SIDEBAR > Changes in Arctic Ocean Circulation
from In Situ and Remotely Sensed Observations

SYNERGIES AND SAMPLING CHALLENGES

By James Morison, Ron Kwok, and Ignatius Rigor

Both in situ and remote sensing observations of Arctic Ocean
hydrography and circulation have improved dramatically in
recent decades, and combining the two can yield the most
complete picture of Arctic Ocean change. Recent results
derived from classical hydrography and satellite ocean altim-
etry illustrate this synergy and also reveal a fundamental
in situ sampling challenge.

Prior to 1990, the Soviet Union made extensive in situ
observations of the Arctic Ocean using drifting stations and
annual airborne hydrographic surveys. Since then, improved
instrumentation, especially the development of more auton-
omous sampling (e.g., using drifting buoys), have greatly
expanded temporal coverage, particularly in less remote
regions such as the Beaufort Sea. These observations cap-
tured an increase in the strength of the Beaufort Gyre anti-
cyclonic circulation and its freshwater content, which are
commonly taken as representing Arctic Ocean circulation
and freshwater content as a whole (e.g., Hofmann et al.,
2015; Proshutinsky et al., 2015).

The pan-Arctic perspective on circulation and freshwater
content provided by satellite altimeters, for example, ICESat
and CryoSat-2 (Kwok and Morison, 2011, 2016) and the GRACE
and GRACE-FO gravity satellites (Morison et al., 2012), points
to challenges associated with geographically limited in situ
observing. For example, ICESat-derived dynamic ocean
topography (DOT) reveals basin-wide circulation before
(Figure 1a) and after (Figure 1b) a significant increase in the
wintertime Arctic Oscillation index in 2007 (Morison et al.,
2012, 2021). Studies that relied solely on extensive in situ
data confined mainly to the Beaufort Sea and the Transpolar
Drift attributed the 2005/2006 (Figure 1a) to 2008/2009
(Figure 1b) changes in Arctic Ocean circulation to a spin-up
of the anticyclonic Beaufort Gyre (e.g., McPhee et al., 2009).
In contrast, the broader perspective provided by ICESat
altimetry reveals an eastward extension of the trough of
depressed DOT that resulted in enhanced cyclonic circula-
tion along the Russian side of the Arctic Ocean, changing
the pathways of Eurasian runoff to increase freshwater con-
tent in the Beaufort Sea (Morison et al., 2012). Comparison
of 2011-2012 CryoSat-2 with 2008-2009 ICESat DOT illus-
trates the opposite shift after the record Arctic Oscillation
minimum in 2010 (Morison et al., 2021).

Presently, analyses based solely on in situ measurements
are blind to a fundamental mode of circulation variabil-
ity because there are so few observations on the Russian
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side of the Arctic Ocean. Morison et al. (2021) characterize
circulation changes over the last 70 years using an empir-
ical orthogonal function (EOF) analysis of annual maps of
Arctic Ocean dynamic heights (DH) derived from historical
(1950-1989) in situ data (Environmental Working Group,
1997) and satellite altimetry measurements of dynamic
ocean topography (2004-2019). Analysis of the anomaly of
DH and DOT about the mean winter DH and DOT pattern
yields a leading EOF that in its positive (cyclonic) phase is
characterized by depressed DOT and cyclonic circulation
along the Russian side of the Arctic Ocean centered roughly
in the Makarov Basin (Figure 1c). Based on buoys tracked
by the International Arctic Buoy Program from 2001 to 2021,
the chances of finding any buoy, much less an oceano-
graphic buoy capable of measuring dynamic height or fresh-
water content, in any 250 km square region (Figure 1c) are
lowest in the center of the dominant feature of EOF1 in the
Makarov Basin. The chance of finding a buoy there is less
than 10%, while the chance of finding a buoy in the Beaufort
Sea is 30%—60%. To make matters worse, though EOF1 is
overwhelmingly a depression-causing cyclonic circulation
change, it also includes a localized positive-bulge-causing
anticyclonic circulation change in the Beaufort Sea. Thus,
the sense of circulation change (e.g., more anticyclonic) in
the oversampled Beaufort Sea is the opposite of the actual
sense (e.g., more cyclonic) of the overall change.

These results heighten the importance of sea surface
heights obtained from ICESat-2 and the Surface Water and
Ocean Topography satellite (SWOT; planned for launch in
November 2022). The ICESat-2 mission, launched in 2018
(Markus et al., 2017), yields multibeam laser profiles with
10 m resolution that resolve leads in sea ice and thus provide
DOT, ice freeboard, and ice thickness. The SWOT mission
will be the first space-borne radar interferometer capable of
providing wide-swath height maps—50 km on each side of
the nadir ground track—of the open and ice-covered oceans
(Armitage and Kwok, 2017). It will observe two-dimensional
ocean structures that are previously not resolved by tradi-
tional profiling altimeters.

The combination of remote sensing and in situ observations
provides the most comprehensive picture of Arctic Ocean
circulation. Dynamic ocean topography from satellite altim-
etry combined with in situ temperature and salinity profiles
yields vertical profiles of geostrophic velocity, as well as esti-
mates of heat and salt transports. Drifting buoys equipped
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Figure 1. Averages of dynamic ocean topography (DOT) in the Arctic Ocean and sub-Arctic seas for spring (a) 2005-2006 and (b) 2008-20009.
(c) The first empirical orthogonal function (EOF) of dynamic heights for the period 1950-1989 combined with DOT from ICESat and CryoSat-2
for 2004-2019 overlain with contours of the percent chance of finding a buoy in any one 250 km square based on International Arctic Buoy
Program buoy tracks from 2001 to 2021. Figure panels from Morison et al. (2021), © American Meteorological Society. Used with permission.

with high precision GPS receivers will be especially useful
for validation of current (e.g., ICESat-2) and future (SWOT)
satellite missions.
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