
A Lightweight Approach of Human-Like Playtest
for Android Apps

Yan Zhao* Enyi Tang† Haipeng Cai‡ Xi Guo§ Xiaoyin Wang¶ Na Meng*
Virginia Tech* Nanjing University† Washington State University‡

University of Science and Technology Beijing§ The University of Texas at San Antonio¶

yanzhao@vt.edu eytang@nju.edu.cn haipeng.cai@wsu.edu xiguo@ustb.edu.cn xiaoyin.wang@utsa.edu nm8247@vt.edu

Abstract—A playtest is the process in which testers play video
games for software quality assurance. Manual testing is expensive
and time-consuming, especially when there are many mobile
games to test and every game version requires extensive testing.
Current testing frameworks (e.g., Android Monkey) are limited
as they adopt no domain knowledge to play games. Learning-
based tools (e.g., Wuji) require tremendous manual effort and
ML expertise of developers.

This paper presents LIT—a lightweight approach to generalize
playtest tactics from manual testing, and to adopt the tactics for
automatic testing. LIT has two phases: tactic generalization and
tactic concretization. In Phase I, when a human tester plays an
Android game G for a while (e.g., eight minutes), LIT records
the tester’s inputs and related scenes. Based on the collected
data, LIT infers a set of context-aware, abstract playtest tactics
that describe under what circumstances, what actions can be
taken. In Phase II, LIT tests G based on the generalized tactics.
Namely, given a randomly generated game scene, LIT tentatively
matches that scene with the abstract context of any inferred
tactic; if the match succeeds, LIT customizes the tactic to generate
an action for playtest. Our evaluation with nine games shows
LIT to outperform two state-of-the-art tools and a reinforcement
learning (RL)-based tool, by covering more code and triggering
more errors. LIT complements existing tools and helps developers
test various casual games (e.g., match3, shooting, and puzzles).

Index Terms—automated game testing, playtest, tactic gener-
alization, tactic concretization

I. INTRODUCTION

In the video game industry, playtest refers to the process

of exposing a game to its intended audience, so as to reveal

potential software flaws during the game prototyping, devel-

opment, soft launch, or after release. Game vendors often

hire human testers for game playing. Meanwhile, the mobile

gaming industry has been growing incredibly fast. According

to Sensor Tower, the worldwide spending in games grew

12.8% across the App Store and Google Play in 2019 [1].

By the end of 2019, 45% of the global gaming revenue came

directly from mobile games [2]. The booming mobile game

industry has led to a rapid growth in game testing demand,

although manual testing is always costly and time-consuming.
Researchers and developers proposed approaches to auto-

matically test Android apps and video games, but the tool sup-

port is insufficient. For instance, random testing [4] and model-

based testing [5] execute apps by generating various input

This work was supported by NSF Grants of US (CCF-1845446, CCF-
2006278, and CCF-2007718), Fundamental Research Funds for the Central
Universities of China (FRF-IDRY-19-023).

Fig. 1: A screenshot of the game Angry Birds [3]

events (e.g., button clicks). These approaches only recognize

the standard UI controls defined by Android, such as buttons

and checkboxes [6]. They cannot identify any customized UI

items (e.g., the birds and pigs shown in Fig. 1), neither do

they use any domain knowledge to effectively play games.

Some approaches use machine learning (ML) to test games

by training models [7], [8]. However, these approaches are

heavyweight: they require developers to learn to design, pro-

gram, and tune deep neural networks (DNN), which process

is challenging and time-consuming. More importantly, such

heavy workload must be repetitively fulfilled for each game,

as there is no universal DNN available to test multiple games.

To help general developers efficiently test Android games

without using ML, we created a lightweight game testing

approach—LIT. In our research, there are three challenges:

1) Different games define distinct rules and require users

to play games by taking specialized actions (e.g., “long

tap” or “swipe”). Our approach needs to mimic game-

specific user actions to test games like a human.

2) Games usually define various customized UI items or

game icons (i.e., pictures) which are not recognizable

by most automatic testing frameworks. To effectively

play games, our approach should identify those icons.

3) A game scene is an image to display different informa-

tion related to one program state (see Fig. 1). Scenes

can be generated non-deterministically, so our approach

should flexibly react to the changing program states.

To overcome all challenges, we developed LIT to have two

phases: tactic generalization and tactic concretization. Here, a

tactic describes in what context (i.e., program states), what

playtest action(s) can be taken and how to take those actions.

Phase I requires users to (1) provide snapshots of game

icons and (2) play the game G for awhile. Based on the

provided snapshots, LIT uses image recognition [9] to identify

relevant icons in a given scene. When users play G, LIT

recognizes each user action with respect to game icon(s) and

further records a sequence of 〈context, action〉 pairs. Here,

context removes scenery background but keeps all recognized

game icons. From the recorded pairs, LIT generalizes tactics

by (1) identifying abstract contexts AC = {ac1, ac2, . . .} as

well as action types AT = {at1, at2, . . .} and (2) calculating

alternative parameters and/or functions to map each abstract

context to an action type. Phase II takes in any generalized

tactics and plays G accordingly. Given a scene s, LIT extracts

the context c, and tentatively matches c with any abstract

context ac ∈ AC involved in the tactics. If there is a

match, LIT randomly picks a corresponding parameter and/or

synthesized function to create an action for game testing.

For evaluation, we applied LIT, two state-of-the-art testing

tools (i.e., Monkey [4] and Sapienz [10]), and a reinforcement

learning (RL)-based tool to a set of game apps. Our evaluation

shows that with an eight-minute user demo for each open-

source game, LIT outperformed all tools by achieving higher

test coverage and triggering more runtime errors. Specifically

for CasseBonbons [11] (a game similar to Candy Crush
Saga [12]), LIT achieved 79% branch coverage. On the other

hand, Monkey, Sapienz, and RL-based tool separately got 1%,

33%, and 58% branch coverage. LIT triggered two runtime

errors in tested games, while the other tools triggered none.

Our experiments show that LIT can effectively test three

categories of casual games: match3, shooting, and puzzles. As

there are hundreds of games belonging to these categories [13],

[14], we believe that LIT can tremendously help developers

test games and improve software quality.

To sum up, we made the following contributions:

• We designed and implemented a novel algorithm to gen-

eralize tactics from user-provided icons and short game-

playing demos. The algorithm identifies user actions,

records 〈context, action〉 pairs, and derives functions or

parameters to map game contexts to feasible actions.

• We designed and implemented a novel algorithm to test

games based on the generalized tactics. LIT reacts to any

randomly generated game scene by matching the scene

with contexts in tactics, and taking actions accordingly.

• We conducted a comprehensive evaluation, to empirically

compare LIT with two state-of-the-art tools and one RL-

based tool. LIT outperformed all tools.

At https://figshare.com/s/c7ac3cfa300e3ede1202, we open-

sourced our program and data.

II. MOTIVATING EXAMPLE

This section uses an example to intuitively explain our

research. Archery [15] is an open-source Android game (see

Fig. 2). The game rule is to shoot a target board with a bow and

Fig. 2: A snapshot of the game Archery

Fig. 3: Visualizing any 〈context, action〉 pair for Archery

arrows in order to make a great score. The game is challenging

because the target board is placed randomly after each target

hit. Suppose that a developer Alex wants to automatically test

this game. A record-and-replay approach does not quite help

as the game scenes are generated nondeterministically. Neither

random testing nor model-based testing works well for two

reasons. First, arrow and board are game-specific icons instead

of standard UI controls; existing tools cannot recognize the

icons. Second, a user scores only if s/he pulls the arrow, shoots

the arrow towards the board, and has the arrow hit the board;

existing tools blindly test games without following any rule.

