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Abstract

Chikungunya, as many other climate-sensitive, vector-borne
infectious diseases, has recently re-emerged in the Americas. Since
its first detection in 1952 in Tanzania, chikungunya virus has spread
over 60 countries in Europe, Africa, Asia, and the Indian subcontinent,
but the first outbreak in the Americas was reported only in late
2013. One of the primary challenges for modeling and predicting
emerging vector-borne infectious diseases is short or even non-existent
historical data records. Even if available, the information is often
highly noisy, incomplete, or reported with delays, which obstructs
any prediction task. We propose a new integrative multi-source
and computationally efficient statistical approach for out-of-sample
prediction of emerging vector-borne infections (with an emphasis on
predicting the epidemic peak and duration) that is applicable even
when epidemiological data are limited. The strength of the new
method is based on the two pillars at the interface of statistics,
applied mathematics and data science. First, we systematically
integrate multi-source information, from official public health records
to non-traditional bio surveillance online social media data. Second,
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we propose a comprehensive modeling framework, spanning ordinary
differential systems to model the infection spread between humans and
mosquitoes, and statistical approaches such as time series clustering
and the Box–Jenkins forecasting methodology. We illustrate our
approach in application to 5-month ahead forecasting of chikungunya
in the Dominican Republic.

Key Words : biosurveillance, chikungunya, dengue, environmental risk,

social media, spatio-temporal clustering

1 Introduction

Chikungunya is a disease caused by an alphavirus (CHIKV) that is mainly

transmitted by two mosquito species, namely, Aedes aegypti and Aedes

albopictus. The same species transmit other mosquito-borne viruses such as

dengue, yellow fever, and Zika virus [28, 4, 27]. Currently there exists neither

specific antiviral drug nor chikungunya vaccine, and its medical treatments

primarily aim to help relieve the symptoms.

Chikungunya was first detected during an outbreak in 1952 in Tanzania

and later it was reported in Europe, Southeast Asia, India, and islands in

the Indian and Pacific Oceans, with a major outbreak in Réunion Island in

2006. Since 2004, chikungunya expanded its geographical presence, causing

sustained epidemics of unprecedented magnitude in Asia and Africa. The

virus outbreaks were observed also on the islands in the Indian Ocean and

in Italy, although these areas are considered to be endemic for this disease.

The number of laboratory-confirmed or probable cases of chikungunya in

the Americas increased from a few, in 1995–2005, to 106 cases in 2006–2010.

However, all these identified cases were imported and none of them led to

local transmission [4].

In December 2013, two laboratory-confirmed cases of chikungunya

without a travel history were reported on the French part of the Caribbean

island of Saint Martin, indicating the start of the first documented outbreak
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of chikungunya in the Americas [37]. Afterwards, the agent spread rapidly

over Caribbean and into North, Central, and South America. Over the

period of 2013–2014, there were 1,071,696 reported suspected cases and

22,796 confirmed cases of chikungunya in the Americas [27].

Emerging diseases in a region is a cause of local and international

concern, especially given a strong focus of the national economies on tourism.

The 2013 chikungunya outbreak attracted the attention from the healthcare

professionals in North, Central, and South Americas. Moreover, on 15

August 2014 the Defense Advanced Research Projects Agency (DARPA)

of the USA launched a chikungunya forecasting challenge, with a goal to

develop new data analytics tools for predicting chikungunya dynamics in

the Americas [11].

Under the extreme scenarios of emerging diseases, as the case of

chikungunya, official data capture only few recent weeks of disease activity

in a region. This paper addresses this challenge by proposing an

innovative comprehensive integration of information from different sources

in a statistical model, with the objective of obtaining a long-term forecast

to assess the most crucial epidemic period (that is, epidemic peak) and the

outbreak duration. We propose obtaining several preliminary forecasts, each

derived from a different information source, to be integrated into a statistical

model that provides a strengthened forecast.

Regarding the alternative data on chikungunya, we note that this

infectious agent is transmitted by the same species of mosquito as dengue.

