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ABSTRACT
Anomaly detection is essential for preventing hazardous out-

comes for safety-critical applications like autonomous driving. Given

their safety-criticality, these applications benefit from provable

bounds on various errors in anomaly detection. To achieve this goal

in the semi-supervised setting, we propose to provide Probably

Approximately Correct (PAC) guarantees on the false negative and

false positive detection rates for anomaly detection algorithms. Our

method (PAC-Wrap) can wrap around virtually any existing semi-

supervised and unsupervised anomaly detection method, endowing

it with rigorous guarantees. Our experiments with various anomaly

detectors and datasets indicate that PAC-Wrap is broadly effective.

CCS CONCEPTS
• Security and privacy→ Intrusion/anomaly detection and
malware mitigation; • Theory of computation → Sample com-
plexity and generalization bounds; • Computing methodologies
→ Semi-supervised learning settings.
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1 INTRODUCTION
Anomaly detection aims to detect points that significantly devi-

ate from the regular pattern of data and may threaten system safety.
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Figure 1: An overview of PAC-Wrap, which wraps around
an arbitrary anomaly detector. In the calibration phase, we
derive false positive (FP) PAC sets and false negative (FN) PAC
sets, which guarantee the false positive (FPR) and negative
rates (FNR) respectively.We take an intersection to have both
guarantees. After eliminating ambiguity, it is later used at
the test phase to detect anomalies with a PAC guarantee.

In recent years, anomaly detectors based on machine learning al-

gorithms have started to outperform classical methods in many

tasks [5, 21, 37]. Some of these tasks are safety-critical and require

rigorous guarantees on the false negative and false positive rates.

However, machine learning-based anomaly detectors usually do

not guarantee these rates by default.

Some methods propose using standard conformal prediction

[1, 34], an uncertainty quantification technique, for rigorous guar-

antees. Thesemethods are effectivewhen sufficient data is given, i.e.,

the dataset is large enough to represent the whole data distribution.

Nevertheless, we cannot make this assumption in practical settings,

and hence we shall allow for some error margin incurred by the

data insufficiency. An alternative approach is to use training-set

conditional methods, such as inductive conformal prediction [23],

which satisfy a Probably Approximately Correct (PAC) property

[26, 30, 32]. As we will argue, this property offers more flexibility

than the marginal guarantees for conformal prediction. Further-

more, most anomaly detection methods with rigorous guarantees

only control the false positive rate (FPR). The lack of false negative

rate (FNR) guarantees could limit the usefulness of a system since

classifying anomalies as normal can be a consequential mistake.

https://doi.org/10.1145/3534678.3539408
https://doi.org/10.1145/3534678.3539408
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Hence, we propose an algorithm, named PAC-Wrap, to add a

layer ensuring a PAC guarantee on FPR and FNR to virtually any

anomaly detector. In other words, PAC-Wrap acts like a wrapper

that helps an anomaly detector attain a rigorous performance guar-

antee while keeping its internal structure intact. PAC-Wrap takes a

user-specified error level, denoted as 𝜀, and a user-specified confi-
dence level, denoted as 𝛿 , to customize the guarantee. We perform

this in semi-supervised anomaly detection, where a small amount

of labeled data is available [20, 27, 31]. Our algorithm leverages the

limited labeled data and provides training-set conditional guaran-

tees, which we argue are more practical than the marginal guar-

antees provided by standard conformal prediction-based methods.

Since we leverage both labeled normal and anomalous data, we can

provide PAC guarantees not only on the FPR but also the FNR.

Given any trained anomaly detector that outputs the anomaly

score, our wrapper method constructs false positive and false nega-

tive PAC prediction sets on the calibration datasets. These two PAC

prediction sets provide PAC guarantees on FPR and FNR. Then, we

propose to take the intersection of the PAC prediction sets and adopt

the classification with rejection option idea [2, 11]. The resulting

anomaly detector guarantees FPR and FNR if it is confident about

its prediction. On the other hand, if the anomaly score falls into

the ambiguity region where it is not sufficiently confident about its

prediction, it abstains from predicting. In cases where the rejection

option is not allowed, we further propose an algorithm to eliminate

the ambiguity regions. Finally, we prove that the prediction sets

and the final anomaly detector are probably approximately correct.

An overview of our method is in Figure 1.

We conduct experiments to validate the correctness of our theo-

rems on both synthetic and benchmark datasets. Moreover, we also

demonstrate that our wrapper can ensure that the performance

of the underlying anomaly detector is rigorously guaranteed at a

user-specified error and confidence level. Furthermore, to demon-

strate the generalizability benefit of the PAC-based guarantee, we

compare the performance of our PAC anomaly detection method

to standard conformal prediction-based methods [18]. Finally, we

explore the relationship between the error level, the confidence

level, and the ambiguity region.

In summary, our contributions are as follows:

• We propose to wrap PAC prediction sets around general

anomaly detectors. We show rigorous guarantees on the

FNR and FPR in semi-supervised anomaly detection.

• We show that the training-set conditional PAC guarantee

has both practical and theoretical benefits in generalization

and flexibility compared to marginal guarantees provided

by the standard conformal prediction.

• We demonstrate empirically in simulations and on challeng-

ing benchmark datasets, using a variety of state-of-the-art

anomaly detectors, that PAC-Wrap is effective.

• We conduct an ablation study to evaluate the tradeoff be-

tween the error level, the confidence level, and the ambiguity

region.

2 RELATEDWORK
Conformal prediction (CP), also referred to as conformal infer-

ence [33], is a general approach to uncertainty quantification. It can

provide finite dataset coverage guarantees under exchangeability

of the data points and has been widely adopted, e.g., [1, 25], etc.

Closely related to our work, [18] also provides guarantees on false

negative and false positive rates for classification. However, [18] is

based on standard conformal prediction and provides a coverage

guarantee that holds marginally over the training set. Similarly, the

work [9] proposes a class-wise thresholding scheme for OOD detec-

tion algorithms to maintain a comparable true positive rate across

classes. Mondrian conformal prediction is a general approach to pro-

vide guarantees conditional on a general data clustering (of which

class-conditional guarantees are a special case). However, their

guarantees studied so far hold marginally over the training set [34].

The guarantees of conformal prediction, which hold marginally

over the training set [9, 18, 34] mean that the method works for

most collections of training data and one test data point. It implies

that the coverage holds for only one test data point. In contrast,

the PAC guarantee we use implies that the coverage holds for most

future test data points; this is more aligned with the practice setting

in which a prediction method is used for many test data points.

Moving beyond standard conformal inference, [6] proposes a

block permutation method to account for temporal dependence.

EnbPI [36] proposes distribution-free prediction intervals for dy-

namic time series, extending CP to assume that only the residuals

of a fitted model are exchangeable instead of the complete data.

Our method differs, as we build upon the PAC framework, which—

as discussed above—provides different guarantees. Also, our time

series examples are different, as in some cases, our data points are

independent time series. Thus the guarantees apply directly, sim-

ilarly to previous examples such as [17]. In other cases, we take

sufficiently separated subsequences of the time series that we ex-

pect them to be nearly independent, which holds for certain types

of mixing conditions, as in [6].

Inductive Conformal Prediction (ICP) [24] was originally shown

to havemarginal guarantees, but was later shown to satisfy training-

conditional, or PAC guarantees [26, 32]. As discussed in [32], the

mathematical structure of these methods is closely related to that of

tolerance regions [16, 35]. Inductive conformal anomaly detection

[14, 24] builds on ICP to guarantee a bounded false detection rate. In

different literature, there are different terminology for the two user-

specified inputs. For example, the 𝛽 − content in [10] is equivalent

to 1−𝜀, where 𝜀 is the error parameter in [15]. The confidence level 𝛾
in [10] is equivalent to 1− 𝛿 , where 𝛿 is called confidence parameter
in [15]. In our work, we follow the terminology in [15] and denote

𝜀 as the error parameter, and 𝛿 as the confidence parameter. We

adopt the core ideas behind this general line of work and focus on

adapting it to semi-supervised anomaly detection, where both false

positive and false negative rates control are essential.

