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Inspired by the developments in quantum computing, building domain-specific classical hardware to solve
computationally hard problems has received increasing attention. Here, by introducing systematic sparsification
techniques, we demonstrate a massively parallel architecture: the sparse Ising Machine (sIM). Exploiting
sparsity, sIM achieves ideal parallelism: its key figure of merit − flips per second − scales linearly with the
number of probabilistic bits (p-bit) in the system. This makes sIM up to 6 orders of magnitude faster than a
CPU implementing standard Gibbs sampling. Compared to optimized implementations in TPUs and GPUs,
sIM delivers 5-18x speedup in sampling. In benchmark problems such as integer factorization, sIM can reliably
factor semiprimes up to 32-bits, far larger than previous attempts from D-Wave and other probabilistic solvers.
Strikingly, sIM beats competition-winning SAT solvers (by 4-700x in runtime to reach 95% accuracy) in solving
3SAT problems. Even when sampling is made inexact using faster clocks, sIM can find the correct ground state
with further speedup. The problem encoding and sparsification techniques we introduce can be applied to other
Ising Machines (classical and quantum) and the architecture we present can be used for scaling the demonstrated
5,000−10,000 p-bits to 1,000,000 or more through analog CMOS or nanodevices.

I. INTRODUCTION

Markov Chain Monte Carlo (MCMC) algorithms have
made a significant impact in the history of computing
[1]. MCMC methods are among the most powerful
randomized algorithms with a wide range of applications
in Artificial Intelligence (AI) [2]. Powerful MCMC
methods such as Metropolis and Gibbs sampling have been
widely applied to training generative neural networks [3],
probabilistic inference in belief networks [4], calculating
physical observables in classical and quantum systems [5, 6]
and solving computationally hard combinatorial optimization
problems [7].

Designing domain-specific hardware to accelerate such
computationally hard problems of AI has been receiving
increasing attention with the slowing pace of Moore’s Law.
There have been a number of approaches to build special-
purpose hardware to solve computationally hard problems.
A class of such solvers (also known as Ising Machines)
specifically solve quadratic energy models or the Ising model,
typically mapped to problems in NP [8–25],

E = −

∑
i<j

Jijmimj +
∑

himi

 (1)

(mi ∈ ± 1, Jij=Jji, hi ∈ R), where quadratic terms
(mimj) in the energy translate to a linear “synapse” or an
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interconnection matrix which can be expressed as a graph
(Ii = −∂E/∂mi):

Ii =
∑

Jijmj + hi (2)

Choosing the activation function of individual probabilistic
bits as

mi = sgn [tanh(βIi)− randU (−1, 1)] (3)

ensures the system states, {m}, are visited according to their
corresponding Boltzmann probability:

pi ∝ exp [−βE({m})] (4)

where β is introduced as an “inverse temperature” and can
be used to enhance or suppress probabilities corresponding
to energy minima. The dynamical evolution of Eq. (2)-
(3) enables probabilistic sampling and inference, learning
weights of a stochastic neural network or performing search or
optimization in the exponential state space of the model. Such
a machine evolving to the Boltzmann distribution defined by
Eq. (4) is called a Boltzmann Machine, after the pioneering
work of Hinton and colleagues [26, 27].

So far, nearly all dedicated Ising Machines have specifically
focused on optimization problems, with the exception of
D-Wave’s quantum annealers which have been applied to
problems beyond combinatorial optimization [28, 29].

Typically in Gibbs sampling (a type of MCMC method),
Eq. (2)-(3) are updated iteratively to dynamically evolve
the Markov chain such that the network eventually reaches
the Boltzmann distribution defined by Eq. (4). A practical
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difficulty lies in the serial nature of this evolution: connected
nodes need to be updated one after the other since parallel
updating leads to repeated oscillations in the network state,
preventing the network from converging to the Boltzmann
distribution. The need for sequential updating inherently
serializes the network evolution, signified by the nested for-
loops in standard descriptions of Gibbs sampling [30].

II. SUMMARY OF MAIN RESULTS

This work is about overcoming the fundamental difficulty
of sequential updating by combining algorithmic and
architectural ideas to build a sparse Ising Machine (sIM)
for solving combinatorial optimization and probabilistic
sampling problems. The present implementation is on
a Field Programmable Gate Array (FPGA) however the
architecture is general and can have many different
implementations ranging from digital CMOS to energy-
efficient nanodevices such as Magnetic Tunnel Junctions
[31, 32] (see Supplementary Information Section A, B).

The sIM achieves near-ideal parallelism for MCMC
sampling as long as the interconnection matrix J is sparse.
A key feature of our framework is in its generality: we
first show that any optimization function can be efficiently
represented as a sparse (but irregular) graph through principles
of invertible logic [22, 33]. We then outline techniques
for further sparsification using additional nodes without any
approximation. Next, we develop a massively parallel
architecture to implement Eq. (2)-(3), exploiting the sparsity
of the graph, where the graph is defined by J . This is
achieved by using multiple phase shifted clocks controlling
the activation of probabilistic bits (p-bits) (Eq. (3)). The p-
bits are interconnected through a multiply-accumulate (MAC)
unit (Eq. (2)).

This architecture can be considered to be a low level
hardware-level implementation of chromatic Gibbs sampling
[34] where large blocks of conditionally independent nodes
are updated in parallel. For this sampling to be exact,
the MAC must finish its computation before the next color
block is updated. An unexpected finding however is even
when color blocks are updated before the MAC operation
is completed, the network is often able to find exact ground
states in model optimization problems. This inexact Gibbs
sampling approach is reminiscent of the Hogwild!-Gibbs
algorithm [35] and we show how this overclocking strategy
can lead to further advantages. We provide error models
and an analysis of inexact Gibbs sampling with analytical
estimates of limiting behaviors.

The idea of block updating is commonly used for regular
graphs. For example, as first noted in Ref. [36], when the
graph is bipartite (as in Restricted Boltzmann Machines or
chessboard lattices), trivial colorings (with two colors, black
and white or four colors in King’s graphs) are possible and
this is often exploited in updating each color block in parallel
[4, 19, 37–41]. We also note that parallelization techniques in
multiple FPGAs have recently been explored for other types of
Ising Machines [24], however these are based on completely
different algorithms unrelated to the computational model we

use based on Eq. (2)-(4).
Compared to prior works on block updating [4, 19, 37–

41], our contributions are twofold: First, we extend the
block updating scheme such that it applies to regular and
irregular graphs with the only requirement that the graphs
are sparse enough to be colored by a few colors (typically
≤ 4-8). This generalization is significant, considering most
practical instances of combinatorial optimization problems
have irregular graph representations.

Second, we provide exact sparsification methods which can
be applied to sparsify dense graphs. We believe that both
of these methods can be useful for other Ising Machines and
different problems.

We tested the resultant sIM on model problems and
achieved three key results:

• In solving Boolean satisfiability problems, the sIM is
able to beat competition-winning SAT solvers (2020,
2017) in run-time by up to 4-700x to reach 95%
accuracy.

• In probabilistic sampling, the sIM delivers a measured
5-18x speedup over the optimized TPU and GPU
implementations (Table I). Against a standard CPU
implementation, we measure up to 6-orders of
magnitude speedup.

• In integer factorization, the sIM can reliably find the
absolute ground state for semiprimes up to 32-bits,
far larger than what has been reported for D-Wave’s
quantum annealers or similar probabilistic solvers [15,
20, 22, 42–44] (Table II). Robust factorization up to 32-
bit numbers seem to be the largest by far among these
alternatives.

In this paper, we use integer factorization as a computationally
hard optimization problem to compare the performance of
sIM with respect to D-Wave and other Ising Machines.
Expressing the integer factorization problem as a satisfiability
(or spin-glass) instance is not expected to be practically
relevant, as studied in detail in Ref. [45]. However,
critical subroutines of the best algorithms for factoring
may potentially be accelerated using improved satisfiability
through dedicated hardware or algorithms [46].

A striking result is to show speedups over recent
competition-winning SAT solvers in approximate
optimization, since SAT solvers have been optimized
and fine-tuned after decades of research and development.
In contrast, the sIM is using a standard simulated annealing
algorithm without any detailed fine-tuning. Further
improvements using more sophisticated algorithms such
as Parallel Tempering should increase the performance of
the sIM. Moreover, experimental developments in emerging
nanodevice technologies [47, 48] such as Magnetic Tunnel
Junction based asynchronous probabilistic computers [15]
can use the same architectural and algorithmic ideas we
develop in this paper to provide additional speedup [25].

The organization of this paper is as follows: Section III
shows how any combinatorial optimization problem can be
converted to an invertible probabilistic circuit (p-circuit) using
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the basic building blocks (AND, OR, NOT, Full Adder)
with compact interconnection matrices and discrete weights,
followed by a discussion on reconfigurability. We illustrate in
Section IV how a given sparse p-circuit can be colored with
a few colors using an approximate graph coloring algorithm,
DSATUR [49]. We elaborate on the details of the hardware
architecture implementing the coupled equations and propose
further sparsification techniques to overcome the limitations
of high fan-out circuits. Next, we report our experimental
results on integer factorization and Boolean satisfiability
problems in Sections V-VII as well as detailed comparisons of
the sIM with respect to CPU, GPU and TPU implementations
of MCMC. Finally, in Section VIII we discuss the effects
of overclocking p-bits to perform inexact and asynchronous
Gibbs sampling for further improvement.