Our insight is that when a user plays a game, user actions
reflect the gameplay tactics that are usable for automatic game
testing. Thus, we designed LIT to work in two modes: demo
mode and test mode. LIT monitors users’ playtest in the demo

mode and mimics game play in the test mode. To use LIT, Alex

should provide two inputs: (i) snapshots of all game icons

and (ii) a demo for a limited timespan. For the first input,

Alex can take a snapshot of the game and cut out images of

board and arrow (see regions marked with red rectangles in

Fig. 2); Alex may also specify the arrow to be actionable (i.e.,

manipulable) and the board to be target (i.e., unmanipulable).

For the second input, Alex can play the game in the demo

mode such that LIT records game scenes and traces Alex’s

finger gestures. This process continues until timeout.

Recognition of Contexts and Actions: Based on the

inputs and recorded data, LIT analyzes traces to identify

Alex’s action sequence and analyzes each scene snapshot to

identify the context. By indexing actions and contexts based on

their timestamps, LIT creates a sequence of 〈context, action〉
pairs P = {p1, p2, . . . , pn}. The information captured by a

〈context, action〉 pair pi (i ∈ [1, n]) is illustrated in Fig. 3.

Namely, every pixel of a display is represented with an xy-

coordinate. The location of each game icon o is represented

with the coordinate of o’s centroid, such as (x1, y1) for arrow

Fig. 4: Tactic inference from any

〈context, action〉 pair

TABLE I: The inferred tactic for Archery
”Abstract Context”: Actionable (arrow)

Target (board)

”Action Type”: Swipe (actionable)

”Swipe Distance”: dist1, dist2, . . . , distn
”Swipe Direction”: Linear (k1, k2, . . . , kn)

Quadratic (a1, a2, . . . , an)

”Swipe Duration”: 0.26 (second), 1.26, . . . , 0.33

Fig. 5: Tactic application given a ran-

dom scene of Archery

and (x2, y2) for board. The swipe operation is represented

with a starting point (x1, y1) and an ending point (x3, y3), as

indicated by the red dotted directed edge. Our goal of tactic

inference is to generalize mappings from contexts to actions.

Tactic Inference: Based on recognized pairs, LIT ana-

lyzes three things for automated testing:

• What is the commonality between contexts?

• What kind of actions are frequently applied?

• How is each context mapped to the corresponding action?

LIT infers any common context by comparing collected con-

texts, and finds the board and arrow to always exist while

Alex plays the game. Similarly, LIT compares all identified

actions and recognizes arrow-swiping as the major action type.

In our research, we differentiate between two types of swipe

operations: target-oriented swipes and swipes without target.

Because board is specified as target, LIT infers all arrow-

swiping operations to be target-oriented.

LIT then characterizes three property parameters for each

target-oriented swipe: (i) distance dist, (ii) direction dir, and

(iii) duration dur. For simplicity, here we only explain the

calculation of parameters (i) and (ii) for any pair pi. As shown

in Fig. 4, LIT computes dist based on the coordinates of the

start and end points. LIT calculates dir by fitting functions

to the coordinates of all three points, because such functions

reflect Alex’s potential angles to shoot the arrow. Intuitively,

LIT fits a linear function f1(x) = kx + b to the coordinates;

it also fits a quadratic function f2(x) = ax2 + bx + c. For

each linear function, LIT records k as the inferred direction

parameter because k decides the slope of f1’s line. For each

quadratic function, LIT records a because a decides the width

and direction (up or down) of a parabola’s opening [16]. To

sum up, LIT generates a tactic from Alex’s inputs (see Table I).

Tactic Application: When testing Archery, given a ran-

domly generated scene, LIT first identifies all game icons. To

swipe an arrow towards the board, LIT needs to decide the end

point (x′, y′) for the swipe operation (see Fig. 5). To do that,

LIT randomly picks a distance disti, a direction parameter p,

and a duration durj from the inferred tactic. If p = kj , LIT

solves the equation group (1) shown below to get (x′, y′);
otherwise, if p = al, LIT solves the equation group (2).

Due to the random combination between inferred parameters

and uncontrollable equation-solving procedure, LIT does not

guarantee all arrows to hit the board. However, all generated

actions are valid arrow-shootings and some actions are highly

likely to score. By diversifying the generated actions, LIT can

test the game like humans, and save Alex significant amount

of time and effort for manual testing.{
(y′ − y′1)

2 + (x′ − x′
1)

2 = dist2i
y′1 − y′ = kj × (x′

1 − x′
1)

(1)

{
(y′ − y′1)

2 + (x′ − x′
1)

2 = dist2i
y′1 − y′ = al × (x′2

1 − x′2) + b× (x′
1 − x′)

y′2 − y′1 = al × (x′2
2 − x′2

1) + b× (x′
2 − x′

1)

(2)

III. APPROACH

As shown in Fig. 6, LIT consists of seven steps to implement

two phases. In this section, we will explain each step in detail.

A. Recording

To record the screenshots and traces while a user plays

game G, we used a command-line tool Android Debug Bridge

(adb) [18]. The tool provides access to a Unix shell that we

can use to run a variety of commands on an Android device.

Specifically through the adb shell, we issued the getevent

command [19], to collect human-computer interaction data

from an Android phone and to save the data to our computer.

Prior work also uses this command to collect traces [20], [21].

The length of demo time can influence both manual work-

load and automated testing effectiveness. Based on our experi-

ence, the impact of time length on testing effectiveness varies

from game to game. For games with simpler contexts (e.g.,

Open Flood [22]), 1-minute user demo can lead to comparable

testing coverage with a 10-minute demo. For games with

complex contexts (e.g., Angry Birds [3]), a longer user demo

(i.e., 16-minute long) is usually better. Due to the time limit

and with the consideration of differences among games, we

set the default length of demo time to eight minutes.

During the demo, in every nine seconds, LIT reads the

system time t, takes a screenshot, and saves it as “png.t”.

Depending on how complex a game scene is, LIT may spend

1–2 seconds creating an image file. Afterwards, LIT creates a

trace file “txt.t” to record finger movements. At a terminal,

LIT then prompts the user to taken an action and records

all corresponding input events in the trace file. In this way,

screenshots and trace files can be aligned based on their

common timestamps. We set the time interval to nine seconds

based on our observations of (1) users’ response time and (2)

the cost of automatic screenshot-taking.

Fig. 6: LIT consists of two phases: tactic generalization and tactic concretization

Fig. 7: A screenshot of An-
droidLinkup [17]

Fig. 8: An excerpt of a trace file

Fig. 9: Exemplar function icons in Angry Birds

Fig. 8 shows an excerpt of a trace file. In the file, the first

column lists the timestamps of events, although these times-

tamps cannot be mapped to the system-level timestamp t men-

tioned above. All ABS_MT events report details on how an object

(e.g., a finger) touches the screen and makes movements. Par-

ticularly, ABS_MT_POSITION_X and ABS_MT_POSITION_Y events

show the xy-coordinates of contact points in a temporal order.

When a finger moves on the screen, multiple xy-coordinates

are recorded for the trajectory.

B. Recognition of Contexts and Actions

LIT recognizes contexts based on user-specified game icons.

