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ABSTRACT

Efficiently computing an (approximate) orthonormal basis
and low-rank approximation for the input data X plays a cru-
cial role in data analysis. One of the most efficient algorithms
for such tasks is the randomized algorithm, which proceeds
by computing a projection X A with a random sketching
matrix A of much smaller size, and then computing the or-
thonormal basis as well as low-rank factorizations of the tall
matrix X A. While a random matrix A is the de facto choice,
in this work, we improve upon its performance by utilizing
a learning approach to find an adaptive sketching matrix A
from a set of training data. We derive a closed-form formu-
lation for the gradient of the training problem, enabling us to
use efficient gradient-based algorithms. We also extend this
approach for learning structured sketching matrix, such as
the sparse sketching matrix that performs as selecting a few
number of representative columns from the input data. Our
experiments on both synthetical and real data show that both
learned dense and sparse sketching matrices outperform the
random ones in finding the approximate orthonormal basis
and low-rank approximations.

Index Terms— Low-rank matrix approximation, learning
approach, sketching algorithm

1. INTRODUCTION

Listed as one of the “Top 10 Algorithms” that have great-
est influence on the development and practice of science and
engineering in the 20th century [1, 2], low-rank matrix fac-
torization or decomposition plays a central role in data analy-
sis and scientific computing, with representative applications
including principal component analysis (PCA) [3, 4], seis-
mic denoising [5-7], recommendation systems [8], solving
PDE:s [9, 10], etc.

While the factorizational approach for matrix computa-
tion remains fundamental, in the era of big data, the devel-
opment of matrix factorization has focused more attention on
efficiency than ever before. The reason is that existing com-
putational tools such as SVD solvers already have very high
accuracy, while the large-scale data are usually inaccurate,
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suggesting that the resolution is inherently limited by the im-
precision of the data. On the other hand, in some cases where
the data is too huge, it is prohibitive to directly apply existing
solvers (such as SVD solvers) for the entire data.

Among all the fast methods for computing approximate
matrix decompositions, one of the most representative ap-
proaches is the randomized algorithm [11-17]. Given an in-
put data X, randomized algorithms generally involve the fol-
lowing steps: first compute a projection X A with a random
sketching matrix A of much smaller size, then compute the
orthonormal basis @ of the tall matrix X A, and finally com-
pute the matrix factorizations and low-rank approximations
if needed by performing on Q" X. See (1) in Section 2 for
the details of efficiently computing an approximate rank-r ap-
proximation with the help of Q. The main idea is to use a ran-
dom matrix A (such as a random Gaussian matrix or a random
sampling matrix) to preserve most of the action of the matrix
A, such that the resulting orthonormal basis @ captures the
dominant range information of A. See [16] for a contempo-
rary survey and detailed introduction.

Recently, the work [18] showed that an adaptive sketch-
ing matrix A learned from a set of matrices (i.e., training
data) can produce better performance than a random matrix
for low-rank approximation. However, the approach is spe-
cific to low-rank approximation since it uses power method
to compute approximate compact SVD and then applies auto-
differential for computing the gradient without giving out
explicit forms for the loss function nor the gradients. On
the other hand, once A is learned, the testing procedure is
different to the training one, as it computes the basis X A ex-
actly with existing SVD solvers instead of the power method.
This complicates the analysis of generalization for this ap-
proach.

In this work, we aim to learn the sketching matrix A that
replaces the random matrix for efficiently computing an ap-
proximate basis, which can then be used for many tasks be-
yond low-rank approximation. Our contributions are summa-
rized as follows:

* We propose a new objective for learning the sketch-
ing matrix A such that the orthornomal basis of X A
captures most of the targeted subspace. We derive a
closed-form formulation for the gradient of the training
problem, enabling us to use efficient gradient-based al-
gorithms.
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* We extend the learning approach for structured sketch-
ing matrices and propose projected gradient method for
learning such matrices.

* We conduct experiments for finding an approximate
orthonormal basis as well as low-rank approximations
on both synthetical and real data, and show that both
learned dense and sketch sketching matrices outper-
form the random ones.

