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Abstract
We prove the optimal rate of quantitative propagation of chaos, uniformly in time,
for interacting diffusions. Our main examples are interactions governed by convex
potentials and models on the torus with small interactions. We show that the dis-
tance between the k-particle marginal of the n-particle system and its limiting product
measure is O((k/n)2), uniformly in time, with distance measured either by relative
entropy, squared quadratic Wasserstein metric, or squared total variation. Our proof is
based on an analysis of relative entropy through the BBGKY hierarchy, adapting prior
work of the first author to the time-uniform case by means of log-Sobolev inequalities.

Mathematics Subject Classification Primary 82C22; Secondary 60H10

1 Introduction

This paper studies interacting diffusion processes in Rd of the form

dXi
t =

(
b0(t, X

i
t ) + 1

n − 1

n∑
j=1, j �=i

b(t, Xi
t , X

j
t )

)
dt + σdWi

t , i = 1, . . . , n,

(1.1)
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where W 1, . . . ,Wn are independent d-dimensional Brownian motions and σ > 0 is
scalar. Precise assumptions are deferred to Sect. 2. Typically, as n → ∞, the limiting
behavior of this n-particle system is described in terms of theMcKean-Vlasov equation

dXt = (b0(t, Xt ) + 〈μt , b(t, Xt , ·)〉) dt + σdWt , μt = Law(Xt ), (1.2)

or the associated nonlinear Fokker–Planck equation

∂tμt (x) = −divx
(
(b0(t, x) + 〈μt , b(t, x, ·)〉)μt (x)

) + (σ 2/2)�xμt (x), (1.3)

where we abbreviate 〈μt , b(t, x, ·)〉 = ∫
Rd b(t, x, y) μt (dy). The large-n limit is for-

malized by the notion of propagation of chaos originating in [37, 42]. Suppose for this
introduction that the above equations are well-posed, with the law of (X1

t , . . . , X
n
t )

being exchangeable at t = 0 and thus also at each t > 0. Let Pn,k
t = Law(X1

t , . . . , X
k
t )

denote the k-particle marginal. The problem of propagation of chaos is to show that
Pn,k
t → μ⊗k

t weakly as n → ∞, for each k ∈ N and t > 0, where μ⊗k
t denotes the

k-fold product measure (assuming that the same is true at t = 0, which is trivially
the case if the initial positions are i.i.d.). This is well known to be equivalent to the
statement that the empirical measure

Ln
t := 1

n

n∑
i=1

δXi
t

converges weakly in probability to μt as n → ∞, for each t > 0.
Over several decades of intensive research, propagationof chaos has been rigorously

justified in a wide variety of contexts which we do not attempt to list here, instead
referring to the comprehensive recent surveys [12, 13] aswell as [34].While the earliest
resultswere qualitative in nature, recentworkhas succeeded inquantifyingpropagation
of chaos in various ways. Let us first discuss some typical quantitative results which
hold on bounded time intervals. The classical synchronous coupling argument, going
back to [50] in the case where (b0, b) are Lipschitz, gives a convergence rate for
E[W2

2 (Ln
t , μt )] of the same order as if Ln

t were an empirical measure of i.i.d. random
variables, where W2 denotes the quadratic Wasserstein distance. While this estimate
deteriorates with the dimension, the same coupling argument yields the dimension-
free W2

2 (Pn,k
t , μ⊗k

t ) = O(k/n), and we note also the recent work [29] that gives
dimension-free estimates for E[d2(Ln

t , μt )] for certain metrics d dominated by W2.
A recently popular approach is to estimate the relative entropy H(Pn,n

t | μ⊗n
t ) of

the full n-particle system; if it is shown to be bounded with respect to n, then the
subadditivity of entropy yields H(Pn,k

t | μ⊗k
t ) = O(k/n), or by Pinsker’s inequality

‖Pn,k
t −μ⊗k

t ‖2TV = O(k/n). Relative entropy methods have gained popularity in part
due to their ability to handle models with singular interactions relevant in physics,
which were inaccessible by other methods [8, 33, 35].

The recent paper [38] of the first named author showed that the previous three
estimates can actually be improved from O(k/n) to O((k/n)2) in many cases, with
a simple Gaussian example showing that the latter cannot be further improved, thus
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obtaining the sharp rate of propagation of chaos. The broad class of models treated in
[38] includes bounded or uniformly continuous interaction functions, among others,
but nothing too singular. The novelty of the approach of [38], which is also based
on relative entropy estimates, is its local character, estimating Hk

t := H(Pn,k
t | μ⊗k

t )

hierarchically in terms of Hk+1
t for each k < n rather than estimating the global

quantity Hn
t . Interestingly, both of the estimates Hn

t = O(1) and Hk
t = O((k/n)2)

are typically sharp, which means that something is lost in using subadditivity to pass
from global to local bounds. Note by Pinsker’s inequality that the latter estimate
implies that Pn,k

t has total variation distance at most O(k/n) from the i.i.d. measure
μ⊗k
t , which is interesting to contrast with the well known result of Diaconis-Freedman

[20, Theorem 13] about finite exchangeable measures on general spaces; the Diaconis-
Freedman bound, which is sharp at its level of generality, implies merely that the total
variation distance between Pn,k

t and some mixture of i.i.d.’s is O(k2/n).
In this paper, we adapt the O((k/n)2) estimate of [38] to be uniform in time, under

an additional assumption of a log-Sobolev inequality (LSI) for μt , uniformly in t .
Before discussing the results in more detail, let us briefly review some typical prior
uniform-in-time results, which were all obtained by global methods. First, it is an
important and well known fact that McKean-Vlasov equations may admit multiple
invariant measures even when the n-particle system is uniquely ergodic for each n,
which precludes a uniform-in-time convergence; see [16, 31] for examples. Early
results on uniform-in-time propagation of chaos appeared in [40, 41], based on the
synchronous coupling approach combined with a uniform-in-n LSI for the n-particle
system, in the case of uniformly convex potentials:

b0(t, x) = −∇U (x), b(t, x, y) = −∇W (x − y), ∇2U � α I , ∇2W � 0, α > 0.
(1.4)

In particular, it is shown in [40, 41] that W2
2 (Pn,k

t , μ⊗k
t ) and H(Pn,k

t | μ⊗k
t ) are both

O(k/n), uniformly in time. This approach was extended in [11] to relax the uniform
convexity to mere convexity-at-infinity. More recent developments have managed to
obtain similar rates under weaker convexity requirements, as long as the interaction
strength is small or the temperature σ sufficiently large [17, 21, 47, 48]. A different but
still global method is adopted in the recent paper [18] dealing with models on the torus
T
d via analysis of a PDE (“master equation”) set on P(Td), obtaining estimates like

supt≥0 |EF(Ln
t )−F(μt )| = O(1/n) for sufficiently smooth functionals F . The recent

papers [26, 45] treat specific physically relevant models with singular interactions,
again working globally and thus not obtaining our optimal rate.

A noteworthy source of recent applications beyond physics is the analysis of large
neural networks trained by stochastic gradient descent [14, 43, 49], which is well
approximated by particle systems of the form (1.1) and for which long-time behavior
is particularly important. On a more mathematical note, uniform-in-time propagation
of chaos can also be used to derive the rate of convergence of μt to equilibrium as
t → ∞, as in [11, 40, 41].

The main contribution of this paper is to identify the sharp rate of propagation of
chaos, along with a methodology that is amenable to further development. On purely
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qualitative grounds, though, we do not claim to cover any notable models for which
propagation of chaos was not already known. As in [38], we state general results
(Theorems 2.1 and 2.5) under somewhat abstract assumptions, which highlight the
key a priori estimates one needs in order to implement our method. Most important
among them are that μt obeys a transport-type inequality, which already appeared in
[38], as well as a LSI, with constants uniform in time; the latter was not needed in
the finite-time results of [38]. The main examples that we cover are convex-at-infinity
potentials as in (1.4) with ∇2W also being bounded from above, and certain models
on the torus with b0 ≡ 0 and b(t, x, y) = K (x − y) for a vector field K of small
divergence.

The role of the LSI in our work warrants further discussion. Starting from [40], a
common ingredient in a proof of uniform-in-time propagation of chaos is a uniform-
in-n LSI for the invariant measure of the n-particle system. The remarkable recent
result of [19, Theorem 3.7] shows that this uniform-in-n LSI implies uniform-in-time
propagation of chaos, with minimal additional assumptions. See also the recent paper
[28] on quantitative uniform-in-time propagation of chaos for kinetic models, which
applies recent uniform LSIs for invariant measures developed in [27]. Based similarly
on a LSI for Pn,n

t uniform in n and t (plus other non-trivial assumptions), we obtain
in Theorem 2.5 an estimate on the reversed entropy H(μ⊗k

t | Pn,k
t ) = O((k/n)2), and

note that this optimal rate O((k/n)2) cannot be recovered from the aforementioned
results. On the other hand, our first Theorem 2.1 is perhaps more novel in that it proves
the optimal rate H(Pn,k

t | μ⊗k
t ) = O((k/n)2) under essentially no assumptions on the

n-particle system itself, but instead we need a sufficiently high temperature and a
LSI for the measure μt uniformly in t . See Theorem 2.1 for the general result, and
Corollary 2.7 and 2.9 for the examples of convex interactions and small interactions
on the torus, respectively. Among prior work, the closest to our approach appears to be
[26], which derives the uniform-in-time estimate H(Pn,n

t | μ⊗n
t ) = O(1) for certain

singular models on the torus by using similarly a LSI for μt which is uniform in t ; by
subadditivity, they deduce H(Pn,k

t | μ⊗k
t ) = O(k/n) in [26, Corollary 1].

Let us briefly highlight the main new ideas of the method. We employ a well
known relative entropy calculation, formally stated as follows. Suppose (μi

t )t≥0 is a
probability measure flow solving the Fokker–Planck equation

∂tμ
i
t = −div(bitμ

i
t ) + (σ 2/2)�μi

t ,

for some (time-dependent) vector field bit , for i = 1, 2. Then

d

dt
H(μ1

t | μ2
t ) =

∫ (
(b1t − b2t ) · ∇ log(dμ1

t /dμ2
t ) − (σ 2/2)

∣∣∇ log(dμ1
t /dμ2

t )
∣∣2) dμ1

t .

(1.5)

See Lemma 3.1 for a rigorous version. For many purposes it is good enough to imme-
diately bound the right-hand side of (1.5) by (1/2σ 2)‖b1t −b2t ‖2L2(μ1

t )
, which is actually

precisely the time-derivative of the path-space relative entropy used in [38]. Here, we
avoid completing the square, instead using the LSI in the natural way to take advantage
of the final term in (1.5). More specifically, we apply (1.5) with b1 and b2 respectively
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being the drifts of Pn,k
t and μ⊗k

t , the former identified using the BBGKY hierarchy.
The b1 −b2 term is estimated similarly to [38], and we ultimately obtain a differential
inequality, central to our approach, of the form

d

dt
Hk
t ≤ −c1H

k
t + c2

k3

n2
+ c3k(H

k+1
t − Hk

t ), where Hk
t := H(Pn,k

t | μ⊗k
t ),

(1.6)

for certain positive constants c1, c2, c3 which do not depend on (n, k). The key
difference with [38] is the first term, which stems from the LSI and provides the
additional decay needed to obtain uniform-in-time bounds. Once (1.6) is established
and Gronwall’s inequality is applied, the remainder of the proof proceeds by iter-
ating the resulting integral inequality from k to n, using the crude global estimate
supt H

n
t = O(n) for the last step. Compared to the finite-time setting of [38], we

face new difficulties in estimating the multiple integrals arising from this iteration in
a sharp enough manner to produce the optimal exponent.

Two recent papers developed related quantitative estimates along the BBGKY hier-
archy, using (weighted) L p norms rather than relative entropy, for non-exchangeable
models in [32] and for certain singular interactions in [7]. Lastly, the very recent [30]
adapts the methods of [38] to handle certain singular interactions. These results are
all on finite time horizons.

In Sect. 2 below we state precisely all of our main results. Sections3 and 4 prove
the two mains Theorems 2.1 and 2.5, respectively, and Sect. 5 proves the corollaries.

