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Abstract

Chikungunya, as many other -climate-sensitive, vector-borne
infectious diseases, has recently re-emerged in the Americas. Since
its first detection in 1952 in Tanzania, chikungunya virus has spread
over 60 countries in Europe, Africa, Asia, and the Indian subcontinent,
but the first outbreak in the Americas was reported only in late
2013. One of the primary challenges for modeling and predicting
emerging vector-borne infectious diseases is short or even non-existent
historical data records. Even if available, the information is often
highly noisy, incomplete, or reported with delays, which obstructs
any prediction task. We propose a new integrative multi-source
and computationally efficient statistical approach for out-of-sample
prediction of emerging vector-borne infections (with an emphasis on
predicting the epidemic peak and duration) that is applicable even
when epidemiological data are limited. The strength of the new
method is based on the two pillars at the interface of statistics,
applied mathematics and data science. First, we systematically
integrate multi-source information, from official public health records
to non-traditional bio surveillance online social media data. Second,
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we propose a comprehensive modeling framework, spanning ordinary
differential systems to model the infection spread between humans and
mosquitoes, and statistical approaches such as time series clustering
and the Box—Jenkins forecasting methodology. We illustrate our
approach in application to 5-month ahead forecasting of chikungunya
in the Dominican Republic.
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1 Introduction

Chikungunya is a disease caused by an alphavirus (CHIKV) that is mainly
transmitted by two mosquito species, namely, Aedes aegypti and Aedes
albopictus. The same species transmit other mosquito-borne viruses such as
dengue, yellow fever, and Zika virus [28, 4, 27]. Currently there exists neither
specific antiviral drug nor chikungunya vaccine, and its medical treatments
primarily aim to help relieve the symptoms.

Chikungunya was first detected during an outbreak in 1952 in Tanzania
and later it was reported in Europe, Southeast Asia, India, and islands in
the Indian and Pacific Oceans, with a major outbreak in Réunion Island in
2006. Since 2004, chikungunya expanded its geographical presence, causing
sustained epidemics of unprecedented magnitude in Asia and Africa. The
virus outbreaks were observed also on the islands in the Indian Ocean and
in Italy, although these areas are considered to be endemic for this disease.

The number of laboratory-confirmed or probable cases of chikungunya in
the Americas increased from a few, in 1995-2005, to 106 cases in 2006-2010.
However, all these identified cases were imported and none of them led to
local transmission [4].

In December 2013, two laboratory-confirmed cases of chikungunya
without a travel history were reported on the French part of the Caribbean

island of Saint Martin, indicating the start of the first documented outbreak
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of chikungunya in the Americas [37]. Afterwards, the agent spread rapidly
over Caribbean and into North, Central, and South America. Over the
period of 2013-2014, there were 1,071,696 reported suspected cases and

22,796 confirmed cases of chikungunya in the Americas [27].

Emerging diseases in a region is a cause of local and international
concern, especially given a strong focus of the national economies on tourism.
The 2013 chikungunya outbreak attracted the attention from the healthcare
professionals in North, Central, and South Americas. Moreover, on 15
August 2014 the Defense Advanced Research Projects Agency (DARPA)
of the USA launched a chikungunya forecasting challenge, with a goal to
develop new data analytics tools for predicting chikungunya dynamics in

the Americas [11].

Under the extreme scenarios of emerging diseases, as the case of
chikungunya, official data capture only few recent weeks of disease activity
in a region. This paper addresses this challenge by proposing an
innovative comprehensive integration of information from different sources
in a statistical model, with the objective of obtaining a long-term forecast
to assess the most crucial epidemic period (that is, epidemic peak) and the
outbreak duration. We propose obtaining several preliminary forecasts, each
derived from a different information source, to be integrated into a statistical

model that provides a strengthened forecast.

