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Abstract

We provide the first global optimization landscape analysis of Neural Collapse—
an intriguing empirical phenomenon that arises in the last-layer classifiers and
features of neural networks during the terminal phase of training. As recently re-
ported in [1], this phenomenon implies that (i) the class means and the last-layer
classifiers all collapse to the vertices of a Simplex Equiangular Tight Frame (ETF)
up to scaling, and (ii) cross-example within-class variability of last-layer activa-
tions collapses to zero. We study the problem based on a simplified unconstrained
feature model, which isolates the topmost layers from the classifier of the neural
network. In this context, we show that the classical cross-entropy loss with weight
decay has a benign global landscape, in the sense that the only global minimizers
are the Simplex ETFs while all other critical points are strict saddles whose Hes-
sian exhibit negative curvature directions. Our analysis of the simplified model
not only explains what kind of features are learned in the last layer, but also shows
why they can be efficiently optimized, matching the empirical observations in
practical deep network architectures. These findings provide important practical
implications. As an example, our experiments demonstrate that one may set the
feature dimension equal to the number of classes and fix the last-layer classifier to
be a Simplex ETF for network training, which reduces memory cost by over 20%
on ResNet18 without sacrificing the generalization performance. The source code
is available at https://github.com/tdingl/Neural-Collapse.

1 Introduction

In the past decade, the revival of deep neural networks (DNN) has led to dramatic success in nu-
merous applications ranging from computer vision, to natural language processing, to scientific
discovery and beyond [2-5]. Nevertheless, the practice of deep networks has been shrouded with
mystery as our theoretical understanding for the success of deep learning remains elusive. There are
many intriguing phenomena, such as implicit algorithmic bias in training [6-10], and good general-
ization of highly-overparameterized networks [7, 11-15], that seem often contradictory to, or cannot
be explained by, classical optimization and learning theory.

*The first two authors contributed to this work equally.
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Figure 1: Illustration of Neural Collapse. Here ¢o(-) Figure 2: Illustration of the unconstrained feature
denotes the feature mapping of the network, i.e. the model, where the gray box is peeled off so that the
output of the penultimate layer; see (1) for the formal representation h is modeled by a simple decision
definition. variable for every training sample.

Towards demystifying DNN, recent seminal work [1, 16] empirically discovered an intriguing phe-
nomenon that persists across a range of canonical classification problems during the terminal phase
of training. As illustrated in Figure 1, it has been widely observed that last-layer features and clas-
sifiers of a trained DNN exhibit simple but elegant mathematical structures:

* Variability Collapse: cross-example within-class variability of last-layer features collapses to
zero, as the individual features of each class themselves concentrate to their isolated class-means.

» Convergence to Simplex ETF: the class-means centered at their global mean are not only linearly
separable, but are actually maximally distant and located on a sphere centered at the origin up to
scaling (i.e., they form a Simplex Equiangular Tight Frame (ETF) — or Simplex ETF, which is
formally defined in Definition C.1 in the Appendix).

» Convergence to Self-duality: the last-layer linear classifiers, living in the dual vector space to that
of the class-means, are perfectly matched with their class-means.

* Simple Decision Rule: the last-layer classifier is behaviorally equivalent to a Nearest Class-Center
decision rule.

These results suggest that deep networks are learning maximally separable features between classes,
and a max-margin classifier in the last layer upon these learned features, touching the ceiling in
terms of the performance. This phenomenon is referred to as Neural Collapse (N'C) [1], and it
persists across a range of canonical classification problems, on different neural network architectures
(e.g., VGG [17], ResNet [18], and DenseNet [19]) and on a variety of standard datasets (such as
MNIST [20], CIFAR [21], and ImageNet [22]).