Currently, users are supported to specify three types of icons:

• Actionable—the icons that a user controls or manipulates

to score (e.g., arrow in Archery),

• Target—the icons that a user does not operate but are

helpful for the user to decide how to operate actionable

icons (e.g., board in Archery), and

• Function—the icons that a user manipulates to switch

major game phases, such as moving on to the next

difficulty level or retrying the current level. Fig. 9 lists

some function icons used in Angry Birds.

The user-specified categorized icons serve two purposes. First,

they enable LIT to generalize context-aware tactics. If no icon

is specified, LIT infers tactics solely based on traces. Second,

if the user demo presents only a subset of specified icons, the

category information allows LIT to generalize inferred tactics

from seen icons to unseen ones. For instance, suppose that

a demo only uses two of the four function icons shown in

Fig. 9. LIT generalizes any tactic inferred from these two

icons to other same-typed icons. This approach design enables

LIT to effectively infer tactics without requiring a long demo.

We expect the manual effort of specifying game icons to be

little, because game developers need to define icons anyway.

In many scenarios, they can simply reuse or tailor the icons

in their projects’ assets folder for inputs.

To recognize specified icons in given screenshots, we used

OpenCV (i.e., Open Source Computer Vision Library) [9]

for image recognition. Specifically, OpenCV offers a function

cv.matchTemplate(...) [23] to search for the location of a

template image in a larger image; we configured the function

to use TM_CCOEFF_NORMED as the comparison method. The

function can flexibly match similar but different images.

Such flexibility is important for LIT to locate game icons in

screenshots because the specified icons are sometimes rotated,

shadowed, or darkened in game scenarios. For each recognized

image, OpenCV outputs coordinates of the matched area.

A user action includes one or more touch gestures made

for a valid move in games (e.g., shooting an arrow towards

the board in Archery). Our research focus on two types of

gestures: taps (i.e., clicks) and swipes. To recognize user

actions in trace files, we took an intuitive approach. Namely,

we observed that the recorded event sequence for each ges-

ture always (i) starts with ABS_MT_TRACKING_ID 0000xxxx,

(ii) ends with ABS_MT_TRACKING_ID 0000, and (iii) has mul-

tiple ABS_MT_POSTION_X and ABS_MT_POSITION_Y events in

between to show xy-coordinates of contact points. Based

on this observation, LIT processes any given trace file to

identify all segments. Inside each segment, suppose that

the first xy-coordinate is (xf , yf), the last xy-coordinate is

(xl, yl), and their related timestamps are separately tsf and

tsl. LIT then calculates two properties: distance dist =√
(xl − xf)2 + (yl − yf)2 and duration dur = tsl − tsf ; it

derives a gesture using the following heuristics:

H1: If dist > 20 && dur > 0.2 second, a swipe was made.

H2: If dist < 20 ‖ dur < 0.2 second, a tap gesture was made.

We defined the two heuristics by experimenting with dif-

ferent gestures in several games, observing the recorded

traces, and summarizing gesture-trace mappings. Our heuris-

tics are similar to those of prior work [24]. This step outputs

〈context, action〉 pairs, with each pair for one timestamp t.

C. Tactic Inference

Given 〈context, action〉 pairs, LIT infers tactics by identi-

fying abstract contexts AC = {ac1, ac2, ...} as well as action

types AT = {at1, at2, ...}, and by calculating alternative pa-

rameters and/or functions to map contexts to actions. Namely,

each tactic consists of one abstract context, one action type,
and a set of parameters and/or functions.

Fig. 10: Rules defined to infer parameters/functions for

context-action mappings

To identify abstract contexts, LIT clusters collected contexts

based on the number of icon types each context contains.

For the Angry Birds game shown in Fig. 1, some contexts

include two icon types: actionable (i.e., birds) and target (i.e.,

pigs), and some contexts include only one icon type: function

(i.e., “Next”). LIT considers each cluster to correspond to one

abstract context aci, and represents aci with the related icon

types, as shown in Table I.

To identify major action types, LIT compares the actions

related to each context cluster. If all or most of the actions are

composed of the same gesture sequence s (e.g., swipe), the

inferred action type is also represented with s. Here, “most”

means that a major action type corresponds to (i) at least 90%

of all actions, or (ii) at least 10 actions if the majority takes

up less than 90%. Furthermore, in each 〈context, action〉 pair,

LIT tentatively maps the starting coordinate of action to game

icons in the context; if the actions are always mapped to the

same icon type i, the inferred action type is refined to s(i), as

shown in Table I.

The major challenge for this step is: How do we calculate
concrete parameters and/or functions to map each abstract
context to an action type? To overcome this challenge, given

observed user actions and related contexts for each cluster, LIT

follows the rules in our predefined library (see Fig. 10) to infer

parameters and/or functions from 〈context, action〉 pairs. The

inferred data describes given certain contexts, what concrete

actions were taken by users. In later steps (Sections III-E

and III-F), LIT reuses such data to generate actions given a

new context. Namely, the inferred data establishes concrete

mappings from each abstract context to the related action type.

According to Influencer Marking Hub, in 2021, the casual

game genre is the most popular genre, with 78% of down-

loaded games falling into this category [25]. Casual games

often involve simple tactics and shorter sessions, requiring less

learned skills [26]. Typical casual games include match3 (e.g.,

Candy Crush), shooting (e.g., Angry Birds), word games, and

puzzles (e.g., 2048). We focus on casual games because of

their popularity and simplicity. Based on our experience with

casual games, we defined a library to include five rules (see

Fig. 10), which are used to infer frequently applied tactics.

Fig. 11: The numeric repre-

sentation of Fig. 7

1 1 1
0 0 0
0 0 0
1 0 0

1 1

(a) (b)

1

Fig. 12: Normalized context

and extracted submatrix

Fig. 13: Neighbors of a

matrix element

2 5 2
2 2 2
5 3 4
1 4 2

Fig. 14: LIT creates an

action for a new context

R1 targets the puzzle games that require users to make tap

or swipe gestures; users can score even if they blindly take ac-

tions without recognizing any icon. LIT extracts properties of

gestures for each action. Particularly, for any tap, LIT extracts

two parameters: the starting coordinate (xf , yf) and duration

dur. For any swipe, LIT extracts three parameters: distance

dist, duration dur, and angle φ = arcsin((yl − yf)/dist)).

R2 infers the tactics that (i) start a game or (ii) switch game

phases (i.e., difficulty levels). It describes that if an action

was applied to a function icon (i.e., i == function), LIT

extracts gesture properties with respect to that icon. Namely,

for any tap, LIT extracts one property—dur; for any swipe,

LIT extracts three properties: dist, dur, and φ.

R3 is defined for swipe-based shooting games [14], in which

users swipe an actionable icon (i.e., i == actionable) and

the context has one or more targets (see Fig. 2). In such

scenarios, LIT extracts three swipe-related properties for each

gesture (dist, dur, and φ), and synthesizes linear and quadratic

functions to fit any potential curves between the swiped icon

and a target. In the scenarios where multiple target icons

coexist (see Fig. 1), it is hard to guess at which target a

user aims; thus, LIT randomly picks a target to synthesize

functions. In our implementation, LIT adopts SciPy [27] to

fit both linear and quadratic functions to given coordinates.

Although SciPy can synthesize arbitrarily complex functions,

based on our experience, the generated linear and quadratic

functions are very effective for LIT to test games. Finally, one

coefficient of each synthesized function is saved for later use.