Regarding the alternative data on chikungunya, we note that this
infectious agent is transmitted by the same species of mosquito as dengue.
Hence, we propose to use online social media data on dengue, specifically,
Google Dengue Trends (GDT), as proxy information to the unreported
number of cases, the unknown mosquito density, and interaction with
humans. In particular, the lack of reliable timely available public health
records is typically one of the primary challenges obstructing real-time
epidemic forecasting, and this problem is particularly acute in developing

countries. The key contribution of such social media data is to deliver
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epidemiological signal in the absence of the confirmed traditional offline
information. In our study we focus on the chikungunya outbreak in
the Dominican Republic (DR), as DR offers one of the most consistent
chikungunya records. However, GDT data are unavailable for this country.
Therefore, as a preliminary step before obtaining a forecast based on GDT,
we apply data mining techniques to identify areas in Mexico — the country
with the highest spatial resolution of GDT in Latin America — that exhibit
the highest level of correspondence with the chikungunya records for the

Dominican Republic.

Non-traditional biosurveillance data from online social media sources
such as Google, Twitter, Facebook, and Wikipedia, are criticized for high
sensitivity to self-excitement (i.e., fickle media interest), bias and other
artifacts of social media [21]. To address this challenge, we combine the
GDT information with predictions based on an epidemic compartmental
model fitted with the available official public reports as well as adaptively re-
calibrate social media data with the offline data. The historical GDT for the
selected states in Mexico and the estimated curves from the compartmental
model are introduced as exogenous covariates into a time series model for
predicting the chikungunya epidemiological curve (i.e., location and intensity
of spike).

The idea of combining different information sources for improving
infectious disease modeling has been studied by, for example, [10] and
[31]. However, only [24] proposed a multi-source forecast for a vector-borne

infectious disease (Zika) for up to one, two, and three weeks ahead.

The earliest epidemic models for chikungunya forecast in the Americas
are associated to the DARPA chikungunya challenge [11] that asked
participants to forecast the cumulative total cases (suspected and confirmed,
the latter including imported-confirmed) per week per country in the
Americas. Participants typically complemented the information provided

by Pan American Health Organization (PAHO) with data from other
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sources, including online web searches, climate information, and vector-
specific information (e.g., reporting of other mosquito-borne illnesses such as
dengue in the same population, mosquito dynamics, and ecology). Forecasts
with higher accuracy used between 1 and 8 data sources, but overall there
was no significant correlation between the number of data sources and the
accuracy of the forecast. In fact, not all data sources were considered in
deriving the final prediction, and the four top ranking forecasts where based

on the morphological approach.

[13] proposed a model that uses the locally originated and imported cases,
based on the ecology for the mosquitoes niche, and air travel routes. This
approach incorporates information on atmospheric variables and airlines
routes, but it still highly depends on the official surveillance data accuracy
and timeliness. [13, 17] modeled chikungunya spread by modeling the local
and imported cases. Based on two branching processes, for the imported
cases and local transmissions, and information on travel origin-destinations
and averaged environmental variables, the authors provide probabilistic

nowcasting for chikungunya in the Americas.

In contrast to the top ranking forecast for the DARPA challenge,
we propose a model that is not morphological, but is a combination of
traditional epidemic and statistical models. Opposing to [13] and [17], we
base the forecast for CHIKV in DR on the local transmission and we do
not consider environmental variables to model the mosquito density, but we
approximate the spread of mosquitoes and the mosquito-human interactions
using historical GDT for some states in Mexico. As [13], but contrary to
[17] (and [24], for Zika), we aim to obtain long-term forecast (five months)
at early stages of an emerging epidemic outbreak. Finally, in contrast to
[13], we are able to obtain accurate predictions for location and intensity of

spike using only the first eight weeks into the outbreak.

The remainder of the paper describes the used information (Section 2),

then introduces the general methodology for the integrated model
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(Section 3).  Sections 4 presents the results of forecasting the 2014

chikungunya outbreak in DR, and Section 5 contains the discussion.