Hence, we propose to use online social media data on dengue, specifically,

Google Dengue Trends (GDT), as proxy information to the unreported

number of cases, the unknown mosquito density, and interaction with

humans. In particular, the lack of reliable timely available public health

records is typically one of the primary challenges obstructing real-time

epidemic forecasting, and this problem is particularly acute in developing

countries. The key contribution of such social media data is to deliver
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epidemiological signal in the absence of the confirmed traditional offline

information. In our study we focus on the chikungunya outbreak in

the Dominican Republic (DR), as DR offers one of the most consistent

chikungunya records. However, GDT data are unavailable for this country.

Therefore, as a preliminary step before obtaining a forecast based on GDT,

we apply data mining techniques to identify areas in Mexico – the country

with the highest spatial resolution of GDT in Latin America – that exhibit

the highest level of correspondence with the chikungunya records for the

Dominican Republic.

Non-traditional biosurveillance data from online social media sources

such as Google, Twitter, Facebook, and Wikipedia, are criticized for high

sensitivity to self-excitement (i.e., fickle media interest), bias and other

artifacts of social media [21]. To address this challenge, we combine the

GDT information with predictions based on an epidemic compartmental

model fitted with the available official public reports as well as adaptively re-

calibrate social media data with the offline data. The historical GDT for the

selected states in Mexico and the estimated curves from the compartmental

model are introduced as exogenous covariates into a time series model for

predicting the chikungunya epidemiological curve (i.e., location and intensity

of spike).

The idea of combining different information sources for improving

infectious disease modeling has been studied by, for example, [10] and

[31]. However, only [24] proposed a multi-source forecast for a vector-borne

infectious disease (Zika) for up to one, two, and three weeks ahead.

The earliest epidemic models for chikungunya forecast in the Americas

are associated to the DARPA chikungunya challenge [11] that asked

participants to forecast the cumulative total cases (suspected and confirmed,

the latter including imported-confirmed) per week per country in the

Americas. Participants typically complemented the information provided

by Pan American Health Organization (PAHO) with data from other
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sources, including online web searches, climate information, and vector-

specific information (e.g., reporting of other mosquito-borne illnesses such as

dengue in the same population, mosquito dynamics, and ecology). Forecasts

with higher accuracy used between 1 and 8 data sources, but overall there

was no significant correlation between the number of data sources and the

accuracy of the forecast. In fact, not all data sources were considered in

deriving the final prediction, and the four top ranking forecasts where based

on the morphological approach.

[13] proposed a model that uses the locally originated and imported cases,

based on the ecology for the mosquitoes niche, and air travel routes. This

approach incorporates information on atmospheric variables and airlines

routes, but it still highly depends on the official surveillance data accuracy

and timeliness. [13, 17] modeled chikungunya spread by modeling the local

and imported cases. Based on two branching processes, for the imported

cases and local transmissions, and information on travel origin-destinations

and averaged environmental variables, the authors provide probabilistic

nowcasting for chikungunya in the Americas.

In contrast to the top ranking forecast for the DARPA challenge,

we propose a model that is not morphological, but is a combination of

traditional epidemic and statistical models. Opposing to [13] and [17], we

base the forecast for CHIKV in DR on the local transmission and we do

not consider environmental variables to model the mosquito density, but we

approximate the spread of mosquitoes and the mosquito-human interactions

using historical GDT for some states in Mexico. As [13], but contrary to

[17] (and [24], for Zika), we aim to obtain long-term forecast (five months)

at early stages of an emerging epidemic outbreak. Finally, in contrast to

[13], we are able to obtain accurate predictions for location and intensity of

spike using only the first eight weeks into the outbreak.

The remainder of the paper describes the used information (Section 2),

then introduces the general methodology for the integrated model
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(Section 3). Sections 4 presents the results of forecasting the 2014

chikungunya outbreak in DR, and Section 5 contains the discussion.

