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1. Introduction



Coordinate-wise Adaptive Shrinkage Prediction



2. Predictive model

Past observations and Future
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2.1 Aggregated prediction objectives



2.2 Loss functions

Generalized absolute loss function



Linex loss function
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2.3 Bayes predictors under known covariance
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Lemma 1 . Consider the hierarchical model in equations
and . If were known, the unique minimizer of the integrated Bayes risk for coordinate
18
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where  is the canonical basis vector with  at the coordinate and . Wath
, we have F as follows:
( ) for generalized absolute loss
F —( ) for Linex loss

for quadratic loss



2.4 Prediction under an unknown covariance and structural constraints
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3. Proposed methodology for disaggregated model
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3.1 Estimation of quadratic forms associated with Bayes predictors
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A1l Asymptotic regime : —

A2 Signi cant spike:
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Theorem 1A . Under assumptions A1, A2, and
A3, uniformly over , and B with , we have, for all

R,

Ty Bob B ’ ( V )

where the dependence of on  has been kept implicit for notational ease.
Lemma 2 . Under as-

sumptions A1, A2 and A3, for any with we have,



De nition 1 . Under the hierarchical model of

equations and , the proposed predictive rule for the disaggregated model is given by
which is defined as

f
where
( > for generalized absolute loss
F —( ) for Linex loss
for quadratic loss
and

Lemma 3. Under assumptions A1, A2 and A3, uniformly over
R, we have, conditionally on

, , for all

)
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3.2 Improved predictive e ciency by coordinate-wise shrinkage



De nition 2 . Consider a class of

coordinate-wise shrinkage predictive rules O R
where
f’
with F as defined in Definition 1 and R is a shrinkage factor depending
only on
Q

Lemma 4. Suppose that assumptions A1, A2 and A3 hold. Under the hierarchical model
of equations and , as ,

(a) E{( ) } s minimized at

~ ()

where J ,J and the expectation is taken
with respect to the marginal distribution of — with  fized.

(b) For any fized , , with probability 1,
Moreover, let M , where denotes the -dimensional
projection matrixz associated with the  spiked eigenvalues of . Then, with
as the scalar version of J , we have

‘o | ()

so that the leading term on the right hand side is less than 1.
(c) Also, for any fized and , we have with probability 1:

E

E

where the expectations are taken with respect to the marginal distribution of — with

fized.
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De nition 3 . The coordinate-wise adaptive shrinkage prediction rule is given by

Q with where
and
with as the scalar version of J
Lemma 5. Under the hierarchical model of equations and

Q
Q

Theorem 2A . Under assumptions A1, A2 and A3, and the
hierarchical model of equations and , we have, conditionally on
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3.3 Calibration of the tuning parameters

To Bo

4. Methodology for the aggregated model

A4 Aggregation matrix: R
De nition 4 . For any fixed  obeying assumption A4, con-
sider a class of coordinate-wise shrinkage predictive rules Q 4
R where
f
and F are the estimates of F as defined in Lemma 1 with

replaced by and R are shrinkage factors depending only on  and . The



coordinate-wise adaptive shrinkage predictive rule for the aggregated model is given by
Q 4 with where

N
and
N

v X )
with as the scalar version of J
Theorem 1B . Under assumptions A1, A2, A3
and A4, uniformly over , and B with , we have for all

R

Ty Bob B ‘ { (7 V )}

where the dependence of on  has been kept implicit for notational ease.
Theorem 2B . Under assumptions A1, A2, A3 and A4,
and the hierarchical model of equations and , we have, conditionally on



Remark 1. On the uncertainty in estimating -

Remark 2. Implementation and R package casp - casp

https://github.com/trambakbanerjee/casp

5. Simulation studies

esaBcv

FACTMLE

POET


https://github.com/trambakbanerjee/casp

https://github.com/trambakbanerjee/CASP_paper

5.1 Experiment 1
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Table 1: Relative Error estimates (REE) of the competing predictive rules at m = 15 for
Scenarios 1 and 2 under Experiment 1. The numbers in parenthesis are standard errors

over 500 repetitions.

Scenario 1: (K, T, 5) = (10, 0.5,0.25) | Scenario 2: (K, T, 8) = (10,1, 1.75)
K 7 B Q| K 7 B REE(§)
CASP  7(0.04) 059 (0.002) 0.27(0.002)  0.95 |4 (0.04) 0.97 (0.004) 1.79 (0.006)  1.00
Bev 3 (0.08) 0.58 (0.003)  0.26 (0.003) 114 |1(0.04) 1.00(0.001)  1.75 (0.006) 4.24
FactMLE 7 (0.04) 0.57 (< 107%) 0.19 (0.001) 168 |4 (0.04) 098 (<1073) 1.55 (0.001) 4.58
POET  7(0.04) 057 (<1073) 018 (<1073) 214 |4 (0.04) 097 (<1073) 153 (<1073 7.26
Naive 7 (0.04) 0.60 (<1073) 0.24 (0.001) 1.36 |4 (0.04) 1.00 (<1073) 1.63 (0.004) 1.87