2 Data description and challenges

As a result of the early outbreak warning issued by PAHO in December
2013, countries in the Americas, as Dominican Republic, reinforced their
surveillance system in 2014. The collected information was published
by PAHO in electronic weekly bulletins available online (for Dominican
Republic, see [27]). The PAHO bulletins report the cumulative numbers of
suspected and confirmed cases on a weekly basis. While the reports undergo
standard PAHO procedures on data quality control, there are numerous
delays in reporting new chikungunya cases; furthermore, occasionally
information on multiple weeks is aggregated, leading to the so-called
plateaus. In such instances, to preserve weekly time granularity in reporting,
we retrospectively uniformly split the reported data among weeks for which
information has not been updated. Since the population was not previously
exposed to this virus, the objective of our model is predicting the epidemic
curve for the total number of reported suspected and confirmed cases.
Since the official information on emerging diseases can be very scarce,
we complement the official reports with previous activity of Internet-based
disease monitoring. In particular, we use Google Dengue Trends (GDT).
These sources of information have been studied in applications on emerging
or vector-borne diseases. [5] proposed using web search queries to estimate
the dengue prevalence in endemic countries, where the surveillance systems
fail to timely report the suspected and confirmed cases. [25] reviewed studies
that had exploited Internet use and search trends to monitor influenza and
dengue. The authors conclude that the web searches (Google Influenza
and Dengue Trends) show a potential in reinforcing traditional surveillance

system capacity and guiding public health action. Using GDT, [39] proposed
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a methodological framework to obtain close to real-time estimates for dengue
in Mexico, Brazil, Thailand, Singapore, and Taiwan. These estimates seek
to improve the tracking of dengue activity. According to [12] and [14], the
dengue season varies from year to year but tends to coincide with the rainy
season. For the countries with favorable climate for the vector, GDT is
accurate. This observation is also shared by [34] for dengue in Venezuela. In
relation to chikungunya, [3] explored Google Trends (GT) correlation with
chikungunya and Zika during 2014 in Venezuela and concluded that GT
can be used to forecast some outbreak characteristics such as the relative

magnitude and duration.

3 Proposed methodology

Our methodology of predicting chikungunya dynamics is based on 1) robust
proxy time series, such as aggregates of the GDT in Mexican states, and 2)
knowledge of the general epidemics dynamics captured with fitted solutions
of an epidemic model given by a system of ordinary differential equations
(ODEs). Both GDT proxies and ODEs solutions are then combined in a
single time series model with a developed apparatus for making predictions

with a desired confidence level (Figure 3).

3.1 Spatio-temporal clustering

Whereas the dengue and chikungunya viruses are known to be mainly
transmitted by the same mosquito species, and long GDT records are
available for Mexico, it would be incorrect to directly use the Mexican GDT
data to model chikungunya cases in Dominican Republic. First, correlation
between the two countries might not be very strong since they are separated
by the sea and do not share a common land border. Second, aggregating data
over the vast territory of Mexico (compared with the territory of Dominican

Republic) would average out the diverse trends observed in different Mexican
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states. Hence, we propose to use GDT data at a finer spatial scale (at the
scale of one state or a small group of Mexican states) to select proxies for
the chikungunya dynamics in Dominican Republic. To identify those groups
of states, we apply spatio-temporal clustering methods.

Due to very diverse topography and climate of Mexico, states with similar
traits important for survival of mosquitoes and spread of dengue virus can
be spatially separated (i.e., spatial proximity in the clustering becomes less
important than similarity of time trends). Ome of the methods that do
not explicitly use the spatial information is the TRend based clUstering
algorithm for Spatio-Temporal data stream (TRUST) [7, 15, 1]. TRUST
groups spatial data within relatively short temporal intervals (called slides)
based on a number of homogeneity thresholds. The cluster assignments for
each location in each slide can then be used at a higher level of temporal
aggregation to cluster the trends within a long temporal window. Both slide
and window sizes are user-defined.

For forecasting chikungunya, we are interested in selecting GDT series
that would be good proxies for the whole epidemic curve of chikungunya,
hence, we choose the slides to be of one-year length. To obtain robust
combinations of proxy series, we cluster the GDT within the whole period
with complete data records (2009-2013), i.e., we set the window size to be
five years. The two levels of clustering are schematically shown in Figure 1.

The slide-level clustering starts with identifying the binary d§-close

measure for the pairs of time series z; and x; (i,j = 1,...,n; 1 # j):

where [T, Ti] is the time series domain and 6 € [0,1]. At the final step,

window-level clustering can be defined with

M
fe(zizj) =1 (Ml chustered(mi,a:j,s) > eM) ,

s=1
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Figure 1: Scheme of the TRUST algorithm for clustering GDT in the states
of Mexico in a window of 2009-2013. Colors identify slide-level clusters;
shapes around the state IDs denote window-level clusters.

where M is the number of slides in a window, ¢ € [0,1], and
clustered(z;, z;, s) is a binary variable taking on the value of 1 if the two
time series are clustered in the s-th slide, and the value of 0 otherwise (see
detailed discussion of the TRUST algorithm in [7]). We select the tuning
parameters d and € in a data-driven way using a grid search with Bayesian
information criterion [32, 23].