R4 focuses on match3 games [13], which lay actionable

icons in matrix-like structures and match identical icons in cer-

tain places. As shown in Fig. 7, the AndroidLinkup game puts

fruits in a matrix, and a user needs to tap two fruits of the same

type to eliminate them both and earn points. If we use different

numbers to refer to different fruits, a 〈context, action〉 pair

can be visualized as Fig. 11. We decided not to use such

context as is in the inferred tactic for two reasons. First,

randomly generated scenes can put fruits in arbitrary ways

and the reusability of such context is limited. Second, not all

elements in the matrix help explain the user action. Thus, we

developed an action-oriented submatrix extraction algorithm

to facilitate tactic inference and application.

Algorithm 1: R4–action-oriented submatrix extraction

Input: context matrix c (identified by LIT), matrix elements (i.e.,
actionable icons) involved in the action E = {e1, e2, . . .}

Output: The extracted submatrix m
1.1 Initialize sc = Rectangle(minX,minY,maxX,maxY) to cover

all elements in E
1.2 Normalize c to another matrix c1 based on E
1.3 q.enqueueAll(E)
1.4 while q �= ∅ do
1.5 e = q.dequeue()
1.6 for each unprocessed neighbor n of e do
1.7 if n has the value “1” then
1.8 q.enque(n)
1.9 Enlarge the rectangle sc as needed to cover n

1.10 return the submatrix of c1—m—that is covered by sc

Based on our experience, icons in matrices are manipulated

usually because they are identical to some surrounding icons.

Thus, we designed Algorithm 1 to extract an action-relevant

submatrix (i.e., pattern) that reflects the commonality. In this

algorithm, LIT first initializes a rectangle sc based on the lay-

out of c to cover all elements in E. Secondly, LIT normalizes

c to another matrix c1 as follows: if an element is identical

to any member e ∈ E, the element is converted to “1”; if the

element is different from all members in E, it is converted to

“0”; otherwise, if a grid in c has no element, “-1” is used. For

instance, Fig. 12 (a) shows the normalized representation for

the matrix of Fig. 11. Thirdly, LIT enqueues all elements in

E. For each dequeued element e, LIT examines the neighbors

(see Fig. 13). If an unprocessed neighbor n corresponds to

“1” in c1, LIT enqueues n. LIT also checks whether sc is

large enough to cover n; if not, sc is enlarged. This process

continues until the queue is empty and sc becomes stabilized.

Our algorithm returns m—the submatrix in c1 covered by

sc. Fig. 12 (b) shows the submatrix derived from Fig. 12

(a). LIT then infers a function map(m) = E from each

〈context, action〉 pair. As what LIT does for R2, LIT also

conducts icon-oriented property extraction for gestures. There-

fore, the derived tactic includes map functions and icon-

related gesture property parameters.

R5 is defined for some puzzle games, where actionable

icons are specified but context has no target or matrix-like

structures. Similar to what it does for R2, LIT simply extracts

gesture properties with respect to the manipulated icons.

D. Screenshot Taking & Context Recognition

These two steps reuse part of the implementation of Steps 1–

2. Specifically, given game G, LIT periodically takes snapshots

via adb, relying on OpenCV and user-specified game icons to

identify contexts. Because context is represented by the game

icons extracted from a screenshot, when developers specify no

game icon, LIT recognizes no context.

E. Context Matching

Given an identified context c′, LIT tries to match c′ with

the abstract context ac of any derived tactic based on (1) icon

types and/or (2) matrix layouts. According to our experience,

such tentative matching often succeeds. This is because LIT

extracted at most dozens of abstract contexts from each demo;

these contexts can be efficiently enumerated for matching

trials. In the worst case where context matching fails, LIT

randomly generates an action to proceed ignoring the context.

F. Tactic Application

Intuitively, this step is the reverse process of tactic inference.

Given a demo, tactic inference characterizes game contexts and

derives a set of features to describe user actions. Correspond-

ingly, this step leverages context characterization and derived

features to randomly generate actions, and uses adb to issue

those actions for playtest. Therefore, depending on the rules

adopted for tactic inference, LIT applies tactics differently.

With more details, if R1 is used for inference, LIT applies

tactics by generating actions based on arbitrary parameter

combinations between observed gestures. For instance, if a tap

action is needed, LIT randomly picks a recorded coordinate

(xf , yf) and a duration dur to create a tap. Similarly, if a

swipe is needed, LIT creates the gesture by randomly picking

dist, dur, and φ from its parameter sets. LIT similarly applies

tactics if R2 or R5 is in use. When R3 is used for tactic

inference, as illustrated by Section II, LIT randomly picks

dist, direction parameter p, and dur to decide how to swipe

an actionable icon with respect to a target icon.

When R4 is used for inference, to apply tactics to the

given context c′, LIT tentatively matches c′ with any extracted

submatrix m. If there is a submatrix m′ in c′ such that

(i) the elements matching 1’s have the same icon index i
and (ii) the elements matching 0’s have indexes other than

i, then LIT identifies elements for operation and creates an

action by randomly mixing collected gesture properties. For

instance, Fig. 14 presents a new context of AndroidLinkup
that is totally different from the original context in Fig. 11

(a). When matching this context with the s in Fig. 11 (b), LIT

can locate two icons and generate two taps accordingly.

IV. EVALUATION

There are two research questions in our evaluation:

• RQ1: How effectively can LIT test game apps?

• RQ2: How does LIT compare with widely used tools?

This section first presents our dataset and evaluation metrics.

It then explains the evaluation results for LIT and other tools.

A. Dataset

We included nine Android games into our evaluation set (see

Table II): three closed-source games and six open-source ones.

These games were chosen because they present diverse context

characteristics and require users to take various actions. With

more details, users need to prescribe at least one function icon

in each game so that LIT infers how to enter those games.

Users need to specify actionable icons for some games (e.g.,

CasseBonbons), and specify both actionable and target icons

for some other games (e.g., Archery). Each game requires for

user actions like taps or swipes. In Table II, column LOC
shows the number of lines of code for each open-source game.

TABLE II: The nine Android games used in our evaluation

Game Type (Open or
Closed source)

Category LOC Player’s Actions Context Characteristics

Angry
Birds [3]

C Shooting - Fling (or swipe) multiple colored birds to defeat green-colored pigs in
a structure or tower.

With actionable icons (i.e., birds) and
target icons (i.e., pigs)

Ketchapp Bas-
ketball [28]

C Shooting - Swipe the ball towards the basketball hoop. With actionable icons (i.e., balls) and
a target icon (i.e., hoop)

Star Pop
Magic [29]

C Match3 - Tap two or more adjacent identical stars to crush them. With actionable icons (i.e., stars) or-
ganized in a matrix

2048 [30] O Puzzle 1,692 Swipe any point up/down/left/right to move the tiles. When two tiles
with the same number touch, they merge into one.

Without actionable or target icon

Apple
Flinger [31]

O Shooting 14,085 Shoot (to swipe) apples towards the enemy’s base With actionable icons (i.e., apples),
but not organized in a matrix

AndroidLinkup [17] O Match3 2,102 Tap two identical items to connect them with three or fewer line
fragments and to crush them.

With actionable icons (i.e., fruits) or-
ganized in a matrix.

Archery [15] O Shooting 2,833 Shoot (or swipe) arrows towards a board. With actionable icons (i.e., arrows)
and a target icon (i.e., board)

CasseBonbons [11] O Match3 2,549 Swipe colored pieces of candy on a game board to make a match of
three or more of the same color.

