,
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where P,]f:”k(dxkﬂ) denotes the conditional law of Xf‘“ given (Xll, R Xf‘) =x

under P/'. These conditional measures do not seem tractable enough to enable a proof
of functional inequalities of this form beyond the case of bounded b; cf. [38, Remark
4.11].

These main theorems give recipes for quantitative uniform-in-time propagation of
chaos, and the rest of Sect. 2 describes concrete situations in which they apply. There
are conceivably many situations in which these conditions can be checked, on a case-
by-case basis. We give two somewhat general classes of examples below. The first deals
with convex potentials, for which the well known Bakry-Emery framework yields log-
Sobolev inequalities along dynamics. The second deals with a class of models set on
the torus, where the LSI can be obtained using the Holley-Stroock perturbation lemma
after showing that the density of y, is bounded from above and below away from zero
uniformly in time.

2.3 Convex potentials

Our first Corollary 2.7 provides a sharper rate of convergence than was previously
known for the extremely well-studied case of convex potentials. We impose similar
assumptions to [11], albeit with more restrictions on the interaction potential W. We
write > to denote positive definite (Loewner) order.

Assumption C Assume by(f, x) = —VU(x) and b(t, x, y) = —VW(x — y), where
U and W are twice continuously differentiable functions satisfying the following:

(C.1) We have V2(U + W) > «I for some o > 0, and each function ¥ = U and
Y = W is convex at infinity in the sense that there exist constants clllf, c'zlf >0

for which
@ =) (VY@ = V) = e lx =y =, VayeR%

We require uniform convexity at infinity for U, in the sense that cf’ > 0.
(C.2) There exist Cy, py > 0 suchthat [VU(x)| < Cy(1 + |x|PV) for all x € R4,

(C.3) W iseven and min(L, R) < oo, where we define R := |||[VW||lcc and L =
sup,, [VW(x) = VW(y)|/|x — y|. Thatis, VW is either bounded or Lipschitz
(or both).

Corollary 2.7 Suppose Assumption C holds. Let o € P(R?) satisfy the LSI
Hv| o) < (o/HI W 1o). Vv € PR,

Sfor some ny > 0. Let Pj € P((RY") be exchangeable and have finite moments of
every order. Then there exists a unique solution (P}');>¢ of the Fokker—Planck equation
(2.1) starting from PJ, and there exists a solution (i);>0 of the nonlinear Fokker—
Planck equation (2.2) starting from Lo, unique among the class of solutions satisfying
fOT Jra 1x1P i (dx)dt < oo forall T, p > 0. Moreover, the following hold:
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(1) Assumptions A and E are satisfied, with n = max(ng/4,02/4a), y =
min(4nL?, 2R?), and M bounded by a finite constant depending only on L, R,
Cy, and f(Rd)n |x1 |2P6’ (dx). In particular, Theorem 2.1 applies with

4 4 2 4 2

rp=———1=max (min( —-—, — ), min(———, —)) — 1.
© Ay 2L L2 200R?’ 2R?

(2) If R < 00 and (C.1) holds with ¢§¥ = ¢ = ¢[' = 0and ¢l = a (ie, Uis
a-uniformly convex and W is convex), then Assumption R is satisfied with n =
max(1o/4, 02 /4a), and Theorem 2.5 applies with

04 02(1)

=min|(——, —
Pe <2n0R2 2R?

Note that n9p = 0 when g is a Dirac. In case (1), if ng < 0’2/0l and R = oo, then
re = (a/L)* — 1 and the two ranges of 7. in Theorem 2.1 correspond to o > /2L
and L < o < ﬁL, respectively. We are unable to treat the case « < L, instead
requiring the convexity to be sufficiently stronger than the interaction strength in the
sense that « > L. This kind of assumption is common in the literature, more when
dealing with non-convex cases [2, 18, 27, 39, 46]. On the other hand, in the case where
VW is bounded, part (2) has no smallness constraint anymore, except that the optimal
exponent of 2 is obtained only when p. > 2, or o2a > 4R?.

There are two main limitations in Corollary 2.7. The first is that part (1) requires
a > L, as discussed just above. The second is that it requires VW to be globally
Lipschitz or bounded, which in particular rules out relevant cases like W (x) = |x|>.
Neither of these assumptions is needed in order to obtain qualitative uniform-in-time
propagation of chaos, which has been known since [11, 40].

Remark 2.8 Theorem 2.1 and Corollary 2.7 cover the Gaussian case, where by(f, x) =
—ax and b(t,x,y) = b(y — x),forx, y € R, witha, b > 0. Suppose that o = 1 and
that o = 8. It was shown in [38, Example 2.8 and Section 3] that uniform-in-time
propagation of chaos holds in this case at a rate of O ((k/n)?), no matter the values
of a,b > 0. Corollary 2.7 recovers this rate, but only when a/b is large enough.
Indeed, this setting fits into Corollary 2.7(1), with n9 = 0, « = a + b, L = b (and
R = o0), which yields the exponent r. = (1 + (a/b))> — 1. We recover the optimal
0((k/n)2) only when r, > 1, ora/b > V2 - 1. Corollary 2.7(1) still applies but
yields a suboptimal exponent when a/b < v/2 — 1.

We note also that [21] recently used coupling methods to obtain quantitative propa-
gation of chaos even when U + W is non-convex, but with a suboptimal rate compared
to Corollary 2.7. Their assumptions are somewhat similar otherwise, assuming a small-
ness condition on the Lipschitz constant of VW, though they do not cover the case of
non-Lipschitz VW.
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Sharp uniform-in-time propagation of chaos

2.4 Models on the torus

In this section, we present a class of models in which the state space R? is replaced
by the torus T¢ = R /Z¢, and we take by = 0 and b(z, x, y) = K (x — y) for some
vector field K : R? — R<. The proofs of Theorems 2.1 and 2.5 adapt without change
to the case of the torus. The McKean-Vlasov SDE and its corresponding PDE take the
form

0_2
o = —div(uK * u) + TA[L. (2.12)

The n-particle Fokker—Planck equation becomes

n | 2
3, Pzn(X) = — Zdi"xl' <m Z K(x; — x]‘)Pt”(x)> + %APtn(x). (2.13)
i—=1 i

We make the following assumptions:

Assumption T Assume that K is Lipschitz and also that the initial law 1o admits a
smooth density satisfying the pointwise bound A~! < g < A, for some A > 1.