2 Main result and examples

The space of Borel probability measures on a metric space E is denotedP(E). We use
the notation 〈μ, f 〉 = ∫

E f dμ for integration. For μ ∈ P(E) and k ∈ N, we write
μ⊗k(dx1, . . . , dxk) = μ(dx1) · · · μ(dxk) for the productmeasure.Weuse the notation
x = (x1, . . . , xk) for general element x ∈ Ek . For example, if ϕ : Ek �→ R, ϕ(x)
and ϕ(x1, . . . , xk) denote the same quantity. Similarly, μ(dx) and μ(dx1, . . . , dxk)
are equivalent notations for a measure μ ∈ P(Ek). For μ, ν ∈ P(Rk), we define the
relative entropy and the Fisher Information between μ and ν respectively by

H(ν | μ) :=
∫
Rk

dν

dμ
log

dν

dμ
dμ, I (ν | μ) :=

∫
Rk

∣∣∣∣∇ log
dν

dμ

∣∣∣∣
2

dν.

We set H(ν | μ) := ∞ when ν �� μ, and similarly I (ν | μ) := ∞ when ν �� μ or
∇ log dν/dμ does not exist in L2(ν). Many measures on Euclidean space encountered
in this paper are absolutely continuous with respect to Lebesgue measure. For such
measures, we abuse notation by using the same letter to denote both a measure and its
density, e.g.,μ(dx) = μ(x)dx . Finally, we defineC∞

c (Rk) to be the space of infinitely
differentiable functions with compact support on R

k .
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2.1 General setup andmain result

Fix d, n ∈ N. The n-particle system of interest (1.1) is described by a weakly
continuous flow of probability measures (Pn

t )t≥0 on (Rd)n satisfying the following
Fokker–Planck equation, written in weak form: For every ϕ ∈ C∞

c ((Rd)n) and t ≥ 0,

〈Pn
t − Pn

0 , ϕ〉

=
∫ t

0

∫
(Rd )n

[ n∑
i=1

(
b0(s, xi ) + 1

n − 1

n∑
j=1, j �=i

b(s, xi , x j )

)
· ∇xi ϕ(x) + σ 2

2
�ϕ(x)

]

Pn
s (dx)ds. (2.1)

Themean field limit is described by a continuous flow of probability measures (μt )t≥0
on R

d satisfying the following nonlinear Fokker–Planck equation, again written in
weak form: For every ϕ ∈ C∞

c (Rd) and t ≥ 0,

〈μt − μ0, ϕ〉 =
∫ t

0

∫
Rd

[(
b0(s, x) + 〈μs , b(s, x, ·)〉

)
· ∇ϕ(x) + σ 2

2
�ϕ(x)

]
μs(dx)ds.

(2.2)

Recall that a function on a metric space is said to be locally bounded if its restriction
to any bounded set is bounded. A probability measure on (Rd)n is exchangeable if
it is invariant under permutations of its n coordinates. Our first set of assumptions is
technical in nature:

Assumption E

(E.1) We are given a scalar σ > 0, and Borel measurable functions b0 : [0,∞) ×
R
d → R

d and b : [0,∞) × R
d × R

d → R
d , where b0 is locally bounded.

(E.2) There exists a weak solution (μt )t≥0 to the nonlinear Fokker–Planck equation
(2.2) such that b(t, x, ·) ∈ L1(μt ) for all (t, x), and (t, x) �→ 〈μt , b(t, x, ·)〉 is
locally bounded.

(E.3) There exists a weak solution (Pn
t )t≥0 to the Fokker-Planck equation (2.1) such

that Pn
t is exchangeable for each t > 0. Moreover, for each p, T > 0,

∫ T

0

∫
(Rd )n

(|b(t, x1, x2)|p + |〈μt , b(t, x1, ·)|2
)
Pn
t (dx)dt < ∞,

sup
t∈[0,T ]

∫
(Rd )n

(|b0(t, x1)|2 + |b(t, x1, x2)|2
)
Pn
t (dx) < ∞.

Note that we prefer to assume the existence of Pn
t and μt , rather than placing

assumptions on (b0, b) which imply existence. The assumptions on (b0, b) are thus
mostly implicit, which makes our main result fairly general. Sections2.3 and 2.4 give
more concrete sufficient conditions, stated directly in terms of (b0, b). The assumptions
of local boundedness in (E.1,2) and the p-integrability condition in (E.3) are purely
technical, serving only to justify a relative entropy estimate (see Lemma 3.1 below).
The next set of assumptions is the more essential one.
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Assumption A

(A.1) Log-Sobolev inequality (LSI): There exists a constant η > 0 such that

H(ν | μt ) ≤ ηI (ν | μt ), ∀ν ∈ P(Rd), t ≥ 0. (2.3)

(A.2) Transport-type inequality: There exists γ > 0 such that

|〈ν − μt , b(t, x, ·)〉|2 ≤ γ H(ν | μt ), ∀ν ∈ P(Rd), x ∈ R
d , t ≥ 0. (2.4)

(A.3) L2-boundedness: We have

M := esssup
t≥0

∫
(Rd )n

|b(t, x1, x2) − 〈μt , b(t, x1, ·)〉|2 Pn
t (dx) < ∞. (2.5)

Define Pk
t ∈ P((Rd)k) to be the k-particle marginal of Pn

t . That is,

〈Pk
t , ϕ〉 =

∫
(Rd )n

ϕ(x1, . . . , xk)P
n
t (dx1, . . . , dxn),

for boundedmeasurable ϕ : (Rd)k → R. For brevity, and because n can be considered
as fixed in the following non-asymptotic results, we write Pk

t instead of Pn,k
t as in the

introduction. The following is our first main result.

Theorem 2.1 Suppose Assumptions E and A hold. Let rc := σ 4

4γ η
− 1.

(1) Suppose that rc > 1 and that there exists a constant C0 > 0 such that

H(Pk
0 | μ⊗k

0 ) ≤ C0(k/n)2, for all k = 1, . . . , n.

Then there exists a constant C > 0 depending only on (σ, γ, η, M,C0) such that

H(Pk
T | μ⊗k

T ) ≤ C(k/n)2, for all T ≥ 0, k = 1, . . . , n.

(2) Suppose that 0 < rc ≤ 1 and that for each 0 < ε1 < ε2 < rc there exists a
constant Cε1,ε2

0 > 0 such that

H(Pk
0 | μ⊗k

0 ) ≤ Cε1,ε2
0 k1+rc−ε1/n2rc−ε2 , for all k = 1, . . . , n.

Then, for any 0 < ε1 < ε2 < rc, there exists a constant C > 0 depending only on
(σ, γ, η, M, ε1, ε2,C

ε1,ε2
0 ,C (ε2−ε1)/2,ε2−ε1

0 ) such that:

H(Pk
T | μ⊗k

T ) ≤ Ck1+rc−ε1/n2rc−ε2 , for all T ≥ 0, k = 1, . . . , n.
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Note that Theorem 2.1 only applies at sufficiently high temperature, as it does
not cover the case σ 4 ≤ 4γ η (equivalently, rc ≤ 0). For high enough temperature,
σ 4 > 8γ η, Theorem 2.1(1) achieves the optimal order (k/n)2. See [38, Example
2.8 and Section 3] for a simple example (with linear coefficients) showing that the
exponent 2 cannot be improved. In the intermediate regime 4γ η < σ 4 ≤ 8γ η, we do
not know if our rate is sharp.

The assumption H(Pk
0 | μ⊗k) ≤ C0(k/n)2 holds trivially in the case of i.i.d. initial

conditions Pn
0 = μ⊗n

0 . See the main results of [39] for natural families of Gibbs
measures for which this assumption holds non-trivially. The non-degenerate noise
σ > 0 will ensure that the measures Pn

t and μt are absolutely continuous for each
t > 0 (see Remark 3.2), but they need not be at t = 0; in particular, Theorem 2.1 can
accommodate Dirac initial conditions.

Remark 2.2 For small temperature, uniform-in-time propagation of chaos can fail, for
the simple reason that the mean field equation may admit multiple invariant measures
which all satisfy a LSI. In other words, the presence of Assumptions A and E alone are
not enough to guarantee uniform-in-time propagation of chaos, without an additional
smallness condition. For a simple example, consider the Kuramoto model

dXi
t = K

n − 1

n∑
j=1

sin(Xi
t − X j

t )dt + dBi
t , (2.6)

where K > 0 is a constant, and particles take values in the circle R/2πZ ∼= [0, 2π ].
This n-particle system is uniquely ergodic. The uniformmeasure is always an invariant
measure for the correspondingmean fieldmodel; i.e.,μt (dx) = dx/2π for all t solves
(2.2). In the supercritical case K > 1, the mean field limit admits an infinite set SMF of
invariant measures, obtained as the rotations of a common density which is bounded
from above and below away from zero. See [4] for details. In particular, all invariant
measures admit a LSI by the Holley-Stroock perturbation argument [3, Proposition
5.1.6]. One easily checks that Assumptions A and E hold when μt = μ for all t ≥ 0
for some μ ∈ SMF, but uniform-in-time propagation of chaos cannot hold in the sense
of Theorem 2.1 when K > 1. If it did, it would lead to the absurd conclusion that the
1-particle marginal of the unique invariant measure of the n-particle system converges
to μ, for each μ ∈ SMF. However, we highlight the remarkable recent results of [18,
Section 4], which show that uniform-in-time propagation of chaos still holds modulo
rotations, if one initializes away from the uniform measure which is unstable when
K > 1.

Remark 2.3 The entropy bounds of Theorem 2.1 imply similar bounds in Wasserstein
distance. To be precise, recall first the definition of the p-Wasserstein distance between
two measures μ, ν ∈ P(Rd), for p ≥ 1:

Wp(μ, ν) = inf
π

(∫
Rd×Rd

|x − y|pπ(dx, dy)

)1/p

, (2.7)
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where the infimum is over π ∈ P(Rd × R
d) with marginals μ and ν. By a famous

theorem of Otto-Villani [44] (see also [25, Theorem 8.12]), the LSI (2.3) implies the
quadratic transport inequality

W2
2 (ν, μt ) ≤ 4ηH(ν | μt ), ∀ν ∈ P(Rd), t ≥ 0. (2.8)

The quadratic transport inequality tensorizes [25, Proposition 1.9], in the sense that

W2
2 (ν, μ⊗k

t ) ≤ 4ηH(ν | μ⊗k
t ), ∀k ∈ N, ν ∈ P((Rd)k), t ≥ 0.

In particular, in case (1) of Theorem 2.1, supt≥0 W2(Pk
t , μ⊗k

t ) = O(k/n).

Remark 2.4 We have not optimized or reported a precise value of the constant C in
Theorem 2.1, which is complicated and not very informative in general. However, in
the case σ 4 > 12γ η, it is not difficult to track the constants in our proof to obtain

H(Pk
T | μ⊗k

T ) ≤ (
C1 + C2e

−σ 2T /24η)(k/n)2, ∀T , k,

where C1 = 10000Mσ 4γ 2η

(1 − 12γ ησ−4)2
, C2 = 1250

(
C0 +

√
γ MC0ησ−4

1 − 12γ ησ−4

)
σ 8

γ 2η2
.

This reveals that the term containing the constantC0, which controls the initial entropy,
decays as T → ∞. Thus, as one would expect, the effect of the initial condition
disappears over long time horizons. By being even more careful in the proof, we
can obtain n-dependent constants C1(n) and C2(n) in place of C1 and C2, which are
bounded in n and have the advantage of vanishing as either η → 0, M → 0, or
σ → ∞, for any fixed n (but not uniformly in n). Similar bounds are possible but
much more involved in the remaining case 4γ η < σ 4 ≤ 12γ η.

2.2 Reversing the relative entropy estimate

This section presents a similar result for H(μ⊗k
t | Pk

t ).We need a similar set of assump-
tions as before, essentially with the roles of the measures Pn and μ inverted. We also
add a simplifying assumption that the interaction function b is bounded, which is a
major limitation; see Remark 2.6 for discussion.