After the window-level clusters of GDT are obtained, the proxy for
chikungunya is identified as a cluster-averaged time series that has the

highest correlation with the chikungunya time series.

3.2 Inverse problem of an ODE epidemic model

In addition to the information collected from GDT, we use forecasts
derived from a compartmental deterministic epidemic model fitted with the
available official surveillance reports. The epidemic model consists of a set
of ordinary differential equations parameterized according to 6 where its
solution (forward map, FM) G(t;0) describes the evolution, over time, of
the infectious agent, in relation to its spread in two interacting populations:

humans and mosquitoes.
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The compartments of such deterministic epidemic model are defined
by the individuals’ ability to become infected or transmit the pathogen,
such as being susceptible (5), exposed (F), infectious (I), and removed
(R). For instance, two relevant compartmental models are SIR and
SEIR [18, 19, 20, 2]. We consider a two-population SEIR model, where
an individual in the susceptible human population can be exposed to the
pathogen, when bitten by an infectious mosquito. At the end of this period
the person becomes infectious (being able to pass the virus to mosquitoes),
and later recovers, attaining temporal immunity to the agent. The number
of humans in each of the stages are denoted as S, F, I and R, respectively.
We consider an SEI model for mosquitoes, with the respective stages denoted
by X, Y, and Z.

In the Bayesian approach to the inverse problem [8, 9, 35, 30, 36|, we
assume that the surveillance reports y = 9i1,...,yn are a modification

and/or imperfect observation of the forward map. That is,

where g is the “true” epidemic model parameter that we aim to estimate.
w; is a function of all the states of the “real” compartmental model, and
h, along with a, describes the deviations from the model originated due
to the stochastic nature of the infectious dynamic. In the specific case of
epidemic models, the function w; usually ignores the number of cases in
other states (E for example) and only reports the number of symptomatic
infected individuals. On top of this modification, we also consider that the
data is aggregated by time periods (then ¢ corresponds to the index for
the i-th week). These modifications seek to capture the most important
features of the real epidemic surveillance and reporting systems. On the
other hand, there exist multiple reasons why the reporting data can vary
from w;(G(t;0p)). Some of these can be the possible different individual

times to develop symptoms, times to look for medical attention after disease
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onset, etc. To model these random deviations, we use h and its parameter
vector o, and we propose the random model to have w;(G(t; 8y)) as expected
value. Then we assume that under 0y, the reported observation y; is the
realization of the random variable Y;, for 7, any of the m observed weeks.
A very important source of variation is also the sub-reporting, that is
the under representation for the true number of cases. This is mainly owing
to the fact that some individuals can experience mild symptoms and do not
seek for medical attention. The under-reporting can be exacerbated when

surveillance is partially implemented due to limited resources.

Since we have a deterministic system subjected to diverse sources of
uncertainty, the predictions based on the surveillance reports and the
epidemic FM, falls within the realm of uncertainty quantification. The goal
is to use the observations y to deduce the value of the parameter @¢ in the
underlying model G(t;60p), and the parameter a that describes the data
variation. Under the Bayesian paradigm, the likelihood corresponds to a
statistical model that introduces the FM and the deviation from it present
in the observed values.

Noting that the likelihood p(y|@, ) is a function of the FM, which in
the majority of the cases has to be numerically obtained, we turn to Markov
chain Monte Carlo (MCMC) methods to obtain samples of the posterior
distribution p(@, a|y). Based on this distribution, we can obtain a point
estimate @ to draw an epidemic prediction from G(t; ), or use information
on the posterior distribution to obtain an estimated predictive distribution.
In either case, the FM evaluated in é, or the ensemble of FM’s evaluated in
the sampled values of p(8|y), can be combined with the GDT information
in a Box—Jenkins time series model.