With actionable icons (i.e., candies)
organized in a matrix

Open
Flood [22]

O Puzzle 1,659 Start in the upper left corner of the board. Tap the colored buttons along
the bottom of the board to flood all adjacent filled cells with that color.

With actionable icons (i.e., buttons),
but not organized in a matrix

“-” means the data is unavailable.

B. Metrics

Similar to prior work [32], [33], we measured code cov-

erage of execution by different testing tools to assess their

effectiveness. Theoretically, the more code is executed by a

testing tool, the better. We adopted two coverage metrics:

Line Coverage =
of lines of code covered

Total # of lines
× 100%

Branch Coverage =
of code branches covered

Total # of branches
× 100%

In our implementation, we used JaCoCo [34] to collect cover-

age information. Because JaCoCo uses the ASM library [35]

to modify and generate Java byte code for instrumentation

purpose, the above-mentioned metrics are only computable

for open-source games. Code coverage is not computable
for closed-source software because we have no access
to the codebases. To compare tools based on closed-source

software, we adopted two additional metrics: Game Score
and Game Level. Game Score reflects the points earned

by a testing tool after it plays a game for awhile. We believe

that the higher score a tool earns, the more likely that the tool

covers more code. Similarly, Game Level shows at which

difficulty level a testing tool is when the allocated testing time

expires; the higher level, the better.

C. The Effectiveness of LIT

Given a game G, the first author manually played G for

eight minutes in LIT’s demo mode, and then switched to LIT’s

test mode to automatically play G for one hour. Because there

is randomness in the test inputs generated by LIT, we ran LIT

to play each game five times so that each test run lasted for one

hour. In Table III, the LIT columns show average results of

our tool across five runs. The Demo columns show the results

by manual testing. In this table, “-” means that the data is

not available. Three reasons explain such data vacancy. First,

some games do not show game scores (i.e., AndroidLinkup and

Open Flood). Second, some games have a single difficulty

level instead of multiple (e.g., Apple Flinger and Archery).

Third, some tools do not test the three closed-source games.

By comparing the Demo and LIT columns in Table III, we

observed LIT to consistently outperform user demos by ac-

quiring higher scores and passing more levels. For instance, in

Angry Birds, Demo acquired 179,394 points and stopped at the

2nd level; LIT obtained 1,147,827 points and stopped at the 7th

level. This means that LIT did not simply record or repeat what

users did. Instead, it effectively inferred tactics from demos,

and applied those tactics in reaction to randomly generated

scenes. Our observation also indicates that with LIT, users do

not need to manually test all games comprehensively. They

can test the games for only a short period of time, and rely

on LIT to spend more time similarly testing those games. The

LIT columns in Table IV present code coverage measurements

for our tool. Among the six open-source games, LIT achieved

50–81% Line Coverage and 37–79% Branch Coverage.

Finding 1: Based on eight-minute user demos, LIT ef-
fectively earned game scores, passed difficulty levels, and
executed lots of code within one-hour playtest.

D. Effectiveness Comparison Among Tools

To assess how well LIT compares with prior work, we also

applied two state-of-the-art tools to our dataset: Monkey [4]

and Sapienz [10]. Monkey implements the most basic ran-

dom strategy; it treats the app-under-test as a blackbox and

randomly generates UI events (e.g., by tapping or swiping

a random pixel). Sapienz uses multi-objective search-based

testing to automatically explore and minimize test sequences,

while maximizing coverage and fault revelation. Three reasons

explain why we chose these two tools for experiments. First,

Choudhary et al. [32] conducted an empirical study by running

multiple automatic testing tools on the same Android apps,

and revealed that Monkey outperformed the other tools in

terms of code coverage and runtime overhead. Second, Mao

et al. [10] conducted a more recent study and showed that

Sapienz worked even better than Monkey. Third, similar to

LIT, neither tool uses any machine learning technique.

Reinforcement learning (RL)-based tools were proposed to

test games [7], [8], [36], but none of the tools is publicly

available or executable with Android apps. To ensure the

comprehensiveness and representativeness of our empirical

TABLE III: The comparison of Game Score and Game Level among user demos, LIT, Monkey, Sapienz, and RLT

Game Score Game Level

Game
Demo LIT Monkey Sapienz RLT Demo LIT Monkey Sapienz RLT

Angry Birds 179,394 1,147,827 35,546 - - 2 7 0 - -

Ketchapp Basketball 2 37 0 - - 1 3 0 - -

Star Pop Magic 695 2,805 225 - - 1 2 1 - -

2048 332 2,212 586 600 2,492 - - - - -

Apple Flinger 38,290 83,718 0 0 14,290 4 6 0 0 3

AndroidLinkup - - - - - 2 5 0 1 1

Archery 180 493 0 0 20 - - - - -

CasseBonbons 4,050 21,270 0 15 2,110 2 7 0 1 1

Open Flood - - - - - 1 6 0 1 3

“-” means that the data is unavailable. For each game, we bolded the highest game score and highest game level.

TABLE IV: Code coverage comparison based on open-source games

among user demos, LIT, Monkey, Sapienz, and RLT

Line Coverage (%) Branch Coverage (%)

Game
Demo LIT

Mon-
key

Sapi-
enz

RLT Demo LIT
Mon-
key

Sapi-
enz

RLT

2048 74 81 80 77 81 63 68 65 62 67

Apple Flinger 50 53 19 9 49 50 52 17 7 50

AndroidLinkup 70 77 63 58 70 63 72 41 32 61

Archery 63 72 66 20 33 33 49 39 6 22

CasseBonbons 60 77 4 50 64 52 79 1 33 58

Open Flood 36 50 32 42 49 33 37 20 28 37
Average 59 68 44 43 58 49 60 30 28 49 Fig. 15: Overview of RLT—a testing tool based on RL

comparison, we built a vanilla RL-based tool and refer to

it as RLT (see Section IV-D1). Among the three baseline

tools, Monkey can test all games. Sapienz only tests apps

installed on the Android Emulator [37]. As the three closed-

source games are not installable on the emulator, Sapienz

could not test them. RLT was built to use line coverage values

as rewards (see Section IV-D1), so it is inapplicable to close-

source games. Finally, we conducted two experiments with all

four tools. In the first experiment, we applied each tool to

every game five times, with each test run lasting for one hour;

we then compared the average coverage measurements across

tools. Second, we used each tool to run every game for five

hours, and compared the number of runtime errors triggered.

1) RLT: We built RLT on top of Gym [38]—a toolkit for

creating RL algorithms. Because the nine games have distinct

icon sets and icon positions, it is infeasible to program a single

universal RL agent for all games. Thus, we programmed an
RL agent for each game by hardcoding the icon set, icon
positions, and specialized ways to click function icons.
As shown in Fig. 15, a typical RL agent (e.g., intelligent

gameplayer) interacts with the environment in discrete time

steps. At each time t, the agent A receives the current state st
and reward rt; it then chooses an action at from the action set

either randomly or based on its deep neural network (DNN),

and sends at to the environment E. In our implementation,

a state is a game screenshot automatically captured by A,

a reward is the line coverage computed by JaCoCo, and an

action is a tap or swipe applied to an actionable icon. The

goal of A is to learn a policy from 〈state, action〉 pairs that

produces actions to maximize the line coverage.