III. COMPOSABILITY AND RECONFIGURABILITY

A. Composing invertible circuits from elementary gates

Invertible logic (discussed in detail in Refs. [33, 50]) allows
composing probabilistic generalizations of a universal set
of basic gates such as COPY/NOT (2 p-bits), AND (3 p-
bits), OR (3 p-bits) and Full Adders (FA, 5 p-bits). The
basics of such invertible gates and their operation have been
discussed extensively [22, 51, 52]. Here, we show some of
the J matrices for a set of elementary probabilistic gates in
the Supplementary Information Section C and D, where we
also elaborate on how to compose p-circuits corresponding to
any given Boolean function. Similar to conventional digital
circuits, the use of basic p-logic gates to a hierarchical design
of larger p-circuits results in highly sparse representations
amenable to the massive parallelism discussed in this paper.

The ability of invertible logic circuits to operate in
reverse gives rise to a convenient method of solving inverse
problems, as noted in the related paradigm of memcomputing
and by D-Wave [42, 53]. Therefore, hard combinatorial
optimization problems such as integer factorization and
Boolean satisfiability (SAT) can be solved in hardware
using invertible multipliers or by invertible Boolean circuits
corresponding to a given satisfiability instance. Fig. 1a shows
a classic m-bit multiplier circuit composed of multiple AND
gates and FAs. In the reverse direction, this circuit works as
an n-bit factorizer circuit (n = 2m) where we clamp the
output bits to the n-bit product to be factored. Similarly,
we clamp the output of the SAT solver circuit in Fig. 1b to
1 and find the input variables satisfying all the clauses in
the reverse direction. Each clause is represented by multiple
OR gates; if any input variable is negated, we modify the
corresponding weight (J) matrix of the OR gate accordingly.
The output bits of the OR gates can be clamped to 1 either
directly or by using an AND gate at the end. In this work,
we also focus on the 3SAT, a special form of the satisfiability
problem where each clause has exactly three variables in the
conjunctive normal form (CNF) [54]. We collected 3SAT
instances as .CNF files from the UBC SATLIB library [55]
and map them to interconnection matrices (J), composed of
elementary probabilistic gates. Further details about instances
used in this work are provided in the Methods Section X A.

B. Reconfigurability

The invertible circuits composed out of elementary
probabilistic gates are reconfigurable, able to accommodate
different instances of a given problem. For example, a 32-
bit factorizer can factor any two numbers of up to 32-bits
by a suitable clamping of the bias values (hi) of the output
bits. Similarly, invertible Boolean circuits can be designed to
accommodate many different instances of the SAT problem
to function as general SAT solvers. For example, a 250-
variable SAT solver can solve a 50-variable SAT instance by
an appropriate clamping and multiplexing of input bits.

The reconfigurability of invertible logic circuits provides an
alternative to the usual method of embedding a native graph
to a target graph referred to as the minor graph embedding
(MGE) problem [56, 57]. As we show in the Supplementary
Information Section E 2, typical MGE algorithms often fail
to find a mapping for the problems we considered, and even
when a mapping is found the number of auxiliary spins is
too large [58]. Reconfigurability using invertible logic with
sparsification [50, 59] is a much more practical alternative
to MGE for the problems we considered. For example,
reconfigurable 32-bit factorization graph requires a Chimera
target with ≈ 10,000 spins, while the sparsification technique
introduced in this work requires only ≈ 2,000 spins. (see
Supplementary Information Section E 2 for details).

We also note that the universal nature of the
Boolean satisfiability problem enables another layer of
reconfigurability since many combinatorial optimization
problems are mapped to satisfiability instances with minimal
overhead [60]. For example, the Maximum-Cut problem,
a common benchmark for many Ising Machines, can be
efficiently mapped to a Boolean satisfiability instance [61].

IV. ARCHITECTURE DESIGN FOR MASSIVE
PARALLELIZATION

A. Graph coloring

When a quadratic energy model described by Eq. (1)
is chosen, an invertible logic p-circuit can be represented
as a graph where each node represents a p-bit and each
edge represents the connection between the p-bits. Fig. 1c
illustrates the graph of an 8-bit factorizer p-circuit encoded
with 52 p-bits.

As discussed in Section II, the coloring is used to exploit
the trick that allows the parallel update of unconnected
(conditionally independent) p-bits. We first color the graph
using a heuristic graph coloring algorithm DSATUR [49].
Coloring a graph with exactly the minimum possible colors is
NP-hard [62], however, this is unimportant for our purposes
since we use DSATUR as a greedy algorithm which may or
may not find the optimum coloring.

We find that when the overall graph density is low (e.g.,
/ 1%), irregular graphs containing nodes with hundreds
of neighbors can be colored by a few colors in line with
theoretical results on coloring sparse graphs [63]. For
example, for the 8-bit factorizer graph only five colors are
used and as a result, we need five parallel and equally phase-
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Fig. 1. Combinatorial optimization with invertible logic. (a) A digital multiplier circuit composed of AND gates and full adders (FAs) that can
be run invertibly to solve n-bit integer factorization problem. (b) A Boolean circuit composed of OR and AND gates that can be run invertibly
to solve satisfiability problems. (c) An example 8-bit factorizer graph colored with 5 colors. (d) An example architecture with 5 parallel and
equally phase-shifted clocks, implementing the MAC (Eq. (2)) and the p-bit (Eq. (3)) equations. (e) The original graph of a 32-bit factorizer
developed using invertible logic requires 5 colors but it contains nodes with up to 32 neighbors, limiting hardware implementations. (f) Exact
sparsification techniques are used to reduce nodes with a large number of neighbors at the expense of additional bits. (g) The original version
of the 3SAT instance ‘uf100-01.cnf’ developed using invertible logic. (h) The sparsified version with nodes having a maximum of 4 neighbors
only. Graph density, ρ is defined by Eq. (5).

shifted clocks in the sIM (Fig. 1d). The equal phase shift is
required to avoid any concurrent edges of the clocks. In our
architecture (Fig. 1d), different color blocks receive different
clocks to their RNGs, ensuring no neighboring p-bits flip at
the same time for exact Gibbs sampling. This is a constraint
we relax in Section VIII.

In the case of exact Gibbs sampling, our architecture

ensures the entire network is updated in parallel in one clock
period (of any color) while ensuring an effectively sequential
operation.

As a quantitative measure of sparsity in the resultant
invertible p-circuits we use the notion of graph density ρ. For
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an undirected graph ρ is defined as

ρ =
2|E|

|V |2 − |V |
(5)

where |V | is the number of nodes (vertices), corresponding to
the number of p-bits in the sIM and |E| is the number of edges,
corresponding to the interconnections in the [J ] matrix. With
this definition an all-to-all (or a complete) graph has a ρ of
100%. We find that when p-circuits are composed of universal
gates, both the factorization and the satisfiability graphs are
sparse (see Supplementary Fig. S5). For example, consider
the graph of a 32-bit factorizer p-circuit presented in Fig. 1e
having 784 p-bits with a ρ of 1.03%, requiring only 5 distinct
colors. In this example, five parallel and equally phase-shifted
clocks in the sIM are adequate to implement this p-circuit for
massively parallel computation.

B. Sparsification of problem graphs

There is a limitation on the clock speed depending on
the maximum number of neighbors for each p-bit. The
neighbor distribution of the 32-bit factorizer graph reveals
that it has 32 p-bits with 32 neighbors (Fig. 1e). In order
to ensure every single color block is updated with the latest
state of each neighbor, the MAC unit implementing Eq. (2)
needs to finish its computation before the next color block is
updated. With binary models the multiplication consists of
simple multiplexing (the weights are either selected or they
are ignored). This means that the addition for the weights
needs to be completed within the nth of a clock period, where
n is the number of colors. In the present example, this requires
large adders to add 32 s-bit numbers within this short period,
where s is the bit precision of the weights.

Therefore even when the sparse graphs as in Fig. 1e,g
require a few colors the p-bits with 32 or 498 neighbors
introduce large synapse (addition) delays creating a severe
bottleneck for how fast the clocks can be operated.
To overcome this limitation, we have developed exact
sparsification techniques to remove the nodes with a large
number of neighbors without changing the structure of the
optimization problem. The main idea in this approach is to
split a given p-bit representation between two p-bits coupled
by a ferromagnetic (J >0) interaction which we call a COPY
gate [19, 56, 57]. The ferromagnetic interaction ensures that
at the end of an annealing schedule (high β), the ground states
of the split and fused models are identical. We show a formal
proof in the Supplementary Information Section D.