Assumption R
(R.1) We are given a scalar σ > 0, and Borel measurable functions b0 : [0,∞) ×

R
d → R

d and b : [0,∞) × R
d × R

d → R
d , where b is bounded and b0 is

locally bounded.
(R.2) There exists a weak solution (Pn

t )t≥0 to the Fokker–Planck equation (2.1) such
that Pn

t is exchangeable for each t > 0.
(R.3) There exists a weak solution (μt )t≥0 to the nonlinear Fokker–Planck equation

(2.2) with

sup
t∈[0,T ]

∫
Rd

|b0(t, x)|2μt (dx) < ∞, T > 0. (2.9)
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(R.4) Log-Sobolev inequality (LSI): There exists a constant η > 0 such that

H(ν | Pn
t ) ≤ ηI (ν | Pn

t ), ∀ν ∈ P((Rd)n), t ≥ 0, n ∈ N. (2.10)

Theorem 2.5 Suppose that Assumption R holds. Define

pc = σ 4

8η‖|b|2‖∞
.

(1) Suppose that pc > 2 and that there exists a constant C0 > 0 such that

H(μ⊗k
0 | Pk

0 ) ≤ C0(k/n)2, for all k = 1, . . . , n.

Then there exists a constant C > 0 depending only on (σ, ‖|b|2‖∞, η,C0) such
that

H(μ⊗k
T | Pk

T ) ≤ C(k/n)2, for all T ≥ 0, k = 1, . . . , n.

(2) Suppose that pc ≤ 2 and that there exist constants C0 > 0 and ε ∈ (0, pc) such
that

H(μ⊗k
0 | Pk

0 ) ≤ C0(k/n)pc−ε, for all k = 1, . . . , n.

Then there exists a constant C > 0 depending only on (σ, ‖|b|2‖∞, η,C0, ε) such
that

H(μ⊗k
T | Pk

T ) ≤ C(k/n)pc−ε, for all T ≥ 0, k = 1, . . . , n.

One can compare Theorems 2.5 with Theorem 2.1 by identifying γ = 2‖|b|2‖∞,
noting that (2.4) holds with this constant by Pinsker’s inequality. The advantage of
Theorem 2.5 is that it applies no matter the value of pc = σ 4/4γ η = 1+ rc, whereas
Theorem 2.1 applies only when pc > 1. Moreover, in the range 1 < pc ≤ 2 the bound
O((k/n)pc−ε)obtained inTheorem2.5 is better than theboundO(k pc−ε1/n2(pc−1)−ε2)

of Theorem 2.1. When pc > 2, the bound of O((k/n)2) obtained in each theorem
is the same. We do not know if the exponent pc − ε is sharp in Theorem 2.5(2). Let
us note, similarly to Remark 2.3, that the results of Theorem 2.5 imply the bound
on Wasserstein distance, by marginalizing the LSI (2.10) and using the Otto-Villani
theorem to get W2

2 (μ⊗k
t , Pk

t ) ≤ 4ηH(μ⊗k
t | Pk

t ) for t ≥ 0.

Remark 2.6 The assumption in Theorem 2.5 that b is bounded is difficult to relax. It
could likely be generalized to the following analogue of Assumption (A.2):

∣∣∣〈μt − Pk+1|k
t,x , b(t, x1, ·)〉

∣∣∣2 ≤ γ H
(
μt | Pk+1|k

t,x
)
,

∀1 ≤ k < n, x = (x1, . . . , xk) ∈ (Rd)k, t ≥ 0,
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Sharp uniform-in-time propagation of chaos

where Pk+1|k
t,x (dxk+1) denotes the conditional law of Xk+1

t given (X1
t , . . . , X

k
t ) = x

under Pn
t . These conditional measures do not seem tractable enough to enable a proof

of functional inequalities of this form beyond the case of bounded b; cf. [38, Remark
4.11].

These main theorems give recipes for quantitative uniform-in-time propagation of
chaos, and the rest of Sect. 2 describes concrete situations in which they apply. There
are conceivably many situations in which these conditions can be checked, on a case-
by-case basis.Wegive two somewhat general classes of examples below.Thefirst deals
with convex potentials, for which the well known Bakry-Emery framework yields log-
Sobolev inequalities along dynamics. The second deals with a class of models set on
the torus, where the LSI can be obtained using the Holley-Stroock perturbation lemma
after showing that the density of μt is bounded from above and below away from zero
uniformly in time.

2.3 Convex potentials

Our first Corollary 2.7 provides a sharper rate of convergence than was previously
known for the extremely well-studied case of convex potentials. We impose similar
assumptions to [11], albeit with more restrictions on the interaction potential W . We
write � to denote positive definite (Loewner) order.

Assumption C Assume b0(t, x) = −∇U (x) and b(t, x, y) = −∇W (x − y), where
U and W are twice continuously differentiable functions satisfying the following:

(C.1) We have ∇2(U + W ) � α I for some α > 0, and each function ψ = U and
ψ = W is convex at infinity in the sense that there exist constants cψ

1 , cψ
2 ≥ 0

for which

(x − y) · (∇ψ(x) − ∇ψ(y)) ≥ cψ
1 |x − y|2 − cψ

2 , ∀x, y ∈ R
d .

We require uniform convexity at infinity for U , in the sense that cU1 > 0.
(C.2) There exist CU , pU > 0 such that |∇U (x)| ≤ CU (1 + |x |pU ) for all x ∈ R

d .
(C.3) W is even and min(L, R) < ∞, where we define R := ‖|∇W |‖∞ and L =

supx �=y |∇W (x)−∇W (y)|/|x − y|. That is,∇W is either bounded or Lipschitz
(or both).

Corollary 2.7 Suppose Assumption C holds. Let μ0 ∈ P(Rd) satisfy the LSI

H(ν | μ0) ≤ (η0/4)I (ν | μ0), ∀ν ∈ P(Rd),

for some η0 > 0. Let Pn
0 ∈ P((Rd)n) be exchangeable and have finite moments of

every order. Then there exists a unique solution (Pn
t )t≥0 of the Fokker–Planck equation

(2.1) starting from Pn
0 , and there exists a solution (μt )t≥0 of the nonlinear Fokker–

Planck equation (2.2) starting fromμ0, unique among the class of solutions satisfying∫ T
0

∫
Rd |x |pμt (dx)dt < ∞ for all T , p > 0. Moreover, the following hold:
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(1) Assumptions A and E are satisfied, with η = max(η0/4, σ 2/4α), γ =
min(4ηL2, 2R2), and M bounded by a finite constant depending only on L, R,
CU , and

∫
(Rd )n

|x1|2Pn
0 (dx). In particular, Theorem 2.1 applies with

rc = σ 4

4γ η
− 1 = max

(
min

( σ 4

η20L
2
,

α2

L2

)
, min

( σ 4

2η0R2 ,
σ 2α

2R2

))
− 1.

(2) If R < ∞ and (C.1) holds with cU2 = cW2 = cW1 = 0 and cU1 = α (i.e., U is
α-uniformly convex and W is convex), then Assumption R is satisfied with η =
max(η0/4, σ 2/4α), and Theorem 2.5 applies with

pc = min
( σ 4

2η0R2 ,
σ 2α

2R2

)
.

Note that η0 = 0 when μ0 is a Dirac. In case (1), if η0 ≤ σ 2/α and R = ∞, then
rc = (α/L)2 − 1 and the two ranges of rc in Theorem 2.1 correspond to α >

√
2L

and L < α ≤ √
2L , respectively. We are unable to treat the case α ≤ L , instead

requiring the convexity to be sufficiently stronger than the interaction strength in the
sense that α > L . This kind of assumption is common in the literature, more when
dealing with non-convex cases [2, 18, 27, 39, 46]. On the other hand, in the case where
∇W is bounded, part (2) has no smallness constraint anymore, except that the optimal
exponent of 2 is obtained only when pc ≥ 2, or σ 2α ≥ 4R2.

There are two main limitations in Corollary 2.7. The first is that part (1) requires
α > L , as discussed just above. The second is that it requires ∇W to be globally
Lipschitz or bounded, which in particular rules out relevant cases like W (x) = |x |3.
Neither of these assumptions is needed in order to obtain qualitative uniform-in-time
propagation of chaos, which has been known since [11, 40].

Remark 2.8 Theorem 2.1 and Corollary 2.7 cover the Gaussian case, where b0(t, x) =
−ax and b(t, x, y) = b(y − x), for x, y ∈ R, with a, b > 0. Suppose that σ = 1 and
that μ0 = δ0. It was shown in [38, Example 2.8 and Section 3] that uniform-in-time
propagation of chaos holds in this case at a rate of O((k/n)2), no matter the values
of a, b > 0. Corollary 2.7 recovers this rate, but only when a/b is large enough.
Indeed, this setting fits into Corollary 2.7(1), with η0 = 0, α = a + b, L = b (and
R = ∞), which yields the exponent rc = (1 + (a/b))2 − 1. We recover the optimal
O((k/n)2) only when rc > 1, or a/b >

√
2 − 1. Corollary 2.7(1) still applies but

yields a suboptimal exponent when a/b ≤ √
2 − 1.

We note also that [21] recently used coupling methods to obtain quantitative propa-
gation of chaos even whenU +W is non-convex, but with a suboptimal rate compared
toCorollary 2.7. Their assumptions are somewhat similar otherwise, assuming a small-
ness condition on the Lipschitz constant of ∇W , though they do not cover the case of
non-Lipschitz ∇W .
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2.4 Models on the torus

In this section, we present a class of models in which the state space Rd is replaced
by the torus Td = R

d/Zd , and we take b0 ≡ 0 and b(t, x, y) = K (x − y) for some
vector field K : Rd → R

d . The proofs of Theorems 2.1 and 2.5 adapt without change
to the case of the torus. The McKean-Vlasov SDE and its corresponding PDE take the
form

dXt = K ∗ μt (Xt )dt + σdBt , (2.11)

∂tμ = −div(μK ∗ μ) + σ 2

2
�μ. (2.12)

The n-particle Fokker–Planck equation becomes

∂t P
n
t (x) = −

n∑
i=1

divxi

(
1

n − 1

∑
j �=i

K (xi − x j )P
n
t (x)

)
+ σ 2

2
�Pn

t (x). (2.13)

We make the following assumptions:

Assumption T Assume that K is Lipschitz and also that the initial law μ0 admits a
smooth density satisfying the pointwise bound λ−1 ≤ μ0 ≤ λ, for some λ ≥ 1.

Note since thatμ ≡ 1 solves the PDE (2.12), becauseμK ∗μ ≡ ∫
Td K is a constant;

that is, the uniform measure on T
d is invariant for (2.12). There may be additional

invariant measures, in general. Our main result in this section gives a uniform-in-time
propagation of chaos, with a sharp rate, for a sufficiently small mean field interaction
K , which in particular rules out the existence of additional invariant measures:

Corollary 2.9 Suppose Assumption T holds, and let Pn
0 ∈ P((Td)n) be arbitrary. Then

there exists a unique weak solution Pn of (2.13) starting from Pn
0 , and there exists a

unique classical solution μ of (2.12) starting from μ0. Assume that div K is small in
the sense that

‖div K‖∞ <
σ 2π2

1 + 2
√
2 log λ

< σ 2π2. (2.14)

Then Assumptions A and E hold, and Theorem 2.1 applies with

rc = σ 4(1 − 2r0)

2λ2diam2(K )
− 1,

where we define

r0 := ‖div K‖∞
√
2 log λ

σ 2π2 − ‖div K‖∞
, diam(K ) := sup

x,z∈Td
|K (x) − K (z)|.

123



D. Lacker, L. L. Flem

Note that (2.14) ensures that r0 < 1/2, so that rc > −1. Theorem 2.1 only yields
anything useful, of course, if rc > 0, which can occur when some combination of the
following effects are present: σ is large, or K has small oscillations or divergence,
or λ is close to 1 which means that the initial law μ0 is L∞-close to the uniform
distribution. Note when K is divergence-free the simplification r0 = 0 occurs.

Example 2.10 Corollary 2.9 notably covers the example of the Kuramoto model (with-
out disorder) discussed in Remark 2.2, in sufficiently subcritical regimes.We keep this
discussion brief, referring to [1, 4] for background on thismodel. TheKuramotomodel
(2.6) was written for Xi

t taking values in [0, 2π ], and to fit it into Corollary 2.9 (set
in T

1 = R/Z ∼= [0, 1]) we simply rescale Xi
t to Xi

t /2π . This yields the parameters
σ = 1/2π and K (x) = K sin(2πx)/2π . In Corollary 2.9, the condition 2.14 becomes

K <
1

4 + 8
√
2 log λ

<
1

4
,

and the constant rc becomes

rc = rc(K , λ) := 1 − 4K (1 + 2
√
2 log λ)

32π2λ2K 2(1 − 4K )
− 1.