We focus on semi-supervised anomaly detection (SSAD) tasks,

which have been defined in slightly different ways. In these def-

initions, given a dataset 𝑆 , we have𝑚 unlabeled data points and

𝑛 labeled data points, where 𝑚 ≫ 𝑛. SSAD definitions differ in

the setup of the training and testing sets. For example, some pa-

pers [22, 27] assume that the training set has labeled normal and

anomalous data points. This setting is also called weakly super-
vised anomaly detection. On the other hand, some papers [13, 28]

assume that the training set only contains normal data points and

the test set contains both normal and anomalous data points. We

adopt the first definition of SSAD. In both our problem formulation
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and experimental evaluation, we assume that the training set has

labeled normal and anomalous data points. Note that all the afore-

mentioned semi-supervised algorithms are orthogonal to our work

in that we emphasize providing a theoretical guarantee on false

negative and false positive rates, whereas they focus on detector

performance, like accuracy or F1-score.

3 PRELIMINARIES
3.1 PAC Prediction Sets

For independent and identically distributed (i.i.d.) training and

test data, training-set conditionally valid (or, PAC) prediction sets

[26, 32] are guaranteed to contain the true labels for test inputs

with low error level and high confidence level. While the algorithms

in [32] and [26] are identical, we follow the latter. To ensure the

prediction sets are small, [26] solves an optimization problem to

calculate the smallest prediction set (on average) while satisfying

the PAC property.

Let X be the input space and Y be the finite label space; let

D denote a distribution over X × Y; let 𝐶 : X → 2
Y

denote a

prediction set. The probability that 𝐶 does not cover a test data

point (𝑥,𝑦) ∼ D is defined as

𝐿D (𝐶) B P(𝑥,𝑦)∼D [𝑦 ∉ 𝐶 (𝑥)] . (1)

Let 𝑍 ∼ D𝑛
be a held-out calibration set of i.i.d. data points from

D with size 𝑛, which we can use to tune or calibrate𝐶 , as described

below. The goal is to find a set of a small size satisfying the PAC

property, i.e., given 𝜀, 𝛿 ∈ (0, 1),

P𝑍∼D𝑛 [𝐿D (𝐶) ≤ 𝜀] ≥ 1 − 𝛿,

where the P𝑍∼D𝑛 refers to the chances of calibration succeeding.

In this case, we say 𝐶 is (𝜀, 𝛿)-correct. To calculate such (𝜀, 𝛿)-
correct sets, [26] then proposes the following one-dimensional

parametrization of prediction sets:

𝐶𝜏 (𝑥) = {𝑦 ∈ Y | 𝑓 (𝑥,𝑦) ≥ 𝜏},

where 𝜏 ∈ R≥0 and 𝑓 : X×Y → R≥0 is any given scoring function

(e.g., the label probabilities output by a deep neural network). The

parameter value 𝜏 is identified by solving the following optimization

problem:

𝜏 = argmax

𝜏 ∈R≥0
𝜏 subj. to

∑︁
(𝑥,𝑦) ∈𝑍

1 (𝑦 ∉ 𝐶𝜏 (𝑥)) ≤ 𝑘∗, (2)

where

𝑘∗ = argmax

𝑘∈N∪{0}
𝑘 subj. to 𝐹 (𝑘 ;𝑛, 𝜀) ≤ 𝛿,

where 𝐹 (𝑘 ;𝑛, 𝜀) is the cumulative distribution function of the bino-

mial random variable Binomial(𝑛, 𝜀) with 𝑛 trials and success prob-

ability 𝜀. Maximizing 𝜏 corresponds to minimizing the prediction

set size. This is equivalent to inductive conformal prediction with

the non-conformity measure 𝑓 (𝑥,𝑦), as explained in [32]. Lastly,

we have the following theorem:

Theorem 1 ([26, 32]). 𝐶𝜏 is (𝜀, 𝛿)-correct for 𝜏 as in (2).

Remark. The optimization problem (2) returns the trivial solution
𝜏 = 0 if the the optimization problem is infeasible.

3.2 Semi-supervised Anomaly Detection
We assume each labeled data point consists of features and

a label, 𝑧𝑖 = (𝑥𝑖 , 𝑦𝑖 ), with 𝑦𝑖 = 1 indicating an anomaly (posi-

tive) and 𝑦𝑖 = 0 indicating a normal (negative) data point. In a

general semi-supervised anomaly detection setting, given an ob-

served labeled data set {𝑧1, . . . , 𝑧𝑁 , 𝑧𝑁+1, . . . , 𝑧𝑁+𝐾 }, we assume

that {𝑧𝑁+1, . . . , 𝑧𝑁+𝐾 } with 𝐾 ≪ 𝑁 is a small set of anomalies. At

the same time, the rest of the data points are normal. We then use

the observed data set as the calibration set, which contains both

normal and anomalous data points. Finally, after getting the trained

anomaly detector from the original semi-supervised training pro-

cedure, we calculate the PAC thresholds on the calibration set to

identify anomalies.

4 METHOD
Suppose we are given a semi-supervised anomaly detector 𝑑 :

X → Rwhich maps input 𝑥 ∈ X to an anomaly score. We construct

PAC prediction sets wrapped around 𝑑 (𝑥) to control both false

positive rate (FPR) and false negative rate (FNR). With our previous

definition of positives, FPR is the rate of falsely classifying the

normal class as anomalous:

𝐹𝑃𝑅 = P(𝑦 = 1 | 𝑦 = 0) .

Further, FNR is the rate of erroneously predicting the anomalous

class as normal:

𝐹𝑁𝑅 = P(𝑦 = 0 | 𝑦 = 1).

The control of the two rates is accomplished by replacing the origi-

nal prediction error loss (as in (1)) with one that considers either

FNR or FPR, which we use to construct a false negative PAC predic-

tion set and a false positive PAC prediction set. We then propose to

take the intersection of the two sets to provide a combined guar-

antee, which inevitably introduces ambiguity regions. Lastly, we

propose a strategy to remove such ambiguity by considering the

relative position of the two prediction sets.

4.1 Conditional Prediction Sets
In this section, we illustrate in detail our pipeline of loss modifica-

tion, threshold derivation and the PAC prediction sets construction.

False positive PAC prediction set. Let the false positive PAC
prediction set be 𝐶𝜏fp . The loss of 𝐶𝜏fp is calculated on the normal

data distribution Dnm, and it is defined as:

𝐿Dnm
(𝐶𝜏fp ) = E(𝑥,𝑦)∼Dnm

ℓ01
fp
(𝐶𝜏fp , 𝑥,𝑦), (3)

where E(𝑥,𝑦)∼Dnm
(·) means taking the expectation over the normal

data distribution, and ℓ01
fp
(·) B 1(𝑦 ∉ 𝐶𝜏fp (𝑥)). In other words,

ℓ01
fp
(𝐶𝜏fp , 𝑥,𝑦) indicates whether the correct label 0 is not included

in 𝐶𝜏fp (𝑥).
Let 𝑍nm ∼ 𝐷𝑛

nm
be an independent calibration set of i.i.d. data

points from 𝐷nm. Given a user-specified (𝜀
fp
, 𝛿

fp
), we construct

𝐶𝜏fp by identifying the optimal 𝜏 in equation (2) via binary search

using 𝑍nm. We denote the identified 𝜏 as 𝜏
fp
. Then, we construct

the 𝐶𝜏fp (𝑥) for 𝑦 based on 𝑑 (𝑥) in the following way:

𝐶𝜏fp (𝑥) B
{
{1}, if 𝑑 (𝑥) ≥ 𝜏

fp

{0, 1}, otherwise

. (4)
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In other words, we predict the set {1} for 𝑥 with anomaly scores

above 𝜏
fp
, and {0, 1} otherwise. We have Corollary 1 on the false

positive PAC prediction. See Appendix B for a proof.