We propose using the epidemic model for chikungunya virus presented
by [38] for the large outbreak in the Réunion Island in 2005-2006. This
compartmental two-population SEIR model considers that infectious period

starts before the disease and that not all infected humans will develop
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noticeable symptoms. While all exposed individuals will become infective,
some of them will present the disease or symptoms (/), and some will have
mild or no symptoms (I,).

Figure 2 depicts the mathematical model (3.1), where the compartments
related to the virus transmission are in white. The compartment D comprises
the individuals who develop symptoms. Given the individuals’ SEIR status,
this compartment is irrelevant for the epidemic dynamic, but it is directly
related to the information the surveillance system collects.

dS =—-0p157
dE = 1872 — M E
dls = oM E — I

dD = wli;
dl, = (1 — Q)M E — 71, (3.1)
dR = ~y(I + 1)

dX = p— X (Is + Io) — pX
dY = BoX (Is + I,) — XY — uY
dZ = XY — uZ

The fraction ¢ of exposed individuals who become infectious will develop
symptoms at a rate w after entering I;. Note that transiting to D does not
imply the ending of the infectious period for infectious individuals since
the transition to R is dictated by the rate =, for both symptomatic and
asymptomatic individuals in g U I,,.

Considering outbreak evolution occurs within a year or less, we assume
that human demographic changes are negligible. This is not the case
for mosquitoes, in view of their short life span. Mosquitoes can live
as adults only from two weeks to a month, depending on environmental
conditions. [38] introduced the mortality rate of mosquitoes as p at any
of their SEI stages (see Figure 2), that is, mosquitoes’ deaths are modeled

as independent to the infection status. Following [38], the birth rate of
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Figure 2: Epidemic Forward Map model.

mosquitoes is also considered equal to g, which corresponds to a stable
mosquito population — something that is observed in tropical environments
such as Dominican Republic, where air temperature and humidity are almost

constant throughout the year.

The surveillance information is modeled as the weekly number of
individuals entering state D, denoted as x; = w;(G(t;0)), for each week
1. To describe the deviations of the observed number of new cases y; from
x; we model Y; as a random variable. A linear model could be considered,
where we add an additive white noise to {z;}, however we opt to comply
with the discrete nature of the data and propose a model for counts. A
natural candidate is a Poisson model with means equal to x;. Since z; is the
aggregated solution for D in (3.1), it is not necessarily an integer, however a
realization of a Poisson with this mean, always is. Nevertheless, this model
tends to underestimate real observed variations and the variance cannot be
adjusted to describe the real variance in the data. Then we turn to the

Negative binomial distribution with mean x; and variance proportional to
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the mean:

Y; ~ NegBin(z;/(a —1),1/a), (3.2)

where 0 = (B1, A1, ¢, 7, w, B2, A2, ). Then Y; has mean x; and variance ax;.

3.3 The joint modeling framework

The predictive epidemic model is built under the restriction that we observe
only the first m weeks of the outbreak, where yi, ...,y correspond to the
weekly new cases. From the present time m, we aim to obtain ¢m+1,...,%n
for some n > m + 1 and predict some important features in the future
epidemic curve, such as the peak position and the outbreak span.

To construct integrated forecasts, we propose to use tractable and
computationally efficient multivariate regression with the Box—Jenkins
approach of autoregressive integrated moving average modeling (MR-
ARIMA). The design matrix X; comprises the covariates: D; is the weekly
GDT in the selected cluster of Mexican states in the previous year, and
x; = w;i(G(t; 0)) the FM epidemic curve, of the current year, with parameter
0 that can correspond a point estimate or a value sampled the posterior
distribution of .

To avoid multicollinearity, the proxy {D;} is the averaged series from
a cluster that has the highest correlation of this average with yi,...,ym.
The autoregressive order p and moving average order ¢ for the time series
of regression errors €, are selected based on the minimal value of Akaike
information criterion (AIC), and the integration order d is selected based
on Kwiatkowski—Phillips—Schmidt—Shin (KPSS) test (see the algorithm
auto.arima by [16]). Note that d > 0 implies that the following model
is fitted not on the original levels of response variable and predictors, but on

their respective differences of order d:

QtZXtTfH-Et,

p q
€ = E Pi€r—i + E Yive_j + vy,
i=1 j=1
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where 3 is a vector of regression coefficients, v; ~ WN(0, 0?); p,d,q € Z*;
and ¢; and §; are chosen such that ¢(A) = 1 — ¢ A — ... — $p AP and
P(A) = 14+ Pp1A+ ... + Y A% Finally, we assume that polynomials ¢(-)
and 9(-) are such that ¢(N\),¥(N\) # 0, V|A] < 1, that is, the standard
assumptions of stationarity and invertibility conditions in time series.
Then using the information of the first m weeks we obtain the integrated
forecast §j; for i = m + 1,...,n using the design matrix X,” = (D;,z;)".