Note since that © = 1 solves the PDE (2.12), because u K xpu = fw K is aconstant;
that is, the uniform measure on T¢ is invariant for (2.12). There may be additional
invariant measures, in general. Our main result in this section gives a uniform-in-time
propagation of chaos, with a sharp rate, for a sufficiently small mean field interaction
K, which in particular rules out the existence of additional invariant measures:

Corollary 2.9 Suppose Assumption T holds, and let P P(T4)") be arbitrary. Then
there exists a unique weak solution P" of (2.13) starting from P, and there exists a
unique classical solution p of (2.12) starting from . Assume that div K is small in
the sense that

—_— .
1+2200gk ~

Then Assumptions A and E hold, and Theorem 2.1 applies with

ldiv K |loo < (2.14)

~ o1 —2r)
~ 2A2diam?(K)

I'c ,

where we define

ldiv K [|oo~/2 log A
ro - =

T 0272 — ||div K |l e

, diam(K) := sup |K(x) — K(2)|.

x,z€Td
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Note that (2.14) ensures that ryp < 1/2, so that r, > —1. Theorem 2.1 only yields
anything useful, of course, if 7. > 0, which can occur when some combination of the
following effects are present: o is large, or K has small oscillations or divergence,
or A is close to 1 which means that the initial law g is L*-close to the uniform
distribution. Note when K is divergence-free the simplification ro = 0 occurs.

Example 2.10 Corollary 2.9 notably covers the example of the Kuramoto model (with-
out disorder) discussed in Remark 2.2, in sufficiently subcritical regimes. We keep this
discussion brief, referring to [1, 4] for background on this model. The Kuramoto model
(2.6) was written for X ; taking values in [0, 2], and to fit it into Corollary 2.9 (set
inT' = R/Z = [0, 1]) we simply rescale X i to Xi /2. This yields the parameters
o =1/27 and K (x) = K sin(2wrx)/2x. In Corollary 2.9, the condition 2.14 becomes

1
Ko«
S 418 2logk 4

and the constant r. becomes

1 —4K(1+22logh)
32722 2K2(1 — 4K)

re =ro(K,\) =

We obtain quantitative uniform-in-time propagation of chaos when K < K ? (1), where
we define K (1) for a > 0 as the (A-dependent) value of K for which r.(K, A) = a.
For K < K Cl (X)) we obtain the optimal exponent O ((k /n)?) from Theorem 2.1. For
example, when A = 1 (meaning the initialization pq is uniform), we have K?(l) =
V2/87 and K L(1) = 1/87. We are not able to determine the sharp rate quantitative
uniform-in-time propagation of chaos all the way to criticality, i.e., for all K < 1.

3 Proof of the main theorem

This section gives the proof of Theorem 2.1. We suppose that Assumptions E and A
hold throughout this section. The central quantity of study will be the relative entropy

HY .= H(PF | u®%), 1>0, 1<k <n.

3.1 The entropy estimate

The first step is to estimate the time derivative of Htk. We apply the following more
general estimate between solutions of Fokker—Planck equations.

Lemma3.1 Letd € Nand o > 0. For eachi = 1,2, let b’ : [0, 00) x RY — R4
be measurable, and assume we are given a continuous flow of probability measures
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(,ui) (>0 ON R satisfying the weak Fokker—Planck equation

. . ! . 0'2 .
o) = theo + [ [ (60 Vo + b))l dxids.
0 JRA 2

Vg € CRY), 1> 0,

as well as the following conditions:

(H.1) The function b is locally bounded.
(H.2) The function b' belongs to Lﬁ)c (u") for some p > d +2. That is, foreach T > 0
and each bounded Borel set S C R? we have

T
f /|b1(t,x)|m}(dx)dt < 0.
0 S

(H.3) The following hold for each T > 0:

T
/ /|b2(t,x)|2u,1(dx)dt<oo, sup / b (2, x) 11} (dx) < o0.
0 JRd t€[0,T7] JRE

Then, it holds for eacht > s > 0 that

2 t
(o2
ol 1)+ % [ 1112 du < G 1)

A

1 At 1 2 2 1
+ = ‘b (u, x) — b2, 0| w1l (dx)du.
o K R4

In particular, ifH(M(l) | ,u%) < 00, then H(M[1 | u?) < ooforallt > 0.

Estimates of this form might be considered folklore, with similar forms appearing
in [8, 33, 35] under different assumptions. If one ignores questions of smoothness and
integrability, the proof follows by applying the Fokker—Planck equation for > with
the test function ¢ = (u!/ w?) log(u!/ w?). It takes some care, though, to make this
rigorous. Lemma 3.1 follows almost immediately from the arguments in [6, Lemma
2.4], with their main results holding under the sole assumptions that 5! and b* are
Borel measurable and locally bounded. Local boundedness of 5! turns out to be too
restrictive for our application, where we wish to use b! = b* defined in (3.1) below;
the issue is that local boundedness is not preserved under conditioning. Nonetheless,
the assumptions of Lemma 3.1 are enough to ensure sufficient smoothness of 1,
summarized in Remark 3.2 below, which enables the same arguments as in [6] to be
carried out, after an additional mollification step in which b! is approximated by a
locally bounded function. See Appendix A of the first arXiv version of the present
paper for full details.

Remark 3.2 The assumptions (H.1,2) ensure that the measure dt,ué(dx) admits a
(Holder) continuous density on (0, 00) x R4, which we denote by u' (¢, x), for each
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i = 1, 2. In addition, ,uf (t,) € Wp’l(U) for every p > 1, every t > 0, and every
bounded open set U C R4. See [5, Proposition 6.5.1]. Lastly, since b2 is locally
bounded, the continuous version of the density j? is strictly positive on (0, 00) x R?;
see [5, Example 8.3.8].

Remark 3.3 An easy adaptation of the proof of Lemma 3.1 gives the following more
general estimate, for 0 < ¢ < 1:

H(u |12) il— t112d<H12
wilui) + = A=) | Iy |wy)du < H (gl pus)
)

1

+ 202¢

t 2
/ / ‘bl(u,x) —bz(u,x) /L,L(dx)du.
s JRd

This allows one to trade off between the Fisher information and drift terms. Remark-
ably, it turns out in our context that the optimal choice is always ¢ = 1/2.

3.2 The BBGKY hierarchy

We will apply Lemma 3.1 with P,k and u,®k in place of M,l and ,utz, respectively,
but first we need to represent PX and u®¥ for each k as solutions of Fokker—Planck
equations. For 1®¥ this is straightforward. For P¥ this is accomplished using the so-
called BBGKY hierarchy, which is well known, but we derive it in the lemma below
for completeness; see [24, Section 1.5] for additional references and a derivation in
the zero-noise case. First, note that the measure dt P/"(dx) has a positive density
on (0, c0) x (Rd)”; see Remark 3.2 and note that (H.2) holds because of the local
boundedness of by and because of Assumption (E.3). By marginalization, d tP,k (dx)
has a positive density on (0, c0) x (R?)k. Recall in the following that we use the same
letter to denote a measure and its density when it exists, e.g., Plk (dx) = Plk (x)dx.

Lemma3.4 Let 1 <k < n. Define the conditional density

k+1
Pt+ (xl""vkar])

phtllk _
Pr(xt, ..o, xk)

d
tXLe, Xk(xk+1) = , >0, x1,...,xk41 € R%.