Corollary 1. 𝐶𝜏fp is (𝜀fp, 𝛿fp)-correct for 𝜏fp identified from (2)

using loss function (3).

Given an input 𝑥 and 𝐶𝜏fp , we can make a class label prediction

as:

𝑦
fp

= 1(0 ∉ 𝐶𝜏fp (𝑥)) . (5)

In other words, we identify the current data point as anomalous

if label 0 is not included in 𝐶𝜏fp , and as normal otherwise. Then,

we have Theorem 2 on the false positive PAC prediction set. See

Appendix C for a proof.

Theorem 2. 𝐶𝜏fp provides a PAC guarantee on the false positive
rate:

P𝑍nm∼𝐷𝑛
nm

[
P(𝑥,𝑦)∼𝐷nm (𝑦fp = 1 | 𝑦 = 0) ≤ 𝜀fp

]
≥ 1 − 𝛿fp .

False negative PAC prediction set. We denote the false nega-

tive PAC set by𝐶𝜏fn . The loss of𝐶𝜏fn is calculated on the anomalous

data distribution Dano, and it is defined as:

𝐿Dano
(𝐶𝜏fn ) = E(𝑥,𝑦)∼𝐷ano

ℓ01
fn
(𝐶𝜏fn , 𝑥,𝑦), (6)

where ℓ01
fn
(·) B 1(𝑦 ∉ 𝐶𝜏fn (𝑥)). In other words, ℓ01

fn
(𝐶𝜏fn , 𝑥,𝑦) indi-

cates whether the correct label 1 is not included in 𝐶𝜏fn (·).
Let 𝑍ano ∼ 𝐷𝑛

ano
be an independent calibration set of i.i.d. data

points from 𝐷ano. Given a user-specified (𝜀
fn
, 𝛿

fn
), we construct

𝐶𝜏fn by identifying the optimal 𝜏 in equation (2) via binary search

using 𝑍ano. We denote the identified 𝜏 as 𝜏
fn
. We then construct the

false negative PAC prediction set by

𝐶𝜏𝑓 𝑛 (𝑥) B
{
{0, 1}, if 𝑑 (𝑥) ≥ 𝜏

fn

{0}, otherwise

. (7)

Then, we have the following Corollary for the false negative

PAC prediction set. See Appendix D for a proof.

Corollary 2. 𝐶𝜏fn is (𝜀fn, 𝛿fn)-correct for 𝜏fn identified from (2)

using loss function (6).

Moreover, similarly to above, we can define

𝑦
fn

= 1(1 ∈ 𝐶𝜏fn (𝑥)). (8)

Finally, we have the associated PAC guarantee for the false negative

prediction set in Theorem 3. See Appendix E for a proof.

Theorem 3. 𝐶𝜏fn provides a PAC guarantee on false negative rate:

P𝑍ano∼𝐷𝑛
ano

[
P(𝑥,𝑦)∼𝐷ano (𝑦fn = 0 | 𝑦 = 1) ≤ 𝜀fn

]
≥ 1 − 𝛿fn .

4.2 Anomaly detection with ambiguity region
We aim to use both false positive and false negative PAC predic-

tion sets so that both rates are controlled at the same time. Conse-

quently, we propose to combine false positive and false negative

PAC prediction sets via taking their intersection:

𝐶
ad
(𝑥) B 𝐶𝜏fn (𝑥) ∩𝐶𝜏fp (𝑥) .

(a) No Overlap (b) Small Overlap

(c) Large Overlap

Figure 2: An illustration of ambiguity region cases. 𝜏fn ≥ 𝜏fp
happens when the overlap between the normal and anoma-
lous class is zero or small, as in 2a and 2b; otherwise, 𝜏fp ≥ 𝜏fn
happens, as in 2c.

There are four possible values of the intersection, depending on

the relative position of the anomaly score 𝑑 (𝑥), 𝜏
fn
and 𝜏

fp
, listed

in Table 1.

𝑑 (𝑥) < 𝜏
fn

≥ 𝜏
fn

< 𝜏
fp

0 {0, 1}
≥ 𝜏

fp
∅ 1

Table 1: The four possible values for 𝐶ad (𝑥).

Given an input 𝑥 , if its anomaly score 𝑑 (𝑥) falls into the interval
[𝜏
fp
, 𝜏
fn
], (or [𝜏

fn
, 𝜏
fp
]),𝐶

ad
will contain zero or two labels, which is

ambiguous. Therefore, the interval [𝜏
fp
, 𝜏
fn
] (or [𝜏

fn
, 𝜏
fp
]) is defined

as the ambiguity region, denoted asU. Lemma 1 further explains

the setting whenU occurs. See Appendix H for a proof. Intuitively,

when there is zero or a small overlap between the normal and

anomalous classes, the ambiguity region U is [𝜏
fp
, 𝜏
fn
]. This corre-

sponds to the case 𝐶
ad

= ∅. A visualization of this case is in Figure

2a and Figure 2b, where there is no overlap (2a) or little overlap

(2b) between the normal and anomalous classes.

Lemma 1. Let 𝑘∗fp and 𝑘
∗
fn be the solutions of (2) when identifying

false positive and false negative PAC prediction sets respectively. We
have that

𝜏fn ≥ 𝜏fp
⇐⇒∑︁
(𝑥,𝑦) ∈𝑍nm

1(𝑑 (𝑥) > 𝜏fn) < 𝑘∗fp

and
∑︁

(𝑥,𝑦) ∈𝑍ano

1(𝑑 (𝑥) < 𝜏fp) < 𝑘∗fn .

(9)
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In this case, we predict a class label as

𝑦
ad
B


1, 𝐶

ad
(𝑥) = {1}

0, 𝐶
ad
(𝑥) = {0}

∗, 𝐶
ad
(𝑥) = ∅

, (10)

where ∗ means abstaining from predicting. This classification with

rejection option idea is similar to [2, 11], where a classifier could

abstain from classifying an input if the classifier is not sufficiently

confident about its prediction.

Further, we define the error rate ERR(D) over the distribution
D as the probability that the prediction is not equal to the label:

ERR(D) = P(𝑥,𝑦)∼D (𝑦 ≠ 𝑦 |𝑥).

Then, we have the following theorem about the resulting anomaly

detector. See Appendix F for a proof.

Theorem 4. If 𝐶𝜏fn is (𝜀fn, 𝛿fn)-correct, 𝐶𝜏fp is (𝜀fp, 𝛿fp)-correct,
and 𝜏fn ≥ 𝜏fp, with probability at least 1 − 𝛿ad, where 𝛿ad = 𝛿fn + 𝛿fp,
the error rate ERR(D) is no greater than 𝜀ad, where 𝜀ad = max (𝜀fp, 𝜀fn),
i.e.,

P𝑍∼D𝑛
[ERR(D) ≤ 𝜀ad)] ≥ 1 − 𝛿ad .

In contrast, 𝐶
ad

= {0, 1}, i.e., U = [𝜏
fn
, 𝜏
fp
], happens when the

overlap between normal and anomalous class is large, see Figure

2c. According to Lemma 1, this arises when condition in (9) fails. In

this case, the anomaly detector cannot distinguish anomalies from

normal data points and therefore cannot satisfy the false positive

and false negative constraints at the same time.

Thus, we have to either find a better anomaly detector or relax

the constraint for the error or confidence. We propose Algorithm 1

to relax the error constraint. Intuitively, this algorithm first checks

whether 𝜏
fn

> 𝜏
fp
or not. If not, this algorithm increases the 𝜀 and

recalculates 𝜏
fn
and 𝜏

fp
. After 𝜏

fn
> 𝜏

fp
is satisfied, this algorithm

returns the resulting 𝜏 ′
fn
, 𝜏 ′
fp
, 𝜀 and 𝛿 . Here, we use the linear search

strategy where we increase the 𝜀 by (say) 0.1 at each iteration.

Alternatively, we could also double 𝜀 at each iteration, which may

be faster to find a feasible 𝜀, but the result may be looser. The

confidence constraint can be relaxed similarly, but the effect is less

salient than that of the error constraint.