Fully demystifying the A'C phenomenon in theory can be very challenging. Perhaps the most diffi-
cult hurdle lies in the nonconvexity of the optimization problem for training neural networks, which,
loosely speaking, stems from the nonlinear interaction across many different layers of neural net-
works. Towards this goal, a recent line of work [23-29] studied the properties of last-layer clas-
sifiers and features based on the assumption of the so-called unconstrained feature model [23] or
layer-peeled model [26]. At a high level, the unconstrained feature model takes a rop-down ap-
proach to the analysis of deep neural networks [23-26,29-31], wherein the last-layer features are
modeled as free optimization variables (hence we call them unconstrained features) along with the
last-layer classifiers (see Figure 2 for an illustration); this is in contrast to the conventional bottom-
up approach that studies the problem starting from the input [32-42].> The underlying reasoning
is that modern deep networks are often highly overparameterized with the capacity of learning any
representations [43—46], so that the last-layer features can approximate, or interpolate, any point in
the feature space. In this way, the model simplifies the study of last-layer features, enabling us to
analyze the interaction between them and the last-layer classifiers.

Nonetheless, the simplified unconstrained feature model still leaves us a highly nonconvex training
loss to be dealt with. Despite the nonconvexity, recent work [23-28] studied the global minimizers,
proving that Simplex ETFs (i.e., N'C) are indeed global solutions to the nonconvex loss. In particular,
the work [23,47] studied the training problem with the least-squared loss, proving that the gradient
flow converges to A/C solutions with extra assumptions. Another line of work [24-27] considered
the commonly used cross-entropy loss for classification, showing that the only global minimizers of
the loss function are Simplex ETFs with different constraints on the weights and features.> However,

’Here, top-down means that we study the network starting from the last-layer down to the input layer,
whereas bottom-up refers to an approach from the input up to the last layer.

3The constraints on the features are mainly used to prevent it from approaching infinity since the objective
function, with the cross-entropy loss, is not coercive. Note that we still refer to this model as an unconstrained
feature model even if they include norm constraints or regularization.



Table 1: Comparison of the setup and results under the unconstrained feature model with cross-entropy loss.

Regularizer Bias term Results
Constraint ~ Weight decay Global minimizer — Landscape
[24-27] v v
This paper v v v v

these results still suffer from several limitations: (i) due to the nonconvex nature, only characterizing
optimality conditions is not enough to explain the empirical convergence of iterative algorithms to
NC, such as stochastic gradient descent (SGD); (ii) the problem formulations differ from those
typically used in practice, which deploy norm regularization (i.e., weight decay) on the weights,
rather than enforcing constraints, for the ease of optimization.

Contributions of This Work. Inspired by these pioneering results [1,23-26,29], in this work we
take a step further by characterizing the global optimization landscape of the network training loss
based on the unconstrained feature model. Our contributions are summarized as follows.

* Benign Global Landscape. For the unconstrained feature model, we provide the first result show-
ing that a commonly used, regularized cross-entropy loss is a strict saddle function [49-51]. In
other words, every critical point is either a global solution (corresponding to Simplex ETFs) or
a strict saddle point> with negative curvature, so that there is no spurious local minimizer on the
optimization landscape. As summarized in Table 1, this is in contrast to previous work [23-26]
that only characterizes global minimizers.

* Efficient, Algorithmic Independent, Global Optimization. The benign global landscape implies
that any method that can escape strict saddle points (e.g. stochastic gradient descent) converges
to a global solution [52] that exhibits A'C. This result supports our empirical observation, as
shown in Section 4.1, that practical overparameterized networks always converge to Simplex ETF
solutions with a diverse choice of optimization algorithms.

* Cost Reduction for Practical Network Training. Moreover, the universality of A'C implies that
there is no need of training the last-layer classifiers since the weights can be simply fixed as a
Simplex ETF throughout the training process. On the other hand, since N'C happens whenever
d > K, this implies that we can choose the feature dimension d comparable to the number of
classes K, reducing the feature dimension for further computational benefits. In Section 4.3, our
experiments demonstrate that such a strategy achieves on par performance with classical training
methods, leading to substantial cost reductions on both memory and computation.

Our results shed new light on the question raised in the recent paper [53] on the role of the optimiza-
tion strategy (e.g., stochastic gradient descent) for achieving A'C in training practical deep networks.
This question also relates to the recent highly influential work [7] on the implicit algorithmic bias.
For multi-class classification problems with linearly separable data, this work [7] showed that lin-
ear predictors optimized by gradient descent converge to the max-margin classifiers even without
adding any explicit regularization on the cross-entropy loss. Based on this result, a sequence of
works [54-61] laid great emphasis on the notion of “inductive bias” of particular optimization al-
gorithms as a reason for the surprising success in training deep learning models.® In contrast, both
our theoretical result on the global landscape for the unconstrained feature model and the empirical
evidence on practical deep models demonstrate that A'C in network training is facilitated not only
by the choice of the optimization methods, but more importantly, by the choice of loss functions and
the power of overparameterization in the network architecture.