To achieve the goal, we encoded a uniform action set into

A for all games. The action set includes two types of actions:

tap and swipe. To randomly generate an action, RLT first

generates a random number. If the number is odd, it creates

a tap; otherwise, it produces a swipe by further randomly

generating (1) the end position/coordinate and (2) duration

of the swipe gesture. RLT then invokes adb to interact with

the tested app accordingly. Additionally, we programmed A to

iteratively learn a DNN that outputs actions given game scenes.

Intuitively, in the first iteration, A randomly picks actions in

the encoded action set, and sends actions in sequence to E to

observe the corresponding states and rewards.

In the second iteration, A trains a policy based on observed

data; it then uses the trained policy together with a random-

based strategy to generate actions and to interact with E. In

the third iteration, A refines its policy based on the observed

data in the second iteration, and continues generating actions

for interactions. Such iterative learning continues until timeout

(e.g., after eight minutes). We implemented our DNN by

following the architecture design of prior work [39], [40]. The

architecture has (1) a stack of three convolution layers with

a ReLU activation and followed by max-pooling layers, and

(2) three fully connected layers followed by a softmax layer.

The first two convolution layers separately use 32 3×3 filters;

the third convolution layer uses 64 3× 3 filters. The pool size

in max pooling is 2× 2. The first two fully connected layers

separately have 24 and 48 neurons; the number of neurons in

the third fully connected layer is equal to the number of valid

actions in a game. The batch size in each iteration is 16.

2) Comparison Based on Game Score and Game Level:
As shown in Table III, LIT outperformed Monkey and Sapienz

by always acquiring higher scores and passing more lev-

els. For instance, when testing Apple Flinger, LIT obtained

83,718 points and arrived at Level 6 with one-hour playtest.

Meanwhile, neither Monkey nor Sapienz earned any point or

passed any level. Among the six open-sourced games, LIT

outperformed RLT when testing five games (except for 2048).

Two reasons can explain why Monkey and Sapienz worked

much worse than LIT. First, both tools do not know how to

enter the game, and spent lots of time clicking random pixels

on the display before accidentally hitting the “Play” button.

Second, Apple Flinger requires players to swipe certain icons

to hit targets. Because neither tool has the domain knowledge,

they cannot properly generate swipe actions for scoring. RLT

outperformed Monkey and Sapienz because in each agent,

we hardcoded the game-specific icon set, icon positions, and

tapping actions for function icons; we also defined a universal

action set for all agents. Such coded domain knowledge

enables RLT to iteratively try different actions, observe the

reward outcomes, and refine its policy.

RLT worked worse than LIT in most scenarios for two

reasons. First, RLT derives and refines policies based on

actions randomly applied to icons, while LIT infers tactics

from user demos that indicate not only contexts and actions,

but also winning strategies of developers. Namely, there is

more domain knowledge manifested by user demos than that

hardcoded into agents; to learn the unspecified knowledge,

RLT has to go through many iterations to well train its policy.

Second, the DNN architecture in RLT is very complex; it

repetitively processes large images of screenshots and op-

timizes hundreds of parameters before being stabilized. As

we trained RLT for only eight minutes (i.e., the same length

with the demo time), it is possible that RLT was not trained

sufficiently and it worked less effectively than LIT.

3) Comparison Based on Coverage Metrics: According to

Table IV, LIT achieved 68% line coverage and 60% branch

coverage on average; Monkey got 44% and 30% on average;

Sapienz’s values are 43% and 28%; RLT acquired 58% and

49%. LIT achieved higher coverage measurements than other

tools; it worked similarly to RLT for 2048 and Open Flood.

Two reasons can explain the observation. First, 2048 and

Open Flood are relatively simple and require for tap gestures;

even Monkey and Sapienz could smoothly test those games

by randomly clicking pixels on screens. Second, the other

four games have more complex contexts (e.g., by including

target icons or organizing actionable icons in a matrix), and/or

require for carefully planned swipe gestures. LIT managed

to infer the tactics, and adopted those tactics to generate

high-quality swipe gestures. Nevertheless, with in eight-minute

training, RLT was unable to create a policy smart enough to

generate as many meaningful actions as LIT does.

4) Comparison Based on Triggered Errors: In our exper-

iments, LIT revealed one runtime failure in Archery and one

program crash in CasseBonbons. However, none of the other

tools triggered any runtime error. We reported the revealed

two issues to developers by filing pull requests, but have not

received any response yet.

Finding 2: On average, LIT outperformed Monkey and
Sapienz by playing games more smartly; it outperformed
RLT although RLT has a complex DNN design and the agent
programming hardcodes a lot more domain knowledge.

Discussion. LIT outperformed RLT, although we pro-

grammed nine specialized agents inside RLT to separately

test the nine games. By improving agent programming and

optimizing hyperparameter settings, AI experts may be able

to create better RL-based tools to outperform LIT. However,

LIT can serve as a better tool in the following circumstances.

First, developers have little or no expertise in artificial intelli-

gence, and cannot program or optimize agents independently.

Second, developers have insufficient computing resources to

thoroughly train a deep-learning model for each game app.

V. THREATS TO VALIDITY

Threats to External Validity: All inferred tactics and

empirical findings mentioned in this paper are limited to

our experiment dataset. Our rule library for tactic inference

currently focuses on three major types of games: (1) basic

puzzle games that require no specialized consideration for

context (e.g., 2048), (2) shooting games (e.g., Archery), and

(3) match3 games (e.g., CasseBonbons). We noticed that prior

work on automatic game testing evaluates each tool with only

1–3 games [7], [8], [36], so our dataset is much larger than the

state-of-the-art research. In the real world, we found hundreds

of games belonging to (2) and (3) [13], [14], which fact implies

the wide application scope of LIT.

To better understand LIT’s potential application scope in the

real world, we examined the most popular 20 games listed on

Google Play [41]. 11 games fall into the categories LIT focuses

on; the remaining 9 games belong to 4 categories: adventure

(e.g., Roblox [42]), race (e.g., Subway Surfers [43]), pet (e.g.,

Pou [44]), and educational (ABCya! [45]).

The four extra categories mentioned above cannot be tested

by LIT for various reasons. First, adventure games have

maps/tracks for players to explore. The scenery and paths

along different tracks can be very different from each other,

so it is difficult for LIT to infer tactics from the user demo

with part of a track and to apply those tactics for playtest

on other tracks. Second, race games usually switch scenes so

fast that LIT cannot capture screenshots in a timely manner.

Third, pet games (e.g., Pou) provide natural-language hints to

players, guiding them to look after pets. Currently LIT does

not have any natural-language processing capability. Fourth,

educational games (e.g., ABCya!) require players to answer

questions based on their knowledge background (e.g., word

spelling skills). LIT needs to be integrated with some databases

of knowledge (e.g., dictionary) to test such games.

VI. RELATED WORK

The related work of our research includes automated testing

for Android apps, empirical studies on automated testing for

Android apps, and automated game testing.

A. Automated Testing for Android Apps

Various tools were proposed to automate testing for Android

apps [4], [5], [10], [20], [46]–[54].

Random-based tools test apps by generating random UI

events and system events [4], [48]. Given an app to test,

model-based tools use static or dynamic program analysis to

build a model for the app as a finite state machine (FSM) [5],

[49], [52]. An FSM represents activities as states and models

events as transitions. The built model is then used to generate

events and explore program behaviors. Since random-based

and model-based tools cannot trigger the program behaviors

that require for specific inputs, systematic exploration tools

were proposed to reveal such hard-to-trigger behaviors in

order to increase test coverage [46], [50], [54]. In particular,

ACTEve [46] is a concolic-testing tool that symbolically tracks

events from the point where they originate to the point where

they are handled, infers path constraints, and creates test inputs

based on the inferred constraints. However, these approaches

do not recognize customized UI items, neither do they observe

domain-specific rules to test games.