Fig. 1f shows the sparsified graph of the 32-bit factorizer
p-circuit with 2128 p-bits and a graph density of 0.2%. It
is colored with 5 colors as before, however, the neighbor
distribution reveals the maximum number of neighbors, k
is limited to 5 which minimizes the adder delay and allows
fast clocks. In general, such sparsification techniques always
introduce extra p-bits, however, in scaled implementations
individual p-bits are almost always cheaper than complicated
synapse interactions.

Similarly, the original graph of the 3SAT instance ‘uf-
100-01.cnf’ can be colored using 7 colors (Fig. 1g). It is

also a sparse graph with 531 p-bits and a graph density of
1.55%. However, the neighbor distribution shows that some
p-bits have more than 5 connections and one p-bit has 498
connections. This p-bit corresponds to the node where the
outputs of all clauses meet. A sparsified version of this graph
is illustrated in Fig. 1h with 1935 p-bits and a graph density
of 0.2%. As before, the sparsification ensures the graph has a
maximum of k = 4 neighbors for each p-bit and hence avoids
large adder delays, requiring 4 colors (clocks).

Even though we show specific cases of sparsification (with
k = 4 neighbors for satisfiability and k = 5 for factorization),
we have analyzed the effect of sparsification (as a function
of k) on system size and performance in the Supplementary
Information Section E. We note that limiting the number of
neighbors per p-bit to a fixed value (k = 4, k = 8 etc.)
ensures that the adder delays from the MAC unit do not grow
with system size. In other words, no matter how large the
global system becomes, only the local neighborhood of a p-
bit (with k-neighbors) needs to communicate faster than the
p-bit clocks, ensuring the scalability of the approach.

In the following sections, we present our results for
integer factorization and SAT solving implemented in the
massively parallel sIM architecture. We implemented the sIM
architecture on a Xilinx Virtex UltraScale+ FPGA VCU118
Evaluation board for our experiments. The details of the
FPGA architecture and its design choices are included in
the Supplementary Information Section B. We used a simple
simulated annealing algorithm [64] with a linear schedule for
all experiments reported in this work.

V. COMPARING SPARSE ISING MACHINE WITH
EXISTING HARDWARE (CPU, GPU AND TPU)

A. CPU comparison with approximate factoring

In order to test the parallelism achieved by our approach,
first, we compare the sIM implementation of parallelized
Gibbs sampling with a CPU implementation of standard
(serialized) Gibbs sampling [30]. Our purpose in this
comparison is to stress the asymptotic scaling differences
between the standard approach and our method, rather than
a pure performance comparison which we perform later
in Section V B, against highly optimized and fine-tuned
GPU/TPU implementations.

We define approximate factorization as reaching 99% of the
absolute ground energy from 14-bit to 50-bit semiprimes. We
do not attempt exact factorization since the absolute ground
state is very difficult to be reached using simulated annealing
[64] and the CPU practically never reaches there. While
finding approximate factors is not useful for the problem
of integer factorization, many other optimization problems
benefit from high-quality and approximate solutions. As such,
we treat approximate factorization as a computationally hard
problem benchmark.

We use the same annealing schedule and the same sparsified
graphs for the comparison between an unoptimized serial
MATLAB implementation on a CPU and the parallel FPGA
implementation of the sIM. For each problem, we have
attempted to factor 10 different numbers 10 times to make
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Fig. 2. Performance scaling between parallel (sIM) and serial (CPU) implementations. (a) The CPU flips per second (fps) as a function of
graph size is shown, larger graph sizes drastically limiting the fps. (b) The measured sIM fps as a function graph size is shown, showing
ideal parallelism scaling linearly with system size in contrast to the serial CPU. (c) Time to solution comparison for approximate factorization
between the CPU and the sIM as a function of graph size. TTS99 or time to solution, is defined as the time to reach 99% of the ground state.
TTS99 requires up to 4408.93 s for the 50-bit factorization in the CPU. For the sIM, it is showing almost a flatline behavior with up to≈ 106x
performance improvement.

sure we collect enough statistics and test the robustness of the
system.

As a key metric, we first focus on the flips per second (fps)
as a figure of merit. The fps corresponds to the correlated
flips per second that can be taken by the system where every
flip is made based on the latest state of the network, between
physically connected nodes while avoiding simultaneous
updates. Indeed, various hardware implementations for
MCMC solvers have reported this metric [38, 39, 65, 66]. The
fps can be thought of as the effective processing speed for
MCMC. The key point of the parallel architecture we design
for the sIM is that its fps increases linearly with the number
of p-bits corresponding to a problem.

Fig. 2a,b present a comparison of fps between the
inherently serial CPU and the massively parallel sIM
for the factorization problem. The CPU calculation is
done in MATLAB by an iterative solution of Eq. (2)-
(3) using standard Gibbs sampling [30] with simulated
annealing. Even though optimization techniques including
graph coloring by multiple threads could improve our
MATLAB implementation, our purpose is to stress the
massive parallelism achieved by the sparse architecture we
develop over a standard implementation of Gibbs sampling.

MATLAB runs on the Knot Cluster at the Center for
Scientific Computing (CSC) server, UCSB featuring an Intel
Xeon Processor E5630 running at up to 2.8 GHz. On the other
hand, we have used five equally phase-shifted 15 MHz clocks
in the sIM and assigned those clocks to the p-bits based on
a previously calculated graph coloring. In the sIM, each p-
bit updates in parallel, achieving an effective clock speed of
N×15 MHz where N is the number of p-bits. 15 MHz is
chosen to satisfy the timing requirements for the additions to
be completed and better FPGAs or hardware implementations
can be envisioned to reach even higher frequencies.

It is important to note that we directly measured the flips per
second of the sIM by means of specially designed reference
counters in the FPGA (See the Methods Section X D for
the measurement details). The maximum flips per second

(fps) achieved by the CPU is limited to around 105 (Fig. 2a).
Moreover, fps quickly starts to decline for the CPU with the
increasing number of p-bits. The main reason for this is due
to the sequential nested for-loops in standard Gibbs sampling
[30]. On the contrary, the sIM collects up to 80 - 100 billion
fps for the highest problem sizes. Crucially, the fps increases
linearly with the increasing number of p-bits as shown in
Fig. 2b due to its massively parallel architecture. Starting at
an fps of 5.99×109 for the 14-bit factorization, it achieves a
maximum fps of 8.06×1010 for the 50-bit factorization.

While we do measure an increasing fps for the sIM as
a function of graph size, an important arising question is
whether all these samples are useful or not. In order to test
this question, we define a performance metric, the time to
solution, TTS99 as the time to reach 99% of the absolute
ground energy. Note that in the case of factorization, the exact
solution is planted, in other words, we know the factors of
a given product and therefore we have access to the exact
ground state energy. Fig. 2c shows a steep rise of TTS99
from 14-bit to 50-bit factorization for the CPU. The fastest
case requires TTS99 of 23.84 s for the 14-bit factorization
while the slowest one requires 4408.93 s for the 50-bit
factorization. In contrast, the sIM shows a roughly constant
mean value for all the problems, requiring 1.02 ms for the
14-bit factorization and 1.84 ms for the 50-bit factorization
(See the Methods Section X E for TTS measurement details).
The 50-bit factorization is over a 2.4×106x improvement over
the CPU. The difficulty of the approximate factorization is
clearly increasing with increasing problem size. The reason
for the constant time to solution for the sIM despite the
increasing difficulty of the problem for larger problem sizes
can be attributed to the massive parallelism of the sIM where
increasing problem size also increases the fps. Therefore,
we can conclude that the measured fps shown in Fig. 2b is
a real improvement. This makes the massive parallelism of
the sIM very different from trivially parallel p-bits sampling
independently.
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Platform Graph flips/ns
Nvidia Tesla C1060 GPU [65, 66] Chessboard 7.98

Nvidia Tesla V100 GPU [39] Chessboard 11.37
Google TPU [39] Chessboard 12.88

Nvidia Fermi GPU [38] Chessboard 29.85
FPGA sIM [This work] Irregular 143.80

Nanodevice sIM [Projected] [15, 25, 47, 48] Irregular 1,000,000

TABLE I. Comparison of the FPGA-based and nanodevice-based
(projected) sIM with optimized GPU and TPU implementations of
Markov Chain Monte Carlo sampling. Unlike the GPUs and TPUs,
the sIM can support regular chessboard lattices as well as irregular
graphs shown in this paper. For the sIM, fps is a size dependent
metric as shown in Fig. 2,4. In this table, the best fps achieved in the
largest system is quoted.

B. GPU and TPU comparison

Table I summarizes the performance benchmarking of the
current work (sIM) with the state-of-the-art GPUs and TPUs.
An important distinction between these comparisons is that
virtually all optimized implementations of GPUs and TPUs
make use of a regular 2D chessboard lattice where partitioning
the graph into two color blocks becomes the key piece
that enables parallelism. By contrast, in our examples, we
show that for realistic instances of combinatorial optimization
problems using invertible Boolean circuits, the resulting
graphs are sparse but not necessarily regular or bipartite
(2-color). Even though theoretical results suggest simple
nearest-neighbor models could be sufficient to model any
other problem [67], accelerating problem graphs in between
nearest-neighbor and all-to-all will be critically important in
practice.