2 Data description and challenges

As a result of the early outbreak warning issued by PAHO in December

2013, countries in the Americas, as Dominican Republic, reinforced their

surveillance system in 2014. The collected information was published

by PAHO in electronic weekly bulletins available online (for Dominican

Republic, see [27]). The PAHO bulletins report the cumulative numbers of

suspected and confirmed cases on a weekly basis. While the reports undergo

standard PAHO procedures on data quality control, there are numerous

delays in reporting new chikungunya cases; furthermore, occasionally

information on multiple weeks is aggregated, leading to the so-called

plateaus. In such instances, to preserve weekly time granularity in reporting,

we retrospectively uniformly split the reported data among weeks for which

information has not been updated. Since the population was not previously

exposed to this virus, the objective of our model is predicting the epidemic

curve for the total number of reported suspected and confirmed cases.

Since the official information on emerging diseases can be very scarce,

we complement the official reports with previous activity of Internet-based

disease monitoring. In particular, we use Google Dengue Trends (GDT).

These sources of information have been studied in applications on emerging

or vector-borne diseases. [5] proposed using web search queries to estimate

the dengue prevalence in endemic countries, where the surveillance systems

fail to timely report the suspected and confirmed cases. [25] reviewed studies

that had exploited Internet use and search trends to monitor influenza and

dengue. The authors conclude that the web searches (Google Influenza

and Dengue Trends) show a potential in reinforcing traditional surveillance

system capacity and guiding public health action. Using GDT, [39] proposed
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a methodological framework to obtain close to real-time estimates for dengue

in Mexico, Brazil, Thailand, Singapore, and Taiwan. These estimates seek

to improve the tracking of dengue activity. According to [12] and [14], the

dengue season varies from year to year but tends to coincide with the rainy

season. For the countries with favorable climate for the vector, GDT is

accurate. This observation is also shared by [34] for dengue in Venezuela. In

relation to chikungunya, [3] explored Google Trends (GT) correlation with

chikungunya and Zika during 2014 in Venezuela and concluded that GT

can be used to forecast some outbreak characteristics such as the relative

magnitude and duration.

3 Proposed methodology

Our methodology of predicting chikungunya dynamics is based on 1) robust

proxy time series, such as aggregates of the GDT in Mexican states, and 2)

knowledge of the general epidemics dynamics captured with fitted solutions

of an epidemic model given by a system of ordinary differential equations

(ODEs). Both GDT proxies and ODEs solutions are then combined in a

single time series model with a developed apparatus for making predictions

with a desired confidence level (Figure 3).

3.1 Spatio-temporal clustering

Whereas the dengue and chikungunya viruses are known to be mainly

transmitted by the same mosquito species, and long GDT records are

available for Mexico, it would be incorrect to directly use the Mexican GDT

data to model chikungunya cases in Dominican Republic. First, correlation

between the two countries might not be very strong since they are separated

by the sea and do not share a common land border. Second, aggregating data

over the vast territory of Mexico (compared with the territory of Dominican

Republic) would average out the diverse trends observed in different Mexican
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states. Hence, we propose to use GDT data at a finer spatial scale (at the

scale of one state or a small group of Mexican states) to select proxies for

the chikungunya dynamics in Dominican Republic. To identify those groups

of states, we apply spatio-temporal clustering methods.

Due to very diverse topography and climate of Mexico, states with similar

traits important for survival of mosquitoes and spread of dengue virus can

be spatially separated (i.e., spatial proximity in the clustering becomes less

important than similarity of time trends). One of the methods that do

not explicitly use the spatial information is the TRend based clUstering

algorithm for Spatio-Temporal data stream (TRUST) [7, 15, 1]. TRUST

groups spatial data within relatively short temporal intervals (called slides)

based on a number of homogeneity thresholds. The cluster assignments for

each location in each slide can then be used at a higher level of temporal

aggregation to cluster the trends within a long temporal window. Both slide

and window sizes are user-defined.

For forecasting chikungunya, we are interested in selecting GDT series

that would be good proxies for the whole epidemic curve of chikungunya,

hence, we choose the slides to be of one-year length. To obtain robust

combinations of proxy series, we cluster the GDT within the whole period

with complete data records (2009–2013), i.e., we set the window size to be

five years. The two levels of clustering are schematically shown in Figure 1.

