Improved Shrinkage Prediction under a Spiked Covariance Structure

Trambak Banerjee

Analytics, Information and Operations Management University of Kansas Lawrence, KS 66045, USA

Gourab Mukherjee

Data Sciences and Operations University of Southern California Los Angeles, CA 90089, USA

Debashis Paul

Department of Statistics University of California, Davis Davis, CA 95616, USA

Editor:

Abstract

Keywords:

1. Introduction

2. Predictive model

Past observations

and Future

shape

scale

2.1 Aggregated prediction objectives

2.2 Loss functions

 $Generalized\ absolute\ loss\ function$

$Linex\ loss\ function$

2.3 Bayes predictors under known covariance

 \mathcal{L}

predictive loss

 \mathbb{E}_{V} predictive risk \mathbb{E}_{X} \mathbb{E}_{AX}

ſ

 \mathcal{F}

where is the canonical basis vector with at the coordinate and . With , we have $\mathcal F$ as follows:

 \mathcal{F} $\left\{ egin{array}{ll} \left(& & & \\ -\left(& & \\ \end{array}
ight) & \textit{for generalized absolute loss} \\ \textit{for Linex loss} \\ \textit{for quadratic loss} \end{array} \right.$

2.4 Prediction under an unknown covariance and structural constraints

 $oldsymbol{j}$

0

c

 \mathbb{R}

 $c\ c\ c$

 \mathcal{C}

Wishart $\mathcal{C} \ \mathcal{C} \ \mathcal{C}$

predictive risk $\mathbb{E}_{AX S}$

 $\mathbb{E}_{AX|S}$

0

$$\sum$$

3. Proposed methodology for disaggregated model

S

3.1 Estimation of quadratic forms associated with Bayes predictors

A2 Signi cant spike:

$$\Sigma$$
 () Σ – Σ $\left[- \left(- \right) \right]$ $\left(\Sigma \right)$

 $\mathbf{A3}$

$${\cal B}$$
 ${\cal B}$

Theorem 1A . Under assumptions A1, A2, and A3, uniformly over , and $\mathcal B$ with , we have, for all $\mathbb R$,

$$T_0 = B_0 b \beta$$

where the dependence of on has been kept implicit for notational ease.

$$\sum$$

 \mathcal{B}

De nition 1 . Under the hierarchical model of equations and , the proposed predictive rule for the disaggregated model is given by which is defined as

 \mathcal{F}

where

$$\mathcal{F}$$
 $\left\{ egin{array}{ll} \left(& & & \\ -\left(& & \end{array}
ight) & \textit{for generalized absolute loss} \\ \textit{for Linex loss} \\ \textit{for quadratic loss} \end{array}
ight.$

and .

+ + - -

Lemma 3. Under assumptions A1, A2 and A3, uniformly over , , for all \mathbb{R} , we have, conditionally on ,

3.2 Improved predictive e ciency by coordinate-wise shrinkage

coordinate-wise shrinkage predictive rules Q where

. Consider a class of \mathbb{R}

 \mathcal{F}

with \mathcal{F} as defined in Definition 1 and \mathbb{R} is a shrinkage factor depending only on .

 \mathcal{Q}

Lemma 4. Suppose that assumptions **A1**, **A2** and **A3** hold. Under the hierarchical model of equations and , as ,

(a) $\mathbb{E}\Big\{\Big($ $\Big)$ $\Big\}$ is minimized at

where \mathcal{J} , \mathcal{J} and the expectation is taken with respect to the marginal distribution of with fixed.

 $(b) \ \textit{For any fixed} \quad , \quad , \ \textit{with probability 1},$

Moreover, let \mathcal{M} , where denotes the -dimensional projection matrix associated with the spiked eigenvalues of . Then, with as the scalar version of \mathcal{J} , we have

so that the leading term on the right hand side is less than 1.

(c) Also, for any fixed and , we have with probability 1:

E E

where the expectations are taken with respect to the marginal distribution of with fixed.