Algorithm 1 Relaxing the error constraint

Input: 𝜏
fn
, 𝜏
fp
, 𝜀
fn
, 𝜀
fp
, 𝛿

fn
, 𝛿

fp
, Δ (default Δ = 0.1).

Output: 𝜏 ′
fn
, 𝜏 ′
fp
, 𝜀, 𝛿 .

while 𝜏
fn

< 𝜏
fp
and 𝜀

fn
, 𝜀

fp
≤ 1 do

𝜀
fn
, 𝜀

fp
= 𝜀

fn
+ Δ, 𝜀

fp
+ Δ.

Re-calculate 𝜏
fn
, 𝜏
fp
using equation (2) with 𝛿

fn
, 𝛿

fp
correspond-

ingly.

end while
𝜀, 𝛿 = max(𝜀

fn
, 𝜀
fp
), 𝛿

fn
+ 𝛿

fp
.

𝜏 ′
fn
, 𝜏 ′
fp

= 𝜏
fn
, 𝜏
fp
.

Return 𝜏 ′
fn
, 𝜏 ′
fp
, 𝜀, 𝛿 .

4.3 Anomaly detection with certain prediction
If one is not allowed to abstain from making a prediction, the

ambiguity region U must be removed. In this case, after satisfying

𝜏 ′
fn

≥ 𝜏 ′
fp
, we could pick an arbitrary threshold 𝜏 ∈ [𝜏 ′

fp
, 𝜏 ′
fn
], e.g.,

𝜏 = (𝜏 ′
fn
+ 𝜏 ′

fp
)/2, and the guarantees will still hold. We state this

claim in Theorem 5. See Appendix G for a proof.

Theorem 5. After using Algorithm 1 and picking an arbitrary
threshold 𝜏 ∈ [𝜏 ′fp, 𝜏

′
fn] for an anomaly detector, its error rate is at

most 𝜀, with probability at least 1 − 𝛿 .

5 EXPERIMENTAL RESULTS
We apply PAC-Wrap to several anomaly detectors, and on both

i.i.d. and time series anomaly detection datasets. The experiments

support that PAC-Wrap enables PAC guarantees on the false posi-

tive rate (FPR) and false negative rate (FNR). In addition, we com-

pare with standard class-conditional conformal prediction [18].

These experiments empirically support that PAC-Wrap performs

well in a variety of scenarios, and compares favorably to standard

conformal prediction-based methods.

We address several questions to demonstrate the effectiveness

of PAC-Wrap:

• Q1 (Empirical Validation): Are Theorem 2 and 3, empiri-

cally supported by results on both synthetic and benchmark

datasets?

• Q2 (Wrapper Effect): How does our wrapper affect the

underlying anomaly detector’s error rates?

• Q3 (Baseline Comparison): How does our work compare

to standard class-conditional conformal prediction methods?

• Q4 (Ablation Study): How do different combinations of 𝜀

and 𝛿 affect the ambiguity region?

5.1 Datasets, Anomamly Detectors, and Metrics
5.1.1 Datasets. We first describe the synthetic and benchmark

datasets used in Q1. We generate a synthetic dataset by sampling

i.i.d. normal and anomalous data points from two clusters, each nor-

mally distributed in 6-dimensional space with the same covariance

matrix but with different means 𝜇
normal

, 𝜇
anomalous

∈ R6, which
are selected so that the two classes are separated by a margin of 5.

Let 𝐼𝑝 be the 𝑝-dimensional identity matrix with 𝑝 = 6, and 𝜎2 be a

uniformly random value drawn over [1, 100]. We have:

𝑋
normal

∼ N(𝜇
normal

, 𝜎2𝐼𝑝 )
𝑋
anomalous

∼ N(𝜇
anomalous

, 𝜎2𝐼𝑝 ).

To simulate the semi-supervised problem, we generate 100, 000 nor-

mal data points as the training set, another 2, 000 normal and 2, 000

anomalous data points as the calibration set, and finally 50, 000 nor-

mal and 50, 000 anomalous data points as the test set. The bench-

mark dataset thyroid is a UCI Machine Learning Repository [8]

dataset that contains around 7,200 data points. It treats the hy-
pothyroid disease as an anomaly. We randomly sample 80% of the

normal data points from the thyroid dataset to form the training

set. We then take the remaining 20% of the normal data and the

anomalous data points to form the calibration and the test set, with

the calibration set taking up 30% and the test set taking up 70%.
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In Q2, we experiment on the benchmark semi-supervised anom-

aly detection datasets campaign, celeba, and census that are also
used in [22]. The campaign dataset contains direct marketing cam-

paigns (phone calls) and asks to predict whether a given client will

subscribe to a term deposit. Successful campaigning records ac-

count for approximately 10% records and are regarded as anomalies.

The celeba dataset is an image dataset of more than 200K celebrity

images. In this task, the anomaly detector detects bald celebrities as

anomalies, which account for less than 3% of celebrities. The census
dataset is extracted from the US census bureau database and aims to

detect the high-income people that comprise about 6% of the data

as "anomalies". In contrast to the typical supervised classification

setting, these datasets are highly imbalanced. In other words, only

a small portion of labeled data points are anomalous.

We also conduct experiments on two time series benchmark

datasets in Q2, the Server Machine Dataset (SMD) [29], and the

NASA Telemetry Anomaly Detection (NASA) dataset [12] to see

how PAC-Wrap affects the performance of time series anomaly

detectors. The detailed result is reported in Appendix I.

InQ3, we use the same experimental setup on the MNIST dataset

[7] as in [18]: we regard the digits {0, 6, 9} as class "0" and digit

{8} as class "1". The training dataset contains 3044 images, with

541 in class 1. The test dataset contains 872 images, with 166 in

class 1. As in [18], we train ℓ1-penalized logistic regression on two-

thirds of the training data points and use the remaining one-third

as the calibration data to identify the Conformal/PAC prediction

sets. In the calibration dataset, we have 865 images in class 0 and

170 images in class 1.

Finally, we use the same synthetic dataset in Q4 as in Q1.

5.1.2 Anomaly Detectors. We consider the following anomaly de-

tectors:

• Isolation Forest (IF) [19] is an unsupervised model based

on decision trees.

• Local Outlier Factor (LOF) [4] is an unsupervised anomaly

detection method which compares an estimated density of a

data point to its neighbors.

• DevNet [22] is a semi-supervised anomaly detector that

uses a few labeled anomalies to separate the anomalies from

normal data points.

• LSTM-based anomaly detector [3, 12] is commonly used

for time series data. For SMD, we wrap around a standard

LSTM-encoder-decoder-based anomaly detector [3]. For the

NASA data, we use the proposed LSTM-based anomaly de-

tector in [12].

If an anomaly score threshold is not explicitly identified for the

above anomaly detectors, we use a threshold that maximizes the

F1 score, i.e., the harmonic mean of precision and recall. The F1

score is often used as an efficacy measure in the anomaly detection

literature.

5.1.3 Metrics. Let TP, TN, FP, FN be the number of true posi-

tives, true negatives, false positives, and false negatives, respec-

tively. We focus on the three most important error rates in anom-

aly detection: FNR = FN/(FN+TP) and FPR = FP/(FP+TN), ERR =

(FN+FP)/(FN+TP+FP+TN). We compare FPR, FNR and ERR to a

user-specified error constraint (e.g., 𝜀 = 0.05). We repeatedly run

the experiments and check if the error constraint violation rate, de-
fined as the fraction of times the error rate is above 𝜀, is lower than

a user-specified confidence constraint (e.g., 𝛿 = 0.05). To compare

PAC-Wrap with a conformal prediction-based baseline, we use the

definition of ambiguity from [18], estimated as the fraction of data

points falling into the ambiguity region in the test dataset:

Ambiguity =

∑
(𝑥,𝑦) ∈𝑍test

1(𝑑 (𝑥) ∈ U)
|𝑍test |

. (11)

5.2 Q1. Empirical Validation
We first empirically validate the theoretical guarantees of our

false negative and false positive PAC prediction sets. To study how

anomaly detector performance affects our guarantees, we experi-

ment with two kinds of anomaly detectors, the Local Outlier Factor

(LOF) and the Isolation Forest (IF). Additionally, to study how cal-

ibration set size affects our guarantees, we experiment with 50%,

75%, and 100% of the calibration set. In these experiments, we set

𝜀
fn

= 𝜀
fp

= 0.05 and 𝛿
fn

= 𝛿
fp

= 0.05 as our constraints. Besides,

4000 independent Monte Carlo trials on both synthetic and bench-

mark datasets are performed. Out of these trials, we compute the

empirical error constraint violation rate, which is the fraction of

trials where the FPR or FNR is above 0.05.