Fori =1, ...k, define thefunctionsz;l’-‘ - [0, 00) x (R9Hk — R4 by

k
1 n—k
Tk . § : k+1]k
bi(tv-xlvu-v-xk) =n_1 L b(lvxiaxj)+n_1(Pt,x|,!,,)xksb(tsxi9'))'
J#L j=1
(3.1)

Then, foreach 1 <k <n, ¢ € Cfo((Rd)k), andt >0,

! k o2
(Pf = P§. ) :/O f(ﬂw (;a)o(s,xi) + B (5. 3)) - Vigp(x) + 7A¢(x>)p;<<dx)ds.
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Proof Apply the weak Fokker—Planck equation (2.1) to atest function p € C2° ((R4)K)
depending on only the first k variables to find

(P = P, 9) Zf /Rd)"<b0(s e

+— Z b(s, x,,x])> Vi @(x1, ..., x¢) Pl(dx)ds
J=Lj#

02 t
+ —/ / A@(xi, ..., xp) Pl (dx)ds.
2 0 (Rd)"
Marginalizing yields

/ bo(s, x1) - V(a1 ... ) P dx) =/ bo(s. xi) - Vi () PE(d),
(Rd)yn (R Yk

/ A@(x1, ..., xx) P (dx) =/ Ap(x) PX(dx).

(Rd)" (]Rd)k

For the interaction term, we compute

1 n
/(Rd)"”—l Z b(s, xi, xj) - Vio(x1, ..., xp) P{(dx)

j=1#

2/ b(s, xi, Xj) - Va,@(x1, . .., x¢) P (dx)
R

d)n
] 1]751

n 1 Z /Rd)n b(s, xi, xj) - Vy@x1, ..., xx) P (dx) (3.2)
Jj=k+1

We claim this is equal to f(Rd)k Z:k(t, x) - Vy0(x) P;‘ (dx). Again by marginalizing,
the first term on the right-hand of (3.2) can be simplified to

Z / b(s, xi, x}) - Vi (x) P{ (dx),

] 1 j#i
Using symmetry, the second term on the right-hand of (3.2) can be simplified to
n—k

n—1

n—k k11K
Tl /;Rd)k |:/]Rd b(s, xiy X 1) Py, v (@it 1)

Ve o(Xt, .., Xk) ka(dx], e, dxg).

/ b(s, xi, Xkt1) - Vay@(x1, - ., xx) PP (dx)
(Rd)k-H

@ Springer



D. Lacker, L. L. Flem

k+11k

The expression in brackets is exactly (P; y, " .,

b(t, xi, -)), and the proof is complete.
O

Remark 3.5 Alternatively, working at the level of the stochastic processes (1.1), the
BBGKY hierarchy can be derived using the so-called mimicking theorem [9, Corollary
3.7].

. . k
3.3 Estimating H,

We now apply Lemma 3.1 to estimate H* = H(PF | u k) We know from Lemma
3.4 that P* solves a Fokker—Planck equation with drift (bl, . ,i)\kk). On the other

hand, the nonlinear-Fokker—Planck equation (2.2) easily tensorizes to show that M‘X’k
satisfies the following Fokker—Planck equation: for all ¢ € CSO((R”I Y¥Yyandt > 0,

k
(Pt = n* o) = //R Z (bo(s, xi) + (s, b(s, X, )))

i=1
2
x,(P(x)+— (x))u (dx)ds.

We now apply Lemma 3.1 to get, forallz > s > 0,

o2 [t 1 [t k
—H +=— | 1(P* u®ya <—// b (u,
2
— (b b(u, x;, )| PE(dx)du. (3.3)

Indeed, the assumptions of Lemma 3.1 are easily checked using Assumption E: We
know by (E.1,2) that by(t, x) + (us, b(t, x, -)) is locally bounded, so that (H.1) holds.
The assumption (H.2) holds because b is locally bounded, and because (E.3) gives

T T
[ [, Beorpiana = [ [ b pand <o,
0 (Rd)k 0 (]Rd)"

forall p, T > 0andi =1, ..., k by Jensen’s inequality and by exchangeability. The
first part of (H.3) comes from the local boundedness of by and the first part of (E.3).
Similarly, the second part of (H.3) follows from the second part of (E.3). With (3.3)
now justified, the integrability assumptions in E will henceforth play no role.

The following lemma summarizes the implications of (3.3), which will be used in
multiple ways. Recall the constants (1, y, M) defined in Assumption A.

Lemma 3.6 Suppose that there exist constants Co > 0 and py, pa € (0, 2] such that

H} < CokP'/n2, 1<k <n.
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Let 8 > 0, and define Z = o%/4n, 7 := y (1 + 8) /o2, and the quantities

N ¢ o Ll tg ¢ - .
Ai(tk) . ( 1_[ 77]) / / - / ¢ Zj:k(z+y'l)([j_tj+l)dtlf—H e digg,
=k 0 Jo 0

(3.4)
=0 AN Mz 247 Dt 1)
B (t) == 1_[7/1 A A A e St T L digy,
=k
(3.5)

for ty > 0 and integers £ > k, with the convention E’,’C‘(I) = ¢~ ZH70t Then the
following hold:

(1) ForeachT > 0and1 <k < n,

H} < C()npl*pze*”zT/‘“7 + 4nMno . (3.6)
C n—1 M n—1

HE < n—p'; > M BHT) + v Y AT + AN Y. (3.7)
=k =k

(2) If we assume additionally that there exist C1 > 0 and p € [0, 2] such that

sup Hy < Cy/n?, (3.8)
>0

then, by setting Co = 2M + /y M Cy, it holds for each T > 0and 1 < k < n that

HE < ConP' P2~ T4 4 ap1 =5 Cypo—, (3.9)
n—1

Co -
k ~9v p1 pt
Hy < — ;z BU(T) +

C n—1 . ;
37/,212 ZZZ_%Ai(D + AN HHE. (3.10)
=k

Although we have no a priori information about H%, the purpose of part (2) of
Lemma 3.6 is as follows. In the case of r. > 2 in Theorem 2.1, we use Lemma
3.6(1) on a first pass through the argument, which ultimately leads to a bound of
H; = O(k®/n?). This is suboptimal in the exponent of k. However, it implies H} =
O(1/n?), and we may then repeat the argument and apply the sharper Lemma 3.6(2)
with p = 2 to reduce the exponent on k by one. This is carried out in Sect. 3.5 and is
similar to an argument in [38]. The case where 0 < r. < 2 is trickier, because a first
pass through the argument gives the worse bound H 3 =031 /n'<). The idea is to then
apply Lemma 3.6(2) inductively. The exponent in H> = O(1/n’*) improves after m
iterations from . to 2 min(1, r.(1 —27")).If r. > 1 then finitely many iterations yield
the optimal exponent 2, whereas if r. < 1 then the exponent merely approaches 2.
(The constants grow with each iteration, so we may only iterate finitely many times.)
This explains the exponent on n in Theorem 2.1(2). Lemma 3.9 below summarizes the
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induction step, and Sects. 3.7 and 3.8 implement it to complete the proof of Theorem
2.1.

Proof of Lemma 3.6 We simplify the estimate (3.3), starting with the Fisher information
term. The LSI (2.3) is well known to tensorize [3, Proposition 5.2.7]:

Hw|p® <plw|p®), V>0, 1<k <n, veP(RH.