2 The Problem Setup

A deep neural network is essentially a nonlinear mapping ¢(+) : RP s RX, which can be modeled
by a composition of simple maps: (x) = % o --- 0 ¥ o ! (x) for & € RP, where (")
(1 < ¢ < L) are called “layers”. Each layer is composed of an affine transform, represented by

A recent concurrent work [48] studied the gradient flow as well as landscape of the cross-entropy loss
under the unconstrained feature model, but without using any constraints or regularizers on the weights.

SThroughout the paper, for a minimization problem, we will not distinguish between local maxima and sad-
dle points. We call a critical point strict saddle if the Hessian at this point has at least one negative eigenvalue.

SWhile (stochastic) gradient descent and generic steepest descent methods can converge to max-margin
classifiers, it should be noted that other commonly used optimization algorithms in deep learning, such as
AdaGrad [62] and Adam [63], do not have max-margin properties in general and their solutions depend upon
initialization, step-size and other algorithm hyper-parameters [64—66].



some weight matrix W, and bias by, followed by a simple nonlinear’ activation function o ().
More precisely, a vanilla L-layer neural network can be written as

vo(®) = Wrpo(Wi_1---0 (Wi +b1) +br_1)+br. (D
do(x)

For convenience, we use ® = {Wj, bk}f:1 to denote all the network parameters, and use 8 =

{Wrg, bk},{f;ll to denote the network parameters up to the last layer. The output of the penultimate
layer, denoted by ¢g (), is usually referred to as the representation or feature of the input x learned
from the network. In this way, the function implemented by a neural network classifier can also be
expressed as a linear classifier acting upon ¢g ().

The goal of deep learning is to fit the parameters ® so that the output of the model on an input
samples @ approximates the corresponding output y, i.e. so that ¥)g(x) & y, in expectation over
a distribution of input-output pairs, D. This can be achieved by optimizing an appropriate loss
function £(ve(x),y) which quantifies this approximation. In this work, we focus on multi-class
classification tasks (say, with K classes), where the class label of a sample « is given by a one-hot
vector y € R¥ representing its membership to one of the K classes. In this setting, cross-entropy is
one of the most popular choices for the loss function. Naturally, the distribution D is unknown, but
we have access to training samples that are drawn i.i.d. from D. In this way, one can minimize the
empirical risk over these samples by optimizing the following problem

K ngk
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where y;, € R¥ is a one-hot vector with only the kth entry equal to unity (1 < k < K), {nk}szl are
the numbers of training samples in each class, and A > 0 is the regularization parameter (or weight
decay penalty), and Lcg(+, -) is the cross-entropy loss. As introduced in Section 1, recent work [1]
showed that the features learned by minimizing the above objective showcase the A'C phenomenon:
their within-class variability vanishes, and the features converge to a Simplex ETF.

2.1 Problem Formulation Based on Unconstrained Feature Models

In deep network models, the nonlinearity and interaction between a large number of layers results
in tremendous challenges for analyzing this learning problem. Since modern networks are often
highly overparameterized to approximate any continuous function and the characterization of N'C
only involves the last-layer features ¢g (), a natural idea to simplify the analysis is to treat these
features as free optimization variables h = ¢g(x) € R, which motivates the name unconstrained
feature model® [23] (see Figure 2 for an illustration). In this way, we can rewrite the network output
as Yo (x) = Wrh + byr.
For simplicity, we consider the setting where the number of training samples in each class is balanced
(e, ny = nforall k € [K] := {1,2,...,K}). We also write W = Wy and b = b, for
conciseness. Based on the unconstrained feature model, we consider a slight variant of (2), given by
1 A A )

iy SV HLB) = o 303 Low (Whiei +b,56) + S IWIG + SR IHIG + 2 bl )

with W € REX4 H = [hy1--hi,] € RV (here, we denote N = nK), b € RE, and
Aw, Ae, A\p > 0 are the penalty parameters for the weight decay.