The slide-level clustering starts with identifying the binary δ-close

measure for the pairs of time series xi and xj (i, j = 1, . . . , n; i 6= j):

fδ(xi, xj) = 1

(
‖xi − xj‖1
T1 − T0

≤ δ
)
,

where [T0, T1] is the time series domain and δ ∈ [0, 1]. At the final step,

window-level clustering can be defined with

fε(xi, xj) = 1

(
M−1

M∑
s=1

clustered(xi, xj , s) ≥ εM

)
,
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Figure 1: Scheme of the TRUST algorithm for clustering GDT in the states
of Mexico in a window of 2009–2013. Colors identify slide-level clusters;
shapes around the state IDs denote window-level clusters.

where M is the number of slides in a window, ε ∈ [0, 1], and

clustered(xi, xj , s) is a binary variable taking on the value of 1 if the two

time series are clustered in the s-th slide, and the value of 0 otherwise (see

detailed discussion of the TRUST algorithm in [7]). We select the tuning

parameters δ and ε in a data-driven way using a grid search with Bayesian

information criterion [32, 23].

After the window-level clusters of GDT are obtained, the proxy for

chikungunya is identified as a cluster-averaged time series that has the

highest correlation with the chikungunya time series.

3.2 Inverse problem of an ODE epidemic model

In addition to the information collected from GDT, we use forecasts

derived from a compartmental deterministic epidemic model fitted with the

available official surveillance reports. The epidemic model consists of a set

of ordinary differential equations parameterized according to θ where its

solution (forward map, FM) G(t;θ) describes the evolution, over time, of

the infectious agent, in relation to its spread in two interacting populations:

humans and mosquitoes.
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The compartments of such deterministic epidemic model are defined

by the individuals’ ability to become infected or transmit the pathogen,

such as being susceptible (S), exposed (E), infectious (I), and removed

(R). For instance, two relevant compartmental models are SIR and

SEIR [18, 19, 20, 2]. We consider a two-population SEIR model, where

an individual in the susceptible human population can be exposed to the

pathogen, when bitten by an infectious mosquito. At the end of this period

the person becomes infectious (being able to pass the virus to mosquitoes),

and later recovers, attaining temporal immunity to the agent. The number

of humans in each of the stages are denoted as S, E, I and R, respectively.

We consider an SEI model for mosquitoes, with the respective stages denoted

by X, Y , and Z.

In the Bayesian approach to the inverse problem [8, 9, 35, 30, 36], we

assume that the surveillance reports y = y1, . . . , ym are a modification

and/or imperfect observation of the forward map. That is,

Yi = h(wi(G(t;θ0));α), i = 1, . . . ,m,

where θ0 is the “true” epidemic model parameter that we aim to estimate.

wi is a function of all the states of the “real” compartmental model, and

h, along with α, describes the deviations from the model originated due

to the stochastic nature of the infectious dynamic. In the specific case of

epidemic models, the function wi usually ignores the number of cases in

other states (E for example) and only reports the number of symptomatic

infected individuals. On top of this modification, we also consider that the

data is aggregated by time periods (then i corresponds to the index for

the i-th week). These modifications seek to capture the most important

features of the real epidemic surveillance and reporting systems. On the

other hand, there exist multiple reasons why the reporting data can vary

from wi(G(t;θ0)). Some of these can be the possible different individual

times to develop symptoms, times to look for medical attention after disease
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onset, etc. To model these random deviations, we use h and its parameter

vector α, and we propose the random model to have wi(G(t;θ0)) as expected

value. Then we assume that under θ0, the reported observation yi is the

realization of the random variable Yi, for i, any of the m observed weeks.

A very important source of variation is also the sub-reporting, that is

the under representation for the true number of cases. This is mainly owing

to the fact that some individuals can experience mild symptoms and do not

seek for medical attention. The under-reporting can be exacerbated when

surveillance is partially implemented due to limited resources.