Note that the PAC guarantee assumes an infinite population, but

we only have a finite dataset. To address this problem, we propose

the following method. First, we combine the calibration and test

datasets to form a known finite population D. We aim to validate

the PAC guarantee over the known finite population D, which

is convenient since we can enumerate the population. Next, we

train the LOF and IF on the training set. For each Monte Carlo trial,

we then sample with replacement a new calibration set from the

known finite population, of the same size and anomaly ratio as

the original calibration set. We construct false positive and false

negative PAC prediction sets on each newly sampled calibration

set. Finally, we compute the FPR and FNR of the constructed PAC

prediction sets over the known finite population D.

We report, in Table 2 (on synthetic data) and Table 3 (on the

thyroid dataset), a two-sided 95% Clopper–Pearson interval for

the error constraint violation rate. If the interval covers 0.05 (or

falls below that), the empirical results are consistent with the error

and confidence constraints being satisfied. In Table 2 and Table 3,

the PAC guarantee is corroborated by the results on the synthetic

and benchmark datasets since all the intervals fall below 0.05. The

guarantee holds regardless of calibration set size and anomaly de-

tectors. As a result, our results empirically validate Theorems 2 and

3. Another observation is that the constraint violation rates on the

benchmark dataset are much lower than 0.05, which means that

the constructed PAC prediction sets on the benchmark dataset are

conservative. We further discuss this observation in Appendix A.

5.3 Q2. Wrapper Effect
In this section, we conduct experiments to check how PAC-

Wrap affects the error rates of the underlying anomaly detector.

Specifically, we apply Algorithm 1 to remove the ambiguity region

and check if the final FPR, FNR and ERR are bounded by the error

constraint. For brevity, we omit repeatedly verifying the confidence
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Violation Val Size IF LOF

Pr(FPR>0.05)

50% [0.034, 0.046] [0.033, 0.045]

75% [0.024, 0.034] [0.020, 0.030]

100% [0.031, 0.043] [0.030, 0.042]

Pr(FNR>0.05)

50% [0.033, 0.045] [0.034, 0.047]

75% [0.032, 0.044] [0.035, 0.048]

100% [0.035, 0.047] [0.032, 0.044]

Table 2: The rate of error constraint violation on the synthetic
data.

Violation Val Size IF LOF

Pr(FPR > 0.05)

50% [0.024, 0.035] [0.022, 0.033]

75% [0.007, 0.013] [0.006, 0.012]

100% [0.025, 0.036] [0.026, 0.037]

Pr(FNR > 0.05)

50% [0.006, 0.012] [0.006, 0.012]

75% [0.010, 0.018] [0.014, 0.022]

100% [0.012, 0.020] [0.016, 0.025]

Table 3: The rate of error constraint violation on the bench-
mark dataset.

constraint, which is already tested in Q1. We report the following

values:

• FNRor, FPRor: the original FNR and FPR of the anomaly

detector without our wrapper.

• FNRtt, FPRtt: the FNR and FPR of our wrapper using two

thresholds 𝜏
fn
, 𝜏
fp
, given the initial error constraints.

• FNRth, FNPth: the FNR and FPR of our wrapper using one fi-

nal threshold 𝜏 , given the (possibly relaxed) error constraint.

• ERR: the final error rate of our wrapper, which is defined in

5.1.3. It is a weighted combination of FNR
th
and FPR

th
.

• 𝜀: the final error level our wrapper can guarantee.

For i.i.d. data, we take DevNet [22] as the baseline anomaly de-

tector. We first train DevNet on the campaign, celeba, and census
datasets respectively using default hyperparameters. Second, we

wrap the trainedmodel with the constructed false negative and false

positive PAC prediction sets. Then, we find that DevNet may not

perform well enough to simultaneously satisfy the user-specified

errors constraints with the PAC prediction sets. Therefore, we use

Algorithm 1 to adaptively relax the error constraint to enable De-

vNet to fulfill a reasonable guarantee.

In Figure 3, we show how this works on the celeba dataset.

Specifically, 𝜏
fn

and 𝜏
fp

are first chosen to satisfy the constraint

𝜀
fn

= 𝜀
fp

= 0.05, 𝛿
fn

= 𝛿
fp

= 0.05. Although most anomalies have

higher anomaly scores than the normal data points, there is still

considerable overlap. As a result, 𝜏
fp
is greater than 𝜏

fn
(the green

dashed line is above the red dashed line in Figure 3), which is an

inconclusive case as discussed in 4.2. In other words, the anomaly

detector cannot accurately distinguish the normal and the anoma-

lous classes under the current error constraint, and we have to relax

the constraint. After relaxing the error constraint by Algorithm 1,

we find 𝜀 = 0.15 and 𝜏 ′
fn

≥ 𝜏 ′
fp
(solid red line is above solid green

line in Figure 3). Then, we can readily remove the ambiguity region

by setting 𝜏 = (𝜏 ′
fn
+ 𝜏 ′

fp
)/2 (dashed blue line in Figure 3) according

to Theorem 5. A similar process occurs on the campaign and census
datasets, resulting in the relaxed error constraints of 𝜀 = 0.35 and

𝜀 = 0.25 respectively.

We report the detailed results for DevNet in Table 4. Table 4 first

shows that the FNRor-s and FPRor-s of DevNet violate the error

FNRor FPRor FNRtt FPRtt FNR
th

FPR
th

ERR 𝜀

campaign 0.000 0.998 0.026 0.043 0.267 0.259 0.266 0.35

celeba 0.029 0.456 0.026 0.042 0.121 0.097 0.120 0.15

census 0.055 0.561 0.048 0.047 0.230 0.202 0.229 0.25

Table 4: Error rate with PAC-Wrap wrapped around DevNet
on i.i.d. data. Guarantees on FNR and FPR are met. After
removing the ambiguity region, the FPRth, FPRth, and ERR
satisfy the error constraints.

Figure 3: Box Plot and thresholds on the celeba dataset us-
ing the DevNet anomaly detector. 𝜏fp > 𝜏fn holds under the
original error constraint (𝜀 ≤ 0.05). By using Alg. 1, 𝜏 ′fn ≥ 𝜏 ′fp
under the relaxed error constraint (𝜀 ≤ 0.15).

constraint 𝜀
fn

= 𝜀
fp

= 0.05 on campaign, celeba, and census datasets.
Then, columns FNRtt and FPRtt indicate that PAC-Wrap satisfies

the original error constraints. After the constraint relaxation and

ambiguity removal, columns FPR
th
, FPR

th
, and ERR are lower than

the last column 𝜀, indicating that they all satisfy the relaxed error

constraints. The underlying anomaly detectors determine the re-

laxed levels. Without our wrapper, the baselines can usually only

control one of the FNR/FPR. Our method provides a principled way

to balance the two rates and provides guarantees on their levels.