As summarized in Table 1, similar optimization problems have been considered in [24-26]. In
contrast to these, our problem formulation here (3), with bias and weight decay, is closer to the
loss used in practice for training neural networks; existing work [24-26] considered constrained’
variants of (3) and without the bias term, which can be implemented but seldom used in practice due
to the difficulty of optimization. In the following, we briefly discuss the differences between our
simplification and practical settings for training neural networks.

"The nonlinear operator may include activations such as ReLU [67], pooling, and normalization [68], etc.

8This model is also called layer-peeled model in [26], where one “peels” off the first L — 1 layers. It has
also been recently studied in [24,25]. Throughout the paper, we will simply call it unconstrained feature model.

For example, the work [26] considers inequality constraints such that the energy of W and H are bounded:;
the other work [24,25] enforces W and H on the spheres up to scaling.



* Weight Decay on W and H. One simplification of our formulation is in the weight decay. In
practice, weight decay is usually imposed on the network parameters @, while we enforce weight
decay on the last layer’s classifier, W, and features, H. However, this idealization is reasonable
since the energy of the features (i.e., || H|| ) can indeed be upper bounded by the energy of the
weights at every layer if the inputs are bounded (which holds in practice), implying that the norm
of H is implicitly penalized by penalizing ®. Our experiments in the Appendix demonstrate that
both approaches exhibit similar N'C phenomena and comparable performance in practice.

* Treating the Last-layer Features as Optimization Variables. One may question that “peeling
off” the L — 1 layers might oversimplify the problem. Nonetheless, this simplification (which is
also adopted in [23-26]) is based on the fact that neural networks with sufficient overparameteriza-
tion can approximate any function — in Section 4.2, we numerically demonstrate that A'C persists
even when we train overparametrized networks on randomly generated labels. Moreover, as we
shall see in the following sections, both our theory and experiments demonstrate that our sim-
plification preserves the core properties of last-layer classifiers and features during training — the
NC phenomenon. More specifically, in Section 3 we show that Simplex ETFs are the only global
minimizers to our simplified loss function (3), and the loss function is a strict saddle function with
no other spurious local minimizers so that it can be optimized efficiently to global optimality.

3 Main Theoretical Results

In this section, we present our study on global optimality conditions as well as the optimization
landscape of the nonconvex loss in (3).

Theorem 3.1 (Global Optimality Conditions) Assume that the feature dimension d is no smaller
than the number of classes K, i.e. d > K — 1, and the number of training samples in each class is

balanced, n = ny = --- = ng. Then any global minimizer (W>*, H* b*) of f in (3) satisfies
* o 1 _ *2 _ _ *K *
we= = o, = = e, ad b=
K
A — 1 4
ki = EW;Lw*k’ VkelK],ic[n], and h, = gjz:;h*-,i =0, VYie|n], @

where either b* = 0 or \p = 0, and the matrix W*' € R¥X forms a K-Simplex ETF (defined in
Definition C.1) up to some scaling, in the sense that the normalized matrix M := %W*T satisfies

K 1

At a high level, our proof (in Appendix D) finds lower bounds for the loss in (3) and studies the
conditions for the lower bounds to be achieved, similar to [24,26]. As can be seen in this result, any
global solution of the loss function (3) exhibits A/C in the sense that the variability of output features
{hai}?:l of eachclass k (1 < k < K) collapses to zero, and any pair of features (hy o hr, ,j) from
different classes k1 # ko are maximally separated. Similar results have been obtained in [24-26],
which considered different problem formulations, as we have discussed in Section 2.1.

* Relationship between Class Number K and Feature Dimension d. The requirement that d >
K — 1 is necessary for Theorem 3.1 to hold, simply because K vectors in R? cannot form a K-
Simplex ETF if K > d + 1. However, the relationship d > K is often true in practice. In general,
and in overparameterized models in particular, the feature dimension, d, is significantly larger
than the number of classes, K. For example, the dimension of the features of a ResNet [18] is
typically set to d = 512 for CIFAR10 [21], a dataset with K = 10 classes. This dimension grows
to d = 2048 for ImageNet [22], a dataset with K = 1000 classes.