Since we have a deterministic system subjected to diverse sources of

uncertainty, the predictions based on the surveillance reports and the

epidemic FM, falls within the realm of uncertainty quantification. The goal

is to use the observations y to deduce the value of the parameter θ0 in the

underlying model G(t;θ0), and the parameter α that describes the data

variation. Under the Bayesian paradigm, the likelihood corresponds to a

statistical model that introduces the FM and the deviation from it present

in the observed values.

Noting that the likelihood p(y|θ,α) is a function of the FM, which in

the majority of the cases has to be numerically obtained, we turn to Markov

chain Monte Carlo (MCMC) methods to obtain samples of the posterior

distribution p(θ,α|y). Based on this distribution, we can obtain a point

estimate θ̂ to draw an epidemic prediction from G(t; θ̂), or use information

on the posterior distribution to obtain an estimated predictive distribution.

In either case, the FM evaluated in θ̂, or the ensemble of FM’s evaluated in

the sampled values of p(θ|y), can be combined with the GDT information

in a Box–Jenkins time series model.

We propose using the epidemic model for chikungunya virus presented

by [38] for the large outbreak in the Réunion Island in 2005–2006. This

compartmental two-population SEIR model considers that infectious period

starts before the disease and that not all infected humans will develop
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noticeable symptoms. While all exposed individuals will become infective,

some of them will present the disease or symptoms (Is), and some will have

mild or no symptoms (Ia).

Figure 2 depicts the mathematical model (3.1), where the compartments

related to the virus transmission are in white. The compartmentD comprises

the individuals who develop symptoms. Given the individuals’ SEIR status,

this compartment is irrelevant for the epidemic dynamic, but it is directly

related to the information the surveillance system collects.

dS = −β1SZ

dE = β1SZ − λ1E

dIs = φλ1E − γIs

dD = ωIs

dIa = (1− φ)λ1E − γIa

dR = γ(I + Ia)

dX = µ− β2X(Is + Ia)− µX

dY = β2X(Is + Ia)− λ2Y − µY

dZ = λ2Y − µZ

(3.1)

The fraction φ of exposed individuals who become infectious will develop

symptoms at a rate ω after entering Is. Note that transiting to D does not

imply the ending of the infectious period for infectious individuals since

the transition to R is dictated by the rate γ, for both symptomatic and

asymptomatic individuals in Is ∪ Ia.
Considering outbreak evolution occurs within a year or less, we assume

that human demographic changes are negligible. This is not the case

for mosquitoes, in view of their short life span. Mosquitoes can live

as adults only from two weeks to a month, depending on environmental

conditions. [38] introduced the mortality rate of mosquitoes as µ at any

of their SEI stages (see Figure 2), that is, mosquitoes’ deaths are modeled

as independent to the infection status. Following [38], the birth rate of
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Figure 2: Epidemic Forward Map model.

mosquitoes is also considered equal to µ, which corresponds to a stable

mosquito population – something that is observed in tropical environments

such as Dominican Republic, where air temperature and humidity are almost

constant throughout the year.

The surveillance information is modeled as the weekly number of

individuals entering state D, denoted as xi = wi(G(t;θ)), for each week

i. To describe the deviations of the observed number of new cases yi from

xi we model Yi as a random variable. A linear model could be considered,

where we add an additive white noise to {xi}, however we opt to comply

with the discrete nature of the data and propose a model for counts. A

natural candidate is a Poisson model with means equal to xi. Since xi is the

aggregated solution for D in (3.1), it is not necessarily an integer, however a

realization of a Poisson with this mean, always is. Nevertheless, this model

tends to underestimate real observed variations and the variance cannot be

adjusted to describe the real variance in the data. Then we turn to the

Negative binomial distribution with mean xi and variance proportional to
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the mean:

Yi ∼ NegBin(xi/(α− 1), 1/α), (3.2)

where θ = (β1, λ1, φ, γ, ω, β2, λ2, µ). Then Yi has mean xi and variance αxi.

3.3 The joint modeling framework

The predictive epidemic model is built under the restriction that we observe

only the first m weeks of the outbreak, where y1, . . . , ym correspond to the

weekly new cases. From the present time m, we aim to obtain ŷm+1, . . . , ŷn

for some n > m + 1 and predict some important features in the future

epidemic curve, such as the peak position and the outbreak span.