 \mathcal{J}

 $\begin{array}{cc} \textbf{De nition 3} \\ \mathcal{Q} & \textit{with} \end{array}$

and

$$\sum$$
 {

with

as the scalar version of \mathcal{J}

Lemma 5. Under the hierarchical model of equations and

$$(\sqrt{--})$$

 $\mathcal Q$

 \mathcal{Q}

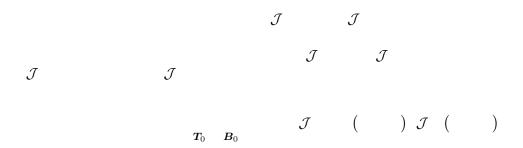
Theorem 2A hierarchical model of equations

and

. Under assumptions ${\it A1}, \, {\it A2} \, \, {\it and} \, \, {\it A3}, \, \, {\it and} \, \, {\it the}$, we have, conditionally on $\,$,

 T_0 B_0

3.3 Calibration of the tuning parameters



4. Methodology for the aggregated model

A4 Aggregation matrix:

De nition 4 . For any fixed obeying assumption A4, consider a class of coordinate-wise shrinkage predictive rules \mathcal{Q}_A \mathbb{R} where

 \mathcal{F}

 \mathbb{R}

and \mathcal{F} are the estimates of \mathcal{F} as defined in Lemma 1 with replaced by and \mathbb{R} are shrinkage factors depending only on and . The

coordinate-wise adaptive shrinkage predictive rule for the aggregated model is given by \mathcal{Q}_{A} with where

$$\mathcal N$$

and

$$\mathcal{N}$$
 \mathcal{N} \sum (

with as the scalar version of \mathcal{J}

Theorem 1B and A4, uniformly over , and \mathbb{R} and \mathbb{R} . Under assumptions A1, A2, A3 \mathbb{R} with , we have for all

$$\begin{bmatrix} T_0 & B_0 b & \mathcal{B} \end{bmatrix}$$
 $\left\{ \left(-\sqrt{---} \right) \right\}$

where the dependence of on has been kept implicit for notational ease.

Theorem 2B . Under assumptions A1, A2, A3 and A4, and the hierarchical model of equations and , we have, conditionally on ,

_				
Remark 2. Implement	tation and R pa	nckage casp -	cas)
https://github.com/tr	ambakbanerjee/ca	asp		
5. Simulation studie	S			
es	saBcv			
FACTMLE				
		POET		

Remark 1. On the uncertainty in estimating

https://github.com/trambakbanerjee/CASP_paper

5.1 Experiment 1

0

•

•

0

POET

Table 1: Relative Error estimates (REE) of the competing predictive rules at m=15 for Scenarios 1 and 2 under Experiment 1. The numbers in parenthesis are standard errors over 500 repetitions.

Scenario 1: $(K, \tau, \beta) = (10, 0.5, 0.25)$			8	Scenario 2: (K, τ)	$(\beta) = (10, 1, 1.75)$	5)		
	\hat{K}	$\hat{ au}$	$\hat{oldsymbol{eta}}$	$\mathrm{REE}(\hat{\boldsymbol{q}})$	\hat{K}	$\hat{ au}$	\hat{eta}	$\mathrm{REE}(\hat{\boldsymbol{q}})$
CASP	7 (0.04)	0.59 (0.002)	0.27 (0.002)	0.95	4 (0.04)	0.97 (0.004)	1.79 (0.006)	1.00
Bcv	3 (0.08)	0.58(0.003)	0.26(0.003)	1.14	1 (0.04)	1.00 (0.001)	1.75(0.006)	4.24
FactMLE	7(0.04)	$0.57 \ (< 10^{-3})$	0.19 (0.001)	1.68	4 (0.04)	$0.98 \ (< 10^{-3})$	1.55 (0.001)	4.58
POET	7(0.04)	$0.57 \ (< 10^{-3})$	$0.18 \ (< 10^{-3})$	2.14	4 (0.04)	$0.97 \ (< 10^{-3})$	$1.53 \ (< 10^{-3})$	7.26
Naive	7 (0.04)	$0.60 \ (< 10^{-3})$	0.24 (0.001)	1.36	4 (0.04)	$1.00 \ (< 10^{-3})$	$1.63 \ (0.004)$	1.87

under scenario 2 wherein the REE of CASP is 1. This is not unexpected because with a fixed $\tau > 0$ and β growing above 1, the factor $\sum_{j=1}^K \hat{\zeta}_j^{-4} \left(h_{1,-1,\beta}(\hat{\ell}_j^e) - h_{1,-1,\beta}(\hat{\ell}_0^e)\right)^2$ in the denominator of \hat{f}_i^{prop} becomes smaller in comparison to the numerator $\hat{\mathcal{N}}$ in Definition 4 and the improvement due to coordinate-wise shrinkage dissipates. From table 1, we see