Record-and-replay tools record inputs and program exe-

cution when users manually test apps, and then replay the

recorded data to automatically repeat the testing scripts [20],

[51]. The record-and-replay methodology assumes that GUIs

are always organized in a deterministic way and UI items are

always put at fixed locations. However, when game scenes

are randomly generated and game icons randomly move, the

above-mentioned assumptions do not hold. Humanoid [53]

is closely relevant to LIT. It uses deep learning to train a

model with the recorded human-computer interaction traces

from lots of existing apps. To test a new app A based on

the model, Humanoid generates input events depending on (1)

A’s similarity with existing apps and (2) the frequent actions

users take given similar GUIs. However, Humanoid cannot test

games when there is no Android widget (e.g., buttons); it is

insensitive to any app-specific interaction modes because the

trained model focuses on the commonality between apps.

B. Empirical Studies on Android App Testing

Researchers conducted studies on automated testing for An-

droid apps [32], [55]–[58]. Specifically, Choudhary et al. [32]

studied test-input generation tools for Android. Among the

seven tools explored, Monkey [4] was found to execute or

test most code. Based on the study, Zeng et al. [55] applied

Monkey to WeChat—a popularly used Android app, and

revealed two limitations of Monkey. First, Monkey generated

many redundant events. Second, Monkey is oblivious to the lo-

cations of widgets (e.g., buttons) and GUI states. Mohammed

et al. [57] recruited eight users to test five Android apps,

and also applied Monkey to the same apps. They revealed

that Monkey could mimic human behaviors, when apps have

UIs full of clickable widgets to trigger logically independent

events. However, Monkey was insufficient to test apps that

require information comprehension and problem-solving skills

like games. Our idea was stimulated by prior work. Some of

our observations and experience corroborate prior findings.

C. Automated Game Testing

Several approaches were introduced to automate game test-

ing [7], [8], [36], [59]–[61]. Specifically, online testing (e.g.,

TorX [59] and Spec Explorer [60]) is a form of model-based

testing. With online testing, testers use a specification (or

model) M of the system’s expected behavior to guide testing,

and to detect any discrepancy between the implementation

under test (IUT) and M . Both IUT and M are viewed as

interface automata to establish formal conformance relations

between them. However, these testing methods require users to

use domain-specific languages to prescribe models. Sikuli [62]

is an open-source GUI based test automation tool. It uses

techniques like “Image Recognition” and “Control GUI” to in-

teract with elements of web pages and windows popups. Sikuli

requires users to script the testing procedure for automation.

In comparison, LIT does not require users to prescribe any

model or script; it infers playtest tactics from user demos and

uses the tactics to automate testing.

Deep learning-based approaches train models with lots of

playtest data and use those models to predict the most “human-

like” action in a given game scene [7], [8], [36]. For instance,

Wuji [7] is the state-of-the-art tool that uses evolutionary

algorithms, deep reinforcement learning, and multi-objective

optimizations to perform automatic game testing. When testing

a game, Wuji intends to balance between winning the game

and exploring the space. Since we were unable to execute

Wuji even though we contacted the authors for help, we

could not compare LIT with it empirically. These learning-

based approaches usually (1) consume lots of computing time

and resources for game-specific training, and (2) require users

to build DNN architectures and tune hyperparameters. When

developers cannot afford the time, resource, or effort required

by the usage of learning-based tools, LIT can serve as a

lightweight alternative that generates human-like inputs to test

games efficiently and effectively.

VII. CONCLUSION

As the mobile game market grows rapidly, there is an

increasing demand for advanced testing methods to efficiently

test games. Manual testing is expensive and time-consuming,

and existing automatic tools are either too simple to test games

or too complex for general developers to use. When developers

have little domain knowledge of ML and limited resources

(i.e., time and computation), we believe lightweight testing

methods based on user demos to be more cost-effective. Thus,

in this paper, we introduced a novel approach LIT to achieve

a better trade-off between the two factors of game testing:

the testing effectiveness and the technical complexity. To test

a game app, LIT takes in user-specified game icons and a

demo; it then infers tactics from the demo and applies those

tactics to automatically test the same game. Our evaluation

shows exciting results of LIT; it also evidences the strength

of rule-based tactic inference. In the future, we will conduct

a larger-scale evaluation of LIT, and include more inference

rules into LIT to further improve the tool capability.

ACKNOWLEDGMENT

We thank reviewers for their valuable feedback. We also

thank Weihao Zhang for his involvement in the project.

REFERENCES

[1] “The mobile games market is getting bigger – and not
just for the top ten,” https://www.gamesindustry.biz/articles/
2020-02-03-the-mobile-games-market-is-getting-bigger-and-not-just\
-for-the-top-ten, 2020.

[2] “Mobile gaming is a $68.5 billion global business, and
investors are buying in,” https://techcrunch.com/2019/08/22/
mobile-gaming-mints-money/, 2019.

[3] “Angry Birds,” https://www.angrybirds.com, 2020.
[4] “Monkey,” https://developer.android.com/studio/test/monkey, 2020.
[5] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and

A. M. Memon, “Using gui ripping for automated testing of android
applications,” in 2012 Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, 2012, pp. 258–261.

[6] “Android - UI Controls,” https://www.tutorialspoint.com/android/
android user interface controls.htm, 2020.

[7] Y. Zheng, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng, Y. Liu, R. Shen,
Y. Chen, and C. Fan, “Wuji: Automatic online combat game testing using
evolutionary deep reinforcement learning,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2019, pp. 772–784.

[8] S. F. Gudmundsson, P. Eisen, E. Poromaa, A. Nodet, S. Purmonen,
B. Kozakowski, R. Meurling, and L. Cao, “Human-like playtesting with
deep learning,” in 2018 IEEE Conference on Computational Intelligence
and Games (CIG), 2018, pp. 1–8.

[9] “OpenCV,” https://opencv.org, 2020.
[10] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated

testing for android applications,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, ser. ISSTA 2016. New
York, NY, USA: Association for Computing Machinery, 2016, pp.
94–105. [Online]. Available: https://doi.org/10.1145/2931037.2931054

[11] “casseBonbons,” https://github.com/IsmaelCussac/casseBonbons, 2020.
[12] “Candy Crush Saga,” https://king.com/game/candycrush, 2020.
[13] “Match 3 games,” https://www.match3games.com, 2021.
[14] “Shooting Games,” https://www.crazygames.com/c/shooting, 2021.
[15] “Archery,” https://github.com/kalina2002/Archery, 2020.
[16] “The graph of y = ax2 + bx + c,” https://www.

mathplanet.com/education/algebra-1/quadratic-equations/
the-graph-of-y-ax-2-plus-bx-plus-c, 2020.

[17] “AndroidLinkup,” https://github.com/csuyzb/AndroidLinkup, 2020.
[18] Google, “Adb, https://developer.android.com/studio/command-line/adb.”
[19] “Getevent,” https://source.android.com/devices/input/getevent, 2021.
[20] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “Reran: Timing- and

touch-sensitive record and replay for android,” in Proceedings of the
2013 International Conference on Software Engineering, ser. ICSE ’13.
IEEE Press, 2013, pp. 72–81.