Time series data are beyond the independence assumptions re-

quired for the PAC property, but can be transformed to reduce the

dependence across time. We show the detailed result in the in Ap-

pendix I that, in certain cases, our wrapper is also effective for time

series anomaly detectors. Initially, we set 𝜀
fn

= 𝜀
fp

= 0.05, 𝛿
fn

=

𝛿
fp

= 0.05 and find that the sample size is occasionally too small

to satisfy the error and confidence constraints. This is because,

given a user-specified 𝜀 and 𝛿 , we have a minimum requirement

for the number of data points. According to Theorem 1 in [26],

the number of data points 𝑛 should be at least log(1/𝛿)/log(1 − 𝜀).
For instance, if 𝜀 = 𝛿 = 0.05, the minimum required sample sizes

for labeled normal and anomalous data points are both 59. When

only limited labeled anomalies are available, we can relax the error

and confidence level to give PAC guarantees. In the time series

experiments where only 30 to 40 labeled anomalies are available,

we set 𝜀
fn

= 𝜀
fp

= 0.10, 𝛿
fn

= 𝛿
fp

= 0.10 to compute the thresholds.

After training the LSTM-based anomaly detectors on the training

set, we find that they have the same performance issue as DevNet.

Hence, we perform a similar constraint relaxation and ambiguity

removal procedure.

We show in Figure 4 some representative channels from the

NASA dataset. The LSTM-based anomaly detector violates the error

constraint, but PAC-Wrap controls both FPR
th

and FNR
th

to be
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(a) The 𝜀 = 0.4 error constraint does not hold for
the original anomaly detector.

(b) With our wrapper, the 𝜀 = 0.4 error constraint
is met.

Figure 4: Results on the NASA data with 𝜀 = 0.4. For the NASA
anomaly detector, PAC-Wrap helps balance the FNR and FPR.

smaller than 𝜀. For example, for the S-1, F-7, and E-7 channels,

FPRor is even greater than the relaxed error constraint 𝜀 = 0.4.

With a moderate increase in FNR
th
, our wrapper can ensure both

FPR
th
and FNR

th
are below 𝜀 = 0.4.

5.4 Q3. Baseline Comparison
We compare PAC-Wrap to themethod in [18]—denoted asCPAD—

which also provides guarantees on the FNR and FPR by calculating

per-class thresholds. The error and confidence constraints are set

as 𝜀
fn

= 𝜀
fp

= 0.05, 𝛿
fn

= 𝛿
fp

= 0.05. We use the same known finite

population method as in 5.2 for evaluation. Specifically, after con-

structing the training, calibration and test datasets as in [18], we

construct the known finite population by combining the calibration

dataset with the test dataset. Next, we perform 300 independent

Monte Carlo trials and compute the error constraint violation rates

on the known finite population. To identify the conformal/PAC pre-

diction sets, we sample with replacement a new calibration dataset

with the same size and anomaly ratio as the original calibration

dataset in each trial. After constructing the prediction sets, we

evaluate the FNR and FPR on the known finite population.

The average FPR and FNR over the 300 Monte Carlo trials are

reported in Table 5. The result shows that the average FNR-s and

FPR-s of CPAD and PAC-Wrap are basically below 0.05, therefore

satisfying the error constraints. This finding is consistent with the

class-conditional guarantees of PAC-Wrap and CPAD. To evaluate

the satisfaction of the confidence constraint, we report a two-sided

95% Clopper–Pearson interval for the error constraint violation

rate in Table 6. The result shows that CPAD’s violation rates are

approaching 50%, while that of PAC-Wrap are at the desired level

(below 0.05). That is because CPAD’s guarantee holds marginally

over the training dataset, which differs from the conditional guaran-

tee of PAC-Wrap. It is possible that an insufficiently representative

calibration set is drawn, and PAC-Wrap accounts for the scenario

via introducing the confidence parameter 𝛿 . In contrast, standard

conformal prediction-based methods like CPAD do not consider

the data representativeness and cannot provide a training-set con-

ditional guarantee with high confidence. While satisfying the error

constraint withmuch higher probability, PAC-Wrap induces slightly

higher ambiguity than that of CPAD, as shown in Table 5. However,

Figure 5: The average ambiguity as a function of 𝜀 and 𝛿 . As
𝜀 and 𝛿 grow, the ambiguity shrinks.
the increment in ambiguity is mostly tolerable, especially in safety-

critical applications where the violation of the error constraint

might lead to a catastrophe.

Dataset FPR FNR Ambiguity

Desired 0.050 0.050 0

CPAD 0.049 0.051 0.222

PAC-Wrap 0.038 0.020 0.345

Table 5: Average FNR and FPR for CPAD and PAC-Wrap. On
Average, both CPAD and PAC-Wrap satisfy the error con-
straint.

Method Pr(FPR > 0.05) Pr(FNR > 0.05)
CPAD [0.344, 0.458] [0.498, 0.614]

PAC-Wrap [0.001, 0.024] [0.000, 0.018]

Table 6: Comparison of the error constraint violation rate of
the CPAD and PAC-Wrap. CPAD violates the error constraint
for nearly 50% of the time and hence fails the confidence
constraint. PAC-Wrap satisfies the 0.05 confidence constraint.

5.5 Q4. Ablation Study
In this experiment, we want to see how the ambiguity (defined

in Equation (11)) changes with respect to the error parameter 𝜀 and

confidence parameter 𝛿 . Specifically, we set 𝜀
fn

= 𝜀
fp

= 𝜀, 𝛿
fn

=

𝛿
fp

= 𝛿 . We then vary 𝜀 and 𝛿 , and construct false positive and

false negative PAC prediction sets on the synthetic dataset. For

every combination of error parameter and confidence parameter,

we do 100 Monte Carlo trials and compute the average ambiguity.

As shown in Figure 5, the ambiguity monotonically decreases with

respect to 𝜀 and 𝛿 . It suggests that there is an empirical trade-off

between the constraints and ambiguity. We can relax constraints

to decrease the ambiguity or vice versa. Moreover, 𝜀 has a larger

effect on the ambiguity than 𝛿 .

6 CONCLUSION AND DISCUSSION
We have developed a general framework called PAC-Wrap for

guarantees in semi-supervised anomaly detection. Given many nor-

mal data points and a small number of anomalous data points, we

use PAC-Wrap to control the false negative rate (FNR) and false pos-

itive rate (FPR). We conduct experiments on synthetic and bench-

mark datasets with various anomaly detectors to showcase the

effectiveness of PAC-Wrap. Our method can readily wrap around

virtually any existing anomaly detection algorithm, making our
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framework an off-the-shelf tool to provide rigorous PAC guarantees

for these algorithms. Our method can be applied to safety-critical

applications such as autonomous vehicles, surveillance video, and

tumor diagnosis. By leveraging a limited number of labeled dat-

apoints, PAC-Wrap can guarantee the FPR and FNR of anomaly

detectors, which is highly important.

PAC-Wrap can be directly extended to a multi-class framework

to provide conditional guarantees for each class for an immediate

next step. One limitation of PAC-Wrap is that if the normal and

anomalous distributions in the testing stage are significantly differ-

ent from those in the calibration stage, the false negative and false

positive guarantees might not hold, since PAC-Wrap cannot auto-

matically adapt to the distribution shift. To see how distribution

shifts affect the guarantees, we show an additional experiment in

Appendix J. In future work, it is important to enable PAC-Wrap to

adapt to distribution shift during the testing stage.
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construct a possibly over-conservative prediction set to satisfy the

confidence constraint, which leads to the violation rate being much

lower than the confidence constraint. Moreover, a small calibration

set, which is unrepresentative of the true distribution, could also

contribute to a high violation rate. The fact that the calibration set is

small could have the opposite effects on the violation rates. On the

thyroid dataset, the effect of Equation (2) is dominant. As a result,

the constructed PAC prediction sets are relatively conservative.