¢ Interpretations on the Bias Term b*. In contrast to previous works [24-26], we consider the bias
term in the unconstrained feature model (3). Our result indicates that a collapsing phenomenon
also exists in the bias term b*, in the sense that all the elements of b* are identical. When the
features H are completely unconstrained, our result implies that removing the bias term b has
no influence on the performance of the classifier. However, it should be noted that the ReLU
unit is often applied at the end of the penultimate layer, so that H should be constrained to be

nonnegative, H > 0. In such cases, R will no longer be zero, and neither will b*. Here, the bias

%



term b* will compensate for the global mean of the features, so that the globally-centered features
still form a Simplex ETF [1].1°

3.1 Characterizations of the Benign Global Landscape for (3)

The global optimality condition in Theorem 3.1 does not necessarily mean that we can achieve these
global solutions efficiently, as the problem is still nonconvex. We now investigate the global opti-
mization landscape of (3) by characterizing all of its critical points. Our next result implies that the
training loss is a strict saddle function, and every critical point is either a global minimizer or a strict
saddle point that can be escaped using negative curvatures. As a consequence, this implies that the
global solutions of the training problem in (3) can be efficiently found from random initializations.

Theorem 3.2 (No Spurious Local Minima and Strict Saddle Property) Assume that the feature
dimension is larger than the number of classes, d > K, and the number of training samples in each
class is balanced n = ny = --- = ng. Then the function f(W,H,b) in (3) is a strict saddle
Sfunction with no spurious local minimum, in the sense that

* Any local minimizer of (3) is a global minimizer of the form shown in Theorem 3.1.

* Any critical point (W, H,b) of (3) that is not a local minimizer is a strict saddle with negative
curvature, i.e. the Hessian V> f(W,H,b), at this critical point, is non-degenerate and has at
least one negative eigenvalue, i.e. 31 : \; (VQf(W, H, b)) < 0.

In a nutshell, our proof relies on connecting the original nonconvex optimization problem (3) to its
corresponding low-rank convex counterpart, so that we can obtain the global optimality conditions
for (3) based on the latter. With this, we can then characterize the properties of all critical points
based on the optimality conditions. We defer all details of this proof to Appendix D.

Existing results [24-26] have only studied the global minimizers of the original problem, which has
limited implication for optimization. In contrast, Theorem 3.2 characterizes the properties for all
critical points of the function in (3). As a consequence of this result, many first-order and second-
order optimization methods [69] optimizing (W', H , b) are guaranteed to converge to a global solu-
tion of (3). In particular, the result in [49,52] ensures that (stochastic) gradient descent with random
initialization, the de facto optimization algorithm used in deep learning, almost surely escapes strict
saddles and converges to a second-order critical point — which happens to be a global minimizer of

form showed in Theorem 3.1 for our problem (3).

* Constructing the Negative Curvature Direction for Strict Saddles. One of the major difficul-
ties in our proof is to construct the negative curvature direction for strict saddle points. Here, we
exploit the fact that the feature dimension d is larger than the number of classes K, and construct
the negative curvature direction within the null space of W € R¥*_ This is also the main reason
for the requirement d > K in Theorem 3.2, but we conjecture the results also hold for d = K and
could be proved with more sophisticated analysis, which is left as future work.

* Relationship to Low-Rank Matrix Recovery. As discussed in Appendix A, it has been recently
shown that the strict saddle property holds for a wide range of nonconvex problems in machine
learning [70-83], including low-rank matrix recovery [78, 80, 84-87]. As we know that || Z||, =

ming_w g %(HWHQF + || H||%.) (see [32] for a proof), our formulation in (3) is closely related to
low-rank matrix problems [78,80,84—87] with the Burer-Moneirto factorization approach [88], by
viewing W and H as two factors of a matrix Z = W H. The differences lie in the loss functions
and statistical properties of the problem.!! Thus, our result establishes a connection between the
study of low-rank matrix factorization and neural networks under the unconstrained feature model.