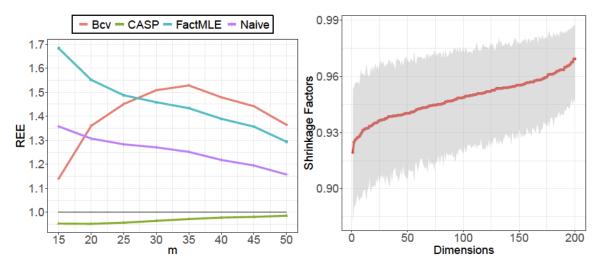


Figure 1: Experiment 1 Scenario 1 (Generalized absolute loss): Left - Relative Error estimates as m varies over (15, 20, 25, 30, 35, 40, 45, 50). Right: Magnitude of the sorted shrinkage factors \hat{f}_i^{prop} averaged over 500 repetitions at m=15 and sandwiched between its 10^{th} and 90^{th} percentiles

that $\hat{q}^{\sf Bcv}$ is the most competitive predictive rule next to $\hat{q}^{\sf casp}$ across both the scenarios however it seems to suffer from the issue of under estimation of the number of factors K. We notice this behavior of $\hat{q}^{\sf Bcv}$ across all our numerical and real data examples.

The other three predictive rules, \hat{q}^{Fact} , \hat{q}^{Poet} and \hat{q}^{Naive} , exhibit poorer risk performances and this is not entirely surprising in this setting primarily because the four competing predictive rules considered here do not involve any asymptotic corrections to the sample eigenvalues and their eigenvectors whereas CASP uses the phase transition phenomenon of the sample eigenvalues and their eigenvectors to constructs consistent estimators of smooth functions of Σ that appear in the form of the Bayes predictive rules.

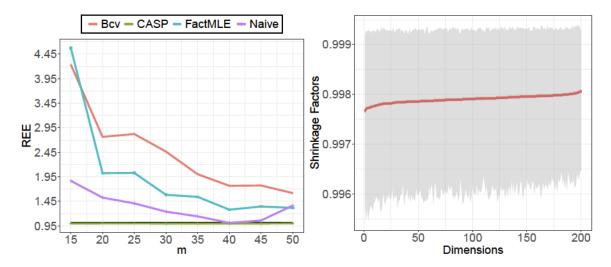


Figure 2: Experiment 1 Scenario 2 (Linex loss): Left - Relative Error estimates as m varies over (15, 20, 25, 30, 35, 40, 45, 50). Right: Magnitude of the sorted shrinkage factors \hat{f}_i^{prop} averaged over 500 repetitions at m=15 and sandwiched between its 10^{th} and 90^{th} percentiles

From figure 1, we see that as m increases, \hat{q}^{Naive} performs better than \hat{q}^{Bcv} . The spiked covariance structure considered in scenario 1 is substantially strong as there are K=10 equispaced spikes between 20 and 80. The \hat{q}^{Bcv} method, which underestimates K more severely compared to \hat{q}^{Naive} , performs worse as m increases for there is more information to estimate the spiked structure. The same phenomenon happens in scenario 2 where $\beta>1$. However, when $\beta>1$, most of the coordinate-wise shrinkage factors are close to 1 (see the right plot of figure 2) and so, the difference between CASP and \hat{q}^{Naive} is not much due to coordinate-wise shrinkage but mostly due to the biased estimation of the eigenvalues by the naive method.

5.2 Experiment 2

For experiment 2 we consider the setup of a static factor model with heteroscedastic noise and simulate our data according to the following model:

$$egin{array}{lcl} X_t &=& heta + B\Gamma_t + \epsilon_t \ \Gamma_t &\sim& N_K(\mathbf{0}, I_K) \ heta &\sim& N_n(\eta_0, au\Sigma^{eta}) ext{ and } \epsilon_t \sim N_n(\mathbf{0}, \Delta_n), \end{array}$$

where $K \ll n$ represents the number of latent factors, \boldsymbol{B} is the $n \times K$ matrix of factor loadings, Γ_t is the $K \times 1$ vector of latent factors independent of ϵ_t and Δ_n is an $n \times n$ diagonal matrix of heteroscedastic noise variances. In this model $\Sigma = \boldsymbol{B}\boldsymbol{B}^T + \Delta_n$ and coincides with the heteroscedastic factor models considered in Owen and Wang (2016); Fan et al. (2013); Khamaru and Mazumder (2019) for estimating Σ . Thus the three competing predictive rules \hat{q}^{Bcv} , \hat{q}^{Poet} and \hat{q}^{Fact} are well suited for prediction in this model. Factor models of this form are often considered in portfolio risk estimation (see for example Fan