under scenario 2 wherein the REE of CASP is 1. This is not unexpected because with a
. . . \2
fixed 7 > 0 and B growing above 1, the factor Zf:l Cj_‘l (hl,_l,ﬁ(x‘f?) — hl,_l,g(fg)) in the

denominator of j?fmp becomes smaller in comparison to the numerator N in Definition 4
and the improvement due to coordinate-wise shrinkage dissipates. From table 1, we see
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Figure 1: Experiment 1 Scenario 1 (Generalized absolute loss): Left - Relative Error esti-
mates as m varies over (15,20, 25, 30, 35, 40, 45, 50). Right: Magnitude of the sorted shrink-
age factors _ﬂpmp averaged over 500 repetitions at m = 15 and sandwiched between its 10"
and 90*" percentiles

that ¢B% is the most competitive predictive rule next to P across both the scenarios
however it seems to suffer from the issue of under estimation of the number of factors K.
We notice this behavior of GBY across all our numerical and real data examples.

The other three predictive rules, §F<t, §P°t and GNa"e, exhibit poorer risk performances
and this is not entirely surprising in this setting prlmari]y because the four competing
predictive rules considered here do not involve any asymptotic corrections to the sample
eigenvalues and their eigenvectors whereas CASP uses the phase transition phenomenon of
the sample eigenvalues and their eigenvectors to constructs consistent estimators of smooth
functions of ¥ that appear in the form of the Bayes predictive rules.
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IMPROVED SHRINKAGE PREDICTION UNDER A SPIKED COVARIANCE STRUCTURE
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Figure 2: Experiment 1 Scenario 2 (Linex loss): Left - Relative Error estimates as m
varies over (15,20, 25, 30, 35,40, 45,50). Right: Magnitude of the sorted shrinkage factors
jipmp averaged over 500 repetitions at m = 15 and sandwiched between its 10" and 90"
percentiles

From figure 1, we see that as m increases, gV performs better than ¢2. The spiked
covariance structure considered in scenario 1 is substantially strong as there are K = 10
equispaced spikes between 20 and 80. The ¢B% method, which underestimates K more
severely compared to gN*Ve performs worse as m increases for there is more information to
estimate the spiked structure. The same phenomenon happens in scenario 2 where 8 > 1.
However, when § > 1, most of the coordinate-wise shrinkage factors are close to 1 (see the
right plot of figure 2) and so, the difference between CASP and GNave is not much due to
coordinate-wise shrinkage but mostly due to the biased estimation of the eigenvalues by the
naive method.

5.2 Experiment 2

For experiment 2 we consider the setup of a static factor model with heteroscedastic noise
and simulate our data according to the following model:

X; = 9+BI‘3+63
I's ~ Ngk(0,Ik)
6 ~ Np(no,7%P) and € ~ N,(0,A,),

where K < n represents the number of latent factors, B is the n x K matrix of factor
loadings, I'; is the K x 1 vector of latent factors independent of €; and A, is an n X n
diagonal matrix of heteroscedastic noise variances. In this model ¥ = BBT + A,, and
coincides with the heteroscedastic factor models considered in Owen and Wang (2016); Fan
et al. (2013); Khamaru and Mazumder (2019) for estimating . Thus the three competing
predictive rules ¢B%, §F°et and GF*< are well suited for prediction in this model. Factor
models of this form are often considered in portfolio risk estimation (see for example Fan

19
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IMPROVED SHRINKAGE PREDICTION UNDER A SPIKED COVARIANCE STRUCTURE
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Figure 3: Experiment 2 Scenario 1 (Linex loss): Left - Relative Error estimates as m
varies over (15,20, 25, 30, 35,40, 45,50). Right: Magnitude of the sorted shrinkage factors
fipmp averaged over 500 repetitions at m = 15 and sandwiched between its 10" and 90"

percentiles
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Figure 4: Experiment 2 Scenario 2 (Linex loss): Left - Relative Error estimates as m
varies over (15,20, 25, 30, 35,40, 45,50). Right: Magnitude of the sorted shrinkage factors
fipmp averaged over 500 repetitions at m = 15 and sandwiched between its 10" and 90"

percentiles

5.3 Experiment 3

For experiment 3, we consider a slightly different setup where we do not impose a spike
covariance structure on X. Instead, we assume that (£);; = Cov(X:, X;) = 0.9 where
i,7 = 1,...,n, thus imposing an AR(1) structure between the n coordinates of X. As in
experiment 1, we sample @ from an n = 200 variate Gaussian distribution with mean vector

21
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Mo = 0 and covariance 7X8. We vary (7, 3) across two scenarios where we take (7, 3) as
(1,0.5) and (0.5,2) in scenarios 1 and 2 respectively. We estimate S using the approach
described in experiments 1 and 2, and sample m; = 1 copy of X from Ny (8,3) with a goal
to predict AY under a generalized absolute loss function with h; = 1 — b; and b; sampled
uniformly from (0.9,0.95) for i =1,--- ,p. Here Y ~ Ny(8,X) is independent of X and A
is a fixed p x n sparse matrix with the p = 20 rows sampled independently from a mixture
distribution with density 0.955+0.1 Unif(0, 1) and normalized to 1 thereafter. This sampling
scheme is repeated over 500 repetitions and the REE of the competing predictive rules and
CASP is presented in figures 5, 6 and table 3.