'%Suppose that an optimal solution to (3) is (W*, H*, b*), satisfying the conditions in Theorem 3.1. There
exists a nonzero vector &« € R? such that H* = H* + al' > 0. Here, ¢ can be viewed as the global
mean of H* since H* has mean zero. Then, let b* = —W™a, so that W*H* + b*'1T = W*H* +
(W*a+b*)1T = W*H*. Therefore, we can see that (W*, H*, b*) achieves the same cross-entropy loss
as (W™, H* b*).

""'We consider the cross-entropy loss rather than the least-squares loss due to the differences in the task —
we focus on classification instead of recovery problems. On the other hand, the results on low-rank matrix
recovery are often based on certain statistical properties, such as the randomness in the measurements [84,
85], or restricted well-conditionedness property of the objective function [77,87]. In contrast, these statistical
properties do not exist in our problem, where the model and analysis are purely deterministic.



* Comparison to Existing Landscape Analysis on Neural Network. Section 1 provided a com-
prehensive discussion on the relationship between our result and previous works on landscape
analysis for deep neural networks. Although the unconstrained feature model can be viewed as a
two-layer linear network with input being the columns of an identity matrix, as preluded in Sec-
tion 1, our result has much broader implications than the previous results [33,34,37,38,40,41,89].
First, our problem formulation (3) is closer to practical settings for classification tasks, which con-
siders the widely adopted cross-entropy loss while including weight decay and a bias term, while
most existing results [33,34,37,38,40,41,89] either do not incorporate any regularization and bias,
or focus on the squared loss for the regression problem. More importantly, our result characterizes
the precise form of the global solutions (i.e., N'C) for the last layer features and classifiers, and
shows that they can be efficiently achieved. Moreover, convincing numerical results in [1] and
the next section demonstrate that the global solutions do appear and can be achieved by practical
networks on various standard image datasets. Our study of last-layer features could have profound
implications for studying generalization and robustness of the deep networks.

4 Experiments

In this section, we run extensive experiments not only verifying our theoretical results on mod-
ern neural networks, but also demonstrating the potential practical benefits of understanding N°C.
More specifically, while Theorem 3.2 holds true for the simplified unconstrained feature model, in
Section 4.1 we run experiments on practical network architectures and show that our analysis of
simplified models captures the gist of N'C. In particular, we demonstrate that this depends on the
geometry of the problem rather than the algorithmic bias, by showing that different types of opti-
mization algorithms all achieve N'C during the terminal phase of training. In Section 4.2, we verify
the validity of the simplification based on the unconstrained feature model. Moreover, the univer-
sality of A'C implies that there is no need for training the last-layer classifiers since the weights can
be simply fixed as a Simplex ETF throughout the training process. In Section 4.3, we demonstrate
that such a strategy achieves essentially the same generalization performance as classical training
algorithms, while improving on memory and computation. We begin by describing the basic ex-
perimental setup, including the network architectures, evaluation datasets, training procedures, and
metrics for measuring N'C.

Setup of Network Architectures, Dataset, and Training. In Section 4.1 and Section 4.2, we
train a ResNet18 architecture [18] on CIFAR10 [21] for image classification using the cross-entropy
loss (2). Due to limited space, we present all the results on MNIST [90] in the Appendix. As is
standard, images are normalized (channel-wise) by their mean and standard deviation. We include
no data augmentation in this section, as our focus is to study the behavior associated with A/C instead
of obtaining state-of-the-art performance. We train the network for 200 epochs with three distinct
optimizers: two first-order methods (SGD and Adam) and one second-order method (LBFGS [69]).
In particular, we use SGD with momentum 0.9, Adam with $; = 0.9, 82 = 0.999, and LBFGS
with a memory size of 10. The initial learning rates for SGD and Adam are set to 0.05 and 0.001,
respectively, and decreased by a factor of 10 for every 40 epochs. For LBFGS, we use an initial
learning rate of 0.1 and employ a strong Wolfe line-search strategy for subsequent iterations. Except
otherwise specified, the weight decay is set to 5 x 10~* for all the experiments.