•

0.87	1.00

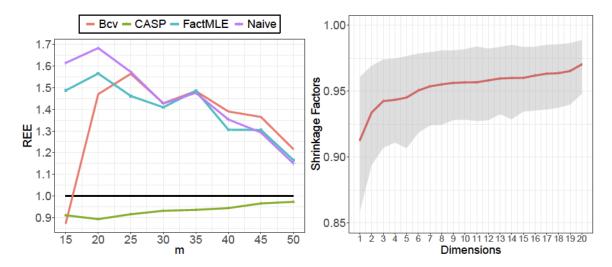


Figure 3: Experiment 2 Scenario 1 (Linex loss): Left - Relative Error estimates as m varies over (15, 20, 25, 30, 35, 40, 45, 50). Right: Magnitude of the sorted shrinkage factors \hat{f}_i^{prop} averaged over 500 repetitions at m=15 and sandwiched between its 10^{th} and 90^{th} percentiles

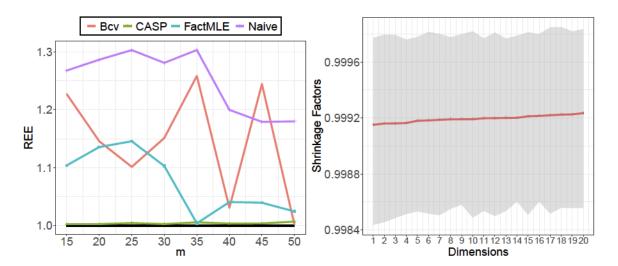


Figure 4: Experiment 2 Scenario 2 (Linex loss): Left - Relative Error estimates as m varies over (15, 20, 25, 30, 35, 40, 45, 50). Right: Magnitude of the sorted shrinkage factors $\hat{f}_i^{\mathsf{prop}}$ averaged over 500 repetitions at m=15 and sandwiched between its 10^{th} and 90^{th} percentiles

5.3 Experiment 3

For experiment 3, we consider a slightly different setup where we do not impose a spike covariance structure on Σ . Instead, we assume that $(\Sigma)_{ij} = Cov(X_i, X_j) = 0.9^{|i-j|}$ where i, j = 1, ..., n, thus imposing an AR(1) structure between the n coordinates of X. As in experiment 1, we sample θ from an n = 200 variate Gaussian distribution with mean vector

 $\eta_0 = 0$ and covariance $\tau \Sigma^{\beta}$. We vary (τ, β) across two scenarios where we take (τ, β) as (1,0.5) and (0.5,2) in scenarios 1 and 2 respectively. We estimate S using the approach described in experiments 1 and 2, and sample $m_x = 1$ copy of X from $N_n(\theta, \Sigma)$ with a goal to predict AY under a generalized absolute loss function with $h_i = 1 - b_i$ and b_i sampled uniformly from (0.9,0.95) for $i = 1, \dots, p$. Here $Y \sim N_n(\theta, \Sigma)$ is independent of X and A is a fixed $p \times n$ sparse matrix with the p = 20 rows sampled independently from a mixture distribution with density $0.9\delta_0 + 0.1 \operatorname{Unif}(0,1)$ and normalized to 1 thereafter. This sampling scheme is repeated over 500 repetitions and the REE of the competing predictive rules and CASP is presented in figures 5, 6 and table 3.

Table 3: Relative Error estimates (REE) of the competing predictive rules at m=15 for Scenarios 1 and 2 under Experiment 3. The numbers in parenthesis are standard errors over 500 repetitions.