Table 3: Relative Error estimates (REE) of the competing predictive rules at m = 15 for
Scenarios 1 and 2 under Experiment 3. The numbers in parenthesis are standard errors
over 500 repetitions.

Scenario 1: (1, 3) = (1,0.5) | Scenario 2: (1, 3) = (0.5,2)

K £ B REE@G) | K £ B REE(§)

CASP 7 (0.06) 1.09 (0.007)  0.40 (0.004) 0.94 | 7(0.06) 0.57 (<107%) 1.74 (0.001) 1.00

Bev 1(0.08) 0.95(0.012)  0.36 (0.002) 239 | 1(0.08) 0.59 (<107%) 1.79 (0.002) 4.27

FactMLE 7 (0.06) 1.16 (0.001)  0.33 (<107%)  1.23 | 7(0.06) 0.57 (<107%) 1.73(<107%)  1.08

POET 7(0.06) 1.17 (<1073 033 (<107%) 149 | 7(0.06) 0.57 (<107%) 1.73 (< 10—3) 1.27
) ( ( ) ( ) (

Naive 7 (0.06) 1.16 (0.001)  0.34 (0.001) 126 | 7(0.06) 057 (<107%) 173 (<107%) 1.11

In this setup, the departure from the factor model leads to a poorer estimate of 8 for
CASP than what was observed under experiments 1 and 2, however, the REE of CASP
continues to be the smallest amongst all the other competing rules. When /3 = 2 (scenario
2), ¢°**P and ¢° are almost identical in their performance. Amongst the competing methods
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Figure 5: Experiment 3 Scenario 1 (Generalized absolute loss): Left - Relative Error esti-
mates as m varies over (15, 20, 25, 30, 35, 40, 45, 50). Right: Magnitude of the sorted shrink-
age factors _ﬂpmp averaged over 500 repetitions at m = 15 and sandwiched between its 10%"
and 90*" percentiles
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IMPROVED SHRINKAGE PREDICTION UNDER A SPIKED COVARIANCE STRUCTURE
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Figure 6: Experiment 3 Scenario 2 (Generalized absolute loss): Left - Relative Error esti-
mates as m varies over (15,20, 25, 30, 35, 40, 45, 50). Right: Magnitude of the sorted shrink-
age factors _ﬂpmp averaged over 500 repetitions at m = 15 and sandwiched between its 10"
and 90*" percentiles

GB has the highest REE, possibly exacerbated by the departure from a factor based model
considered in this experiment whereas this seems to have a comparatively lesser impact on
CASP indicating potential robustness of CASP to misspecifications of the factor model.

6. Real data illustration with groceries sales data

In this section we analyze a part of the dataset published by Bronnenberg et al. (2008).
This dataset has been used in significant studies related to consumer behavior, spending
and their policy implications (see for example Bronnenberg et al. (2012); Coibion et al.
(2015)). The dataset holds the weekly sales and scanner prices of common grocery items
sold in retail outlets across 50 states in the U.S. The retail outlets available in the dataset
have identifiers that link them to the city that they serve. In accordance to our lagged data
example, we analyze a part of this dataset that spans m = 100 weeks from December 31,
2007 to November 29, 2009 as substantial amount of disaggregate data from distant past
that will be used for constructing auxiliary information on the covariance. We use 3 weeks
from a relatively recent snapshot covering October 31, 2011 to November 20, 2011 as data
from the current model. We assume, as in equation (6), that there might have been drift
change in the sales data across time but the covariances across stores are invariant over
time. QOur goal is to predict the state level total weekly sales across all retail outlets for four
common grocery items: coffee, mayo, frozen pizza and carbonated beverages. We use the
most recent T' = 2 weeks, from November 7, 2011 to November 20, 2011 as our prediction
period and utilize the sales data of week ¢ — 1 to predict the state aggregated totals for
week t where t = 1,...,T. For each of the four products, the prediction period includes
sales across approximately n = 1, 140 retail outlets that vary significantly in terms of their
size and quantity sold across the T weeks. Moreover, some of the outlets have undergone
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7. Discussion

low rank plus homoscedastic noise

Appendix A. Proofs

A.1 Preliminary expansions for eigenvector and eigenvalues
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A.2 Proof of Theorem 1A
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A.3 Proof of Lemma 2
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A.4 Proof of Theorem 1B
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A.6 Proof of Lemma 3
A.7 Proofs of Lemmata 4 and 5
Lemma A. Under assumptions A1 and A2, uniformly in B such that B for
any fized , with , and for all R, we have as ,
| J J
b B

2.
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Proof of Lemma A.
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Proof of Lemma 4, statement (b)

Y 2.

Proof of Lemma 4, statement (c)
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Proof of Lemma 5



A.8 Proofs of Theorems 2A and 2B
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