Weobtain quantitative uniform-in-time propagation of chaoswhen K < K 0
c (λ), where

we define Ka
c (λ) for a ≥ 0 as the (λ-dependent) value of K for which rc(K , λ) = a.

For K < K 1
c (λ) we obtain the optimal exponent O((k/n)2) from Theorem 2.1. For

example, when λ = 1 (meaning the initialization μ0 is uniform), we have K 0
c (1) =√

2/8π and K 1
c (1) = 1/8π . We are not able to determine the sharp rate quantitative

uniform-in-time propagation of chaos all the way to criticality, i.e., for all K < 1.

3 Proof of themain theorem

This section gives the proof of Theorem 2.1. We suppose that Assumptions E and A
hold throughout this section. The central quantity of study will be the relative entropy

Hk
t := H(Pk

t | μ⊗k
t ), t ≥ 0, 1 ≤ k ≤ n.

3.1 The entropy estimate

The first step is to estimate the time derivative of Hk
t . We apply the following more

general estimate between solutions of Fokker–Planck equations.

Lemma 3.1 Let d ∈ N and σ > 0. For each i = 1, 2, let bi : [0,∞) × R
d → R

d

be measurable, and assume we are given a continuous flow of probability measures
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(μi
t )t≥0 on Rd satisfying the weak Fokker–Planck equation

〈μi
t , ϕ〉 = 〈μi

0, ϕ〉 +
∫ t

0

∫
Rd

(
bi (s, x) · ∇ϕ(x) + σ 2

2
�ϕ(x)

)
μi
s(dx)ds,

∀ϕ ∈ C∞
c (Rd), t ≥ 0,

as well as the following conditions:

(H.1) The function b2 is locally bounded.
(H.2) The function b1 belongs to L p

loc(μ
1) for some p > d+2. That is, for each T > 0

and each bounded Borel set S ⊂ R
d we have

∫ T

0

∫
S
|b1(t, x)|pμ1

t (dx)dt < ∞.

(H.3) The following hold for each T > 0:

∫ T

0

∫
Rd

|b2(t, x)|2μ1
t (dx)dt < ∞, sup

t∈[0,T ]

∫
Rd

|b1(t, x)|2μ1
t (dx) < ∞.

Then, it holds for each t > s ≥ 0 that

H(μ1
t | μ2

t ) + σ 2

4

∫ t

s
I (μ1

u | μ2
u) du ≤ H(μ1

s | μ2
s )

+ 1

σ 2

∫ t

s

∫
Rd

∣∣∣b1(u, x) − b2(u, x)
∣∣∣2 μ1

u(dx)du.

In particular, if H(μ1
0 | μ2

0) < ∞, then H(μ1
t | μ2

t ) < ∞ for all t > 0.

Estimates of this form might be considered folklore, with similar forms appearing
in [8, 33, 35] under different assumptions. If one ignores questions of smoothness and
integrability, the proof follows by applying the Fokker–Planck equation for μ2 with
the test function ϕ = (μ1/μ2) log(μ1/μ2). It takes some care, though, to make this
rigorous. Lemma 3.1 follows almost immediately from the arguments in [6, Lemma
2.4], with their main results holding under the sole assumptions that b1 and b2 are
Borel measurable and locally bounded. Local boundedness of b1 turns out to be too
restrictive for our application, where we wish to use b1 = b̂k defined in (3.1) below;
the issue is that local boundedness is not preserved under conditioning. Nonetheless,
the assumptions of Lemma 3.1 are enough to ensure sufficient smoothness of μ1,
summarized in Remark 3.2 below, which enables the same arguments as in [6] to be
carried out, after an additional mollification step in which b1 is approximated by a
locally bounded function. See Appendix A of the first arXiv version of the present
paper for full details.

Remark 3.2 The assumptions (H.1,2) ensure that the measure dtμi
t (dx) admits a

(Hölder) continuous density on (0,∞) × R
d , which we denote by μi (t, x), for each
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i = 1, 2. In addition, μi (t, ·) ∈ W p,1(U ) for every p ≥ 1, every t > 0, and every
bounded open set U ⊂ R

d . See [5, Proposition 6.5.1]. Lastly, since b2 is locally
bounded, the continuous version of the density μ2 is strictly positive on (0,∞)×R

d ;
see [5, Example 8.3.8].

Remark 3.3 An easy adaptation of the proof of Lemma 3.1 gives the following more
general estimate, for 0 < c < 1:

H(μ1
t |μ2

t ) + σ 2

2
(1 − c)

∫ t

s
I (μ1

u |μ2
u)du ≤ H(μ1

s |μ2
s )

+ 1

2σ 2c

∫ t

s

∫
Rd

∣∣∣b1(u, x) − b2(u, x)
∣∣∣2 μ1

u(dx)du.

This allows one to trade off between the Fisher information and drift terms. Remark-
ably, it turns out in our context that the optimal choice is always c = 1/2.

3.2 The BBGKY hierarchy

We will apply Lemma 3.1 with Pk
t and μ⊗k

t in place of μ1
t and μ2

t , respectively,
but first we need to represent Pk and μ⊗k for each k as solutions of Fokker–Planck
equations. For μ⊗k this is straightforward. For Pk this is accomplished using the so-
called BBGKY hierarchy, which is well known, but we derive it in the lemma below
for completeness; see [24, Section 1.5] for additional references and a derivation in
the zero-noise case. First, note that the measure dt Pn

t (dx) has a positive density
on (0,∞) × (Rd)n ; see Remark 3.2 and note that (H.2) holds because of the local
boundedness of b0 and because of Assumption (E.3). By marginalization, dt Pk

t (dx)
has a positive density on (0,∞)× (Rd)k . Recall in the following that we use the same
letter to denote a measure and its density when it exists, e.g., Pk

t (dx) = Pk
t (x)dx .

Lemma 3.4 Let 1 ≤ k < n. Define the conditional density

Pk+1|k
t,x1,...,xk (xk+1) = Pk+1

t (x1, . . . , xk+1)

Pk
t (x1, . . . , xk)

, t > 0, x1, . . . , xk+1 ∈ R
d .

For i = 1, . . . , k, define the functions b̂ki : [0,∞) × (Rd)k → R
d by

b̂ki (t, x1, . . . , xk) := 1

n − 1

k∑
j �=i, j=1

b(t, xi , x j ) + n − k

n − 1
〈Pk+1|k

t,x1,...,xk , b(t, xi , ·)〉.

(3.1)

Then, for each 1 ≤ k < n, ϕ ∈ C∞
c ((Rd)k), and t ≥ 0,

〈Pk
t − Pk

0 , ϕ〉 =
∫ t

0

∫
(Rd )k

( k∑
i=1

(b0(s, xi ) + b̂ki (s, x)) · ∇xi ϕ(x) + σ 2

2
�ϕ(x)

)
Pk
s (dx)ds.
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Proof Apply theweak Fokker–Planck equation (2.1) to a test functionϕ ∈ C∞
c ((Rd)k)

depending on only the first k variables to find

〈Pk
t − Pk

0 , ϕ〉 =
k∑

i=1

∫ t

0

∫
(Rd )n

(
b0(s, xi )

+ 1

n − 1

n∑
j=1, j �=i

b(s, xi , x j )

)
·∇xi ϕ(x1, . . . , xk) P

n
s (dx)ds

+ σ 2

2

∫ t

0

∫
(Rd )n

�ϕ(x1, . . . , xk)P
n
s (dx)ds.

Marginalizing yields

∫
(Rd )n

b0(s, xi ) · ∇xi ϕ(x1, . . . , xk) P
n
s (dx) =

∫
(Rd )k

b0(s, xi ) · ∇xi ϕ(x) Pk
s (dx),

∫
(Rd )n

�ϕ(x1, . . . , xk) P
n
s (dx) =

∫
(Rd )k

�ϕ(x) Pk
s (dx).

For the interaction term, we compute

∫
(Rd )n

1

n − 1

n∑
j=1, j �=i

b(s, xi , x j ) · ∇xi ϕ(x1, . . . , xk) P
n
s (dx)

= 1

n − 1

k∑
j=1, j �=i

∫
(Rd )n

b(s, xi , x j ) · ∇xiϕ(x1, . . . , xk) P
n
s (dx)

+ 1

n − 1

n∑
j=k+1

∫
(Rd )n

b(s, xi , x j ) · ∇xi ϕ(x1, . . . , xk) P
n
s (dx) (3.2)

We claim this is equal to
∫
(Rd )k

b̂ki (t, x) · ∇xi ϕ(x) Pk
s (dx). Again by marginalizing,

the first term on the right-hand of (3.2) can be simplified to

1

n − 1

k∑
j=1, j �=i

∫
(Rd )k

b(s, xi , x j ) · ∇xi ϕ(x) Pk
s (dx),

Using symmetry, the second term on the right-hand of (3.2) can be simplified to

n − k

n − 1

∫
(Rd )k+1

b(s, xi , xk+1) · ∇xi ϕ(x1, . . . , xk) P
k+1
s (dx)

= n − k

n − 1

∫
(Rd )k

[ ∫
Rd

b(s, xi , xk+1) P
k+1|k
s,x1,...,xk (dxk+1)

]

· ∇xi ϕ(x1, . . . , xk) P
k
s (dx1, . . . , dxk).
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The expression in brackets is exactly 〈Pk+1|k
t,x1,...,xk , b(t, xi , ·)〉, and the proof is complete.

��
Remark 3.5 Alternatively, working at the level of the stochastic processes (1.1), the
BBGKY hierarchy can be derived using the so-calledmimicking theorem [9, Corollary
3.7].

3.3 Estimating Hk
t

We now apply Lemma 3.1 to estimate Hk
t = H(Pk

t | μ⊗k
t ). We know from Lemma

3.4 that Pk solves a Fokker–Planck equation with drift (̂bk1, . . . , b̂
k
k ). On the other

hand, the nonlinear-Fokker–Planck equation (2.2) easily tensorizes to show that μ⊗k

satisfies the following Fokker–Planck equation: for all ϕ ∈ C∞
c ((Rd)k) and t ≥ 0,

〈μ⊗k
t − μ⊗k

0 , ϕ〉 =
∫ t

0

∫
(Rd )k

( k∑
i=1

(
b0(s, xi ) + 〈μs, b(s, xi , ·)〉

)

· ∇xi ϕ(x) + σ 2

2
�ϕ(x)

)
μ⊗k
s (dx)ds.

We now apply Lemma 3.1 to get, for all t > s ≥ 0,

Hk
t − Hk

s + σ 2

4

∫ t

s
I (Pk

u | μ⊗k
u ) du ≤ 1

σ 2

∫ t

s

∫
(Rd )k

k∑
i=1

∣∣̂bki (u, x)

− 〈μu, b(u, xi , ·)〉
∣∣2Pk

u (dx)du. (3.3)

Indeed, the assumptions of Lemma 3.1 are easily checked using Assumption E: We
know by (E.1,2) that b0(t, x)+〈μt , b(t, x, ·)〉 is locally bounded, so that (H.1) holds.
The assumption (H.2) holds because b0 is locally bounded, and because (E.3) gives

∫ T

0

∫
(Rd )k

|̂bki (t, x)|p Pk
t (dx)dt ≤

∫ T

0

∫
(Rd )n

|b(t, x1, x2)|p Pn
t (dx)dt < ∞,

for all p, T > 0 and i = 1, . . . , k by Jensen’s inequality and by exchangeability. The
first part of (H.3) comes from the local boundedness of b0 and the first part of (E.3).
Similarly, the second part of (H.3) follows from the second part of (E.3). With (3.3)
now justified, the integrability assumptions in E will henceforth play no role.

The following lemma summarizes the implications of (3.3), which will be used in
multiple ways. Recall the constants (η, γ, M) defined in Assumption A.