Scenario 1: $(\tau, \beta) = (1, 0.5)$				Scenario 2: (7	(0.5, 2)			
	\hat{K}	$\hat{ au}$	\hat{eta}	$\mathrm{REE}(\hat{\boldsymbol{q}})$	\hat{K}	$\hat{ au}$	\hat{eta}	$\mathrm{REE}(\hat{\boldsymbol{q}})$
CASP	7 (0.06)	1.09 (0.007)	0.40 (0.004)	0.94	7 (0.06)	$0.57 \ (< 10^{-3})$	1.74 (0.001)	1.00
Bcv	1 (0.08)	0.95(0.012)	0.36(0.002)	2.39	1 (0.08)	$0.59 \ (< 10^{-3})$	1.79 (0.002)	4.27
FactMLE	7 (0.06)	1.16 (0.001)	$0.33 \ (< 10^{-3})$	1.23	7 (0.06)	$0.57 \ (< 10^{-3})$	$1.73 \ (< 10^{-3})$	1.08
POET	7 (0.06)	$1.17 \ (< 10^{-3})$	$0.33 \ (< 10^{-3})$	1.49	7 (0.06)	$0.57 \ (< 10^{-3})$	$1.73 \ (< 10^{-3})$	1.27
Naive	7 (0.06)	1.16 (0.001)	0.34 (0.001)	1.26	7 (0.06)	$0.57 \ (< 10^{-3})$	$1.73 \ (< 10^{-3})$	1.11

In this setup, the departure from the factor model leads to a poorer estimate of β for CASP than what was observed under experiments 1 and 2, however, the REE of CASP continues to be the smallest amongst all the other competing rules. When $\beta = 2$ (scenario 2), \hat{q}^{casp} and \hat{q}^{S} are almost identical in their performance. Amongst the competing methods

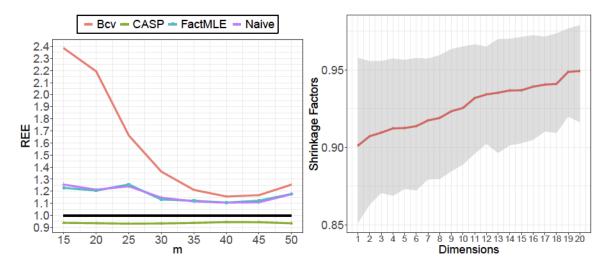


Figure 5: Experiment 3 Scenario 1 (Generalized absolute loss): Left - Relative Error estimates as m varies over (15, 20, 25, 30, 35, 40, 45, 50). Right: Magnitude of the sorted shrinkage factors $\hat{f}_i^{\mathsf{prop}}$ averaged over 500 repetitions at m=15 and sandwiched between its 10^{th} and 90^{th} percentiles

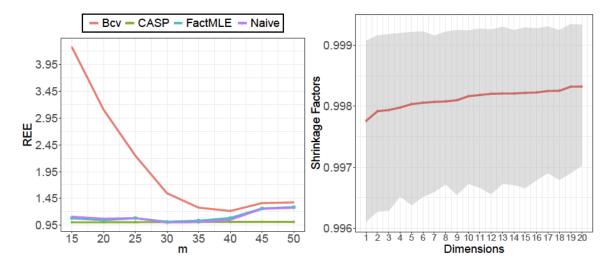


Figure 6: Experiment 3 Scenario 2 (Generalized absolute loss): Left - Relative Error estimates as m varies over (15, 20, 25, 30, 35, 40, 45, 50). Right: Magnitude of the sorted shrinkage factors \hat{f}_i^{prop} averaged over 500 repetitions at m=15 and sandwiched between its 10^{th} and 90^{th} percentiles

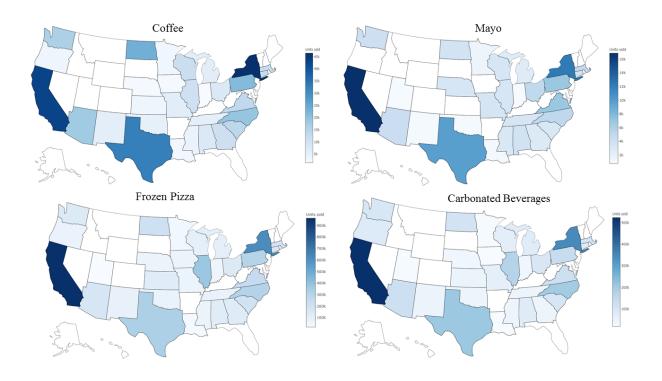
 $\hat{q}^{\sf Bcv}$ has the highest REE, possibly exacerbated by the departure from a factor based model considered in this experiment whereas this seems to have a comparatively lesser impact on CASP indicating potential robustness of CASP to misspecifications of the factor model.