Metrics for Measuring \'C During Network Training. We measure N'C for the learned last-
layer classifiers and features based on the properties presented in Section 1. Some of the metrics are
similar to those presented in [1]. We first measure the within-class variability collapse by measuring
the magnitude of the between-class covariance ¥ 5 € R%*? compared to the within-class covariance
S € R¥*4 of the learned features via NC; := % trace(EWETB), where 2; denotes the pseudo

inverse of 3. For the learned classifier W € RX X4 we quantify its closeness to a Simplex ETF

up to scaling by NCy := || ”‘X,VV‘(,VTT”F — \/% (IK — %IKI}) ||F, where we rescale the ETF in

(5) so that \/%(I K — 721k 1) has unit energy (in Frobenius norm). It should be noted that our
metric N'Cy combines two metrics used in [1] to quantify to what extent the classifier approaches
equiangularity and maximal-angle equiangularity. We then measure the duality between the clas-

sifiers W and the centered class-means H by NCs := || I\V‘!}/Vﬁﬁ\lp - \/%(IK — %1K1—[E)HF'
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Figure 3: Nlustration of A'C across different training algorithms with ResNet18 on CIFAR10. From the left
to the right, the plots show the four metrics, A'C1, N C2, N Cs, and N'C4, respectively.
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Figure 4: Training results of ResNet18 with various feature width on CIFAR10 with completely random
label. From the left to the right: N'C1, N'C2, N'C3, and the misclassification percentage of training samples.

In many cases, the global mean h¢ of the features might not be zero,'? and the bias term b would
compensate for the global mean hg. Thus, we capture this collapsing phenomenon by measuring
NCy4 :=||b+ Whg|, . The detailed descriptions of the four metrics are given in Appendix B.

4.1 The Prevalence of N'C Across Different Optimization Algorithms

We show different types of training methods (e.g., SGD, Adam, and LBFGS) all achieve N'C during
the terminal phase of training. Figure 3 shows the evolution of the four metrics N'C1, NCa, NCs3,
and N'Cy4, for measuring A/C as training progresses. We consistently observe that all four metrics
collapse to zero, trained by different types of algorithms. This implies that A'C occurs regardless of
the choice of training methods. The last-layer features learned by the network are always maximally
linearly separable, and correspondingly the last-layer classifier is a perfect linear classifier for the
features. See Appendix for the testing performance of the networks learned by different algorithms.

4.2 The Validity of (3) Based on Unconstrained Feature Models for A/'C

The premise of our global landscape analysis of (3) for studying A'C in deep neural networks is
based upon the unconstrained feature model introduced in Section 2.1, which simplifies the net-
work by synthesizing the first L — 1 layers as a universal approximator that generates a simple
decision variable for each training sample. Here, we demonstrate through experiments that such
a simplification is reasonable for overparameterized networks, in the sense that they are sufficient
for characterizing NC in practical network training. In particular, we demonstrate that overparam-
eterization is crucial for A'C phenomenon during network training, while the input plays minimal
influence. To that goal, we modify the training dataset CIFAR10 by replacing all the correct label
for each training sample with a random counterpart.'> We report the corresponding \'C behaviors
in Figure 4, which shows how training misclassification rate and A/'C evolve over epochs of training
for networks with different widths'4. As the network is sufficiently large, it has enough capacity to
memorize the training data and achieves zero training error, which is consistent with the observa-
tions in [11]. Moreover, we find from Figure 4 that the training accuracy is highly correlated with
NC in the sense that a larger network (i.e., larger width) tends to exhibit severe N'C and achieves
smaller training error. In other words, while the emerging consensus is that the network can inter-
polate any training data, our results show that such interpolation happens in a particular way — the
features are maximally separated, followed by a max-margin linear classifier. In Appendix B, we
also report experiments on weight decay imposed on the features H, as in (3).

"2For example, as discussed after Theorem 3.1 all the feature vectors in H would be nonnegative, because
the nonnegative nonlinear operator ReLU has been applied at the end of the penultimate layer.

3We also conducted experiments on completely random dataset where each training image is generated with
pixels uniformly from [0, 1] and we observed similar results.

'“Here, for ResNet18 we adopt the method in [15] to change its network width.
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Figure 5: Comparison of the performances of ResNet 50 with learned vs. fixed last-layer classifiers on
CIFAR10. From left to right): N'C1, N'C3, Training Accuracy, Testing Accuracy.