[21] Y. Hu, I. Neamtiu, and A. Alavi, “Automatically verifying and
reproducing event-based races in android apps,” in Proceedings
of the 25th International Symposium on Software Testing and
Analysis, ser. ISSTA 2016. New York, NY, USA: Association
for Computing Machinery, 2016, pp. 377–388. [Online]. Available:
https://doi.org/10.1145/2931037.2931069

[22] “open flood,” https://github.com/GunshipPenguin/open flood/, 2020.
[23] “Template Matching,” https://docs.opencv.org/4.x/d4/dc6/tutorial py

template matching.html, 2021.
[24] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Humanoid: A deep learning-based

approach to automated black-box android app testing,” 2020.
[25] “20 Mobile Gaming Statistics That Will Blow You Away —

Mobile Gaming Industry Stats,” https://influencermarketinghub.com/
mobile-gaming-statistics/, 2021.

[26] “GDC ’08: Are casual games the future?” https://www.cnet.com/tech/
gaming/gdc-08-are-casual-games-the-future/, 2018.

[27] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov,
A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng,
E. W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman,
I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and S. . . Contributors, “SciPy
1.0–Fundamental Algorithms for Scientific Computing in Python,” arXiv
e-prints, p. arXiv:1907.10121, Jul. 2019.

[28] “Ketchapp Basketball,” https://play.google.com/store/apps/details?id=
com.ketchapp.ketchappbasketball&hl=en US, 2020.

[29] “Star Pop Magic,” https://play.google.com/store/apps/details?id=in.
game.starmagic, 2020.

[30] “2048,” https://github.com/gabrielecirulli/2048, 2020.

[31] “apple-flinger,” https://github.com/ar-/apple-flinger, 2020.

[32] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input
generation for android: Are we there yet?” in 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
Nov 2015, pp. 429–440.

[33] C. Zhang, H. Cheng, E. Tang, X. Chen, L. Bu, and X. Li, “Sketch-guided
gui test generation for mobile applications,” in 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2017, pp. 38–43.

[34] “JaCoCo,” https://www.eclemma.org/jacoco/.

[35] “ASM,” https://asm.ow2.io, 2020.

[36] S. Ariyurek, A. Betin-Can, and E. Surer, “Automated video game testing
using synthetic and human-like agents,” IEEE Transactions on Games,
pp. 1–1, 2019.

[37] “Run apps on the Android Emulator,” https://developer.android.com/
studio/run/emulator, 2021.

[38] “Gym,” https://gym.openai.com, 2021.

[39] “Building powerful image classification mod-
els using very little data,” https://blog.keras.io/
building-powerful-image-classification-models-using-very-little-data.
html, 2016.

[40] “Reinforcement learning – Part 2: Getting started with Deep
Q-Networks,” https://www.novatec-gmbh.de/en/blog/deep-q-networks/,
2018.

[41] “games - Android Apps on Google Play,” https://play.google.com/store/
search?q=games&c=apps&hl=en US&gl=US, 2021.

[42] “Roblox,” https://play.google.com/store/apps/details?id=com.roblox.
client&hl=en US&gl=US, 2021.

[43] “Subway Surfers,” https://play.google.com/store/apps/details?id=com.
kiloo.subwaysurf&hl=en US&gl=US, 2021.

[44] “Pou,” https://play.google.com/store/apps/details?id=me.pou.app&hl=
en US&gl=US, 2021.

[45] “ABCya! Games,” https://play.google.com/store/apps/details?id=com.
abcya.android.games&hl=en US&gl=US, 2021.

[46] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated
concolic testing of smartphone apps,” in Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, ser. FSE ’12. New York, NY, USA:
Association for Computing Machinery, 2012. [Online]. Available:
https://doi.org/10.1145/2393596.2393666

[47] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of android apps,” in Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages and Applications, ser. OOPSLA ’13. New York,
NY, USA: Association for Computing Machinery, 2013, pp. 641–660.
[Online]. Available: https://doi.org/10.1145/2509136.2509549

[48] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: an input generation
system for android apps,” in ESEC/FSE 2013, 2013.

[49] S. Hao, B. Liu, S. Nath, W. Halfond, and R. Govindan, “Puma:
programmable ui-automation for large-scale dynamic analysis of mobile
apps,” 06 2014.

[50] R. Mahmood, N. Mirzaei, and S. Malek, “Evodroid: segmented evolu-
tionary testing of android apps,” in FSE 2014, 2014.

[51] Z. Qin, Y. Tang, E. Novak, and Q. Li, “Mobiplay: A remote exe-
cution based record-and-replay tool for mobile applications,” in 2016
IEEE/ACM 38th International Conference on Software Engineering
(ICSE), 2016, pp. 571–582.

[52] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based gui testing of android apps,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, 2017, pp. 245–256.

[53] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Humanoid: A deep learning-
based approach to automated black-box android app testing,” in 2019
34th IEEE/ACM International Conference on Automated Software En-
gineering (ASE), 2019, pp. 1070–1073.

[54] Z. Dong, M. Böhme, L. Cojocaru, and A. Roychoudhury, “Time-travel
testing of android apps,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, ser. ICSE ’20.
New York, NY, USA: Association for Computing Machinery, 2020, pp.
481–492. [Online]. Available: https://doi.org/10.1145/3377811.3380402

[55] X. Zeng, D. Li, W. Zheng, F. Xia, Y. Deng, W. Lam, W. Yang, and
T. Xie, “Automated test input generation for android: Are we really
there yet in an industrial case?” in Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2016. New York, NY, USA: Association
for Computing Machinery, 2016, pp. 987–992. [Online]. Available:
https://doi.org/10.1145/2950290.2983958

[56] W. Wang, D. Li, W. Yang, Y. Cao, Z. Zhang, Y. Deng, and T. Xie, “An
empirical study of android test generation tools in industrial cases,” in
2018 33rd IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2018, pp. 738–748.

[57] M. Mohammed, H. Cai, and N. Meng, “An empirical comparison
between monkey testing and human testing (wip paper),” Proceedings
of the 20th ACM SIGPLAN/SIGBED International Conference on Lan-
guages, Compilers, and Tools for Embedded Systems, 2019.

[58] S. Paydar, “An empirical study on the effectiveness of monkey testing
for android applications,” Iranian Journal of Science and Technology,
Transactions of Electrical Engineering, vol. 44, no. 2, pp. 1013–1029,
2020. [Online]. Available: https://doi.org/10.1007/s40998-019-00270-y

[59] G. Tretmans and H. Brinksma, “Torx: Automated model-based testing,”
in First European Conference on Model-Driven Software Engineering,
A. Hartman and K. Dussa-Ziegler, Eds., 12 2003, pp. 31–43.

[60] M. Veanes, C. Campbell, W. Schulte, and N. Tillmann, “Online testing
with model programs,” SIGSOFT Softw. Eng. Notes, vol. 30, no. 5,
p. 273?282, Sep. 2005. [Online]. Available: https://doi.org/10.1145/
1095430.1081751

[61] M. Veanes, P. Roy, and C. Campbell, “Online testing with reinforcement
learning,” in Formal Approaches to Software Testing and Runtime
Verification, K. Havelund, M. Núñez, G. Roşu, and B. Wolff, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 240–253.

[62] “Sikuli,” https://www.softwaretestinghelp.com/sikuli-tutorial-part-1/,
2021.