6. Real data illustration with groceries sales data

In this section we analyze a part of the dataset published by Bronnenberg et al. (2008). This dataset has been used in significant studies related to consumer behavior, spending and their policy implications (see for example Bronnenberg et al. (2012); Coibion et al. (2015)). The dataset holds the weekly sales and scanner prices of common grocery items sold in retail outlets across 50 states in the U.S. The retail outlets available in the dataset have identifiers that link them to the city that they serve. In accordance to our lagged data example, we analyze a part of this dataset that spans m = 100 weeks from December 31, 2007 to November 29, 2009 as substantial amount of disaggregate data from distant past that will be used for constructing auxiliary information on the covariance. We use 3 weeks from a relatively recent snapshot covering October 31, 2011 to November 20, 2011 as data from the current model. We assume, as in equation (6), that there might have been drift change in the sales data across time but the covariances across stores are invariant over time. Our goal is to predict the state level total weekly sales across all retail outlets for four common grocery items: coffee, mayo, frozen pizza and carbonated beverages. We use the most recent T=2 weeks, from November 7, 2011 to November 20, 2011 as our prediction period and utilize the sales data of week t-1 to predict the state aggregated totals for week t where t = 1, ..., T. For each of the four products, the prediction period includes sales across approximately n=1,140 retail outlets that vary significantly in terms of their size and quantity sold across the T weeks. Moreover, some of the outlets have undergone \mathbb{X}

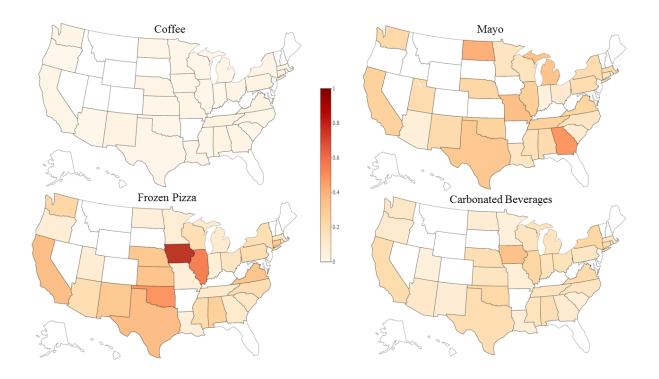
0 999	1 002
0 995	1 004
0 000	2 00 2
1 000	0 998
1 003	0 984
1 003	0 904

$$\sum$$
 IX



 \mathcal{L}

smooth.spline splines2



7. Discussion

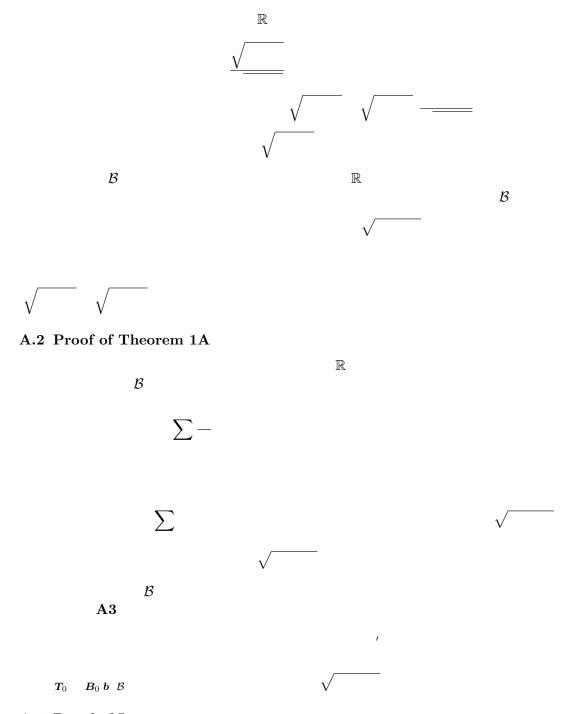
 $low\ rank\ plus\ homoscedastic\ noise$

Appendix A. Proofs

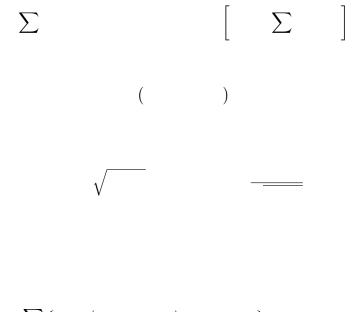
A.1 Preliminary expansions for eigenvector and eigenvalues