The performance of the sIM flips per second (fps) grows
linearly with the number of p-bits in a network, hence the
fps becomes a size dependent metric. We observe the sIM
reaches up to 143.8 flips/ns at one of the largest graph
nodes (4793 p-bits). This is an 18.03x performance gain
over the single Nvidia Tesla C1060 GPU with multi-spin
coding [65, 66]. It also outperforms the Google Cloud TPU
implementation of the 2D Ising model by a factor of 11.17
and its reference Nvidia Tesla V100 GPU by a factor of 12.65
[39]. Furthermore, the sIM provides 4.82x more flips/ns
than the Nvidia Fermi GPU coded for simulating the 3D
Edwards–Anderson model with parallel tempering [38].

Beyond the FPGA-based sIM implementation we consider
in this paper, we make performance projections for
massively parallel asynchronous sIMs using nanodevices
(see Supplementary Section A). Magnetic Tunnel Junctions
(MTJ) have recently attracted attention as building blocks for
probabilistic computation because of their extreme scalability.
The magnetic memory industry have integrated up to billions
of single MTJs to replace various parts of the memory
hierarchy [68]. Through minimal modifications such MTJs
can be made stochastic [15, 69], providing the expensive
random number generation with negligible hardware cost.
Stochastic MTJs have been demonstrated to provide fast
fluctuations (τ =1 ns / flip) [47, 48] and at least a million

Platform Integers Factored (up to)
D-Wave 2000Q [42] 143 (8-bit)

CMOS Inv. Logic [22] 598 (10-bit)
Stochastic MTJ [15] 945 (10-bit)

FPGA RBM [20] 43621 (16-bit)
D-Wave 2000Q [43] 223357 (18-bit)
D-Wave 2000Q [44] 249919 (18-bit)

FPGA sIM [This work] 4277546633 (32-bit)

TABLE II. Comparison between the state-of-the-art hardware
factorizers and the FPGA-based sIM. Note that all of these solvers
treat integer factorization as a frustrated spin-glass problem and
perform classical or quantum annealing (or ordinary sampling). We
show best reported numbers and single instances, in the case of
sIM, random semiprimes up to 32-bits can be reliably factored, see
Section VI.

MTJs (N = 106) can be integrated in massively parallel
architectures [15, 25] similar to what we consider in this
paper. Following the linear scaling law we demonstrated in
Fig. 2b, such sIMs can provide N/τ flips per second reaching
1 million flips per nanosecond (Table I), provided that the
connectivity of the hardware is sparse enough to enable the
ideal parallelism demonstrated in this paper.

VI. EXACT FACTORIZATION OF SEMIPRIMES UP TO
32-BITS

Beyond approximate factorization, we have also performed
exact factorization with the sIM. As mention in Section II, we
consider the integer factorization problem as a benchmark to
compare the performance of our sIM implementation against
other probabilistic solvers or D-Wave’s quantum annealers.
We found that the sIM can factor random semiprimes up to
32-bits reliably (Supplementary Information, Fig. S7). To the
best of our knowledge, this result is by far the best among all
other approaches of solving factorization as an optimization
problem, for example by D-Wave and others [15, 20, 22, 42–
44]. Table II presents a comparison of integer factorization
across the state-of-the-art hardware platforms, and the sIM
reports the largest factorization up to 32-bit. What is common
to all these solvers is they express factorization as a frustrated
spin-glass problem in which the ground state is searched using
classical or quantum annealing.

From an algorithm perspective, factorization of 32-bit
semiprimes is not difficult since even with trial division this
is a relatively easy computation. From a statistical physics
perspective, however, finding the doubly degenerate ground
state of a frustrated spin glass in a 2N dimensional space
(N > 2000 p-bits) is striking. Contrasting the time to solution
shown for approximate factorization (Fig. 2c) to that of exact
factorization (Fig. S7) as function of problem size, we observe
a drastic difference in algorithmic scaling, indicative of a “golf
course” like energy landscape where the ground state is well-
hidden from “ordinary” approximate states that are easy to
reach.

It is worth stressing that we used a simple, standard
simulated annealing algorithm without any fine tuning or
optimization. Our preliminary findings indicate parallel
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Fig. 3. Exact factorization of a 32-bit number, P= 4277546633 in the sIM. (a) The normalized energy as a function of inverse temperature,
(β from Eq. (4). Inset shows the linear annealing schedule. (b) Histograms of the product P and the factors A, B over the entire annealing
schedule. (c-d) Factors A and B at different β values, showing they converge to the right ground state at the highest β.

tempering or other algorithmic methods could improve
the success probability of these results. We believe the
success of our approach over similar alternatives is due to
the sparsification methods that have enabled the massively
parallel sampling architecture of the sIM.

Fig. 3 presents the exact factorization of a 32-bit number,
P= 4277546633. The linear annealing schedule and the
normalized energy of the system are presented in Fig. 3a. The
absolute ground state is reached at the coolest temperature (the
highest β). The histograms of the product P and the factors A,
B over the entire annealing schedule are presented in Fig. 3b
where the exact factors A = 65479 and B = 65327 are visited
reliably. Fig. 3c and Fig. 3d reconfirm that the factors are
consistently found at the highest β without any fluctuations.

While we do not show statistics in Fig. 3, in Supplementary
Fig. S7, we report the time to find the exact factors (TTS100)
from 14-bit to 32-bit semiprimes. For any of these problems,
the CPU fails to find the exact factors even over a very long
time and therefore is excluded from the TTS100 report and
we report the sIM times. As before, we attempt to factor 10
different numbers 10 times for each problem.

Unlike approximate factorization where we defined TTS99
as the average time the sIM takes before reaching 99% of the

absolute ground state, we find that for exact factoring there
is an (empirical) exponential dependence of the time with
respect to problem size, in line with the belief that integer
factorization is in NP where a known polynomial algorithm
does not exist [70].

To reiterate, extrapolating our observed data with an
exponential fit to estimate exact factoring, we find that
factorization with this method is not a practical approach
in the context of cryptography, in agreement with the
observation from Ref. [45]. However, improving SAT
solving with massively parallel hardware could still be useful
in accelerating critical subroutines of the best factoring
algorithms [46].

VII. BOOLEAN SATISFIABILITY WITH INVERTIBLE
LOGIC

A. sIM vs. competition-winning SAT Solvers

As shown earlier in Fig. 1, it is possible to design invertible
Boolean circuits in hardware corresponding to satisfiability
instances using the principles of invertible logic. Here, we
focus on solving 3SAT problems to demonstrate the hardware
acceleration of our massively parallel sIM architecture. In
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Fig. 4. Performance of the sIM vs. competition-winning SAT solvers. (a) The flips per second (fps) of the sIM increases linearly with the graph
size, showing ideal parallelism. The sIM achieves a record fps of 1.44×1011 for the largest problem with 4793 p-bits and 1065 clauses. (b)
Runtimes to solve the UBC SATLIB [55] 3SAT instances. Winning solvers from the SAT 2020 competition, namely Kissat, Plingeling, and,
Cryptominisat [71, 72] find 100% solution (all clauses satisfied). SAT competition 2017 random track winner Yalsat [73] is set to find the 95%
solution (95% of the clauses satisfied). In exact SAT solving, the sIM is slower than all professional SAT solvers. However, in approximate
SAT solving to satisfy 95% of the clauses, the sIM outperforms all of these solvers (including local search-based SAT solvers, such as Yalsat)
delivering the fastest solution.

particular, our purpose is to compare the sIM with the best
possible software algorithms and we focus on competition
winning SAT solvers as a benchmark. As previously, we
first report the flips per second (fps) achieved by the sIM
for different 3SAT instances defined by the number of their
clauses (Fig. 4a). The sIM runs with four parallel and equally
phase-shifted clocks operating at 30 MHz since in this case
the sparsified graphs require only 4 colors. For the smallest
instance ‘uf20-01.cnf’ with 20 variables and 91 clauses, the
sIM achieves an fps of 1.23×1010 with 410 p-bits. For the
largest instance ‘uf250-01.cnf’ with 250 variables and 1065
clauses, the sIM achieves a record fps of 1.44×1011 with 4793
p-bit, a 5 to 18x speed up over optimized TPUs and GPUs
discussed in Section V (Table I).

Fig. 4b shows the run times to solve the UBC SATLIB [55]
3SAT instances using different professional SAT solvers and
the sIM. We solve each instance 100 times to obtain enough
statistics. We compare our results with award-winning solvers
from the SAT 2020 competition, namely Kissat, Plingeling,
and Cryptominisat [71, 72]. These conflict-driven clause
learning (CDCL) solvers attempt to find the exact solution
that satisfies all of the clauses. All these solvers are executed
on the same Linux machine having a flagship Intel Core
i9-10900 Processor running at up to 5.20 GHz. Time to
solve all the clauses (100% solution) is reported as Kissat100,
Plingeling100, and, Crypto100 respectively. We have used
linear simulated annealing in the sIM to report the time to
solve all the clauses, labeled as sIM100 in Fig. 4b.