To construct integrated forecasts, we propose to use tractable and

computationally efficient multivariate regression with the Box–Jenkins

approach of autoregressive integrated moving average modeling (MR-

ARIMA). The design matrix Xt comprises the covariates: Di is the weekly

GDT in the selected cluster of Mexican states in the previous year, and

xi = wi(G(t;θ)) the FM epidemic curve, of the current year, with parameter

θ that can correspond a point estimate or a value sampled the posterior

distribution of θ.

To avoid multicollinearity, the proxy {Di} is the averaged series from

a cluster that has the highest correlation of this average with y1, . . . , ym.

The autoregressive order p and moving average order q for the time series

of regression errors εt are selected based on the minimal value of Akaike

information criterion (AIC), and the integration order d is selected based

on Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test (see the algorithm

auto.arima by [16]). Note that d > 0 implies that the following model

is fitted not on the original levels of response variable and predictors, but on

their respective differences of order d:

ŷt = X>t β + εt,

εt =

p∑
i=1

φiεt−i +

q∑
j=1

ψjvt−j + vt,
(3.3)
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where β is a vector of regression coefficients, vt ∼ WN(0, σ2); p, d, q ∈ Z+;

and φi and ξi are chosen such that φ(λ) = 1 − φ1λ − . . . − φpλ
p and

ψ(λ) = 1 + ψ1λ + . . . + ψqλ
q. Finally, we assume that polynomials φ(·)

and ψ(·) are such that φ(λ), ψ(λ) 6= 0, ∀|λ| 6 1, that is, the standard

assumptions of stationarity and invertibility conditions in time series.

Then using the information of the first m weeks we obtain the integrated

forecast ŷi for i = m + 1, . . . , n using the design matrix X>t = (Di, xi)
>.

Figure 3 summarizes this process and the notation we have introduced.

Figure 3: Flow-chart of obtaining the integrated forecast. GDT data
(Mexico) and the reported chikungunya cases {yi}m1 (Dominican Republic)
are used to produce preliminary forecasts Di and xi (i = m+1, . . . , n), which
are then integrated in the MR-ARIMA model to produce provides the final
forecast {ŷi}nm+1.

4 Case study: Predictive Analytics for
Chikungunya in the Dominican Republic

4.1 Clustering results

The optimized TRUST procedure identified two clusters of states that have

consistently exhibited similar dynamics of GDT – Cluster 1: Baja California

and Jalisco, and Cluster 2: Tamaulipas, Nayarit, and Tabasco (Figure 4).

The other 12 states showed individually different dynamics and did not form

clusters. The BIC-selected optimal clustering tuning parameters are δ of
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Figure 4: Time series clusters of GDT in Mexico during 2009–2013.

0.167 and ε of 1.

To identify which cluster is a reliable proxy for predicting the

chikungunya outbreak, we use correlations between chikungunya in the

eight non-zero weeks of yi within 1, 2, . . . , 23 weeks of 2014 (m = 23), and

cluster-average GDTs in the corresponding weeks. We proceed with the

cluster exhibiting the highest correlation (Cluster 2, r = 0.94, with p-value

< 0.01), and continue using its weekly averaged 2013 GDT in the forecasting

model (3.3) (from week 16 to 43, Figure 5). Cluster 1 showed non-significant

correlation with the chikungunya time series, with correlation r of 0.50 and

p-value of 0.21.

Figure 5: GDT for Cluster 2 for weeks 16–43, 2013.
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4.2 Prediction with an epidemic deterministic model
subjected to uncertainty

To construct the prior distribution p(θ) we assume that our knowledge on

the parameters are independent and modeled with uniform distribution. The

distributions of parameters β1, λ1, ω, γ, µ, β2, and λ2 are centered at 0.14,

0.5, 0.25, 0.25, 0.05, 0.40 and 0.5, respectively. These values correspond

to the least squares estimates used in [38] and to information on ranges of

parameters in clinical and entomological literature.

Since we do not want to have very informative priors, in contrast to

[38], who run sensitivity analysis varying the parameters by 10% their point

estimates, we set the domains for our prior as ±30% their midpoints.