The rest of the paper is organized as follows. Section 2
reviews randomized algorithms for approximate matrix fac-
torizations. In Section 3, we introduce our learning approach.
Section 4 presents experimetal results on both synthetical and
real data.

2. APPROXIMATE MATRIX FACTORIZATIONS

Efficiently computing an orthonormal basis Q € R™*F
for the column space of the input matrix X € R"™*"2 can fa-
cilitate many applications in science and engineering. Some
representative applications include performing principle com-
ponent analysis, constructing rapid orthogonal approximate
transform for sampled bandlimited signals [19], and comput-
ing various low-rank factorization (such as low-rank approx-
imation, SVD and QR) [16]. Using low-rank approximation
as an example, once an orthonormal basis @ is obtained, we
can compute an approximate rank-r (r < k) approximation
for X by the following two stages [20]:

Stage 1: Compute the best rank-r approximation for
matrix Q " X, denoted by rankT(QTX);
Stage 2: Form an approximate rank-r approximation

for X by Q rank,(Q ' X).

ey

The main computational burden in the above two steps is
computing rankr(QTX ), which can be computed by SVD
and is more efficient than directly computing the rank-r ap-
proximation for X because QTX has size k X ny, much
smaller than n; X ns.

However, directly computing the orthonormal basis ¢ for
the column space of X is time consuming and has the same
order of computational complexity as computing the matrix
factorizations directly for X . Fortunately, in the era of big
data, it is common that the data are inaccurate, and thus an ap-
proximate basis and approximate low-rank factorizations will
generally suffice since the resolution of the output is inher-
ently limited by the imprecision of the data. In this case, we
seek to find an approximate basis @ that satisfies

~~T ~T ~
X~QQ X,.Q Q=1

and can be constructed efficiently.
One of the most widely studied and used approaches for
fast computing an approximate basis Q@ € R™>*™ (where

k < m < ny) is the randomized algorithm [16]. The main
idea underlying this type of algorithms is to first project the
matrix X onto a much smaller space by a random matrix
é € R™2%™ in the form of X A, and then construct a matrix
@ whose columns form an orthonormal basis for the range of
X A. The second step can be efficiently computed via Gram-
Schmidt orthogonalization, or SVD. The first step is essen-
tial to make this algorithm effective, requiring the dominant
range information of X to be mostly preserved in the pro-
jected X A. A random matrix A has been proved to satisfy
this requirement with high probability as long as m is slightly
larger than k, with specific number of m controlling the ap-
proximation accuracy [16].

In this work, we aim to learn the sketching matrix A that
replaces the random matrix for computing an approximate ba-
sis, which can then be used for many tasks beyond low-rank
approximation. We will describe our approach in details in
the next section.

3. LEARNING SKETCHING MATRIX FOR FAST
COMPUTATION OF APPROXIMATE BASIS

Given a set of training matrices {X 1, Xo,..., Xy €
R™*"2} sampled from a certain distribution D, our goal is
to learn a sketching matrix A € R™2*™ that is able to pre-
serve the column spaces of X; once projecting them in the
form of X;A. To formally define our objective, let Uj,(-)
be the operator that computes the first k left singular vectors.
That is, Uy, (X)) consists of the first k left singular vectors of
X. To simplify the notation, we will drop the subscript and
simply denote by /(X) an orthonormal basis for the column
space of X, i.e., i (X) can be computed by taking all the left
singular vectors corresponding to the nonzero singular values
of X.

Before describing our objective, we first note that our goal
is not to learn A such that U, (X) ~ U (X A) since it is the
subspace instead of the specific basis that we are interested in.
Instead, we hope the subspace spanned by Uy (X A) captures
most of the one spanned by U}, (X)) in the sense that

Up(X) ~ U (XA UL(XA)TU(X),
where U, (X A)Uy, (X A)T is the projection onto the column
space of U (X A). This motivates us to learn A by solving
the following learning problem

Ang*H(

—U(X; A UL(XA)T ) U(X HF7

f(AX)
2
where A C R™2*™ is the set of targeted sketching matrices.
Note that the term (I — Uy, (X; A)Uy(X;A)T) Ui (X ;) rep-

resents the projection of Uy, (X ;) onto the orthogonal comple-
ment of the column space of Uy (X ; A), i.e., the residual that
is not captured by the column space of Uy, (X ;A).
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3.1. Learning Dense Sketching Matrices

We will solve (2) by gradient-based methods which are
perhaps the most widely used algorithms for large-scale ma-
chine learning problems. Towards that end, we establish the
gradient of the loss function in (2) in the following theorem.