 \mathbb{R}

 \mathbb{S}



A.3 Proof of Lemma 2



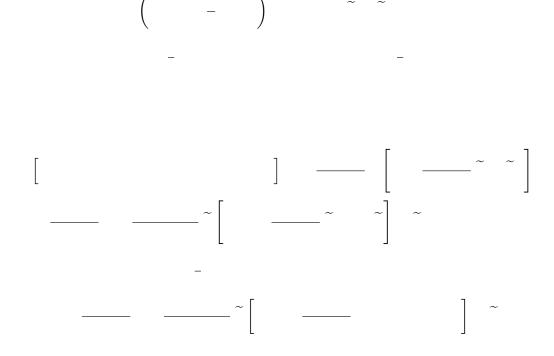
$$\sum \{ \quad (\quad) \quad \}$$

$$\sum \{ \quad (\quad) \quad \}$$

A.4 Proof of Theorem 1B

 $\mathbf{A3}$

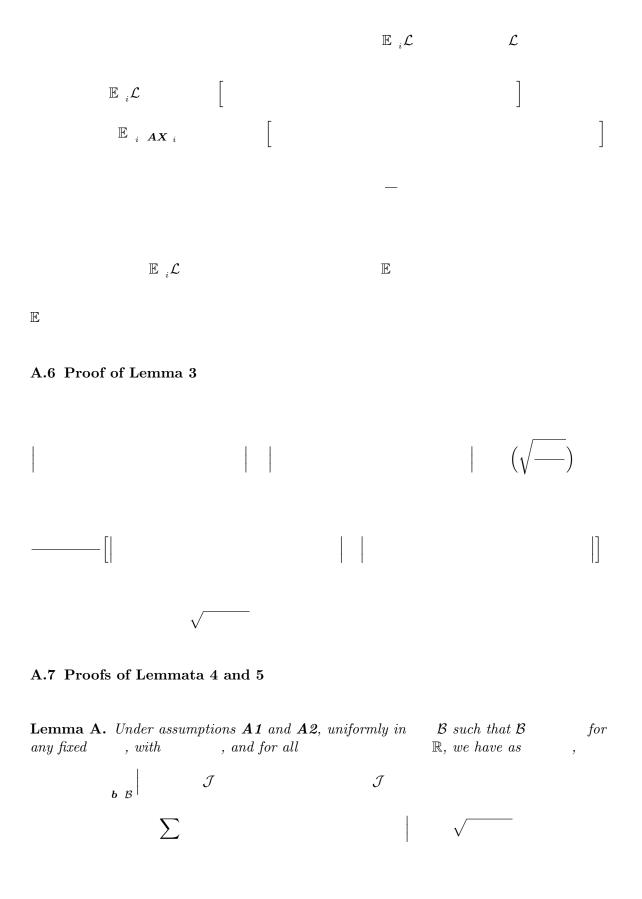
```
\sum_{j}
    ( )
   ~ ~ ] [
\begin{pmatrix} & & - & \end{pmatrix} \sim \begin{bmatrix} & & - & \end{pmatrix}
```



 $\sqrt{}$

 \mathcal{B}

A.5 Proof of Lemma 1



Proof of Lemma A.

 \sum

 \sum

Foof of Lemma A.
$$\mathcal{J} \qquad \mathcal{J} \qquad \mathcal{J}$$

$$\mathcal{B} \qquad \qquad \mathcal{J}$$

$$\sum \sum_{'} \sum \frac{}{} \qquad \qquad \qquad \qquad \qquad \mathcal{J}$$

$$\mathcal{J} \qquad \qquad \mathcal{J} \qquad$$

 $\mathcal J$

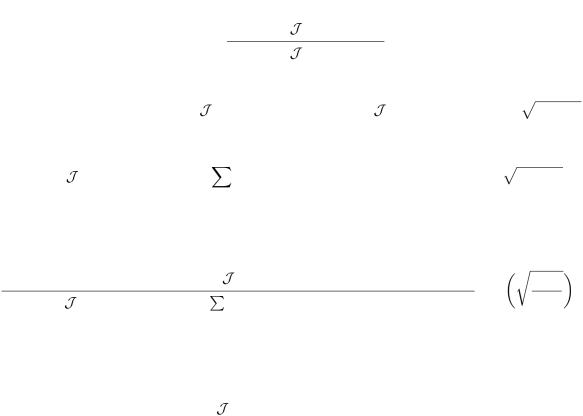
 $)(\sum$

$$\left(\sum\right) \quad \mathcal{I} \quad \sum\left(\quad \right) \quad \sqrt{\quad}$$