In the case of the parameter φ, we establish a distribution that also takes

into consideration the under-reporting in the surveillance system. That is,

we want φ to represent the percentage of individuals who develop symptoms

and are captured by the surveillance system. Under-reporting is a common

problem for countries where the systems of reporting and diagnosis are

still to be consolidated. For the Dominican Republic, we assume that

the reporting of symptomatic cases can be between 5% and 100%. This

interval includes the estimated reporting by [26] for the 2014 chikungunya

outbreak in Colombia (39%) and originates the (almost) non-informative

prior distribution φ ∼ Unif(0.034,1).

In relation to α, we usually have over-dispersed surveillance count

observations, so we establish a flat prior distribution for α. This is modeled

as uniform distribution on (1, 800).

Based on the first 23 weeks of 2014 (on which we only observe 8 in

the outbreak) and using the MCMC algorithm twalk [6] implemented in

R [29], we obtain a sample of 370 points from the posterior distribution,

after obtaining a chain of 200,000 simulations, examining the trace plots

and selecting a conservative burn in period of 170,000. The summary

statistics (Table 1) show that the posterior distribution of φ concentrates
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in values much smaller than 0.97, indicating a strong effect of under-

reporting. That is, we estimate θ and α in relation to the true but under-

reported symptomatic cases, to predict the number of cases captured by the

surveillance system.

Table 1: Summary of sampled posterior distribution of the ODE parameters
β1 λ1 φ ω γ µ β2 λ2 α

2.5% 0.1023 0.3568 0.0326 0.1767 0.1772 0.0358 0.3178 0.3635 441.03
50% 0.1406 0.4898 0.0454 0.2228 0.2423 0.0481 0.4125 0.5198 562.66

97.5% 0.1769 0.6412 0.2174 0.3198 0.3209 0.0639 0.5023 0.6426 598.59
Mean 0.1403 0.4959 0.0647 0.2316 0.2484 0.0490 0.4117 0.5124 554.67

For each of the sampled values θj from the posterior distribution of θ, we

obtain its corresponding accepted epidemic curves {xi,j} = {wi(G(t;θj))},
for weeks i = 1, . . . , n = 47, depicted in Figure 6. All the reported susceptible

and confirmed cases are shown by the red and black lines, but only the

information in red (up to week m = 23) is used to fit the parameters. The

blue dashed lines correspond to the 90% predictive intervals constructed from

the sampled accepted curves at each week, after week 23. Analysis of the

predictive intervals suggests that the curves appear to be very informative

before the epidemic peak, but after the peak, the prediction uncertainty

tends to be very high.

Using the averaged GDT for Cluster 2, {Di}, J different sampled

accepted curves {xi,j} = {wi(G(t;θj))}, and the MR-ARIMA model (3.3)

we obtain an ensemble of predictions for weeks m+1, . . . , n, that incorporate

information of the posterior distribution of θ and α. That is, we fit J different

MR-ARIMA models using X> = (D,xj)
> with D = (D1, . . . , Dn)> and

xj = (x1,j . . . , xn,j)
>.

The model (3.3) with lowest AIC has p = 1, d = 1 and q = 0, and

estimates of its coefficients summarized over a set of J = 370 fitted models

are reported in Table 2.

Figure 7 presents a point forecast and predictive intervals obtained from
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Figure 6: Accepted epidemic curves for the 2014 chikungunya outbreak in
the Dominican Republic.

Table 2: Summary of coefficient estimates from 370 models MR-
ARIMA(1,1,0)

AR (φ̂1) GDT Cluster 2 (Di) Accepted FM (xi,j)

1st quartile −0.1731 16,986 6,897,671
Mean −0.1648 17,065 7,627,266

3rd quartile −0.1515 17,280 8,056,531

the fitted ensemble of MR-ARIMAs. The point forecasts correspond to the

mean of the ensemble at each week. A predictive interval could also be

obtained as quantiles of the ensemble at each week. The resulting bands

would incorporate the variability associated with the posterior distribution,

but they would not yet include the uncertainty that arises from the MR-

ARIMA prediction. To better describe the overall uncertainty, the bands in

Figure 7 are obtained as the quantile intervals plus/minus two mean standard

MR-ARIMA errors at each week.