Theorem 1. Given X € R"*"2, A € R"*"™ [et X A =
USV" be the compact SVD of X A, where U,V are or-
thonormal matrices with appropriate dimensions and S =

diag(s1, ..., Sm) is a diagonal matrix. Then the gradient of
f(A; X) in (2) is given by
VF(A; X)=X"(Ty + Ty )V’ 3)
where
Ty=UFoU [P o]-[P 0] U)S

Ly.=(I-UU")[P 0]S~"
P = —(MU(X)" +Up(X)M )T
M = (I - [UL U]} Ur(X)
Fjl = {S?is?’ J 7£ ,
0, otherwise,

[Uly, is the submatrix of U obtained by taking its first k col-
umn, and © is the Hadamard product.

Theorem 1 is proved based on the differential of SVD [21];
due to limited space, its formal proof is omitted. One
can then apply gradient descent (where the full gradient is
% vazl Vf(A; X;)) or stochastic gradient descent [22] for
solving the learning problem (2).

3.2. Learning Structured Sketching Matrices

To further improve the computational efficiency, one may
use a structured sketching matrix A, such as a Toeplitz, circu-
lant, or sparse matrix such that X A can be efficiently com-
puted. Taking a sparse matrix as an example, if each col-
umn of A has only one nonzero element, which is known as
a sketching matrix, then the computational time for X A is
negligible. Denote by A; the set of ny X m matrices that has
at most one non-zero elements in each column, and Py, the
projection onto A; that keeps the largest element (in magni-
tude) in each column. With gradient computed in Theorem 1,
we can then use projected gradient descent for learning the
structured sketching matrix:

L X
A1 = Pa, (At — Mgy Z V(A Xz)) , @

where p; is the step size. One can also replace the above full
gradient by stochastic gradient to reduce computation time for
each iteration.

4. EXPERIMENTS

In this section, we test the performance of the proposed
method on both synthetical and real data.

4.1. Synthetical data

In the first set of experiments, we generate each of IV
training matrices and M testing matrices as follows: first
generate L € R™"*7 R € R™*7 with each element from
i.i.d. standard normal random distribution, and then construct
a rank-y matrix X = LR". Weset N = 500, M = 200,
ng = ng = 100, and v = 7. In all the experiments, we
initialize the training algorithm with a random dense matrix
Ay € R199%™ with entries generated as i.i.d. standard nor-
mal random variables. We run gradient-based method 8000
number of iterations with step size p = 2.

Set k = 5. In Figure 1(a), we plot the convergence of gra-
dient descent for learning a dense sketching matrix in terms
of the following relative mean squared error (MSE):

—U( X AU (X A) )Z/{k

(I
MSEy = —
Z o4 (X 3)13 s

where ||Uk(XZA)||% = k. The MSEy is the re-scaled ver-
sion of the training error (2). Recall that the algorithm is
initialized with a random Gaussian matrix. Thus, we note
from Figure 1(a) that the training error decreases steadily for
different choices m, implying that the learned sketching ma-
trices improve upon the random ones, at least on the training
data. We can also notice that larger m gives smaller training
error, which is consistent with the fact that X A with larger
number of columns can preserve more information of X.

)z

. 0.0:
0 2000 4000 6000 8000 10 12 14 16
Number of Iterations m

(a) MSEy, in (5) for training (b) MSEy in (5) for testing

Fig. 1: (a) Convergence of gradient descent for learning dense
sketching matrix, (b) comparison of the learned and random
sketching matrices on the testing data.