Use this in inequality (3.3) along with exchangeability to obtain

Hf — Hf <

2 o2 rt
= Gua bl )| Ptavdu = [ Hau
nJs

®DE

_7k /t/ ‘Ek( )— | b( ))‘sz(d )d —12 /tde
o2 s J(RIHK 16 Ho PR u Gt 4n Js “ 1'43‘
3.11)

Lett > 0. Using the definition of b from Lemma 3.4, we have

Jow
= Jor -

n—k
+ m(lef;rllk — e, b(t, x1. )

2
B, x) = (e, b, 1, PR

k
—— D (bt 31, x)) = b1, x1,)
2

2
Pkdx).

Note that the above is valid for any 1 < k < n with the convention that the second
term inside the square equals O for k = n. Use the inequality (x 4+ y)> < (I +
(S))c2 + (1 + 8_1)y2, valid for any § > 0 and x,y € R, to bound this further by
(148" + (14 8)I1, where we set

k 2
Pp— . J— . k
1= /uw n_lg bt x1,%)) — (b, x1, )| PE@),
n—k; i1k 2
11 ;:/ —— (P — b, )| PR,
(Rd)k I’l—l ’

Let us first investigate the second term, assuming k < n since it vanishes otherwise.
Discard the constant (n — k)/(n — 1) < 1, and use Assumption (A.2) to obtain

II < ‘}/'/(\Rd)k H( k+1|k | e ) Pk(dx) _ V(Hk+1 H[k), (312)

with the second identity being the so-called chain rule for relative entropy; indeed,
this comes from the formula P,kJrl (x, Xp+1) = Ptk (x)Ptlfj”k(kar]) and the simple
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calculation
/ H(PST | 1) PF@ydx
(RAYk

k+11k
Py (k1)
- /Rd)k [/Rd log —= = P k+1|k(xk+l)dxk+1]P (x)dx

e (Xk41)

P (x, xpeg1) Pk (x)
/ / |: e T BT * 10gW]szﬂ(x,x;cﬂ)d%ﬂdx
ROHEJRA (%, Xk41) i (x)
— HMY B

where we write (x, x;41) here for a typical element of (REYk+1 = (RAYk x R4,
We next study the first term, /. For case (1) of the lemma, we use convexity of | - |2
to get

k
k—1 2
I< m/@w ; (b, x1, %)) = (e, bt x1, )| P (dx)

< u kzM (3.13)
~(n—1)2 n? ’

with the second step using exchangeability and the definition of M from (2.5). In
case (2) of the lemma, when we have the assumption (3.8), we take a more refined
approach. Start by expanding the square and using exchangeability to obtain

k-1 _ k—1Dk—2)
= m diag W Crosss

where we define lgiag and Icross by
2
Ldiag ¢=/ b, x1, x2) = (s, b(t, x1, ) |* PP (dx),
R?)?

Icross = \/(\Rd):i (b(t’ X1, x2) - (l’l’l’ b([, X1, )>) : (b([7 X1, X3) - <,LL{, b(ta X1, )))Pt3(dx)

3\2

We have immediately /ging < M. Writing P3(dx dx3) = P2(dx) x (dx3), we have

312

Iecross 2/ (b(tvxlaXZ)_ (it b(t,x1,-))) '<P
(R4)?

sm(/w)z

— bt 31, ) PAx)

3R 2 1/2
<Pt,lc — e, b(2, Xy, )>‘ Ptz(dxl, dx2)>
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1/2
F(/(R 3|2|uz)P(dx)>
<\/yMH3.

The first inequality comes from Cauchy-Schwarz, the second from the assumption
(2.4), and the last from the chain rule for relative entropy. Using the assumption (3.8)
on H%, we thus obtain

k — k—1D(k—2)
( M+\/ MC, W
Using (k —1)/(n —1) <k/n,n—1>n/2,and p <2, we have
k2—p/2
1 <2M +\/yMC1 +p < 5> (3.14)
n

where we recall that C; = 2M + /y MC;. The rest of the proof is given for case
(2), but recalling (3.13) we note that the same proof covers case (1) as long as we set
p=0and Cr, =M

Using these bounds on I and /1, the strategy in this proof will be to bound H,k in
terms of H,k"H, and we will need a bound on the final term H,* of the iteration. We
thus first apply (3.11) with £ = n and bound the first term of the right-hand side using
(3.14) (recalling that 11 = 0 for k = n). We obtain

t 02 t
H!— H! < / n'=P26"2Crdu — —/ H'du,
s an Js

Using Gronwall’s inequality (see Lemma A.1 for a precise form tailored to our case),
and setting Z = o2 /47, we have

t
H' < e_ZlH(;’ +f n' P20 e Ngs < ConP1—P2e= % +n1_p/20_2C2/Z.
0

Let us now consider the case 1 < k < n and bound H* in terms of H**!. Returning
to (3.11) and using (3.14) and (3.12), we have, for t > s > 0,

t —1\.3-p/2 2
(1+38"Hk>™?P yk(14+8), o

Hk—Hk</ C H — BN — — H | du.

! N |: o2n? 2+ o? ( «) 4n " "

The two H,f terms combine to become —(Z + fk)H,f, where we recall y = y(1 +
-1

8)/o2. Simplify further by noting that 15
see Lemma A.1 for a precise form) to get

= % Apply Gronwall’s inequalty (again

- t - k3—p/2
H,k < e_(Z'H/k)’Hé{ + 37/0 e~ (ZHky)i=9) <—8yn2 C + kHSk"'l) ds,
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Sharp uniform-in-time propagation of chaos

Complete the proof via an elementary induction, iterating this inequality for k+ 1, k +
2,...,n — 1, and then using the assumption on Hé‘. O

3.4 Estimating the iterated integrals

Here we prove two lemmas that allow us to estimate the iterated integrals (3.4) and
(3.5) appearing in Lemma 3.6.

Lemma 3.7 Forany real p, T > 0 and integers 1 < k < n,

n—1
Zel’é,‘fm < 2kP(1 + p)Pe¥P=2T (3.15)
=k

Proof First, we introduce a related iterated integral in which Z is removed from the
exponent:

-1 I Ll+1 ti—1 - =1 ~ .
B,f(tk) = <l_[ )7}) / / .. / e*}’mfzjzk V](tj*tj+l)dt£ o di,
ik 0 Jo 0

(3.16)

for #; > 0. Recognizing a telescoping sum in the exponent of (3.5), we find E,f(T) =
e 2T B,’f (T). We thus focus on B,f (T), which appeared also in [38, page 25]. Recognize
first that 7€B{ = hy * hgsy * -+ % hy, where hj(t) = 7je /' 1[g o) (t) is the
exponential density with parameters y j. Using the expression for the convolution
found in [38, Proof of Lemma 5.2] (applied with a = yk and b = y), we obtain

k+¢ -
Pk + OB = hpow by # - - % hyp (1) = —V’“%a —eThE,
We can then rewrite
"Bt k4 0B e TR & 0P 1( + 0)! N
Z k()—Z(+> (1) = 1),Z(+> (-
=k £=0
(3.17)
To proceed, we will use the inequality
k+ 0P 'k +0)! <2T'(k + £ + p), (3.18)
where I'(z) = f 12~ 1dt is the gamma function. To prove (3.18), we setz = k+¢,

so that (k+ )P~ 1(k+£)! =z (z4+1) = z’T'(z). Inthe case p > 1, a well known
gamma ratio inequality [36, Theorem 1, (5)] states that z’T"'(z) < I'(z 4+ p), which
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gives (3.18) without the factor of 2. In the case 0 < p < 1, Gautschi’s inequality [23,
inequality (7)] states that (z + 1)?~! < I'(z 4+ p)/'(z + 1), which implies

z+1

I-p
k+0O"P ' k+0!=z"""Tz+1) < ( > F'(z+p) <2'"PT(z+ p),

where the last inequality uses z > 1.
For 0 < y < 1, note by Fubini’s theorem and the definition of the gamma function
that

o0

F(k+€+p) 1 -
E / E E' uktttr=l, ”(l—y)edu—/ uktP=lo=yu gy
£=0

= y‘<"+">r<k + ).