We compare the point predictions from MR-ARIMA with predictions

obtained by the following three competing methods.
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Figure 7: MR-ARIMA forecast of chikungunya in Dominican Republic in
2014, using GDT and accepted curves from the ODE epidemic model.

First, we fit a traditional ARIMA model, without exogenous regressors,

for the reported cases from week 16 to 23 by selecting a model that

minimizes AIC. The obtained model corresponds to ARIMA(0,1,0) with drift

(estimated as 1936.14).

The second model (ODE-MAP) corresponds to a point forecast based on

the sampled predictive curves obtained in Figure 6. As the ARIMA model,

ODE-MAP is fitted using only on the reported cases and the point parameter

estimate that maximizes the a posteriori probability (MAP).

The third model (Pois-C2) corresponds to a generalized linear model

(GLM) that uses only the covariate Di (averaged GDT of Cluster 2) that

is used in the MR-ARIMA model. In the fitted Poisson regression both the

intercept and covariate are statistically significant.

All the produced forecasts are presented in Figure 8 and evaluated based

on the mean absolute percentage error (MAPE) and root-mean-square error

(RMSE) presented in Table 3.

In spite of the fact that ODE-MAP reports the smallest MAPE, it
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Figure 8: Predictions of chikungunya cases based on the four models.

is clear from Figure 8 that the forecast from the proposed MR-ARIMA

model outperforms all competing predictions for peak position and outbreak

duration.

Table 3: Performance of the point forecasts from four models
Error Proposed

measure MR-ARIMA ARIMA ODE-MAP Pois-C2

MAPE 1.69 5.33 0.72 4.49
RMSE 14790.76 28046.58 17856.05 27766.66

5 Discussion

We have presented a new multi-source integrative approach for forecasting

emerging diseases. In particular, we focus on climate-sensitive vector-borne

diseases for which we have observed dynamics in other populations, but have

only few records in the evolving outbreak for the area of interest. Using the

early weeks’ outbreak information, we evaluate the whole epidemic curve
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related to the number of new symptomatic cases. Specifically, we estimate

when the epidemic will reach its highest point and the outbreak duration.

Based on the available surveillance records, we select auxiliary data that

can describe the epidemic evolution, and using this information we also fit an

epidemic model. The predictions obtained from both sources are combined,

and their contribution is estimated by the parameter fitting process of a

regression model with ARMA errors.

We harness GDT since chikungunya is spread by the same principal

vectors as dengue, and there is evidence that GDT is able to capture

the dengue activity in countries with benign environment to the vector.

With this variable, we aim to capture information on the vector population

density, but mainly on the human-vector interaction, which is affected by

the climate and socioeconomic conditions. Based on the selected GDT

information and the fitted epidemic model, we are able to produce an

epidemic prediction even under limited official public health data. The point

estimate successfully predicts the epidemic peak on week 29 and, along with

its predictive bands, it describes a more realistic slower decay, compared to

any MCMC sampled epidemic curve.

We base our forecast for reported cases on the local transmissions.

Although this seems appropriate for DR, the approach must be modified

for countries with high number of international travelers and environmental

conditions that have important effect on the local mosquito population.

While the obtained point forecast can capture some important features

of the epidemic curve, the prediction intervals are very wide, especially

near the epidemic peak. Reduction of the uncertainty can be attempted

by using more informative priors or, as it is done in the competing

DARPA models, by explicitly introducing more information from additional

sources. For instance, additional data could reduce the uncertainty on

the under-reporting rate, or could be used to model a dynamic under-

reporting. Furthermore, as shown by [22, 33], complementary biosurveillance
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information at a multi-scale level can be obtained using methods of

topological data analysis. Overall, the epidemic surveillance data problem

is highly complex to model and has been addressed very rarely. With the

introduction of auxiliary information, e.g., from web searches and topological

summaries, we can explore more robust models.
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