We now use the testing data to verify the performance of
two learned sketching matrices, the dense matrix learned by
gradient descent and the sparse matrix (i.e, the sketch matrix)
learned by the projected gradient descent illustrated in (4). In
Figure 1(b), we compare the learned sketching matrices with
random sketching matrices for different m in terms of MSEg;

5410

Authorized licensed use limited to: University of Denver. Downloaded on June 19,2022 at 04:19:44 UTC from IEEE Xplore. Restrictions apply.



defined in (5) for the testing data. Here, a random dense ma-
trix is generated by each entry being i.i.d. normal standard
random variable, and a random sparse matrix is generated by
first randomly selecting one support in each column, and then
generating its value according to i.i.d. normal standard ran-
dom distribution, with the rest of the entries being zero. We
first observe that the learned dense sketching matrix achieves
the best performance for all the choices of m. This is because
the dense matrix has much more degrees of freedom to be op-
timized, thus more ability to adaptive to the data points. On
the other hand, it is of interest to note that even the sparse
sketching matrices outperforms both the random dense and
sparse matrices, further verifying the efficiency of the pro-
posed learning approaches.

4.2. Real data

20 40 60 80 20 40 60 80

(2) MSEys in (5) (b) MSEx in (6)

Fig. 2: Comparison of different random sketching matrices on
the real data “Eagle” in terms of (a) basis approximation er-
ror MSE; defined in (5), (b) low-rank matrix approximation
error MSE x defined in (6).

(a.2) Original (b.2) Random (c.2) Learned

' e R AR

(d.2) SVD

(a.3) Original (b.3) Random (c.3) Learned (d.3) SVD

Fig. 3: From left to right: the original image X; an approxi-
mate rank-k image ranky (X; A) where A is a dense random
matrix; an approximate rank-k image ranky (X; A) where A
is the learned dense matrix; the best rank-k image ranky (X).
Here k& = 10.

In this subsection, as in [18], we conduct experiments on
720 x 1280 images (or frames) extracted from three different
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videos, “Logo”, “Friends”, and “Eagle”, downloaded from
the Youtube [18]. For each video, we use the first 100 frames
as training data, and the next 50 frames as testing data. In
this experiment, we will use the learned sketching matrix for
computing an approximate rank-k approximation by the fol-
lowing procedures: we first use the learned projection A to
find the basis Q@ = U(X A), which is then plugged into
(1) for computing an approximate best rank-k approxima-
tion for the testing matrix X, denoted by ranky(X;A) =
U(X A) rank, (U(X;A) " X). We use ranky (X)) to denote
the best rank-k approximation of X. Thus, aside from the
MSE,, in (5), we will also compare the performance using the
following relative MSE for the best rank-k approximations:

MSEx = % sz: Iranks (X ) — ranky(X; A)

, (6)
[ranky (X ;))[[

i=1

where { X ;} are the set of training images. We set k& = 10.

Figure 2 shows the performance of the learned and ran-
dom sketching matrix in terms of MSEy; and MSE x on the
data “Logo”. Similar to the results in the synthetical data, the
learned dense sketching matrix significantly outperforms the
random ones in both measures. We also note that the learned
sparse matrix (which only has one non-zero entry in each
column and has total m number of non-zero elements) not
only outperforms the random sparse one, but also achieves
on par performance with a random dense one (which has
mn? > m number of entries). Finally, we display the orig-
inal images, their approximate rank-k approximations, and
best rank-k approximations in Figure 3. We can observe from
Figure 3 that the approximate rank-k approximations with
learned sketching matrices have similar visualization quality
as the best rank-k approximations obtained via SVD, and
have better visualization quality than the one with random
sketching matrices.

5. CONCLUSION

In this paper, we have proposed a learning approach for
constructing a sketching matrix that is adaptive to the data
set for fast computing a subspace that captures most of the
action of a matrix. We derived a closed-form formulation for
the corresponding training problem, and then used (projected)
gradient descent for learning a (sparse) sketching matrix—the
sparse one only has one non-zero elements in each column.
The approximate orthonormal basis can then be used for effi-
ciently finding other matrix factorizations, such as SVD, QR,
and best low-rank approximations. Experiments on both syn-
thetical and real data demonstrate the effectiveness of the pro-
posed learning approach. Future work includes studying the
generalization properties to support the superior experimental
results.
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