Figure 3 summarizes this process and the notation we have introduced.

Information

Preliminary forecasts Integrated forecast
Source
Online searches Optimized DY
GDT TRUST { i}i=m+1
~ \p
y=D;, -xi). + g,
i=m+1,..n
Surveillance Epidemic FM {x‘}"
reports MCMC i=m+1

{1

Figure 3: Flow-chart of obtaining the integrated forecast. GDT data
(Mexico) and the reported chikungunya cases {y;}7* (Dominican Republic)
are used to produce preliminary forecasts D; and z; (i = m+1,...,n), which
are then integrated in the MR-ARIMA model to produce provides the final
forecast {gi}m,1-

4 Case study: Predictive  Analytics for
Chikungunya in the Dominican Republic

4.1 Clustering results

The optimized TRUST procedure identified two clusters of states that have
consistently exhibited similar dynamics of GDT — Cluster 1: Baja California
and Jalisco, and Cluster 2: Tamaulipas, Nayarit, and Tabasco (Figure 4).
The other 12 states showed individually different dynamics and did not form

clusters. The BIC-selected optimal clustering tuning parameters are ¢ of
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Figure 4: Time series clusters of GDT in Mexico during 2009-2013.

0.167 and € of 1.

To identify which cluster is a reliable proxy for predicting the

chikungunya outbreak, we use correlations between chikungunya in the

eight non-zero weeks of y; within 1,2,...,23 weeks of 2014 (m = 23), and

cluster-average GDTs in the corresponding weeks.

We proceed with the

cluster exhibiting the highest correlation (Cluster 2, r = 0.94, with p-value

< 0.01), and continue using its weekly averaged 2013 GDT in the forecasting

model (3.3) (from week 16 to 43, Figure 5). Cluster 1 showed non-significant

correlation with the chikungunya time series, with correlation r of 0.50 and

p-value of 0.21.
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Figure 5: GDT for Cluster 2 for weeks 16-43, 2013.
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4.2 Prediction with an epidemic deterministic model
subjected to uncertainty

To construct the prior distribution p(@) we assume that our knowledge on
the parameters are independent and modeled with uniform distribution. The
distributions of parameters 81, A1, w, v, i, B2, and Ay are centered at 0.14,
0.5, 0.25, 0.25, 0.05, 0.40 and 0.5, respectively. These values correspond
to the least squares estimates used in [38] and to information on ranges of
parameters in clinical and entomological literature.

Since we do not want to have very informative priors, in contrast to
[38], who run sensitivity analysis varying the parameters by 10% their point
estimates, we set the domains for our prior as +30% their midpoints.

In the case of the parameter ¢, we establish a distribution that also takes
into consideration the under-reporting in the surveillance system. That is,
we want ¢ to represent the percentage of individuals who develop symptoms
and are captured by the surveillance system. Under-reporting is a common
problem for countries where the systems of reporting and diagnosis are
still to be consolidated. For the Dominican Republic, we assume that
the reporting of symptomatic cases can be between 5% and 100%. This
interval includes the estimated reporting by [26] for the 2014 chikungunya
outbreak in Colombia (39%) and originates the (almost) non-informative
prior distribution ¢ ~ Unif(0.034,1).

In relation to «, we usually have over-dispersed surveillance count
observations, so we establish a flat prior distribution for .. This is modeled
as uniform distribution on (1, 800).

Based on the first 23 weeks of 2014 (on which we only observe 8 in
the outbreak) and using the MCMC algorithm twalk [6] implemented in
R [29], we obtain a sample of 370 points from the posterior distribution,
after obtaining a chain of 200,000 simulations, examining the trace plots
and selecting a conservative burn in period of 170,000. The summary

statistics (Table 1) show that the posterior distribution of ¢ concentrates
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in values much smaller than 0.97, indicating a strong effect of under-
reporting. That is, we estimate @ and « in relation to the true but under-
reported symptomatic cases, to predict the number of cases captured by the

surveillance system.