B PROOF OF COROLLARY 1
We replace the original prediction set 𝐿D (𝐶) with 𝐿Dnm

(𝐶𝜏fp ),
setting 𝜀 = 𝜀

fp
, 𝛿 = 𝛿

fp
, and construct the false positive PAC predic-

tion set via solving (2). By Theorem 1, we haveP𝑍∼D𝑛
nm

[𝐿Dnm
(𝐶𝜏fp ) ≤

𝜀
fp
] ≥ 1 − 𝛿

fp
. Therefore, 𝐶𝜏fp is (𝜀fp, 𝛿fp)-correct. □

C PROOF OF THEOREM 2
We have

Pr(𝑦 = 1 | 𝑦 = 0) = E𝑥 |𝑦=0 [1(𝑦 = 1)]
= E𝑥 |𝑦=0 [1(0 ∉ 𝐶𝜏fp (𝑥))] = E𝑥 |𝑦=0 [1(𝑦 ∉ 𝐶𝜏fp (𝑥)]

= E𝑥 |𝑦=0 [ℓ01fp (𝑥)] = 𝐿𝐷nm
(𝐶𝜏fp ) .

By Corollary 1, we have

P𝑍∼𝐷𝑛
nm

[𝐿𝐷nm
(𝐶𝜏fp ) ≤ 𝜀fp] ≥ 1 − 𝛿

fp
.

Since Pr(𝑦 = 1 | 𝑦 = 0) = 𝐿𝐷nm
(𝐶𝜏fp ), we find

P𝑍∼𝐷𝑛
nm

[P(𝑦 = 1 | 𝑦 = 0) ≤ 𝜀
fp
] ≥ 1 − 𝛿

fp
.□

D PROOF OF COROLLARY 2
We replace the original prediction set 𝐿D (𝐶) with 𝐿Dano

(𝐶𝜏fn ),
setting 𝜀 = 𝜀

fn
, 𝛿 = 𝛿

fn
, and construct the false positive PAC predic-

tion set via solving (2). By Theorem 1, we haveP𝑍∼D𝑛
ano

[𝐿Dano
(𝐶𝜏fn ) ≤

𝜀
fn
] ≥ 1 − 𝛿

fn
. Therefore, 𝐶𝜏fn is (𝜀fn, 𝛿fn)-correct. □

E PROOF OF THEOREM 3
We have

Pr(𝑦 = 0 | 𝑦 = 1) = E𝑥 |𝑦=1 [1(𝑦 = 0)]
= E𝑥 |𝑦=1 [1(1 ∉ 𝐶𝜏fn (𝑥))] = E𝑥 |𝑦=1 [1(𝑦 ∉ 𝐶𝜏fn (𝑥)]
= E𝑥 |𝑦=1 [ℓ01fn (𝑥)] = 𝐿𝐷ano

(𝐶𝜏fn ) .

By Corollary 2, we have

P𝑍∼𝐷𝑛
ano

[𝐿𝐷ano
(𝐶𝜏fn ) ≤ 𝜀fn] ≥ 1 − 𝛿

fn
.

Since Pr(𝑦 = 0 | 𝑦 = 1) = 𝐿𝐷𝑎𝑛𝑜
(𝐶𝜏fn ), we find

P𝑍∼𝐷𝑛
ano

[P(𝑦 = 0 | 𝑦 = 1) ≤ 𝜀
fn
] ≥ 1 − 𝛿

fn
.□

F PROOF OF THEOREM 4
When 𝑑 (𝑥) ≥ 𝜏

fn
and 𝑑 (𝑥) ≥ 𝜏

fp
, by Equation (10), 𝑦 = 1. In this

case, the error rate 𝜀
ad

equals to the FPR. (The anomaly detector’s

prediction is correct when 𝑦 = 1.) By Theorem 2, we have

P𝑍∼𝐷𝑛
nm

[
P(𝑦 = 1 | 𝑦 = 0) ≤ 𝜀

fp

]
≥ 1 − 𝛿

fp
.

In other words, the error rate when 𝑑 (𝑥) ≥ 𝜏
fn

and 𝑑 (𝑥) ≥ 𝜏
fp

satisfies

P𝑍nm∼𝐷𝑛
nm

[
𝜀
ad

≤ 𝜀
fp

]
≥ 1 − 𝛿

fp
.

Similarly, when 𝑑 (𝑥) ≤ 𝜏
fn
and 𝑑 (𝑥) ≤ 𝜏

fp
, by Equation 10,𝑦 = 0.

In this case, the error rate 𝜀
ad

equals to the FNR. (The anomaly

detector’s prediction is correct when 𝑦 = 0.) By Theorem 3, we

have

P𝑍∼𝐷𝑛
ano

[P(𝑦 = 0 | 𝑦 = 1) ≤ 𝜀
fn
] ≥ 1 − 𝛿

fn
.

Thus, the error rate when 𝑓 (𝑥) ≥ 𝜏
fn
and 𝑓 (𝑥) ≥ 𝜏

fp
satisfies

P𝑍ano∼𝐷𝑛
ano

[𝜀
ad

≤ 𝜀
fn
] ≥ 1 − 𝛿

fn
.

Therefore, if we make a certain prediction by Equation (10), we

can bound the error rate as

𝜀
ad

= 𝜀
fp
· Pr(𝑦 = 0) + 𝜀

fn
· Pr(𝑦 = 1)

≤ max (𝜀
fp
, 𝜀
fn
) · Pr(𝑦 = 0) +max (𝜀

fp
, 𝜀
fn
) · Pr(𝑦 = 1)

= max (𝜀
fp
, 𝜀
fn
).

The inequality holds with probability at least 1 − (𝛿
fp
+ 𝛿

fn
) due to

the union bound. Thus, the claim follows. □

G PROOF OF THEOREM 5
Since Algorithm 1 returns 𝜏 ′

fp
, 𝜏 ′
fn

and 𝜀 only when 𝜏 ′
fn

≥ 𝜏 ′
fp
, we

first prove that the error rate of the anomaly detector is bounded

by 𝜀. Following the proof for Theorem 4, we have the guarantee

that the FNR and FPR of the anomaly detector is bounded by the

updated 𝜀
fn
and 𝜀

fp
in Algorithm 1, using 𝜏 ′

fn
and 𝜏 ′

fp
respectively.

If we use a threshold 𝜏 ′ < 𝜏 ′
fn
, the corresponding FNR, denoted as

𝜀 ′, obeys

𝜀 ′ ≤ 𝜀
fn

≤ 𝜀. (12)

This is because using a lower threshold corresponds to a lower

quantile of the lower tail part for 𝑦 = 1 distribution, and we have a

smaller chance of making false negative prediction, i.e., classifying

an anomaly as a normal point.

Similarly, if 𝜏 ′ > 𝜏 ′
fp
, for the FPR, denoted as 𝜀 ′, we will have:

𝜀 ′ ≤ 𝜀
fp

≤ 𝜀. (13)

The same logic follows here; a higher threshold corresponds to a

higher quantile of the upper tail of the distribution 𝑥 |𝑦 = 0. Hence

we have a smaller chance of making false positive prediction.

Since 𝜏
fp

≤ 𝜏 ≤ 𝜏
fn
, let 𝜏 ′ = 𝜏 . Based on Theorem 4, equation

(12) and equation (13), the error rate of the anomaly detector 𝜀
ad

is

bounded by 𝜀:

𝜀
ad

= max (𝜀
fp
, 𝜀
fn
) ≤ max (𝜀, 𝜀) = 𝜀.

Since we use 𝛿
fn
, 𝛿

fp
to re-calculate 𝜏 ′

fp
, 𝜏 ′
fn
, the resulting 𝛿 can be

taken as 𝛿
fn

+ 𝛿
fp

according to Theorem 4. Therefore, the claim

follows. □

H PROOF OF LEMMA 1
We first prove that if 𝜏

fn
≥ 𝜏

fp
, then

∑
(𝑥,𝑦) ∈𝑍nm

1(𝑑 (𝑥) > 𝜏
fn
) ≤

𝑘∗
fp
and

∑
(𝑥,𝑦) ∈𝑍ano

1(𝑑 (𝑥) < 𝜏
fp
) ≤ 𝑘∗

fn
. To see this, we construct

a false positive PAC prediction set using (2) and make a prediction

using (7). Therefore, we have∑︁
(𝑥,𝑦) ∈𝑍nm

1(𝑑 (𝑥) > 𝜏
fp
) ≤ 𝑘∗

fp
.
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FNRor FPRor FNRtt FPRtt FNR
th

FPR
th

ERR 𝜀

S-1 0.000 0.615 0.059 0.088 0.340 0.293 0.337 0.40

F-7 0.132 0.503 0.060 0.071 0.292 0.304 0.293 0.40

E-7 0.000 0.714 0.076 0.081 0.306 0.246 0.304 0.40

T-1 0.001 0.653 0.103 0.099 0.367 0.448 0.382 0.50

T-2 0.011 0.738 0.063 0.084 0.384 0.428 0.393 0.50

P-3 0.013 0.724 0.053 0.065 0.363 0.379 0.366 0.50

Table 7: Error rate with PAC-Wrap applied to the LSTM-based
anomaly detector on the NASA data. First column is the cor-
responding channels. FNRtt and FPRtt satisfy the 𝜀 = 0.1

guarantees. After removing the ambiguity region, the FNRth,
FPRth, and ERR satisfy the relaxed error constraints.