Applying this with y = e~7* and then (3.18) in (3.17) gives

vkt X ) )
ZEka(,) _ 27 DhAELP) | _ iyt _pin L&A D)
(k=1 =0 ¢ k— 1!

Finally, another gamma ratio inequality [36, Theorem 2, (12)] yields I'(k + p) <
I (k)k(k + p)?~! = k!(k + p)?~!, which implies

I'(k +
T <k P S e <K .
O
Lemma 3.8 DenDtea:%:Mz—La). Then, for integers £ > k > 1,
_ G k+a \° k\¢
sup Ay (1) = <(1+a)* —) I<k<dt.
t>g ® l_[ <€+l+ > = ) <€+1
(3.19)
Moreover, for any p > Owith p #«a — 1,
1 o - n—1 k< at+l—p - _ -1
(1_’_&) ZEPSUPAZ(Z‘)_ /rll R lfp o > s
lp—a+1] > kPt /n ifp—a< —1.
(3.20)

Proof Let hj(t) = 7 je~ %171y o) (t) for each j € N. Note that A{ and B{ can be
expressed as convolutions,

A£=ﬁk*"‘*ﬁl*1[0,w), fﬂB£=ﬁk*'~'/’~lg.
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It follows that dAﬁ/dt = f@l?,f. We observed in (3.16) and just after that fﬁéf (1) =
e “'hy % - - % he(t), where hj(t) = 7 je 77 1j0.00)(¢) is an exponential probability
density for each j € N. In other words,

d -~
EAﬁ(t) =e Phg % hy(t).

In particuar, A,‘; is increasing. Consider independent exponential random variables
(E;)ieny with parameters yi. The density of the sum Ey + ... 4+ E; is precisely
hi * - - - % he. By integrating from 0 and ¢, we compute

>0

o ¢ -,
sup A (t)—/ e*Z’hk*...*h@(t)d;=E[e*Z<Ek+~~+EU] ]_[ ,V
0
:k

which proves the first identity in (3.19). Use logx < x — 1 for x > 0 to estimate

¢ {+1 k
Zl(’g = Z.a S—/ a dx:alog—+a ,
= l+a i=kl+a v X+a L+ 14+«

and exponentiate to get the first inequality in (3.19). The last inequality of (3.19)
follows from & > 0 and k + o < k(1 + «). To prove (3.20), consider two cases:

() If p—a > —1, wecanbound Y}, €7~ < [ xP~%dx = nP~**! /(p—a+1).
Thus,

n—1 n—1
1 >
_ ng sup Ak(t) < % P <
n

=k

A+a)® ko
p—a+lnlte—p’

(2) For p —a < —1, we can bound Y72}, 0P~ < [ xP~%dx = kP=+! /(o —
p — 1). Then,

n—1 n—1

1 1
—Zel’supAk(r) = —supA 0+ > €7 sup Ap(n)
>0 (=k+1 >0
—1
k+Ol n l=k+1
kP (L) kP
< - :
~ n? a—p—1 n?

O
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3.5 Proof of Theorem 2.1, forr. > 2

We first apply part (1) of Lemma 3.6. Combining (3.6) and (3.7) and the assumption
H} < Co(k/n)? yields

C n—1 M n—1
HE < Zesz(T)+—Z£2A‘f(T)+nA" L(T) (Coe ZT 4 4nMo~ )
U=k

Applying Lemma 3.8 for the last term, as well as Lemma 3.7 (with p = 2) for the first
term,

n—1

M 0(
HE <18C0 27=DT | i ZzzAﬁ(T)+(1+a)“ (Coe ZT 4 4yMo~ )
yn

(3.21)

In the following, we write C to denote a constant which can depend only on
(Co, y,0, M, n), and may change from line to line but never depends on (n, k, T).

—zZ_ ot _ 1+
Recall that o = 7 = T — 1+5

that @ > 3. Clearly e?7 =27 = ¢¥2=0T < | Apply Lemma 3.8 (with p = 2) in the
second term of (3.21), noting that 2 — o < —1, to get

2 3
HE<cC SIS
- n2 n2 no—1

Noting that @ > 3, this yields the suboptimal H# < Ck®/n?. This is where part (2)
of Lemma 3.6 enters the picture, allows us to sharpen the k exponent.

Specifically, since we now know H% < C/n?, we can apply part (2) of Lemma 3.6,
with p =2, to get Hy < C and

Since r. > 2, we may choose § > 0 such

1
C n—
HE < Z£2Bk(T) + ZzAk(T) + AN H.
=k =k
The first term is bounded by 18C) (k/n)z, by Lemma 3.7. For the third term, we use

Lemma 3.8 to get AZ_I(T)H¥ < C(k/n)* < C(k/n)? since o > 2. For the middle
term, we use Lemma 3.8 (with p = 1), noting that | — o < —1:

ZZEA (T) << ﬂ) (k/n)>.

This completes the proof of Theorem 2.1 in the case r, > 2. O

@ Springer



Sharp uniform-in-time propagation of chaos

3.6 Aninductive lemma

In order to prove Theorem 2.1 in the remaining case 0 < r. < 2, we first state a lemma
which inductively applies part (2) of Lemma 3.6, as was described in the paragraph
following the statement of the lemma. In the following, define

ot

re:=———1, and ¢, :=2(1—-27"), form € N,
4yn

and note that g, 1 = 1 4+ ¢;,,/2.