Lemma 3.6 Suppose that there exist constants C0 > 0 and p1, p2 ∈ (0, 2] such that

Hk
0 ≤ C0k

p1/n p2 , 1 ≤ k ≤ n.
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Let δ > 0, and define Z := σ 2/4η, γ̃ := γ (1 + δ)/σ 2, and the quantities

Ã�
k(tk) :=

( �∏
j=k

γ̃ j

) ∫ tk

0

∫ tk+1

0
· · ·

∫ t�

0
e−∑�

j=k (Z+γ̃ j)(t j−t j+1)dt�+1 . . . dtk+1,

(3.4)

B̃�
k (tk) :=

( �−1∏
j=k

γ̃ j

) ∫ tk

0

∫ tk+1

0
· · ·

∫ t�−1

0
e−(Z+γ̃ �)t�−∑�−1

j=k (Z+γ̃ j)(t j−t j+1)dt� . . . dtk+1,

(3.5)

for tk ≥ 0 and integers � ≥ k, with the convention B̃k
k (t) := e−(Z+γ̃ k)t . Then the

following hold:

(1) For each T ≥ 0 and 1 ≤ k < n,

Hn
T ≤ C0n

p1−p2e−σ 2T /4η + 4nMησ−4. (3.6)

Hk
T ≤ C0

n p2

n−1∑
�=k

�p1 B̃�
k (T ) + M

δγ n2

n−1∑
�=k

�2 Ã�
k(T ) + Ãn−1

k (T )Hn
T . (3.7)

(2) If we assume additionally that there exist C1 > 0 and p ∈ [0, 2] such that

sup
T≥0

H3
T ≤ C1/n

p, (3.8)

then, by setting C2 = 2M +√
γ MC1, it holds for each T ≥ 0 and 1 ≤ k < n that

Hn
T ≤ C0n

p1−p2e−σ 2T /4η + 4n1−
p
2 C2ησ−4, (3.9)

Hk
T ≤ C0

n p2

n−1∑
�=k

�p1 B̃�
k (T ) + C2

δγ n2

n−1∑
�=k

�2−
p
2 Ã�

k(T ) + Ãn−1
k (T )Hn

T . (3.10)

Although we have no a priori information about H3
T , the purpose of part (2) of

Lemma 3.6 is as follows. In the case of rc > 2 in Theorem 2.1, we use Lemma
3.6(1) on a first pass through the argument, which ultimately leads to a bound of
Hk
T = O(k3/n2). This is suboptimal in the exponent of k. However, it implies H3

T =
O(1/n2), and we may then repeat the argument and apply the sharper Lemma 3.6(2)
with p = 2 to reduce the exponent on k by one. This is carried out in Sect. 3.5 and is
similar to an argument in [38]. The case where 0 < rc < 2 is trickier, because a first
pass through the argument gives the worse bound H3

T = O(1/nrc ). The idea is to then
apply Lemma 3.6(2) inductively. The exponent in H3

T = O(1/nrc ) improves after m
iterations from rc to 2min(1, rc(1−2−m)). If rc > 1 then finitelymany iterations yield
the optimal exponent 2, whereas if rc ≤ 1 then the exponent merely approaches 2rc.
(The constants grow with each iteration, so we may only iterate finitely many times.)
This explains the exponent on n in Theorem 2.1(2). Lemma 3.9 below summarizes the
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induction step, and Sects. 3.7 and 3.8 implement it to complete the proof of Theorem
2.1.

Proof of Lemma 3.6 Wesimplify the estimate (3.3), startingwith theFisher information
term. The LSI (2.3) is well known to tensorize [3, Proposition 5.2.7]:

H(ν | μ⊗k
t ) ≤ ηI (ν | μ⊗k

t ), ∀t ≥ 0, 1 ≤ k ≤ n, ν ∈ P((Rd)k).

Use this in inequality (3.3) along with exchangeability to obtain

Hk
t − Hk

s ≤ 1

σ 2

∫ t

s

∫
(Rd )k

k∑
i=1

∣∣∣̂bki (u, x) − 〈μu , b(u, xi , ·)〉
∣∣∣2 Pk

u (dx)du − σ 2

4η

∫ t

s
Hk
u du

= k

σ 2

∫ t

s

∫
(Rd )k

∣∣∣̂bk1(u, x) − 〈μu , b(u, x1, ·)〉
∣∣∣2 Pk

u (dx)du − σ 2

4η

∫ t

s
Hk
u du.

(3.11)

Let t > 0. Using the definition of b̂k1 from Lemma 3.4, we have

∫
(Rd )k

∣∣∣̂bk1(t, x) − 〈
μt , b(t, x1, ·)

〉∣∣∣2 Pk
t (dx)

=
∫

(Rd )k

∣∣∣∣ 1

n − 1

k∑
j=2

(
b(t, x1, x j ) − 〈μt , b(t, x1, ·)〉

)

+ n − k

n − 1

〈
Pk+1|k
t,x − μt , b(t, x1, ·)

〉∣∣∣∣
2

Pk
t (dx).

Note that the above is valid for any 1 ≤ k ≤ n with the convention that the second
term inside the square equals 0 for k = n. Use the inequality (x + y)2 ≤ (1 +
δ)x2 + (1 + δ−1)y2, valid for any δ > 0 and x, y ∈ R, to bound this further by
(1 + δ−1)I + (1 + δ)I I , where we set

I :=
∫

(Rd )k

∣∣∣∣ 1

n − 1

k∑
j=2

(
b(t, x1, x j ) − 〈μt , b(t, x1, ·)〉

)∣∣∣∣
2

Pk
t (dx),

I I :=
∫

(Rd )k

∣∣∣∣n − k

n − 1

〈
Pk+1|k
t,x − μt , b(t, x1, ·)

〉∣∣∣∣
2

Pk
t (dx).

Let us first investigate the second term, assuming k < n since it vanishes otherwise.
Discard the constant (n − k)/(n − 1) ≤ 1, and use Assumption (A.2) to obtain

I I ≤ γ

∫
(Rd )k

H
(
Pk+1|k
t,x

∣∣μt
)
Pk
t (dx) = γ

(
Hk+1
t − Hk

t

)
, (3.12)

with the second identity being the so-called chain rule for relative entropy; indeed,
this comes from the formula Pk+1

t (x, xk+1) = Pk
t (x)Pk+1|k

t,x (xk+1) and the simple
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Sharp uniform-in-time propagation of chaos

calculation

∫
(Rd )k

H
(
Pk+1|k
t,x

∣∣ μt
)
Pk
t (x)dx

=
∫

(Rd )k

[ ∫
Rd

log
Pk+1|k
t,x (xk+1)

μt (xk+1)
Pk+1|k
t,x (xk+1) dxk+1

]
Pk
t (x)dx

=
∫

(Rd )k

∫
Rd

[
log

Pk+1(x, xk+1)

μ
⊗(k+1)
t (x, xk+1)

− log
Pk(x)

μ⊗k
t (x)

]
Pk+1
t (x, xk+1)dxk+1dx

= Hk+1
t − Hk

t ,

where we write (x, xk+1) here for a typical element of (Rd)k+1 ∼= (Rd)k × R
d .

We next study the first term, I . For case (1) of the lemma, we use convexity of | · |2
to get

I ≤ k − 1

(n − 1)2

∫
(Rd )k

k∑
j=2

∣∣(b(t, x1, x j ) − 〈μt , b(t, x1, ·)〉
)∣∣2Pk

t (dx)

≤ (k − 1)2

(n − 1)2
M ≤ k2

n2
M, (3.13)

with the second step using exchangeability and the definition of M from (2.5). In
case (2) of the lemma, when we have the assumption (3.8), we take a more refined
approach. Start by expanding the square and using exchangeability to obtain

I = k − 1

(n − 1)2
Idiag + (k − 1)(k − 2)

(n − 1)2
Icross,

where we define Idiag and Icross by

Idiag :=
∫
(Rd )2

∣∣b(t, x1, x2) − 〈μt , b(t, x1, ·)〉
∣∣2P2

t (dx),

Icross :=
∫
(Rd )3

(
b(t, x1, x2) − 〈μt , b(t, x1, ·)〉

) · (
b(t, x1, x3) − 〈μt , b(t, x1, ·)〉

)
P3
t (dx).

We have immediately Idiag ≤ M . Writing P3
t (dx, dx3) = P2

t (dx)P3|2
t,x (dx3), we have

Icross =
∫

(Rd )2

(
b(t, x1, x2) − 〈μt , b(t, x1, ·)〉

) ·
〈
P3|2
t,x − μt , b(t, x1, ·)

〉
P2
t (dx)

≤ √
M

( ∫
(Rd )2

∣∣∣〈P3|2
t,x − μt , b(t, x1, ·)

〉∣∣∣2 P2
t (dx1, dx2)

)1/2
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≤ √
γ M

( ∫
(Rd )2

H(P3|2
t,x | μt ) P

2
t (dx)

)1/2

≤
√

γ MH3
T .

The first inequality comes from Cauchy-Schwarz, the second from the assumption
(2.4), and the last from the chain rule for relative entropy. Using the assumption (3.8)
on H3

T , we thus obtain

I ≤ k − 1

(n − 1)2
M + √

γ MC1
(k − 1)(k − 2)

(n − 1)2n p/2 .

Using (k − 1)/(n − 1) ≤ k/n, n − 1 ≥ n/2, and p ≤ 2, we have

I ≤ 2M
k

n2
+ √

γ MC1
k2

n2+
p
2

≤ C2
k2−p/2

n2
, (3.14)

where we recall that C2 = 2M + √
γ MC1. The rest of the proof is given for case

(2), but recalling (3.13) we note that the same proof covers case (1) as long as we set
p = 0 and C2 = M .

Using these bounds on I and I I , the strategy in this proof will be to bound Hk
t in

terms of Hk+1
t , and we will need a bound on the final term Hn

t of the iteration. We
thus first apply (3.11) with k = n and bound the first term of the right-hand side using
(3.14) (recalling that I I = 0 for k = n). We obtain

Hn
t − Hn

s ≤
∫ t

s
n1−p/2σ−2C2du − σ 2

4η

∫ t

s
Hn
u du,

Using Gronwall’s inequality (see Lemma A.1 for a precise form tailored to our case),
and setting Z = σ 2/4η, we have

Hn
t ≤ e−Zt Hn

0 +
∫ t

0
n1−p/2C2e

Z(s−t)ds ≤ C0n
p1−p2e−Zt + n1−p/2σ−2C2/Z .

Let us now consider the case 1 ≤ k < n and bound Hk in terms of Hk+1. Returning
to (3.11) and using (3.14) and (3.12), we have, for t > s ≥ 0,

Hk
t − Hk

s ≤
∫ t

s

[
(1 + δ−1)k3−p/2

σ 2n2
C2 + γ k(1 + δ)

σ 2

(
Hk+1
u − Hk

u

) − σ 2

4η
Hk
u

]
du.

The two Hk
u terms combine to become −(Z + γ̃ k)Hk

u , where we recall γ̃ = γ (1 +
δ)/σ 2. Simplify further by noting that 1+δ−1

σ 2 = γ̃
δγ
. ApplyGronwall’s inequalty (again

see Lemma A.1 for a precise form) to get

Hk
t ≤ e−(Z+γ̃ k)t Hk

0 + γ̃

∫ t

0
e−(Z+kγ̃ )(t−s)

(
k3−p/2

δγ n2
C2 + kHk+1

s

)
ds,
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Sharp uniform-in-time propagation of chaos

Complete the proof via an elementary induction, iterating this inequality for k+1, k+
2, . . . , n − 1, and then using the assumption on Hk

0 . ��

3.4 Estimating the iterated integrals

Here we prove two lemmas that allow us to estimate the iterated integrals (3.4) and
(3.5) appearing in Lemma 3.6.