Proof of Lemma 4, statement (a)
$$\mathbb{E}\Big\{\Big($$
 $\Big)$ $\Big\}$

$$\mathbb{E}\left\{ \left(\begin{array}{cc} \\ \end{array}\right)\right\}$$

$$\begin{bmatrix} \begin{pmatrix} & & & \\ & & & \\ & & & \\ & & & \\ \mathcal{I} & & & \mathcal{J} & & \\ & & & \mathcal{J} & & \\ & & & \mathcal{J} & & \\ & & \mathcal{J$$



Proof of Lemma 4, statement (b)
$$\mathcal{J}$$

$$\qquad \qquad \mathcal{J}$$

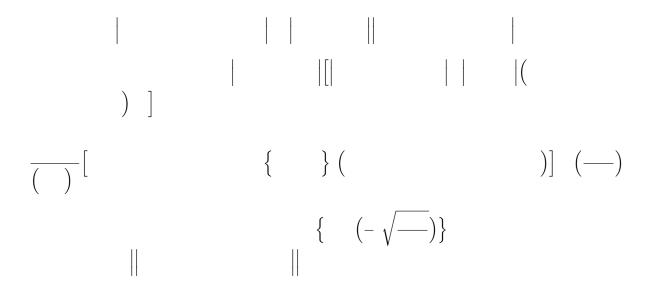
 \mathcal{J}

Proof of Lemma 4, statement (c)

$$\mathbb{E}ig[ig(ig)ig] \quad \mathbb{E}ig[ig(ig)ig]$$

Proof of Lemma 5

A.8 Proofs of Theorems 2A and 2B



References	
Mathematical Society	Bulletin of the American
Journal of	$Multivariate\ Analysis$
for spatial data	$Hierarchical\ modeling\ and\ analysis$
	arXiv preprint arXiv:2008.11903
Analysis	$Journal\ of\ Multivariate$
	Probability theory and related fields
$Marketing\ science$	
	American Economic Review
Annals of Statistics	$Th\epsilon$
	Annals of Statistics
The Annals of Statistics	

 $Cell\ reports$

 $American\ Economic\ Review$

Generalized linear models: A Bayesian

perspective

Biometrika

 $Large\text{-}scale\ inference:\ empirical\ Bayes\ methods\ for\ estimation,\ testing,\ and\ prediction$

Computer age statistical inference

 $Journal\ of\ Econometrics$

Journal of the Royal Statistical Society: Series

B (Statistical Methodology)

 $arXiv\ preprint\ arXiv:1602.00719$

Shrinkage Estima-

tion

CRC,

London

Data analysis using regression and multilevel/hierarchical

models

Econometric Theory

The Annals of Statistics

Latent variables in

 $socio\text{-}economic\ models$

 $Management\ Science$

Journal of Machine Learning Research

Optimality: The Third Erich L. Lehmann Symposium

The Review of Financial Studies

Journal of the American Statistical Association

Proceedingsof the IEEE arXivpreprint arXiv:1105.1404 Mathematical Programming Econometrica: journal of the Econometric Society Journal of the American Statistical Association $Bayesian\ Analysis$ Optimal shrinkage estimation in heteroscedastic hierarchical $linear\ models$ Journal of Financial Economics Chemometrics and Intelligent Laboratory Systems IEEE Transactions on Signal Processing The Annals $of\ Statistics$

arXiv:1511.00028

 $arXiv\ preprint$

$Journal\ of\ Econometrics$

Statistical Science

Random Matrices: Theory and Applications

Journal of the Royal

Statistical Society: Series B (Statistical Methodology)

Journal of the Royal

Statistical Society: Series B (Statistical Methodology)

The Journal of Finance

Journal of Financial Economics

Journal of Econometrics

Statistica Sinica

Journal

of Statistical Planning and Inference

 $Subjective \ and \ objective \ Bayesian \ statistics: \ principles, \ models, \ and \ applications$

Herbert

Robbins Selected Papers

Cell reports

Journal of the

Royal Statistical Society: Series B (Statistical Methodology)

Bernoulli

metrics and statistics in honor of Leonard	Studies in Bayesian econo- J. Savage
Association	$Journal\ of\ the\ American\ Statistical$
$Journal\ of\ the\ America$	an Statistical Association
	$Annals\ of\ statistics$
	Statistica Sinica
of the American Statistical Association	Journal

Ann. Statist.