Table 1: Summary of sampled posterior distribution of the ODE parameters

B A1 ¢ w Y 1 B2 A2 a

2.5% 0.1023 0.3568 0.0326 0.1767 0.1772 0.0358 0.3178 0.3635 441.03
50% 0.1406 0.4898 0.0454 0.2228 0.2423 0.0481 0.4125 0.5198 562.66
97.5% 0.1769 0.6412 0.2174 0.3198 0.3209 0.0639 0.5023 0.6426 598.59
Mean 0.1403 0.4959 0.0647 0.2316 0.2484 0.0490 0.4117 0.5124 554.67

For each of the sampled values ; from the posterior distribution of 8, we
obtain its corresponding accepted epidemic curves {z;;} = {w;(G(t;0;))},
for weeksi = 1,...,n = 47, depicted in Figure 6. All the reported susceptible
and confirmed cases are shown by the red and black lines, but only the
information in red (up to week m = 23) is used to fit the parameters. The
blue dashed lines correspond to the 90% predictive intervals constructed from
the sampled accepted curves at each week, after week 23. Analysis of the
predictive intervals suggests that the curves appear to be very informative
before the epidemic peak, but after the peak, the prediction uncertainty
tends to be very high.

Using the averaged GDT for Cluster 2, {D;}, J different sampled
accepted curves {z;;} = {w;(G(t;0;))}, and the MR-ARIMA model (3.3)
we obtain an ensemble of predictions for weeks m+1, ..., n, that incorporate
information of the posterior distribution of @ and . That is, we fit J different
MR-ARIMA models using X' = (D,z;)" with D = (Dy,...,D,)" and
xj=(T1j. s Tng)

The model (3.3) with lowest AIC has p = 1, d = 1 and ¢ = 0, and
estimates of its coefficients summarized over a set of J = 370 fitted models

are reported in Table 2.

Figure 7 presents a point forecast and predictive intervals obtained from



Spatio-Temporal Biosurv. Climate Sens. MBD Using Online SM 19

150000

7| —®— Observed reported cases / )
—@— Future reported cases

Accepted curves I \

= === 90% predictive interval I}

100000
|

Number of reported cases
50000
.

Figure 6: Accepted epidemic curves for the 2014 chikungunya outbreak in
the Dominican Republic.

Table 2: Summary of coefficient estimates from 370 models MR-
ARIMA(1,1,0)

AR (¢1) GDT Cluster 2 (D;) Accepted FM (z; ;)

1st quartile —0.1731 16,986 6,897,671
Mean —0.1648 17,065 7,627,266
3rd quartile —0.1515 17,280 8,056,531

the fitted ensemble of MR-ARIMAs. The point forecasts correspond to the
mean of the ensemble at each week. A predictive interval could also be
obtained as quantiles of the ensemble at each week. The resulting bands
would incorporate the variability associated with the posterior distribution,
but they would not yet include the uncertainty that arises from the MR-
ARIMA prediction. To better describe the overall uncertainty, the bands in
Figure 7 are obtained as the quantile intervals plus/minus two mean standard
MR-ARIMA errors at each week.

We compare the point predictions from MR-ARIMA with predictions
obtained by the following three competing methods.
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Figure 7: MR-ARIMA forecast of chikungunya in Dominican Republic in
2014, using GDT and accepted curves from the ODE epidemic model.

First, we fit a traditional ARIMA model, without exogenous regressors,
for the reported cases from week 16 to 23 by selecting a model that
minimizes AIC. The obtained model corresponds to ARIMA(0,1,0) with drift
(estimated as 1936.14).

The second model (ODE-MAP) corresponds to a point forecast based on
the sampled predictive curves obtained in Figure 6. As the ARIMA model,
ODE-MAP is fitted using only on the reported cases and the point parameter
estimate that maximizes the a posteriori probability (MAP).

The third model (Pois-C2) corresponds to a generalized linear model
(GLM) that uses only the covariate D; (averaged GDT of Cluster 2) that
is used in the MR-ARIMA model. In the fitted Poisson regression both the
intercept and covariate are statistically significant.