As typical of simulated annealing [64], reaching the
absolute ground state is difficult for the sIM. We do report the
sIM100, namely the time it takes for sIM to satisfy all clauses
in a given 3SAT instance and find that despite the enormous
number of flips per second taken by the massively parallel

processor, we did not find the ground state beyond 2903 p-
bits (Fig. 4b, sIM100).

In many practical instances however, the user may
not be interested in finding the absolute ground state of
an optimization problem, and reaching approximate but
practically useful solutions as quickly as possible is far
more important. In such a paradigm, we find that the sIM
beats all of the SAT solvers mentioned (Fig. 4b, sIM95).
Because CDCL-based solvers such as Kissat, Plingeling and
Crpytominisat are programmed to find the exact solution, we
also test the sIM against another solver Yalsat (2017 SAT
competition random track winner) which keeps a current best
solution around. We program the solver to stop when it
reaches 95% of the solution (denoted as Yalsat95). We run
Yalsat on the same Linux Machine. sIM is also set to solve
95% of all the clauses and the time to solution is noted
as sIM95. We find that in this approximate SAT solving
mode, the sIM provides the fastest approximate solution
outperforming all of the professional SAT solvers by a factor
of 4 to 700. We find that there is no failure even for the largest
instance (‘uf250-01.cnf’) we can fit to our FPGA encoded
with 4793 p-bits. It takes only 2.36 µs for the instance ‘uf20-
01.cnf’ and 98.26 µs for the instance ‘uf250-01.cnf’ to solve
95% of the clauses. We expect larger improvements in more
scaled implementations of our sIM architecture using more
powerful FPGAs or application specific integrated circuits.

VIII. OVERCLOCKED GIBBS SAMPLING WITH SPARSE
ISING MACHINES

The parallelized sparse Ising Machine architecture we
introduced in this work implements Eq. (2)-(3) exactly. This
is ensured by making every color block update with the most
up-to-date neighbor information. Since this architecture is
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Fig. 5. Overclocked Gibbs Sampling with sIM. (a) 14-bit factorization: the flips per second (fps) as a function of p-bit clocks is shown. Timing
is violated after 15 MHz. Based on (b), we observe that overclocking effectively improves fps up to 65 MHz. (b) Time to solution to reach
99% of the ground state, TTS99, measured as a function of clock frequency. (c) 3SAT instance ‘uf100-01.cnf’: measured fps as a function of
p-bit clocks shown. Timing is violated above 25 MHz. Based on the results of (d), the highest effective fps is achieved at 50 MHz. (d) Time
to solution to satisfy 95% of the clauses, TTS95 as a function of clock frequencies. Both results (b)-(d) show qualitatively similar behavior of
improving performance followed by a sharp decline, indicative of universal behavior.

inspired by asynchronous and physical p-bit implementations,
for example using stochastic magnetic tunnel junctions,
a natural question to consider is whether inexact Gibbs
sampling where the p-bits do not update with the most up-
to-date neighbor information is worth considering. This
approach is reminiscent of asynchronous Gibbs sampling
(or Hogwild! Gibbs) approaches that have been analyzed
theoretically [35, 74, 75].

Here, we (systematically) investigate how increasing
individual clock frequencies of color blocks and eventually
performing inexact Gibbs sampling with old statistics at
the p-bit level affects system performance. Remarkably,
for two completely different problems (integer factorization
and Boolean satisfiability), we observe qualitatively similar
results as a function of increasing clock frequency, therefore
increasing the number of messages dropped between
neighbors, reminiscent of approximate message passing
algorithms [76]. In both cases (Fig. 5b,d), we observe an
initial decrease in time to solution with increasingly incorrect

updates followed by a sharp increase. Increasing the clock
frequencies naturally increase the fps of the main network
(Fig. 5a,c), however, when messages are dropped beyond a
certain threshold, the improvement in the fps does not help
the network converge to the right answers.

To test the generality of overclocking, we analyzed inexact
Gibbs sampling with systematically introduced errors in
a 5 p-bit full adder circuit (Supplementary Section G).
By introducing two different error models, we observe
qualitatively similar behavior, where introducing a small
amount of error (related to the number of messages dropped
between neighbors) does not lead to significant deviations
from the exact Boltzmann distribution. This explains why
a moderate amount of overclocking is effective: increasing
fps without introducing significant errors decreases time to
solution, as observed in two different problems in Fig. 5.
In Supplementary Section G, we also show how further
overclocking reduces the network to a fully synchronous
(parallel) updating state, providing analytical estimates of
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limiting behavior.
One additional reason why overclocking improves

performance significantly is due to the slowing down of the
network dynamics at lower temperatures (higher β). At the
end of an annealing schedule, despite introducing timing
failures in many critical paths (and potentially dropping a
significant number of messages between neighbors), these
critical paths are not activated because p-bits do not change
their states frequently. The degree of resilience of the system
to errors through inexact sampling is an important feature
of such probabilistic methods [77] which can be exploited
in truly asynchronous nanodevice-based implementations of
sIM [15, 25, 47, 48].

IX. CONCLUSIONS

In this paper, we proposed and implemented a massively
parallel architecture, the sparse Ising Machine, to parallelize
a broad range of Markov Chain Monte Carlo (MCMC)
algorithms useful for computationally hard problems. In
particular, overcoming the fundamentally serial nature of
MCMC algorithms such as Gibbs sampling, we have
shown an architecture that can achieve ideal parallelism
where the main metric of the sIM, the flips per second,
scales linearly with the number of probabilistic bits in the
system. This parallel architecture used several algorithmic
ideas of combining invertible logic to produce sparse graph
representations of combinatorial optimization problems such
as Boolean satisfiability and integer factorization. Further
sparsification was needed to ensure matrix multiplication
and addition can be performed before independent p-bits are
updated. The architecture used approximate graph coloring to
parallelize sampling.

We have shown an FPGA-based implementation of this
concept where we have achieved three major results. First,
comparisons to an ordinary CPU implementation of Gibbs
sampling showed that the sIM is able to achieve up to 6-orders
improvement in flips per second, which directly translated
to advantages in time to solution in the integer factorization
problem. Comparisons to highly optimized GPU and TPU
implementations, the sIM showed up to 5-18x measured
speed up in flips per second, without the use of regular or
simple graphs as commonly used for benchmarking purposes
in GPUs and CPUs. Second, the sIM was able to factor
semiprimes up to 32-bit integers, far larger than the best
available results on factoring where an optimization approach
is taken. And third, the sIM was able to beat competition
winning SAT solvers in approximate satisfiability, delivering
superior performance compared to the best possible classical
approach in solving satisfiability problems. We have also
shown how overclocking in the spirit of asynchronous Gibbs
sampling [35] could lead to performance improvements.

These results were obtained in a FPGA platform where
our problem sizes were limited to the number of probabilistic
bits we could fit in a single device. Use of more powerful
FPGAs would immediately extend the size of problems
programmable to the sIM. The ideal parallelism we achieved
in the architecture, coupled with algorithmic sparsification

techniques we developed can further be exploited in highly
scaled implementations. In particular, nanodevice (or analog
CMOS-based) p-bits can produce significant improvements
over our present results, as the search for domain-specific
hardware in the beyond Moore era of electronics intensifies.

X. METHODS

A. Problem description

For the factorization problem, we generated random
semiprime numbers from 14-bit to 50-bit using MATLAB.
For each instance, 10 different numbers were generated. The
graphs obtained using invertible logic and sparsification are
very sparse (See Supplementary Fig. S5a).

For the SAT problem, we solved 3SAT instances (each
clause has exactly 3 variables). The instances were collected
as .CNF files from the UBC SATLIB library [55]. Similar
to factorization, the 3SAT graphs are very sparse (See
Supplementary Fig. S5b).

B. Simulated annealing

In simulated annealing, β is gradually increased over time.
According to Eq. (2), multiplication of β and the input weights
(J , h) are performed in MATLAB. The updated values of
J and h are sent to the FPGA for every β over time to do
simulated annealing.

C. Data READ/WRITE

MATLAB is used to READ/WRITE data from the FPGA
through a USB-JTAG interface (see Supplementary Fig. S2a).
A programmable timer is implemented in the FPGA. Using
the timer, a global DISABLE signal is sent to the p-bits before
a READ instruction. The timer is preset from the program
(MATLAB) and all the p-bits are automatically frozen at the
same time when the time is up. Once the p-bits are frozen,
the data are READ using the USB-JTAG interface and sent to
MATLAB for post-processing. When the READ instruction
is DONE, the timer is RESET from MATLAB to resume the
p-bits if necessary. Similarly, for the WRITE instruction, a
global DISABLE signal is sent using the programmable timer
to freeze the p-bits before sending the weights. Likewise the
READ instruction, the timer is RESET from MATLAB to
resume the p-bits after the WRITE instruction is DONE.