Lemma3.9 Let 0 < r < 2 satisfy r < re. Suppose m € N is such that rq,, < 2.
Suppose that there exists a constant Co such that Hk < Cok't" /n™in2.2) " for all
k=1, ...,n. Suppose that supr H < Cyn"m for some constant Cy,, > 0. Then,
there exists a constant C,, > 0 dependmg onlyon (Cp, 0,1, v, Co, M) such that, by
Cln

Pl W have:

defining Cp+1 =

(1) If rqm+1 <2, then supr H% < Cpgpn~"m+1,
(2) If rgm+1 > 2, then supyog H} < Cpyn™?
Proof Recall that @ = % = AWYH) = (1 +r.)/(1 + §) where the parameter § > 0
can be chosen freely. Let r* = min(2, 2r). Choose § = (r. — r)/(1 + r), so that
a = 1 + r. We apply Lemma 3.6 and deduce the existence of a constant C,, > 0,
depending only on (C,,, Co, v, n, o, M) such that

HE < Cou' " 417, (3.22)
Co — L+r 3¢ m N Tl in—1 n
< —= Y BT+ —22 AT+ AN THHE, 1<k <n,
n
— (=k
(3.23)

for all T > 0. For the first term of the right hand side of (3.23), Lemma 3.7 yields

Co n—l 5 K+ . K+
sup — Ze1+’B,f(T) < sup 2Co—— (2 4 r) VU= < 128C——,
T=0n" = T>0 n" n’

where the last step used (1 4+r) — Z = 0, and also r < 2 so that 2(2 4 r)1+r < 128.
Since r <2, we have 1/ <3/(r. —r), and so

k1+r 36
+ > Zzz—*Af(T) + AN H. (3.24)
n

HK < 128C
T T e =)

We next wish to combine the exponents.
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Suppose first that rg,+1 < 2. Then 2 — ”1% —a > —1, and Lemma 3.8 with
qm

a=1+randqg=2— =5 yields

Kt 36 Q+nttr K K
. m I+r®  pgn
Hy < 128Cy e + re—r (1 2—rqm/2 —r ) n2+r—Q2-rqm/2) RACREY nltr Hy
dtr 36 64 KUt K+
<128C)—+ + — (1 04— Hr
n’ re—r 2—=rqm41/) n"Im+ nt+r

where we used g+1 = 1 + ¢ /2 and (2 + r)”’ < 64, the latter following from
r < 2. To simplify this further, we claim first that

1+r—r*<1—rq7m. (3.25)
Indeed, if r > 1, then r* = 2, and (3.25) follows from the assumed inequality
r+rqm/2 = rgm+1 < 2. If instead r < 1, then r* = 2r, and (3.25) follows simply
from g, < 2. Now, using (3.25), we see that (3.22) implies H% < ZC,nnl_qum. Using
again g, +1 = 1 4+ ¢,n/2, we deduce that H?/n”’ < 2C,,/n"9m+1 . Also, rearranging
(3.25) shows that r* > rq,+1, sO n~"" < p~"9m1 We can now simplify the first and
last terms in (3.24) to get

HE < 128¢

nrdm+1 n’dm+1 ’

kl+r 36 64 kl-i-r - kl+r
- “ (1 + ) +128C,,
nrdmil - re —r 2—rqms1

Evaluating this for k = 3 and using 1 + r < 3 gives

81C 64 -
Hin 1 < 3456C) + — (1 + 2—) + 3456C,,
e —r —rqm+1

Usingre—r < rcand2—rg;4+1 < 2, we may put with each term the same denominator
(re —r)(2 — rgm+1). This completes the proof in the case rg,;,+1 < 2.

If instead rg;,+1 > 2, then r > 1 because ¢,,,+1 < 2, and thus r* = 2. Moreover,
1— % <r—1,and thus H} < 2C,,n" " by (3.22). Apply Lemma 3.8 to obtain this
time

k1+r 3ém (2+r)1+r k3_qum k1+r -
HE < 128C - 1+ + Q@+ )T —=—2Cn" "
r= O T ( rqm+1 — 2) n? @+n e
Apply this with & = 3 to complete the proof. O

3.7 Proof of Theorem 2.1,for1 <r. < 2

We begin exactly as in Sect.3.5, applying part (1) of Lemma 3.6 to deduce the
inequality (3.21). We will again use C to denote a constant which depends only on
(Co, y,0, M, n), and may change from line to line, but never depends on (n, k, T').
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o4

Recall thata = £ = s = Itre , where § > 0 can be chosen freely. We choose
4 yn(1+6) 1+8
here § sothat 2 < o« < 3 and such thatr := o — 1 ¢ {2/¢,, : m € N}. Note then that
l<r<r.<2. )
~ We simplify (3.21) in this case as follows. For the first term, note that e@r=2T —
e? =T < 1 For the second and third terms, apply Lemma 3.8 (with p = 2), noting

that2 — o > —1:

‘ k2 kr+l kr+l

Hr=c¢ <n_2 n’ n” ) '

Setting k = 3 yields H% < C/n" = C/n"9'. The idea is to now repeatedly apply
Lemma 3.9, m* — 1 times, where m™ is the smallest integer such that rg,» > 2,
which exists because lim,, 0 rg;, = 2r > 2. Note rq,, # 2 for all m, by design.
This repeated application of Lemma 3.9 ultimately yields H% < C/n?. We may now
conclude exactly as in the last paragraph of Sect.3.5, noting that o > 2. O

3.8 Proof of Theorem 2.1, for0 < r. < 1

Let 0 < €] < € < r.. We first claim that we can find a constant C’ depending only
on (y,0, M, n, €1, €2, C>~"/>27) such that

sup Hy < C'/n*re=(@=€), (3.26)
T>0
Abbreviate € := €3 — €] and r := r. — €/2, and choose 6§ > 0 such that « =

14+r € (1 2).Let py = 1 4+r. —€/2 and pp = 2r. — €. We have by assumption
H(PE | u&%) < c§/>kP1 /nP>. Apply Lemma 3.6(1), plugging (3.6) into (3.7) and
using p; — p2 < 1 we find

Ce/2 € n—1 M n—1 '
k 1 pl M 250 n— -ZT 4
HE <20 Ze BT+ 50 ZZA(T)—i—nA (T)(coe +4nMo )
Apply Lemma 3.8 for the last term, as well as Lemma 3.7 for the first term:

n—1 e

/2K Gp-zr . M 2 5e o« k
< 18Cy + Sy ;e A+ +a) =

(Coe_ZT + 47]Ma_4) R
(3.27)
where we used p; < 2 to get 2(1 + p1)P' < 18. Simplify the first term by noting that

p1 = a and so e"P1=2T = 1 Apply Lemma 3.8 (with p = 2) to the second term in
(3.27), noting that 2 — o > —1, to get

Hk ¢ k1+r N k1+r N kl+r
T — n2r 7 7 ’
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with C’ depending only on (y. o, M. €, C5/*).

By evaluating the above for k = 3, we have H% < C'/n". We may now repeatedly
apply Lemma 3.9, as in Sect. 3.7, but this time we never reach the case where rg,, > 2
because rq,, 1 2r < 2r. < 2 as m — oo. Instead, we choose m large enough so
that rg,, > 2r — € and deduce that H% < C/nZ’_E = C/n2’<’_25, where C > 0

now depends only on (y, o0, M, n, €1, €2, CS/z’E). For the rest of this proof, C > 0
may additionally depend on CSI "2 and may change from line to line, but it will never
depend on (n, k, T).