Lemma 3.7 For any real p, T ≥ 0 and integers 1 ≤ k < n,

n−1∑
�=k

�p B̃�
k (T ) ≤ 2k p(1 + p)pe(γ̃ p−Z)T . (3.15)

Proof First, we introduce a related iterated integral in which Z is removed from the
exponent:

B�
k (tk) =

( �−1∏
j=k

γ̃ j

)∫ tk

0

∫ tk+1

0
· · ·

∫ t�−1

0
e−γ̃ �t�−∑�−1

j=k γ̃ j(t j−t j+1)dt� . . . dtk+1,

(3.16)

for tk ≥ 0. Recognizing a telescoping sum in the exponent of (3.5), we find B̃�
k (T ) =

e−ZT B�
k (T ).We thus focus on B�

k (T ), which appeared also in [38, page 25]. Recognize
first that γ̃ �B�

k = hk ∗ hk+1 ∗ · · · ∗ h�, where h j (t) = γ̃ je−γ̃ j t1[0,∞)(t) is the
exponential density with parameters γ̃ j . Using the expression for the convolution
found in [38, Proof of Lemma 5.2] (applied with a = γ̃ k and b = γ̃ ), we obtain

γ̃ (k + �)Bk+�
k (t) = hk ∗ hk+1 ∗ · · · ∗ hk+�(t) = γ̃ e−γ̃ kt (k + �)!

�!(k − 1)! (1 − e−γ̃ t )�,

We can then rewrite

∞∑
�=k

�p B�
k (t) =

∞∑
�=0

(k + �)p Bk+�
k (t) = e−γ̃ kt

(k − 1)!
∞∑

�=0

(k + �)p−1 (k + �)!
�! (1 − e−γ̃ t )�.

(3.17)

To proceed, we will use the inequality

(k + �)p−1(k + �)! ≤ 2�(k + � + p), (3.18)

where�(z) = ∫ ∞
0 e−t t z−1dt is the gamma function. To prove (3.18), we set z = k+�,

so that (k+�)p−1(k+�)! = z p−1�(z+1) = z p�(z). In the case p ≥ 1, a well known
gamma ratio inequality [36, Theorem 1, (5)] states that z p�(z) ≤ �(z + p), which
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gives (3.18) without the factor of 2. In the case 0 ≤ p < 1, Gautschi’s inequality [23,
inequality (7)] states that (z + 1)p−1 ≤ �(z + p)/�(z + 1), which implies

(k + �)p−1(k + �)! = z p−1�(z + 1) ≤
(
z + 1

z

)1−p

�(z + p) ≤ 21−p�(z + p),

where the last inequality uses z ≥ 1.
For 0 < y ≤ 1, note by Fubini’s theorem and the definition of the gamma function

that

∞∑
�=0

�(k + � + p)

�! (1 − y)� =
∫ ∞
0

∞∑
�=0

1

�!u
k+�+p−1e−u(1 − y)� du =

∫ ∞
0

uk+p−1e−yu du

= y−(k+p)�(k + p).

Applying this with y = e−γ̃ t and then (3.18) in (3.17) gives

∞∑
�=k

�pB�
k (t) ≤ 2e−γ̃ kt

(k − 1)!
∞∑

�=0

�(k + � + p)

�! (1 − e−γ̃ t )� = 2eγ̃ r t �(k + p)

(k − 1)! .

Finally, another gamma ratio inequality [36, Theorem 2, (12)] yields �(k + p) ≤
�(k)k(k + p)p−1 = k!(k + p)p−1, which implies

�(k + p)

(k − 1)! ≤ k(k + p)p−1 ≤ (k + p)p ≤ k p(1 + p)p.

��
Lemma 3.8 Denote α = Z

γ̃
= σ 4

4γ η(1+δ)
. Then, for integers � ≥ k ≥ 1,

sup
t≥0

Ã�
k(t) =

�∏
i=k

i

i + α
≤

(
k + α

� + 1 + α

)α

≤ (1 + α)α
(

k

� + 1

)α

, 1 ≤ k ≤ �.

(3.19)

Moreover, for any p > 0 with p �= α − 1,

(
1 + (1 + α)α

|p − α + 1|
)−1 1

n2

n−1∑
�=k

�p sup
t≥0

Ã�
k(t) ≤

{
kα/nα+1−p if p − α > −1,

k p+1/n2 if p − α < −1.

(3.20)

Proof Let h̃ j (t) = γ̃ je−(Z+γ̃ j)t1[0,∞)(t) for each j ∈ N. Note that Ã�
k and B̃�

k can be
expressed as convolutions,

Ã�
k = h̃k ∗ · · · ∗ h̃� ∗ 1[0,∞), γ̃ �B̃�

k = h̃k ∗ · · · h̃�.
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Sharp uniform-in-time propagation of chaos

It follows that d Ã�
k/dt = γ̃ �B̃�

k . We observed in (3.16) and just after that γ̃ �B̃�
k (t) =

e−Zt hk ∗ · · · ∗ h�(t), where h j (t) = γ̃ je−γ̃ j t1[0,∞)(t) is an exponential probability
density for each j ∈ N. In other words,

d

dt
Ã�
k(t) = e−Zt hk ∗ · · · ∗ h�(t).

In particuar, Ã�
k is increasing. Consider independent exponential random variables

(Ei )i∈N with parameters γ̃ i . The density of the sum Ek + . . . + E� is precisely
hk ∗ · · · ∗ h�. By integrating from 0 and t , we compute

sup
t≥0

Ã�
k(t) =

∫ ∞

0
e−Zt hk ∗ · · · ∗ h�(t) dt = E

[
e−Z(Ek+...+E�)

]
=

�∏
i=k

γ̃ i

γ̃ i + Z
,

which proves the first identity in (3.19). Use log x ≤ x − 1 for x > 0 to estimate

�∑
i=k

log
i

i + α
≤ −

�∑
i=k

α

i + α
≤ −

∫ �+1

k

α

x + α
dx = α log

k + α

� + 1 + α
,

and exponentiate to get the first inequality in (3.19). The last inequality of (3.19)
follows from α > 0 and k + α ≤ k(1 + α). To prove (3.20), consider two cases:

(1) If p−α > −1, we can bound
∑n−1

�=k �p−α ≤ ∫ n
0 x p−αdx = n p−α+1/(p−α +1).

Thus,

1

n2

n−1∑
�=k

�p sup
t≥0

Ã�
k(t) ≤ (1 + α)αkα

n2

n−1∑
�=k

�p−α ≤ (1 + α)α

p − α + 1

kα

n1+α−p
.

(2) For p − α < −1, we can bound
∑n−1

�=k+1 �p−α ≤ ∫ ∞
k x p−αdx = k p−α+1/(α −

p − 1). Then,

1

n2

n−1∑
�=k

�p sup
t≥0

Ã�
k(t) = k p

n2
sup
t≥0

Ãk
k(t) + 1

n2

n−1∑
�=k+1

�p sup
t≥0

Ã�
k(t)

≤ k p

n2
k

k + α
+ (1 + α)αkα

n2

n−1∑
�=k+1

�p−α

≤ k p+1

n2
+ (1 + α)α

α − p − 1

k p+1

n2
.

��
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3.5 Proof of Theorem 2.1, for rc > 2

We first apply part (1) of Lemma 3.6. Combining (3.6) and (3.7) and the assumption
Hk
0 ≤ C0(k/n)2 yields

Hk
T ≤ C0

n2

n−1∑
�=k

�2 B̃�
k (T ) + M

δγ n2

n−1∑
�=k

�2 Ã�
k(T ) + n Ãn−1

k (T )
(
C0e

−ZT + 4ηMσ−4
)

.

Applying Lemma 3.8 for the last term, as well as Lemma 3.7 (with p = 2) for the first
term,

Hk
T ≤ 18C0

k2

n2
e(2γ̃−Z)T + M

δγ n2

n−1∑
�=k

�2 Ã�
k(T ) + (1 + α)α

kα

nα−1

(
C0e

−ZT + 4ηMσ−4
)

.

(3.21)

In the following, we write C to denote a constant which can depend only on
(C0, γ, σ, M, η), and may change from line to line but never depends on (n, k, T ).
Recall that α = Z

γ̃
= σ 4

4γ η(1+δ)
= 1+rc

1+δ
. Since rc > 2, we may choose δ > 0 such

that α > 3. Clearly e(2γ̃−Z)T = eγ̃ (2−α)T ≤ 1. Apply Lemma 3.8 (with p = 2) in the
second term of (3.21), noting that 2 − α < −1, to get

Hk
T ≤ C

(
k2

n2
+ k3

n2
+ kα

nα−1

)
.

Noting that α > 3, this yields the suboptimal Hk
T ≤ Ck3/n2. This is where part (2)

of Lemma 3.6 enters the picture, allows us to sharpen the k exponent.
Specifically, since we now know H3

T ≤ C/n2, we can apply part (2) of Lemma 3.6,
with p = 2, to get Hn

T ≤ C and

Hk
T ≤ C0

n2

n−1∑
�=k

�2 B̃�
k (T ) + C

n2

n−1∑
�=k

� Ã�
k(T ) + Ãn−1

k (T )Hn
T .

The first term is bounded by 18C0(k/n)2, by Lemma 3.7. For the third term, we use
Lemma 3.8 to get Ãn−1

k (T )Hn
T ≤ C(k/n)α ≤ C(k/n)2 since α > 2. For the middle

term, we use Lemma 3.8 (with p = 1), noting that 1 − α < −1:

1

n2

n−1∑
�=k

� Ã�
k(T ) ≤

(
1 + (1 + α)α

α − 3

)
(k/n)2.

This completes the proof of Theorem 2.1 in the case rc > 2. ��
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3.6 An inductive lemma

In order to prove Theorem 2.1 in the remaining case 0 < rc ≤ 2, we first state a lemma
which inductively applies part (2) of Lemma 3.6, as was described in the paragraph
following the statement of the lemma. In the following, define

rc := σ 4

4γ η
− 1, and qm := 2(1 − 2−m), for m ∈ N,

and note that qm+1 = 1 + qm/2.

Lemma 3.9 Let 0 < r < 2 satisfy r < rc. Suppose m ∈ N is such that rqm < 2.
Suppose that there exists a constant C0 such that Hk

0 ≤ C0k1+r/nmin(2,2r), for all
k = 1, . . . , n. Suppose that supT≥0 H

3
T ≤ Cmn−rqm for some constant Cm > 0. Then,

there exists a constant C ′
m > 0 depending only on (Cm, σ, η, γ,C0, M) such that, by

defining Cm+1 = C ′
m

(rc−r)|2−rqm+1| , we have:

(1) If rqm+1 < 2, then supT≥0 H
3
T ≤ Cm+1n−rqm+1 ,

(2) If rqm+1 > 2, then supT≥0 H
3
T ≤ Cm+1n−2.

Proof Recall that α = Z
γ̃

= σ 4

4γ η(1+δ)
= (1 + rc)/(1 + δ) where the parameter δ > 0

can be chosen freely. Let r∗ = min(2, 2r). Choose δ = (rc − r)/(1 + r), so that
α = 1 + r . We apply Lemma 3.6 and deduce the existence of a constant C̃m > 0,
depending only on (Cm,C0, γ, η, σ, M) such that

Hn
T ≤ C̃m(n1+r−r∗ + n1−

rqm
2 ), (3.22)

Hk
T ≤ C0

nr∗

n−1∑
�=k

�1+r B̃�
k (T ) + C̃m

δn2

n−1∑
�=k

�2−
rqm
2 Ã�

k(T ) + Ãn−1
k (T )Hn

T , 1 ≤ k < n,

(3.23)

for all T ≥ 0. For the first term of the right hand side of (3.23), Lemma 3.7 yields

sup
T≥0

C0

nr∗

n−1∑
�=k

�1+r B̃�
k (T ) ≤ sup

T≥0
2C0

k1+r

nr∗ (2 + r)1+r e(γ̃ (1+r)−Z)T ≤ 128C0
k1+r

nr∗ ,

where the last step used γ̃ (1+ r)− Z = 0, and also r ≤ 2 so that 2(2+ r)1+r ≤ 128.
Since r ≤ 2, we have 1/δ ≤ 3/(rc − r), and so

Hk
T ≤ 128C0

k1+r

nr∗ + 3C̃m

(rc − r)n2

n−1∑
�=k

�2−
rqm
2 Ã�

k(T ) + Ãn−1
k (T )Hn

T . (3.24)

We next wish to combine the exponents.
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Suppose first that rqm+1 < 2. Then 2 − rqm
2 − α > −1, and Lemma 3.8 with

α = 1 + r and q = 2 − rqm
2 yields

Hk
T ≤ 128C0

k1+r

nr∗ + 3C̃m

rc − r

(
1 + (2 + r)1+r

2 − rqm/2 − r

)
k1+r

n2+r−(2−rqm/2)
+ (2 + r)1+r k

1+r

n1+r
Hn
T

≤ 128C0
k1+r

nr∗ + 3C̃m

rc − r

(
1 + 64

2 − rqm+1

)
k1+r

nrqm+1
+ 64

k1+r

n1+r
Hn
T ,

where we used qm+1 = 1 + qm/2 and (2 + r)1+r ≤ 64, the latter following from
r ≤ 2. To simplify this further, we claim first that

1 + r − r∗ < 1 − rqm
2

. (3.25)

Indeed, if r > 1, then r∗ = 2, and (3.25) follows from the assumed inequality
r + rqm/2 = rqm+1 < 2. If instead r ≤ 1, then r∗ = 2r , and (3.25) follows simply
from qm < 2. Now, using (3.25), we see that (3.22) implies Hn

T ≤ 2C̃mn1−
rqm
2 . Using

again qm+1 = 1+ qm/2, we deduce that Hn
T /n1+r ≤ 2C̃m/nrqm+1 . Also, rearranging

(3.25) shows that r∗ ≥ rqm+1, so n−r∗ ≤ n−rqm+1 . We can now simplify the first and
last terms in (3.24) to get

Hk
T ≤ 128C0

k1+r

nrqm+1
+ 3C̃m

rc − r

(
1 + 64

2 − rqm+1

)
k1+r

nrqm+1
+ 128C̃m

k1+r

nrqm+1
.