D. Measurement of fps

Each p-bit is designed with a programmable stopwatch
counter in the FPGA. A global counter running parallelly is
set to count up to a preset value at the positive edge of a
known clock. When the global counter is DONE counting,
a global DISABLE signal is broadcast to all other counters.
Comparing the p-bit counter outputs (number of flips) with
the global counter preset value, the time for the total flips
is obtained. With this data, the fps of the sIM is measured
experimentally for each p-bit. To measure the fps in the
case of the CPU, built-in functions from MATLAB is used
to measure the elapsed time and programmatically count the
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total flips in that time. With this data, the fps is measured
in real-time. The error bars in all the figures are obtained by
taking 100 measurements of fps.

E. Measurement of TTS

In the FPGA, a minimum time is set using the
programmable timer to find the solution to the problem of
interest. After that time, a global DISABLE signal is sent
to READ the latest TTS. In iterations, the minimum time
is incremented, and the p-bits are RESET. This process is
repeated until the desired solution is reached. The latest
TTS is reported as the TTS of the sIM for that problem. In
measuring the TTS, we do not include the READ/WRITE
times through the USB-JTAG interface. While we use a slow
USB-JTAG interface (up to 33 MHz) for the convenience
of using MATLAB, much faster R/W protocols such as PCI
Express (up to 8 Gb/s) would remove this time entirely.
To measure the TTS in the case of the CPU, a predefined
minimum number of samples is set to find the solution. The
number of samples is increased in iterations until the optimum
solution is found by the CPU. The time to solution is recorded
using the built-in function and the latest one is reported as TTS
of the CPU for that problem. The error bars in all the figures
are obtained by taking 100 measurements of TTS.

F. Setting up the SAT solvers

The online source codes of the SAT solvers are used to build
the solvers on a Linux machine. For the CDCL SAT solvers,
the time to find the 100% solution is measured using a simple
Python script. For the local SAT solver Yalsat, the program is
set to report the TTS for the current best solution.
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SUPPLEMENTARY INFORMATION

A. Characteristics of CMOS and nanodevice based p-bits

In Section I of the main paper, we have discussed Eq. (3) of a p-bit that can be implemented in several hardware platforms.
A CMOS implementation of Eq. (3) is presented in Fig. S1a. A clock-triggered random number generator (RNG) provides the
randU(−1, 1) function and a lookup table (LUT) maps the tanh activation function. Finally, a comparator is used to trigger
the flip of the p-bit. The input-output characteristics of a CMOS implemented p-bit is shown in Fig. S1b. Eq. (3) can also be
implemented using nanodevices such as a 14-nm FinFET and a stochastic MTJ (see Fig. S1c) where a mapping between the
dimensionless Eq. (3) and the device characteristics can be made [78]. The input-output characteristics of the nanodevice p-bit
is presented in Fig. S1d. The parameters used for the simulation are included in Table S1. The simulation time steps to solve
the stochastic Landau-Lifshitz-Gilbert equation intrinsically calculates an attempt time. For low-barrier nanomagnets, due to
the lack of an energy-barrier there is no clear switching voltage at zero temperature, however, there is the notion of a ‘pinning
current’ [79] which is a function of device parameters.
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Fig. S1. (a) Digital CMOS implementation of Eq. (3) of a p-bit using an RNG, a LUT, and a comparator. (b) Input-output characteristics of the
digital CMOS p-bit. (c) Nanodevice implementation of Eq. (3) using a 14 nm FinFET and a stochastic MTJ. (d) Input-output characteristics
of the nanodevice p-bit.

Parameter Value
Free layer energy barrier ≈ 0 kT

Free layer diameter 20 nm
Free layer thickness 2 nm

Free layer damping coeff. (α) 0.01
HK (uniaxial anisotropy) 10−2 Oe
HD (demagnetization field) 4πMs

Saturation magnetization (Ms) 1100 emu/cc
Interface Polarization P = 0.7

Tunneling Magnetoresistance (TMR) 2P 2/1− P 2 = 192%
Average conductance for MTJ (G0) 43 µS

NMOS technology model 14-nm HP FinFET, PTM [80]
Time step for integration ∆t = 1 ps

TABLE S1. Parameters used for nanodevice based p-bit simulation in Fig. S1d.

B. FPGA implementation of the sIM

We have presented the experimental results of the sIM in the main paper without technical details about the implementation of
the architecture. Here, we discuss an FPGA based implementation of the sIM in a Xilinx Virtex UltraScale+ VCU118 Evaluation
board. The basic architecture of the FPGA design is presented in Fig. S2.

1. Interfacing unit

We use MATLAB as an Advanced eXtensible Interface (AXI) master to communicate with the slave FPGA board through a
USB-JTAG interface (Fig. S2a). We have designed an AXI master integrated IP on the board that transfers data with a 32-bit
memory-mapped slave register IP via the fourth generation AXI (AXI4) protocol. An external website ‘airhdl’ [81] is used to
manage the memory mapping of the registers.
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Fig. S2. FPGA based implementation of the sIM. (a) An interfacing unit to communicate between MATLAB and the FPGA. (b) A built-in
clocking unit to generate equally phase-shifted parallel clocks to trigger the colored p-bit blocks. (c) The MAC unit to implement Eq. (2)
where the colored clock from the general architecture is fed into the LFSR of the p-bit.

2. Clocking unit

Section IV in the main paper explains how approximate graph coloring can be used to color p-bit blocks for massive
parallelism. For this, we have used built-in clocks on the FPGA board to drive the LFSRs inside the p-bit blocks as shown
in Fig. S2b. A 250 MHz Low-voltage Differential Signaling (LVDS) system clock generates equally phase-shifted and parallel
stable clocks using the on-board Mixed-Mode Clock Manager (MMCM) Module. This module is available in the VCU118
LogiCORE IP provided by Xilinx. The generated clocks are very accurate, have minimum jitter and minor phase error. The
colored p-bit blocks get triggered with these phase-shifted clocks.

3. MAC unit

In Section II of the main paper, we described the MAC unit interconnecting the p-bits and computing Eq. (2). Fig. S2c
illustrates the MAC unit implemented in the FPGA. In this work, we have used 32-bit linear-feedback shift registers (LFSRs)
with taps [32, 22, 2, 1] as RNGs after extensive experiments with different types of RNGs (LFSR, Xoshiro128+ [82], and the
Mersenne Twister [83]) with different bit-widths. The LUT bit-width is configured accordingly and a comparator compares the
outputs of the LUT and the LFSR. The input weights (J, h) are programmable and we multiply them by β from the MATLAB
level to implement simulated annealing.

4. Correspondence between binary and bipolar variables

Eq. (1)-(3) presented in Section I of the main paper use bipolar variables. It is more convenient to use binary variables for the
FPGA-based implementation of the sIM. In the MAC unit, all the variables are calculated using binary notations where the final
output for a p-bit is mi ∈ {0, 1}. The bipolar to binary conversion is done using the following equations:

Jbinary = 2Jbipolar (S.1)

hbinary = hbipolar − Jbipolar A (S.2)

where, A is an [N × 1] vector of ones, and N is the number of p-bits. The activation function values stored in the LUT is
converted from a bipolar representation to a binary representation by mapping tanh to (1 + tanh)/2.

C. Basic logic gates for probabilistic computing

Section III A of the main paper illustrates how any invertible logic probabilistic circuit can be composed using basic logic gates
and full adders to solve combinatorial optimization problems. Fig. S3a-l presents the basic logic gates (COPY/NOT/AND/OR)
used to build such p-circuits. The J and h matrices have few unique weights that are highlighted using unique colors. The
energy plot corresponding to the Boltzmann probability are also included in the figure. For example, for the AND gate, the
ground states (states with the lowest energy) [m1 m2 m3] = {000, 010, 100, 111}bin correspond to the truth table of the AND
gate.
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Fig. S3. Basic logic gates for probabilistic computing. (a)-(l) COPY/NOT/AND/OR gates with J and h matrices having few unique weights
highlighted using unique colors (not to be confused with graph coloring). The ground states match the basic truth tables where the vectors
[m1 m2] or [m1 m2 m3] are represented by the corresponding binary numbers.

Fig. S4a-d further illustrates how to compose an invertible logic p-circuit using these basic logic gates. The composite circuit
combines the [3 × 3] J matrices of the AND and OR gates which become a [5 × 5] matrix after fusion of the common node.
Similarly, it combines the [3 × 1] h matrices of the AND and the OR gates which become a [5 × 1] h matrix after fusion. The
energy plot reveals that the ground states [m1 m2 m3 m4] = {0001, 0101, 1001, 1110, 1111}bin agree with the truth table of the
composite circuit when m5 = 1. The circuit has a maximum number of neighbours, k = 4. A sparser version of the circuit with
k = 3 can be obtained by splitting m3 into two nodes and inserting a copy gate between m3 and m′3 (Fig. S4e-h). The ground
states are [m1 m2 m3 m

′
3 m4] = {00001, 01001, 10001, 11110, 11111}bin whenm5 = 1. We present a mathematical justification

in Supplementary Section D showing the equivalence between these two circuits.
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Fig. S4. Fusion and sparsification techniques for probabilistic gates. (a)-(d) A composite p-circuit built using an AND gate and an OR gate
with corresponding J and h matrices and energies of states. Unlike the other examples, m5 is clamped to 1 in this example. (e)-(h) A sparse
p-circuit built by splitting m3 into two nodes and inserting a copy gate between m3 and m′3. The energy plot shows the same ground states,
showing that these two circuits are equivalent.