With (3.26) now established, let us now instead choose § > 0 (depending only on
o,y,1n,€1)sothatoe = 1 4+ r. — €1, and define p; = 1 +r. — €1 and pr = 2r. — €.
Then (3.27) again holds but with Cg/ 2 replaced by Cgy"*. In light of (3.26), we may
apply Lemma 3.6(2) with p = 2(r. — (€3 — €1)) to get

n 1—rc+er—e
HT S Cn c 2 l,

JlAre—e C n—1 B B
+ Y o rreresa AT + AN (T HY.
=k

Hf <cC

n2rc—62

Apply Lemma3.8 with p = 2—r.+e€,—¢€,noting thatthen p—a = 1 -2r.4€2 > —1,
to get

n—1 o I+rc—e€;
i 262—r0+62—61AZ(T) <C k _ Ck ‘
n2 = k - T potl-p n2re—ex ’

Lemma 3.8 also yields

k1+rffel

. k% B
AN THE < C—n'Tetea =0
no n2’1:—€2

Put it together to complete the proof of this final case, and thus the theorem. O

4 Proof of for reversed entropy

In this section we prove Theorem 2.5. Define the reversed relative entropy
HY = Hu®* | PH, 1>0, 1<k<n.

By assumption, Hé‘ < Co(k/n)? for some Cy and 0 < p < 2, with the choice of p
depending on which case in Theorem 2.5 we are considering. We make use again of the
functions Ef‘ defined in (3.1). We first apply Lemma 3.1 to compute the time-derivative
of Htk. It is evident that (H.1,2) hold because b is bounded and by is locally bounded.
Moreover, (H.3) is a direct consequence of (2.9). We thus obtain, for all t > s > 0,

@ Springer



Sharp uniform-in-time propagation of chaos

2 ot
o
—H'+— [ 1 PMydu < — / /
5+4/ (| Py)du < (Rd)k2| (e, x)
— (o, b(u, xi, +)) | n®* (dx)du.
The LSI (2.10) marginalizes, in the sense that

Hw|PH <nl@w|PH, Yk=1,...,n, veP(RH), r>0.

Indeed, fora givenk and v € P((R)K), this follows by applying (2.10) to the measure
b e P((RY)") with density dD/d P/ (x1, ..., X,) = dv/d PF(x1, ..., x;). This yields

2 t t k
ky 9 k 1 % L2, ®k
— +E~/; Hudu = ?/s‘ /(Rd)k.X;!bi (a0 = Syt D, 37, )|y ()l
=

k t
=2 8% 1, ) — (s b x1, ) P (dx)du,
()'2 s (]Rd)k
4.1)

where the second line comes from exchangeability. Use the definition of Z’f to write
the inside of the time integral of right-hand side as

k
k
— bt — L b(t, x1,
(R n—ljg2 (t,x1, %)) = (e D1, 31, )
n—k ki 2 ok
_1(PI,X — Mt b(t’ X1, ')> l"l'l‘ (d.x).

Lets > 0, tobe chosen later, and use the inequality (x —i—y)2 <@ —i—(S))c2 +(1 +5! )y2
to further bound this by

k . k
— A+ + 50+ 811,
o (o

where we set

k
Z b(t, x1,x;) — (ur, b(t, x1, - ))) 1B (dx),
@k |n—1 =t
2
Ry |n — panl t"juk — bt x1, )| @ (@),
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again with the convention that // = 0 for k = n. Expanding the square in /, the
cross-terms vanish, and by exchangeability we have
k-1
(n—1)72

yk—1)

ST 42

2
/ bt x1. x2) — (s bt 31, NP (dx) <
(R4)2

where we set y := 2|||b|?||oo. We note here for future use that when k = n, we have
I <y/2(n —1)and II =0, so that (4.1) becomes

yn y
B —H + 2 [ Hd X
+ / Y1) = o2

Using a form of Gronwall’s inequality (see Lemma A.1), and setting Z = o2 /47, we
have

' 4
H' < eiZtH(’f +/ Lzez(“’)ds < Coe ' + —;/477.

00

4.3)

Next, for k < n, we bound /1. Since b is bounded, Pinsker’s inequality yields
k+1]k 2 k+11k
(P — b, 31, ) < v H G | AT,

Using (n — k)/(n — 1) < 1 and the chain rule for relative entropy (as in (3.12)), we
get

k+1\k
usy/d H(u, | P n® (dx) = y (HH — HE).
(R

Adding this to (4.2) and returning to (4.1) yields

P k(k—Dy(d+8"Y .
Hk—Hk<f kHMY —(Z + k) HY ) du.
A A ( 20— Doz TV S @Ay Jdu

where we set 7 = y (1 + 8)/o2. The first term inside the integral is bounded by
)7k2/5n2 which follows from using (k —1)/(n —1) <k/nandn <2(n — 1) as well

as the identity 1+5

y = 5. By Gronwall’s inequality (as in Lemma A.1),

[ ~
Htk < e_(Z-H;k)tHé( +/ e—(Z-‘r];k)S <)/k + ka+l)dS

0 n?
By iterating for £ = k, k + 1, ..., n as in the proof of Lemma 3.6, we have
n—1 1 n—1
k {pl Al an—1
H} <Y H{BH(T) + e > CALT) + AT HE,
o=k =k
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where Ai and Bf (and Z and y) are defined as in Lemma 3.6. Plugging in (4.3) and
the assumption H(’)‘ < Co(k/n)?, we obtain

C n—1
HE <H_Zepgk(r)+ ZZEA (T) + A= (T) (Coe Zt 4 4yno~ 4).
=k
(4.4)

and apply Lemmas 3.7 and 3.8 in (4.4) to get

_Z _ ot
Leta = 3 = 5ae

P P
(1+ p)PeEDT 4 ZEAk(T>+(1+a>“ - (Co+ayno).
4.5)

We now complete the proof in two cases separately.

First case: p. = %1 >2

In this case p = 2. Choose § > 0 so that « > 2. Using Lemma 3.8,
(14 o) k?
22“ m=(1+57F)
Using this in (4.5) and noting that (k/n)* < (k /n)? completes the proof.
Second case: p, = g 2

4yn =

In this case p = % — €, where € € (0, p.). Choose § > 0 so that « = p. Since

o < 2, applying Lemma 3.8 yields
14+ a)*\ Kk
ZZEA (T)<( S ) e
Using this in (4.5) completes the proof. O

5 Proof of corollaries
5.1 Convex potentials: proof of Corollary 2.7
Here bo(t,x) = —VU (x) and b(t, x, y) = —VW(x — y). We need to check that the

conditions of Assumptions E and A hold. Note that the LSI for 1¢¢ is known to imply
that 110 has finite moments of every order.