Evaluating this for k = 3 and using 1 + r ≤ 3 gives

H3
T n

rqm+1 ≤ 3456C0 + 81C̃m

rc − r

(
1 + 64

2 − rqm+1

)
+ 3456C̃m,

Using rc−r ≤ rc and 2−rqm+1 ≤ 2,wemay putwith each term the same denominator
(rc − r)(2 − rqm+1). This completes the proof in the case rqm+1 < 2.

If instead rqm+1 > 2, then r > 1 because qm+1 < 2, and thus r∗ = 2. Moreover,
1− rqm

2 < r − 1, and thus Hn
T ≤ 2C̃mnr−1 by (3.22). Apply Lemma 3.8 to obtain this

time

Hk
T ≤ 128C0

k1+r

n2
+ 3C̃m

rc − r

(
1 + (2 + r)1+r

rqm+1 − 2

)
k3−

rqm
2

n2
+ (2 + r)1+r k

1+r

n1+r
2C̃mn

r−1.

Apply this with k = 3 to complete the proof. ��

3.7 Proof of Theorem 2.1, for 1 < rc ≤ 2

We begin exactly as in Sect. 3.5, applying part (1) of Lemma 3.6 to deduce the
inequality (3.21). We will again use C to denote a constant which depends only on
(C0, γ, σ, M, η), and may change from line to line, but never depends on (n, k, T ).
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Recall that α = Z
γ̃

= σ 4

4γ η(1+δ)
= 1+rc

1+δ
, where δ > 0 can be chosen freely. We choose

here δ so that 2 < α < 3 and such that r := α − 1 /∈ {2/qm : m ∈ N}. Note then that
1 < r < rc ≤ 2.

We simplify (3.21) in this case as follows. For the first term, note that e(2γ̃−Z)T =
eγ̃ (2−α)T ≤ 1. For the second and third terms, apply Lemma 3.8 (with p = 2), noting
that 2 − α > −1:

Hk
T ≤ C

(
k2

n2
+ kr+1

nr
+ kr+1

nr

)
.

Setting k = 3 yields H3
T ≤ C/nr = C/nrq1 . The idea is to now repeatedly apply

Lemma 3.9, m∗ − 1 times, where m∗ is the smallest integer such that rqm∗ > 2,
which exists because limm→∞ rqm = 2r > 2. Note rqm �= 2 for all m, by design.
This repeated application of Lemma 3.9 ultimately yields H3

T ≤ C/n2. We may now
conclude exactly as in the last paragraph of Sect. 3.5, noting that α > 2. ��

3.8 Proof of Theorem 2.1, for 0 < rc ≤ 1

Let 0 < ε1 < ε2 < rc. We first claim that we can find a constant C ′ depending only
on (γ, σ, M, η, ε1, ε2,C

(ε2−ε1)/2,ε2−ε1
0 ), such that

sup
T≥0

H3
T ≤ C ′/n2(rc−(ε2−ε1)). (3.26)

Abbreviate ε := ε2 − ε1 and r := rc − ε/2, and choose δ > 0 such that α =
1 + r ∈ (1, 2). Let p1 = 1 + rc − ε/2 and p2 = 2rc − ε. We have by assumption
H(Pk

0 | μ⊗k
0 ) ≤ Cε/2,ε

0 k p1/n p2 . Apply Lemma 3.6(1), plugging (3.6) into (3.7) and
using p1 − p2 ≤ 1, we find

Hk
T ≤ Cε/2,ε

0
n p2

n−1∑
�=k

�p1 B̃�
k (T ) + M

δγ n2

n−1∑
�=k

�2 Ã�
k(T ) + n Ãn−1

k (T )
(
C0e

−ZT + 4ηMσ−4
)

.

Apply Lemma 3.8 for the last term, as well as Lemma 3.7 for the first term:

Hk
T ≤ 18Cε/2,ε

0
k p1

n p2
e(γ̃ p1−Z)T + M

δγ n2

n−1∑
�=k

�2 Ã�
k(T ) + (1 + α)α

kα

nα−1

(
C0e

−ZT + 4ηMσ−4
)

,

(3.27)

where we used p1 ≤ 2 to get 2(1+ p1)p1 ≤ 18. Simplify the first term by noting that
p1 = α and so e(γ̃ p1−Z)T = 1. Apply Lemma 3.8 (with p = 2) to the second term in
(3.27), noting that 2 − α > −1, to get

Hk
T ≤ C ′

(
k1+r

n2r
+ k1+r

nr
+ k1+r

nr

)
,
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with C ′ depending only on (γ, σ, M, η, ε,Cε/2,ε
0 ).

By evaluating the above for k = 3, we have H3
T ≤ C ′/nr . We may now repeatedly

apply Lemma 3.9, as in Sect. 3.7, but this time we never reach the case where rqm ≥ 2
because rqm ↑ 2r < 2rc ≤ 2 as m → ∞. Instead, we choose m large enough so
that rqm ≥ 2r − ε and deduce that H3

T ≤ C/n2r−ε = C/n2rc−2ε , where C > 0

now depends only on (γ, σ, M, η, ε1, ε2,C
ε/2,ε
0 ). For the rest of this proof, C > 0

may additionally depend on Cε1,ε2
0 and may change from line to line, but it will never

depend on (n, k, T ).
With (3.26) now established, let us now instead choose δ > 0 (depending only on

σ, γ, η, ε1) so that α = 1 + rc − ε1, and define p1 = 1 + rc − ε1 and p2 = 2rc − ε2.
Then (3.27) again holds but with Cε/2,ε

0 replaced by Cε1,ε2
0 . In light of (3.26), we may

apply Lemma 3.6(2) with p = 2(rc − (ε2 − ε1)) to get

Hn
T ≤ Cn1−rc+ε2−ε1 ,

Hk
T ≤ C

k1+rc−ε1

n2rc−ε2
+ C

n2

n−1∑
�=k

�2−rc+ε2−ε1 Ã�
k(T ) + Ãn−1

k (T )Hn
T .

ApplyLemma3.8with p = 2−rc+ε2−ε1, noting that then p−α = 1−2rc+ε2 > −1,
to get

1

n2

n−1∑
�=k

�2−rc+ε2−ε1 Ã�
k(T ) ≤ C

kα

nα+1−p
= C

k1+rc−ε1

n2rc−ε2
.

Lemma 3.8 also yields

Ãn−1
k (T )Hn

T ≤ C
kα

nα
n1−rc+ε2−ε1 = C

k1+rc−ε1

n2rc−ε2
.

Put it together to complete the proof of this final case, and thus the theorem. ��

4 Proof of for reversed entropy

In this section we prove Theorem 2.5. Define the reversed relative entropy

Hk
t := H(μ⊗k

t | Pk
t ), t ≥ 0, 1 ≤ k ≤ n.

By assumption, Hk
0 ≤ C0(k/n)p for some C0 and 0 < p ≤ 2, with the choice of p

depending onwhich case in Theorem 2.5we are considering.Wemake use again of the
functions b̂ki defined in (3.1).We first apply Lemma 3.1 to compute the time-derivative
of Hk

t . It is evident that (H.1,2) hold because b is bounded and b0 is locally bounded.
Moreover, (H.3) is a direct consequence of (2.9). We thus obtain, for all t > s ≥ 0,
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Hk
t − Hk

s + σ 2

4

∫ t

s
I (μ⊗k

u |Pk
u )du ≤ 1

σ 2

∫ t

s

∫
(Rd )k

k∑
i=1

∣∣̂bki (u, x)

− 〈μu, b(u, xi , ·)〉
∣∣2μ⊗k

u (dx)du.

The LSI (2.10) marginalizes, in the sense that

H(ν | Pk
t ) ≤ ηI (ν | Pk

t ), ∀k = 1, . . . , n, ν ∈ P((Rd)k), t ≥ 0.

Indeed, for a given k and ν ∈ P((Rd)k), this follows by applying (2.10) to the measure
ν̃ ∈ P((Rd)n) with density d ν̃/dPn

t (x1, . . . , xn) = dν/dPk
t (x1, . . . , xk). This yields

Hk
t − Hk

s + σ 2

4η

∫ t

s
Hk
u du ≤ 1

σ 2

∫ t

s

∫
(Rd )k

k∑
i=1

∣∣̂bki (u, x) − 〈μu , b(u, xi , ·)〉
∣∣2μ⊗k

u (dx)du

= k

σ 2

∫ t

s

∫
(Rd )k

∣∣̂bk1(u, x) − 〈μu , b(u, x1, ·)〉
∣∣2μ⊗k

u (dx)du,

(4.1)

where the second line comes from exchangeability. Use the definition of b̂k1 to write
the inside of the time integral of right-hand side as

k

σ 2

∫
(Rd )k

∣∣∣∣ 1

n − 1

k∑
j=2

(
b(t, x1, x j ) − 〈μt , b(t, x1, ·)〉

)

+ n − k

n − 1

〈
Pk+1|k
t,x − μt , b(t, x1, ·)

〉∣∣∣∣
2

μ⊗k
t (dx).

Let δ > 0, to be chosen later, and use the inequality (x+ y)2 ≤ (1+δ)x2+(1+δ−1)y2

to further bound this by

k

σ 2 (1 + δ−1)I + k

σ 2 (1 + δ)I I ,

where we set

I :=
∫

(Rd )k

∣∣∣∣ 1

n − 1

k∑
j=2

(
b(t, x1, x j ) − 〈μt , b(t, x1, ·)〉

)∣∣∣∣
2

μ⊗k
t (dx),

I I :=
∫

(Rd )k

∣∣∣∣n − k

n − 1

〈
Pk+1|k
t,x − μt , b(t, x1, ·)

〉∣∣∣∣
2

μ⊗k
t (dx),
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again with the convention that I I = 0 for k = n. Expanding the square in I , the
cross-terms vanish, and by exchangeability we have

I = k − 1

(n − 1)2

∫
(Rd )2

∣∣b(t, x1, x2) − 〈μt , b(t, x1, ·)〉
∣∣2μ⊗2

t (dx) ≤ γ (k − 1)

2(n − 1)2
, (4.2)

where we set γ := 2‖|b|2‖∞. We note here for future use that when k = n, we have
I ≤ γ /2(n − 1) and I I = 0, so that (4.1) becomes

Hn
t − Hn

s + σ 2

4η

∫ t

s
Hn
u du ≤ γ n

2σ 2(n − 1)
≤ γ

σ 2 .

Using a form of Gronwall’s inequality (see Lemma A.1), and setting Z = σ 2/4η, we
have

Hn
t ≤ e−Zt Hn

0 +
∫ t

0

γ

σ 2 e
Z(s−t)ds ≤ C0e

−Zt + 4γ η

σ 4 . (4.3)

Next, for k < n, we bound I I . Since b is bounded, Pinsker’s inequality yields

∣∣〈Pk+1|k
t,x − μt , b(t, x1, ·)

〉∣∣2 ≤ γ H(μt | Pk+1|k
t,x ).