Since 𝜏
fn

> 𝜏
fp
, we find∑︁

(𝑥,𝑦) ∈𝑍nm

1(𝑑 (𝑥) > 𝜏
fn
) ≤

∑︁
(𝑥,𝑦) ∈𝑍nm

1(𝑑 (𝑥) > 𝜏
fp
) ≤ 𝑘∗

fp
.

Similarly, for the false negative PAC prediction set, we have∑︁
(𝑥,𝑦) ∈𝑍ano

1(𝑑 (𝑥) < 𝜏
fp
) ≤

∑︁
(𝑥,𝑦) ∈𝑍ano

1(𝑑 (𝑥) < 𝜏
fn
) ≤ 𝑘∗

fn
.

Next, we prove that if

∑
(𝑥,𝑦) ∈𝑍nm

1(𝑑 (𝑥) > 𝜏
fn
) < 𝑘∗

fp
and∑

(𝑥,𝑦) ∈𝑍ano
1(𝑑 (𝑥) < 𝜏

fp
) < 𝑘∗

fn
, then 𝜏

fn
≥ 𝜏

fp
. We argue by

contradiction. Suppose that

∑
(𝑥,𝑦) ∈𝑍nm

1(𝑑 (𝑥) > 𝜏
fn
) < 𝑘∗

fp
, and∑

(𝑥,𝑦) ∈𝑍ano
1(𝑑 (𝑥) < 𝜏

fp
) < 𝑘∗

fn
, but 𝜏

fp
< 𝜏

fn
. Then, for the false

negative PAC prediction set, we should choose 𝜏
fp
instead of 𝜏

fn
,

since the identified 𝜏
fn
should be the largest threshold satisfying

𝜀
fn
and 𝜏

fp
> 𝜏

fn
. This contradicts that 𝜏

fn
is the chosen threshold.

As a result, our assumption does not hold, and we have 𝜏
fn

≥ 𝜏
fp
.

In summary, 𝜏
fn

≥ 𝜏
fp
if and only if

∑
(𝑥,𝑦) ∈𝑍nm

1(𝑑 (𝑥) > 𝜏
fn
) <

𝑘∗
fp
and

∑
(𝑥,𝑦) ∈𝑍ano

1(𝑑 (𝑥) < 𝜏
fp
) < 𝑘∗

fn
. □

I TIME-SERIES EXPERIMENTS
We also experiment with two challenging time series anomaly

detection datasets, the Server Machine Dataset [29], and NASA

Telemetry Anomaly Detection [12], to illustrate the effectiveness of

PAC-Wrap on sequential data. The NASA dataset consists of space-

craft telemetry data like radiation, temperature, and power from

the Soil Moisture Active Passive satellite (SMAP), and the Curiosity

Rover on Mars (MSL). In addition, it contains 193500 records for

training and 501346 records for testing, of which around 10% are

anomalies. SMD is a dataset collected from a large Internet company

over five weeks, with 38 features such as CPU load, network usage,

and memory usage. It contains a training set of 708405 records and

a test set of 708420 records, among them 4.16% are anomalies. We

split the original test set into a calibration set (20%) and a final test

set (80%) for both SMD and NASA.

The detailed result for the NASA data is reported in Table 7. In the

T-1, T-2, and P-3 channels, both FPR
th
and FNR

th
are guaranteed to

be smaller than the relaxed error constraint, and the final error rate

ERR is also below the required error constraint 𝜀 = 0.5. Wrapped

around the original NASA anomaly detector, PAC-Wrap can reduce

the gap between the FNR and FPR and thus has a more balanced

performance.

Since there are more datapoints in the SMD dataset than in

the NASA one, to approach the independence condition formally

FNRor FPRor FNRtt FPRtt FNR
th

FPR
th

ERR 𝜀

15-60 0.036 0.937 0.074 0.087 0.487 0.474 0.487 0.60

15-120 0.368 0.563 0.052 0.000 0.598 0.359 0.587 0.60

15-240 0.011 0.918 0.086 0.088 0.538 0.399 0.532 0.60

30-60 0.077 1.000 0.077 0.000 0.780 0.201 0.748 0.80

30-120 0.818 0.127 0.057 0.000 0.781 0.174 0.746 0.80

30-240 0.379 0.467 0.058 0.000 0.738 0.158 0.706 0.80

Table 8: Error ratewith PAC-Wrapwrapped around the LSTM-
based anomaly detector on the SMD data. First column is the
corresponding combinations. FNRtt and FPRtt satisfy the
𝜀 = 0.1 guarantees. After removing the ambiguity region, the
FNRth, FPRth, and ERR satisfy the relaxed error constraints.

required by our guarantees, we consider the windows of the first

15 and 30 contiguous timesteps as data points for every 60, 120, and

240 timesteps. As shown in Table 8, 𝜀 = 0.6, 0.8 is the relaxed error

constraint given the anomaly score distribution. For the baseline

anomaly detector, FPRor-s sometimes fail the 𝜀 = 0.6 guarantee

for the 15-timestep settings. For all the 30-timestep settings, the

original anomaly detectors violate the 𝜀 = 0.8 guarantee on either

FPRor or FNRor. However, using PAC-Wrap as a wrapper, we ensure

that both FNR
th

and FPR
th

fall below 0.6 and 0.8. The final error

rates (ERR) are smaller than the maximum of FNR
th

and FPR
th
,

which also empirically supports Theorem 4.

J DISTRIBUTION SHIFT
To see how shifts in the anomaly distribution affect our guar-

antees, we generate data from three distributions in the following

way:

𝑋
normal

∼ N(𝜇
normal

, 𝜎2𝐼𝑝 )
𝑋
anomalous

∼ N(𝜇
anomalous

, 𝜎2𝐼𝑝 )
𝑋mixture ∼ N(𝛾 · 𝜇

normal
+ (1 − 𝛾) · 𝜇

anomalous
, 𝜎2𝐼𝑝 ),

where 𝛾 ∈ [0, 1] is a mixing ratio. We set 𝜇
normal

= [0, 0, 0, 0, 0]⊤,
𝜇
anomalous

= [3, 3, 3, 3, 3]⊤, and 𝜎 = 2.0. Then, we construct the

training set by sampling 98,000 data points from N(𝜇
normal

, 𝜎2𝐼𝑝 );
we construct the calibration set by sampling 1,000 anomalies from

N(𝜇
anomalous

, 𝜎2𝐼𝑝 ); we construct the testing set by sampling 1,000

data points from N(𝛾 · 𝜇
normal

+ (1 − 𝛾) · 𝜇
anomalous

, 𝜎2𝐼𝑝 ) with
different 𝛾-s. We set 𝛾 to {0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2} and 𝜀 =
𝛿 = 0.05. We run PAC-Wrap on the training, calibration, and testing

sets. As shown in Figure 6, guarantees nearly hold when 𝛾 equals

to 0.02, 0.04, and 0.06. However, when the mixing rate is too large,

the guarantees might fail to hold.

Figure 6: FPR and FNR after mixing different anomaly distri-
butions
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