@ Springer



D. Lacker, L. L. Flem

We start with Assumption E. Assumption (E.1) is immediate by continuity of
(VU, VW). Suppose that L < oo. The existence and uniqueness of a weak solu-
tion (u;);>0 of the nonlinear Fokker—Planck equation follows from [11, Theorem
2.6], and since VW Lipschitz we may use the moment bounds of [11, Theorem 2.6]
to deduce VW (x — -) € L'(u,) for all (¢, x) as well as the continuity and thus local
boundedness of (¢, x) — (u;, VW (x — -)). This shows Assumption (E.2). The exis-
tence of a unique (starting from the given initial law Pj) solution (P/');>¢ to the
Fokker—Planck equation required by Assumption (E.3) is justified in [11, Section 2].
Because VU and VW have polynomial growth in x, the integrability requirements of
Assumption (E.3) are a simple consequences of the moments bounds for P/* and
given in [11, Corollary 2.3, Theorem 2.6], which adapt easily to the case of non-i.i.d.
initial conditions. If L = oo but R < 0o, we verify Assumption E in a similar fashion.

We now turn to checking Assumption A. Using the assumption V(U + W) > «l,
the (time-inhomogeneous) generator ¢ — —V¢ - VU — Vo - VW % u; + ‘72—2A(p
of the Fokker—Planck equation satisfied by (u,);>0 obeys the curvature condition
described in [40, Proposition 3.12] and [15, Theorem 4.1], and we may thus deduce
from their arguments (see also [40, Corollary 3.7]) that u, satisfies a LSI with con-

stant %(l — edat/o?y 4 o g—dat/ ® This shows that Assumption (A.1) holds with

n = max(1)9/4, o2 /4a). For Assumption (A.2), first notice that if R < oo, Pinsker’s

inequality gives us the required inequality with y = 2R?. In the case where L < oo,

recall from Remark 2.3 that u; obeys the quadratic transport inequality (2.8). Hence,

since VW is L-Lipschitz, we use Kantorovich duality to deduce

. w2 212 272 2

[V = e, VW =) |7 < Wi, v) < LPW3 (e, v) < 4pL2H | o). (5.1)

This yields Assumption (A.2) with y = 4nL?. We finally check that the constant M
of Assumption (A.3) is finite and bounded uniformly in n, which here is

1 2 1 2
M :=esssupE |VW (X, — X;) — (s, VW(X, — )| .

t>0

5.2)

The case R < oo is evident. If L < oo then VW has linear growth, and we conclude
from the second moment bounds of [11, Corollary 2.3, Proposition 2.7]. O

5.2 Models on the torus: Proof of Corollary 2.9

The weak well-posedness of the (linear) Fokker—Planck equation (2.13) is standard,
as K is bounded and Lipschitz. The well-posedness of the SDE (2.11) follows by
the standard argument of Sznitman [50, Chapter I.1], since K is Lipschitz. The well-
posedness of the PDE (2.12) in the weak sense follows by the superposition principle
[22, Theorem 2.6]. The fact that the solution is classical follows from standard results
on linear Fokker—Planck equations o, u = —div(K ) + (62 /2) A, applied with the
bounded Lipschitz drift K = K. Strict positivity follows from Harnack’s inequality
[5, Chapter 8].
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The following lemma paves the way for a short proof of Corollary 2.9, given just
after:

Lemma 5.1 For eacht > 0, the density of ju, is C? and obeys the pointwise bound

- A - Idiv K ||co+/2 log A
= /“l/l(x) S ) Where ro == 2.2 . )
Lelo 1 — rge’o ocmc — ||div K || so

Moreover, it holds that ro < 1/2, and u; satisfies the LSI
H(G ) <nlClu), where ni=2%/(1 = 2r).
Proof We note for future use that [10, Proposition 3.1] shows
H(u |1) < e ™ H(ug|1), V>0, where ¢ := 0272 — |div K |loo,  (5.3)

and where 1 denotes the uniform measure on T¢. The precise setting of [ 10, Proposition
3.1]1is somewhat different, as they take K = VW as a gradient field and have a sharper
estimate involving only the “unstable part" AW, in place of div K in the definition of
¢, but their proof works (and becomes slightly simpler) to yield (5.3). We next prove
the pointwise bound on u;, following an idea from the proof of [26, Theorem 2]. Fix
T > 0and x € T?, and let (Y1)te0,77 denote the unique strong solution of the SDE

dYt:_K*MT_t(Yt)dt+UdBt, Y():)C.

Using the PDE for ¢ and Itd’s formula, then taking expectations, we have for ¢t € [0, T']
t

Eur— (Y1) = pr(x) +]E/O pr—s(Yy)div K « pr—s(Yy) ds. (5.4

Note if div K = 0, as in [26, Theorem 2], then this would immediately yield the
desired conclusion pur(x) = Eug(Yr) € (A~L Al In general, we need an additional
argument. Noting that div K * 1 = 0, we have for any u € [0, T] that

Idiv K s jylloo < 1div K % (y — Dlloo < [Idiv K lloo Ity — 1T
< Idiv K llooy/2H (144 [ 1) < y/2Tog Alldiv K [[oce ™,

with the last step using (5.3) and H(u, | 1) < logA. Setting a = /2 log A||div K || 0,
this implies

t
Eur—(Yy) < pur(x) +a/0 e “Eur_s(Yy)ds.

By Gronwall’s inequality, we obtain for all ¢ € [0, T']

'
Eur—(Yy) < ur(x)exp <a/ e‘”ds) < ur(x)ec.
0
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Setting t = T yields 7 (x) > e~ “Eug(Yr) > e~*/171, as well as by (5.4)

T
- a .
pr(x) < Epo(Yr) + aE/ e “ur—s(Ys)ds < Euo(Yr) + ZMT(X)E”/‘~
0
Combining the last two inequalities, we find
e~ < ur () < Epo(Yr) (1 = (a/0)e®)™" < (1 = (a/c)e") 7

This yields the claimed bounds on the density u;. The assumption (2.14) ensures
that ro < 1/2. Finally, the claimed LSI follows from the Holley-Stroock argument [3,
Proposition 5.1.6], after noting that sup p, / inf pu, < AZe’0 /(1 —rge’) < A%/(1—2rp)

since 0 <rg < 1/2. O

Proof of Corollary 2.9 Note that Lemma 5.1 justifies the LSI. By Pinsker’s inequality,
for any y € T¢ we have
’2

v =, Kx = N = |v = e, K — ) = ) > < 211K = yPlloo HO | 20).

so we may take

. 1 1
y =2 inf |IK = y[*lec < = sup |K(x)—K(2)|* = ~diam?(K).
yeT? x,zeTd 2
o

Then r, = 4%7 — 1 simplifies to the claimed value. O

Appendix A. A form of Gronwall’s inequality

LemmaA.1 Letc > 0. Let (g;):>0 be a non-negative measurable function, integrable
on bounded sets. Let (H;);>( be a non-negative measurable function such that Hy <
0. Suppose that

!
H, — H, < / (gu —cH,)du, forallt>s > 0. (A.D)
N
Then
t
H;, < e “"Hy —I—/ e U Wg du, forallt > 0. (A.2)
0

Proof Mollify g and H by a common smooth probability density of compact support.
The mollifications satisfy (A.1). Applying the usual differential Gronwall’s inequality
leads to (A.2) for the mollifications. Taking L! limits to remove the mollification
leads to the original claim (A.2), at least for almost every t. But the inequality (A.1)
implies that lim sup,_, ; H; < H; for every s > 0, and the claim is thus valid for every
t>0. O
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