Using (n − k)/(n − 1) ≤ 1 and the chain rule for relative entropy (as in (3.12)), we
get

I I ≤ γ

∫
(Rd )k

H(μt | Pk+1|k
t,x ) μ⊗k

t (dx) = γ
(
Hk+1
t − Hk

t

)
.

Adding this to (4.2) and returning to (4.1) yields

Hk
t − Hk

s ≤
∫ t

s

(
k(k − 1)γ (1 + δ−1)

2(n − 1)2σ 2 + γ̃ kHk+1
u − (Z + γ̃ k)Hk

u

)
du.

where we set γ̃ = γ (1 + δ)/σ 2. The first term inside the integral is bounded by
γ̃ k2/δn2, which follows from using (k − 1)/(n − 1) ≤ k/n and n ≤ 2(n − 1) as well
as the identity 1+δ−1

σ 2 γ = γ̃
δ
. By Gronwall’s inequality (as in Lemma A.1),

Hk
t ≤ e−(Z+γ̃ k)t Hk

0 +
∫ t

0
e−(Z+γ̃ k)s

(
γ̃ k2

δn2
+ γ̃ kHk+1

s

)
ds.

By iterating for � = k, k + 1, . . . , n as in the proof of Lemma 3.6, we have

Hk
T ≤

n−1∑
�=k

H �
0 B̃

�
k (T ) + 1

δn2

n−1∑
�=k

� Ã�
k(T ) + Ãn−1

k (T )Hn
T ,
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where Ã�
k and B̃�

k (and Z and γ̃ ) are defined as in Lemma 3.6. Plugging in (4.3) and
the assumption Hk

0 ≤ C0(k/n)p, we obtain

Hk
T ≤ C0

n p

n−1∑
�=k

�p B̃�
k (T ) + 1

δn2

n−1∑
�=k

� Ã�
k(T ) + Ãn−1

k (T )
(
C0e

−Zt + 4γ ησ−4
)

.

(4.4)

Let α = Z
γ̃

= σ 4

4γ η(1+δ)
and apply Lemmas 3.7 and 3.8 in (4.4) to get

Hk
T ≤ 2C0k p

n p
(1 + p)peZ(

p
α
−1)T + 1

δn2

n−1∑
�=k

� Ã�
k(T ) + (1 + α)α

kα

nα

(
C0 + 4γ ησ−4

)
.

(4.5)

We now complete the proof in two cases separately.

First case: pc = �4

4�� > 2

In this case p = 2. Choose δ > 0 so that α > 2. Using Lemma 3.8,

1

n2

n−1∑
�=k

� Ã�
k(T ) ≤

(
1 + (1 + α)α

α − 2

)
k2

n2
.

Using this in (4.5) and noting that (k/n)α ≤ (k/n)2 completes the proof.

Second case: pc = �4

4�� ≤ 2

In this case p = σ 4

4γ η
− ε, where ε ∈ (0, pc). Choose δ > 0 so that α = p. Since

α < 2, applying Lemma 3.8 yields

1

n2

n−1∑
�=k

� Ã�
k(T ) ≤

(
1 + (1 + α)α

2 − α

)
kα

nα
.

Using this in (4.5) completes the proof. ��

5 Proof of corollaries

5.1 Convex potentials: proof of Corollary 2.7

Here b0(t, x) = −∇U (x) and b(t, x, y) = −∇W (x − y). We need to check that the
conditions of Assumptions E and A hold. Note that the LSI for μ0 is known to imply
that μ0 has finite moments of every order.
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We start with Assumption E. Assumption (E.1) is immediate by continuity of
(∇U ,∇W ). Suppose that L < ∞. The existence and uniqueness of a weak solu-
tion (μt )t≥0 of the nonlinear Fokker–Planck equation follows from [11, Theorem
2.6], and since ∇W Lipschitz we may use the moment bounds of [11, Theorem 2.6]
to deduce ∇W (x − ·) ∈ L1(μt ) for all (t, x) as well as the continuity and thus local
boundedness of (t, x) �→ 〈μt ,∇W (x − ·)〉. This shows Assumption (E.2). The exis-
tence of a unique (starting from the given initial law Pn

0 ) solution (Pn
t )t≥0 to the

Fokker–Planck equation required by Assumption (E.3) is justified in [11, Section 2].
Because ∇U and ∇W have polynomial growth in x , the integrability requirements of
Assumption (E.3) are a simple consequences of the moments bounds for Pn

t and μt

given in [11, Corollary 2.3, Theorem 2.6], which adapt easily to the case of non-i.i.d.
initial conditions. If L = ∞ but R < ∞, we verify Assumption E in a similar fashion.

We now turn to checking Assumption A. Using the assumption ∇2(U +W ) � α I ,
the (time-inhomogeneous) generator ϕ �→ −∇ϕ · ∇U − ∇ϕ · ∇W ∗ μt + σ 2

2 �ϕ

of the Fokker–Planck equation satisfied by (μt )t≥0 obeys the curvature condition
described in [40, Proposition 3.12] and [15, Theorem 4.1], and we may thus deduce
from their arguments (see also [40, Corollary 3.7]) that μt satisfies a LSI with con-
stant σ 2

4α (1 − e−4αt/σ 2
) + η0

4 e
−4αt/σ 2

. This shows that Assumption (A.1) holds with
η = max(η0/4, σ 2/4α). For Assumption (A.2), first notice that if R < ∞, Pinsker’s
inequality gives us the required inequality with γ = 2R2. In the case where L < ∞,
recall from Remark 2.3 that μt obeys the quadratic transport inequality (2.8). Hence,
since ∇W is L-Lipschitz, we use Kantorovich duality to deduce

∣∣〈ν − μt ,∇W (x − ·)〉∣∣2 ≤ L2W2
1 (μt , ν) ≤ L2W2

2 (μt , ν) ≤ 4ηL2H(ν | μt ). (5.1)

This yields Assumption (A.2) with γ = 4ηL2. We finally check that the constant M
of Assumption (A.3) is finite and bounded uniformly in n, which here is

M := esssup
t≥0

E

∣∣∣∇W (X1
t − X2

t ) − 〈μt ,∇W (X1
t − ·)〉

∣∣∣2 . (5.2)

The case R < ∞ is evident. If L < ∞ then ∇W has linear growth, and we conclude
from the second moment bounds of [11, Corollary 2.3, Proposition 2.7]. ��

5.2 Models on the torus: Proof of Corollary 2.9

The weak well-posedness of the (linear) Fokker–Planck equation (2.13) is standard,
as K is bounded and Lipschitz. The well-posedness of the SDE (2.11) follows by
the standard argument of Sznitman [50, Chapter I.1], since K is Lipschitz. The well-
posedness of the PDE (2.12) in the weak sense follows by the superposition principle
[22, Theorem 2.6]. The fact that the solution is classical follows from standard results
on linear Fokker–Planck equations ∂tμ = −div(K̃μ) + (σ 2/2)�μ, applied with the
boundedLipschitz drift K̃ = K ∗μ. Strict positivity follows fromHarnack’s inequality
[5, Chapter 8].
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The following lemma paves the way for a short proof of Corollary 2.9, given just
after:

Lemma 5.1 For each t > 0, the density of μt is C2 and obeys the pointwise bound

1

λer0
≤ μt (x) ≤ λ

1 − r0er0
, where r0 := ‖div K‖∞

√
2 log λ

σ 2π2 − ‖div K‖∞
,

Moreover, it holds that r0 < 1/2, and μt satisfies the LSI

H(· | μt ) ≤ ηI (· | μt ), where η := λ2/(1 − 2r0).

Proof We note for future use that [10, Proposition 3.1] shows

H(μt | 1) ≤ e−2ct H(μ0 | 1), ∀t ≥ 0, where c := σ 2π2 − ‖div K‖∞, (5.3)

andwhere 1 denotes the uniformmeasure onTd . The precise setting of [10, Proposition
3.1] is somewhat different, as they take K = ∇W as a gradient field and have a sharper
estimate involving only the “unstable part" �Wu in place of div K in the definition of
c, but their proof works (and becomes slightly simpler) to yield (5.3). We next prove
the pointwise bound on μt , following an idea from the proof of [26, Theorem 2]. Fix
T > 0 and x ∈ T

d , and let (Yt )t∈[0,T ] denote the unique strong solution of the SDE

dYt = −K ∗ μT−t (Yt )dt + σdBt , Y0 = x .

Using the PDE forμ and Itô’s formula, then taking expectations, we have for t ∈ [0, T ]

EμT−t (Yt ) = μT (x) + E

∫ t

0
μT−s(Ys)div K ∗ μT−s(Ys) ds. (5.4)

Note if div K ≡ 0, as in [26, Theorem 2], then this would immediately yield the
desired conclusion μT (x) = Eμ0(YT ) ∈ [λ−1, λ]. In general, we need an additional
argument. Noting that div K ∗ 1 ≡ 0, we have for any u ∈ [0, T ] that

‖div K ∗ μu‖∞ ≤ ‖div K ∗ (μu − 1)‖∞ ≤ ‖div K‖∞‖μu − 1‖TV
≤ ‖div K‖∞

√
2H(μu | 1) ≤ √

2 log λ‖div K‖∞e−cu,

with the last step using (5.3) and H(μu | 1) ≤ log λ. Setting a = √
2 log λ‖div K‖∞,

this implies

EμT−t (Yt ) ≤ μT (x) + a
∫ t

0
e−cs

EμT−s(Ys) ds.

By Gronwall’s inequality, we obtain for all t ∈ [0, T ]

EμT−t (Yt ) ≤ μT (x) exp

(
a

∫ t

0
e−csds

)
≤ μT (x)ea/c.
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Setting t = T yields μT (x) ≥ e−a/c
Eμ0(YT ) ≥ e−a/cλ−1, as well as by (5.4)

μT (x) ≤ Eμ0(YT ) + aE
∫ T

0
e−csμT−s(Ys) ds ≤ Eμ0(YT ) + a

c
μT (x)ea/c.

Combining the last two inequalities, we find

e−a/cλ−1 ≤ μT (x) ≤ Eμ0(YT )(1 − (a/c)ea/c)−1 ≤ λ(1 − (a/c)ea/c)−1.

This yields the claimed bounds on the density μt . The assumption (2.14) ensures
that r0 < 1/2. Finally, the claimed LSI follows from the Holley-Stroock argument [3,
Proposition 5.1.6], after noting that supμt/ inf μt ≤ λ2er0/(1−r0er0) ≤ λ2/(1−2r0)
since 0 ≤ r0 < 1/2. ��
Proof of Corollary 2.9 Note that Lemma 5.1 justifies the LSI. By Pinsker’s inequality,
for any y ∈ T

d we have

∣∣〈ν − μt , K (x − ·)〉∣∣2 = ∣∣〈ν − μt , K (x − ·) − y〉∣∣2 ≤ 2‖|K − y|2‖∞H(ν | μt ).

so we may take

γ = 2 inf
y∈Td

‖|K − y|2‖∞ ≤ 1

2
sup

x,z∈Td
|K (x) − K (z)|2 = 1

2
diam2(K ).

Then rc = σ 4

4γ η
− 1 simplifies to the claimed value. ��

Appendix A. A form of Gronwall’s inequality

Lemma A.1 Let c > 0. Let (gt )t≥0 be a non-negative measurable function, integrable
on bounded sets. Let (Ht )t≥0 be a non-negative measurable function such that H0 <

∞. Suppose that

Ht − Hs ≤
∫ t

s
(gu − cHu) du, for all t ≥ s ≥ 0. (A.1)

Then

Ht ≤ e−ct H0 +
∫ t

0
e−c(t−u)gudu, for all t ≥ 0. (A.2)

Proof Mollify g and H by a common smooth probability density of compact support.
The mollifications satisfy (A.1). Applying the usual differential Gronwall’s inequality
leads to (A.2) for the mollifications. Taking L1 limits to remove the mollification
leads to the original claim (A.2), at least for almost every t . But the inequality (A.1)
implies that lim supt→s Ht ≤ Hs for every s ≥ 0, and the claim is thus valid for every
t ≥ 0. ��
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