D. Fusion and Sparsification

In this section, our objective is to define two graph modification techniques we call fusion and sparsification. Fusion refers
to combining multiple nodes (p-bits) to a single node. Sparsification refers to splitting a single node into multiple nodes to
decrease the vertex degree (number of neighbors) of a given node. We define k as the maximum number of neighbors per node
in a graph. k = ∞ represents the original problem (fused) without sparsification. In this section, we give a mathematical proof
of the equivalence between a fused and a sparisified graph.

1. Mathematical equivalence of fused and sparsified graphs

Here, we would like to establish that as the annealing parameter β of Eq. (3) (main paper) is increased (β →∞ at the end of
an annealing schedule), the sparsified and the fused circuits have the same ground state for a given optimization problem. The
connection between the sparsification and the fusion also allows a natural way of composing p-circuits which we elaborate next.
Suppose there are two subcircuits we are trying to connect in which mA corresponds to the node from subcircuit A and mB

corresponds to the node from subcircuit B and that mA and mB need to be tied together. Both these systems are described by
their respective energies (ignoring biases without loss of generality):

EA = −

∑
i6=A
i<j

Jijmimj +
∑
j

JAjmjmA

 (S.3)

EB = −

∑
i6=B
i<j

J ′ijmimj +
∑
j

J ′BjmjmB

 (S.4)



20

where we separated the energy terms corresponding to mA and mB from the rest of the subcircuits. If mA and mB are to
be connected as a common node between these subcircuits, as in ordinary digital circuits, a positive interaction parameter
(ferromagnetic, JT > 0) can be used to connect them such that the total energy of the composed system is given as:

E = EA + EB − JTmAmB (S.5)

This situation corresponds to the sparsified network where the interaction parameter JT corresponds to the COPY gate which
ties the same logical value to mA and mB .

We continue the analysis with a physical observation. As the temperature is lowered (β → ∞), mA and mB cannot differ in
their states due to the large energy penalty incurred by βJT , or mathematically, P (mA 6= mB) = exp(−βJT )→ 0, independent
of the specific value of JT . This allows, in the bipolar notation where mA,mB ∈ ±1, the following trick: mA = mB and
m2

A = 1. This means that the last term in Eq. (S.5) becomes a constant and drops out of the final Boltzmann probabilities since
any constant term in the energy cancels out:

P (m1, . . . ,mN ) =
1

Z
exp(βJT ) exp[−β(EA + EB)] (S.6)

where

Z =
∑

exp(−βE) = exp(βJT )
∑

exp−β(EA + EB) (S.7)

This analysis indicates that for an annealed system (β →∞), irrespective of the strength of the coupling parameter JT , there
is no difference in the final probabilities between subcircuits A and B. For example, subcircuit A can be the fused circuit shown
in Fig. S4a-d and subcircuit B can be the sparsified circuit shown in Fig. S4e-h. This analysis is similar to the behavior of the
many replicas collapsing to a single qubit in the Suzuki-Trotter transformation, enabling a mapping between the thermodynamics
of a many-body quantum system and a probabilistic system [84].

Going back to Eq. (S.3)-(S.4), and substituting mA = mB and calculating the input to the node mA by IA = −∂E/∂mA:

IA =
∑

JAjmj +
∑

J ′Bjmj (S.8)

Eq. (S.8) shows the mathematical justification of adding the columns of fused nodes together, as shown in the composite circuit
of Fig. S4a-d. Note that the rows of fused nodes also need to be added together to ensure the symmetry of the J matrix.

2. Fused circuit

For the n-bit factorizer circuit in Fig. 1a, we have 2m p-bits from the input bits of the AND gates. The output p-bits of the
AND gates get fused with the corresponding input p-bits of the FAs, except the direct output of the first AND gate that represents
S0. It will be represented by a single p-bit. For the FAs, the first row has 4m+1 p-bits instead of 5m, since all the neighbor FAs
have the cout and cin fused together. For the other rows of the FAs, we have 3m + 1 p-bits per row. This is because one of the
input bits comes from the previous row. The number of p-bits in a fused n-bit factorizer p-circuit can be generalized as

N(fused)
fact = 2m+ (4m+ 1) + (3m+ 1)(m− 2) + 1

= 3m2 +m
(S.9)

where m = n
2 .

Likewise, an invertible logic 3SAT solver circuit (a special case of Fig. 1b with exactly 3 variables per clause and needs only
2 rows of OR gates) can be composed using fusion. Same input variable routed to multiple places is represented by a single
p-bit instead of multiple p-bits. This way, we have exactly one p-bit for each input variable. The output p-bits of the OR gates
in the first row get fused with the corresponding input p-bits of the OR gates in the second row. To encode this, we need exactly
one p-bit for each clause. Finally, all the output p-bits of the OR gates in the second row are fused together and represented by a
single p-bit clamped to 1. The number of p-bits in a fused 3SAT p-circuit can be generalized as

N(fused)
3SAT = c+ v + 1 (S.10)

where, c = number of clauses, and v = number of input variables.
The fused p-circuit is software-friendly since it keeps the state space smaller, however, it introduces a fan-out issue in the sIM

due to having too many neighbors for some p-bits. It also slows down the clock speed as discussed in Section IV B in the main
manuscript.
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3. Sparsified circuit

In a sparsified p-circuit, we do not fuse the p-bits when it exceeds a predefined maximum number of neighbors, k for any
p-bit. Here, we demonstrate two different ways of sparsifying a graph, one with an example of the integer factorization and the
other with an example of the 3SAT solver.

In the factorizer p-circuit, we add a series of p-bits to the same-signal input bits using copy gates. Having set a maximum
number of neighbors, k for each p-bit, we add a p-bit for every (k − 1) input bits to be connected. If the total number of p-bits
added is more than 1, the process is started again until only one p-bit is added, which represents the actual input p-bit.

If no p-bits are fused, the n-bit factorizer circuit in Fig. 1a has 3m2 p-bits for the m2 AND gates and 5m(m − 1) p-bits for
the m(m− 1) FAs. The number of p-bits for a sparsified n-bit factorizer p-circuit with a maximum number of neighbors, k per
p-bit includes additional p-bits for the copy gates and can be generalized as

N(sparse)
fact = 3m2 + 5m(m− 1) + 2mf(m, k)

= 8m2 − 5m+ 2mf(m, k)
(S.11)

where

m =
n

2

f(m, k) =

dlogk−1 me∑
i=1

ai

a0 = m

ai =

⌈
ai−1
k − 1

⌉
In this work, we set k = 5 for integer factorization and the expression can be approximated as

N(sparse)
fact ≈ 8m2 − 5m+ 2m

⌈
m− 1

3

⌉
≈ 8m2 − 5m+ 2m

m− 1

3

=
26

3
m2 − 17

3
m

(S.12)

For the 3SAT problem, instead of fusing, we connect the same-signal input bits by inserting a copy gate between every two
input p-bits. This way, the input p-bits get correlated and also avoid additional neighbors. The output p-bits of the OR gates in
the first row get fused with the corresponding input p-bits of the OR gates in the second row as before since it does not cost any
fan-out issue. Finally, the output p-bits of the OR gates in the second row are fused in pairs and clamped to 1. Each clause has
2 OR gates and thus 5 p-bits since the middle p-bits get fused. However, since the output p-bits also get fused in pairs, we have
1 p-bit less for every 2 clauses. The final sparsified 3SAT solver p-circuit has a maximum number of neighbors k = 4 only and
the number of p-bits can be generalized as (c = number of clauses)

N(sparse)
3SAT = d5c− 1

2
ce = d9

2
ce (S.13)

The sparsified p-circuit is hardware-friendly as it limits fan-out and allows fast clocks with small adder delay in the sIM.

4. Graph density

In Section IV B of the main manuscript, we have discussed how the sparse (less dense) graphs reduce adder delays by limiting
the maximum number of neighbors, k in a graph. Here, we add an analytical expression for the maximum graph density and
show how sparsity helps to scale the proposed architecture.

For a graph with k regular neighbors and |V | nodes (vertices), the total number of edges (|Ek-regular|) is

|Ek-regular| =
k|V |
2

(S.14)

For a graph with all-to-all connections and |V | nodes, the total number of edges (|Eall-to-all|) is

|Eall-to-all| =
|V |2 − |V |

2
(S.15)
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Fig. S5. Graph density as a function of problem size at different k values for (a) factorization and (b) 3SAT problem. k is defined as the
maximum number of neighbors after sparsification. k =∞ represents the original problem without sparsification.
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Fig. S6. Performance Projections. We consider projections up to a million p-bits for the 3SAT problem, assuming 20 µW per p-bit inspired
by detailed device simulations [79]. (a) Number of p-bits as a function of problem size at different k values. (b) estimated fps as a function
of problem size at different k values operating at different clock frequencies (inversely depending on k). For a given power budget of 100 W,
the sparsest representation allows the fastest fps, however, for further scaling, denser graphs can be used with lower fps. k is defined as the
maximum number of neighbors after sparsification. k =∞ represents the original problem without sparsification.