4.3 Insights from NC for Improving Network Designs

Finally, we conduct exploratory experiments to demonstrate the practical benefits of N'C phe-
nomenon. The universality of N'C implies that the final classifier (i.e. the L-th layer) of a neural
network always converges to a Simplex ETF, which is fully determined up to an arbitrary rotation
and happens when K < d. Thus, based on these understandings, we show that we can substantially
improve the computational cost by modifying the architecture without the sacrificing performance,
by (i) fixing the last-layer classifier as a Simplex ETF'3, and (ii) reducing the feature dimension
d = K. Here, to demonstrate our method can achieve state-of-the-art performance, we do include
data augmentation in the training of our ResNet50 model [91] on CIFAR10, achieving around 95%
test accuracy. See Appendix B for the results on MNIST and CIFAR10 with ResNet18.

Fixing the Last-layer Classifier as a Simplex ETF. Figure 5 presents a comparison of learned
and fixed classifiers in terms of within-class variation collapse (N C1), self-duality (N C3), training
accuracy, and test accuracy. These results imply that the fixed classifier exhibits the same within-
class variation collapse for the features H, and achieves the same classification accuracy as the
fully-trained classifier. On the other hand, fixing the classifier can reduce the number of parameters
and the computational complexity for training. The number of parameters in the classifier can be
significant for tasks with a large number of classes and large feature dimensions. For example,
for ImageNet, a dataset with K' = 1000 classes, fixing the classifier can reduce 8.01%, 11.76%,
and 52.56% of total learning parameters for ResNet50, DenseNet169 [19], and ShuffleNet [92],
respectively. We note that our result also provides a theoretical justification for the work in [93] that
fixes the classifier as orthonormal matrices. Indeed, these are close to simplex ETFs, particularly
when the number of classes is large.

Feature Dimension Reduction for H ¢ R%*"X by Choosing d = K.'° In many classification
problems, the practice of deep learning typically uses a feature dimension d that is much larger than
the number of classes K. In contrast, N'C implies that there is no need to choose a d that is much
larger than the number of classes K. Reducing the dimension d can lead to substantial reductions in
memory and computation cost. As shown in Figure 5, we also train all the weights of ResNet50 on
CIFAR10 using SGD with d = K. The results demonstrate that A'C persists even when we choose
d = K, and the network achieves on-par performance with networks of large d, in terms of training
and test accuracy. This implies that when the number of classes K is small, we can choose a small
feature dimension d = K (or d 2 K) instead of using a large universal d to reduce the computation
and memory costs for training. By setting d = K, this reduces the amount of parameters and hence
the memory cost in ResNet18 and ResNet50 by 20.70% and 4.45% respectively.

5 Conclusion

In this work, we have provided an in-depth analysis to demystify the N'C phenomenon, which ap-
pears during the terminal phase of training deep networks in classification problems. Based on the
unconstrained feature model [24-26], we proved that Simplex ETFs are the only global minimiz-
ers of the cross-entropy training loss with weight decay and bias. Moreover, we showed that the
loss function is a strict saddle function with respect to the last-layer features and classifiers, with no
other spurious local minimizers. In contrast to existing landscape analyses for deep neural networks,
which mostly focus on the optimization perspective, our simplified analysis not only characterizes

15Speciﬁcally, weset W' = \/ KIil P (IK — %IK 1;() where P € RY*X contains the first K columns

of a d x d identity matrix, which lifts a K x K ETF to d x K matrix. For simplicity, we also learn the bias term
in the last layer, though our result indicates it can be set as W h, where h is the global mean of the features.
1®Though Theorem 3.2 requires d > K, we conjecture it also holds for d = K as discussed in Section 3.1.




the features that are learned in the last layer, but also explains why they can be efficiently optimized.
This provides support for empirical observations in practical deep network architectures. Moreover,
the study of last-layer features could have profound implications for optimization, generalization,
and robustness of broad interests, which are the subjects of future work. It is also of interest to
extend the current study to the case where d < K, which is the case in contrastive learning [94, 95]
and many applications, such as recommendation systems [96] and document retrieval [97].
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