Hence, a graph with a maximum of k neighbors will have maximum graph density (ρmax):

ρmax =
|Ek-regular|
|Eall-to-all|

=
k

|V | − 1
≈ k

|V | (S.16)

As Fig. S5 shows, for both the integer factorization and 3SAT instances, the graph density (Eq. (5)) as a function of problem
size progressively decreases even without sparsification (k =∞), hence they can be efficiently represented in a sparse, scalable
hardware.

E. Scalability analysis

The proposed architecture has two main parts: p-bits and interconnections. Both p-bits and interconnections scale linearly in
terms of resources. Each p-bit uses a fixed amount of resources (e.g., LUT, LFSR) which grows linearly with increasing number
of p-bits [O(N )]. Similarly, the interconnections also grow linearly [O(N )], since we limit the maximum neighbors for a p-bit
to a fixed number, k = 4, k = 8, etc.
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Bits Original Graph Sparsification MGE (Chimera Graph) MGE (King’s Graph) MGE (Grid Graph)
[This Work] Fixed Spins ≈ 50000 Fixed Spins ≈ 50000 Fixed Spins ≈ 50000

14 154 spins 2128 spins 1162 out of 50000 spins 1690 out of 50000 spins Fails
16 200 spins 2128 spins 1465 out of 50000 spins 2734 out of 50000 spins Fails
18 252 spins 2128 spins 1946 out of 50000 spins 3552 out of 50000 spins Fails
20 310 spins 2128 spins 2888 out of 50000 spins Fails Fails
22 374 spins 2128 spins 3108 out of 50000 spins Fails Fails
24 444 spins 2128 spins 4766 out of 50000 spins Fails Fails
26 520 spins 2128 spins 5786 out of 50000 spins Fails Fails
28 602 spins 2128 spins 6017 out of 50000 spins Fails Fails
30 690 spins 2128 spins 8896 out of 50000 spins Fails Fails
32 784 spins 2128 spins 10320 out of 50000 spins Fails Fails

TABLE S2. Minor graph embedding (MGE) vs. invertible Boolean logic embedding for the integer factorization problem. We assume a fixed
≈ 50000-spin Chimera, King’s and square grid topologies as target graphs for MGE. For the sparse Ising Machine, a fixed 2128-spin hardware
can factor all integers up to 32-bits.

1. Trade-off between resources and performance

The optimum sparsity of a problem depends on a trade-off between resources (e.g, number of p-bits, interconnects) and
performance (e.g., flips per second). The number of p-bits and the number of interconnects are limited by a given power and
area budget. For example, Fig. S6 shows nanodevice (Magnetic Tunnel Junction) based projections for the 3SAT problem.
Using MRAM technology we project that up to a million p-bits can be integrated within a power budget of 100 W since each
p-bit dissipates around 20 µW based on detailed device simulations [79]. For further scaling, using denser graphs that can
accommodate larger problems is possible, however, this approach shows diminishing returns beyond a point, where increasing
the graph density does not help if the original problem (e.g., Boolean SAT) is already sparse (Fig. S6a).

While the sparsest representations allow the fastest flips per second (Fig. S6b), they lead to an increase in the number of
p-bits. The operating clock frequency decreases linearly with the maximum number of neighbors, k since we assume the adder
delay increases linearly as a function of k.

2. Invertible Boolean logic vs. minor graph embedding

Here, we report an illustrative comparison between invertible Boolean logic vs. minor graph embedding (MGE) applied to
the integer factorization problem. For MGE, we use D-wave’s minor-miner program [85] and assume that a fixed hardware with
≈ 50000 spins in Chimera, King’s and square grid graph topologies needs to embed an original graph to factor different sizes of
semiprimes, up to 32-bits.

For MGE, Table S2 shows that the Chimera graph requires ≈ 10000 spins to encode the 32-bit factorizer. The King’s graph
fails to encode beyond 18-bits and the grid graph always seems to fail. For the sparse Ising Machine, on the other hand, a 32-bit
invertible multiplier can factor any number up to 32-bits. Only a sparsified graph with k = 4 having 2128 spins that can factor
32-bits is necessary and sufficient at all sizes.

F. Time to solution for exact factorization

We have reported exact factorization up to 32-bit semiprime numbers in Section VI. Here, we report the time to find the exact
factors. An exponential fit with respect to the number of p-bits up to 5375 p-bits shows the difficulty in factoring numbers larger
than 32-bit with the current annealing schedule (Fig. S7a). We describe this plot with the following equation:

t = t0 exp

(
N

τ

)
(S.17)

where N = number of p-bits, t = TTS, t0 = pre-exponential factor, τ = time constant. From the fitted plot, we obtain t0 =
10−3.39s and τ = 122.13.

Another exponential fit with respect to the number of bits up to 50-bits is shown in Fig. S7b. We describe this plot with the
following equation:

t = t0 exp
(n
τ

)
(S.18)

where n = number of bits. From the fitted plot, we obtain t0 = 10−7.17s and τ = 1.26.
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Fig. S7. Time to solution for exact factorization (TTS100) of 14-bit to 32-bit semiprime numbers in the sIM and an exponential fit with respect
to the (a) number of p-bits up to 5375 p-bits and (b) number of bits up to 50-bits.

G. Error models for inexact Gibbs sampling

In Section VIII of the main manuscript, we show how moderate overclocking leads to a decrease in the time to solution in
two different problems. In order to analyze this phenomenon, we introduce two error models for inexact Gibbs sampling and
apply them to systematically study a 5 p-bit full adder (FA) circuit. However, the conclusions and limits we obtain are generally
applicable. The J and h matrices we used for the full adder are the following:

JFA =


0 −1 −1 +1 +2
−1 0 −1 +1 +2
−1 −1 0 +1 +2
+1 +1 +1 0 −2
+2 +2 +2 −2 0

 hFA =
(
0 0 0 0 0

)
(S.19)

The two models are both based on the same principle: the J matrix is multiplied by an error mask matrix whose elements
establish whether a neighbor connection is failing or not. If no nodes are failing, both mask models are a matrix of 1s.

In the first model we introduce, which we will refer to as the single mask model from here on, uses a mask of +1s and −1s to
represent functioning and failing connections, respectively. For example, if a connection from node j to node i is failing due to
overclocking, MS

ij will be −1. Thus, Eq. (2) in the main text will be replaced by

Ii =
∑
j

MS
ijJijmj + hi (S.20)

where MS is the error mask for the single mask model. In the case considered, since JFA is a 5× 5 matrix and since the main
diagonal elements cannot fail as a connection, the maximum number of errors is 20.

The second model, which we will refer to as the double mask model from here on, uses two complementary masks of 1s and
0s. In this case, Eq. (2) will be replaced by

Ii =
∑
j

MD
ij Jijm

new
j +

∑
j

(1−MD
ij )Jijm

old
j + hi (S.21)

where mnew
j and mold

j represent the updated and the non-updated values, respectively.
To test these models, we performed a systematic study where we considered every possible fraction of errors (defined as Er)

in the mask matrices (from 0/20 to 20/20). We simulated 400 random masks for each Er taking 2 × 104 samples per mask.
In Fig. S8, the average distributions resulting from all masks for each value of Er are compared with the exact Boltzmann
distribution. Both models exhibit qualitatively similar behavior. For a moderate number of errors the Kullback–Leibler (KL)
divergence from the exact distribution does not increase significantly, but beyond a certain point errors diverge (Fig. S9).
Eventually both models approach a distribution described by a parallelly updating network [64] whose steady-state is defined by
the following equation:

pk = p(m
(k)
1 ,m

(k)
2 , · · · ,m(k)

N ) =
1

Z

N∏
i=1

cosh

β
∑

j

Jijm
(k)
j + hi

 exp
(
β m

(k)
i hi

)
(S.22)
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Fig. S8. Probability distributions of the single and double mask models vs. the exact Boltzmann distribution as a function of the fraction
of errors Er for a 5 p-bit full adder. Each plot is obtained by averaging over 400 random masks, each sampled 2 × 104 times with β = 1.
Both models show relatively low deviations from the exact distribution at low values of Er before dramatically worsening and converging to
a parallel update distribution.

where k represents all possible states of m from 1, 2, . . . 2N and Z is a normalization constant ensuring probabilities add to 1.
The distribution defined by Eq. (S.22) quantitatively describes the steady-state distribution observed in Fig. S8 as Er

approaches 1, at which point the network updates are parallel.

Fig. S9. Kullback–Leibler (KL) divergence of the distributions of the single and double mask models from the exact Boltzmann distribution as
a function of the fraction of errorsEr . Both models exhibit (albeit with different degrees of accuracy to the real distribution) a flatline behavior
with moderate values of Er and a sharp increase in divergence when Er reaches a certain threshold.
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