All the produced forecasts are presented in Figure 8 and evaluated based
on the mean absolute percentage error (MAPE) and root-mean-square error
(RMSE) presented in Table 3.

In spite of the fact that ODE-MAP reports the smallest MAPE, it
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Figure 8: Predictions of chikungunya cases based on the four models.

is clear from Figure 8 that the forecast from the proposed MR-ARIMA
model outperforms all competing predictions for peak position and outbreak

duration.

Table 3: Performance of the point forecasts from four models

Error Proposed
measure MR-ARIMA ARIMA ODE-MAP Pois-C2
MAPE 1.69 5.33 0.72 4.49

RMSE 14790.76 28046.58 17856.05 27766.66

5 Discussion

We have presented a new multi-source integrative approach for forecasting
emerging diseases. In particular, we focus on climate-sensitive vector-borne
diseases for which we have observed dynamics in other populations, but have
only few records in the evolving outbreak for the area of interest. Using the

early weeks’ outbreak information, we evaluate the whole epidemic curve
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related to the number of new symptomatic cases. Specifically, we estimate

when the epidemic will reach its highest point and the outbreak duration.

Based on the available surveillance records, we select auxiliary data that
can describe the epidemic evolution, and using this information we also fit an
epidemic model. The predictions obtained from both sources are combined,
and their contribution is estimated by the parameter fitting process of a

regression model with ARMA errors.

We harness GDT since chikungunya is spread by the same principal
vectors as dengue, and there is evidence that GDT is able to capture
the dengue activity in countries with benign environment to the vector.
With this variable, we aim to capture information on the vector population
density, but mainly on the human-vector interaction, which is affected by
the climate and socioeconomic conditions. Based on the selected GDT
information and the fitted epidemic model, we are able to produce an
epidemic prediction even under limited official public health data. The point
estimate successfully predicts the epidemic peak on week 29 and, along with
its predictive bands, it describes a more realistic slower decay, compared to

any MCMC sampled epidemic curve.

We base our forecast for reported cases on the local transmissions.
Although this seems appropriate for DR, the approach must be modified
for countries with high number of international travelers and environmental
conditions that have important effect on the local mosquito population.

While the obtained point forecast can capture some important features
of the epidemic curve, the prediction intervals are very wide, especially
near the epidemic peak. Reduction of the uncertainty can be attempted
by using more informative priors or, as it is done in the competing
DARPA models, by explicitly introducing more information from additional
sources. For instance, additional data could reduce the uncertainty on
the under-reporting rate, or could be used to model a dynamic under-

reporting. Furthermore, as shown by [22, 33], complementary biosurveillance
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information at a multi-scale level can be obtained using methods of
topological data analysis. Overall, the epidemic surveillance data problem
is highly complex to model and has been addressed very rarely. With the
introduction of auxiliary information, e.g., from web searches and topological

summaries, we can explore more robust models.

Acknowledgments

This work is supported by National Science Foundation under Grants No.
DMS 2027793 and DMS 1925346, and National Aeronautics and Space
Administration under Grant No. 80NSSC20K1579.

References

[1] Appice, A, Gel, Y.R., Iliev, 1., Lyubchich, V., and Malerba,
D. (2020). A multi-stage machine learning approach to predict dengue
incidence: a case study in Mexico, IEEE Access, 8, 52713-25.

[2] Bailey, N. T. J. (1975). The Mathematical Theory of Infectious
Diseases and Its Applications, London: Charles Griffin & Company
Ltd.

[3] Castro, J., Torres, J., Oletta, J. and Strauss, R. (2016).
Google trend tool as a predictor of chikungunya and Zika epidemic
in a environment with little epidemiological data, a Venezuelan case,

International Journal of Infectious Diseases, 53, 133-134.

[4] CDC and PAHO (2011). Preparedness and Response for Chikungunya
Virus: Introduction in the Americas, Washington, DC: Pan American

Health Organization.



24

[5]

Journal, Indian Statistical Association

Chan, E. H., Sahai, V., Conrad, C. and Brownstein, J. S.
(2011). Using web search query data to monitor dengue epidemics: a
new model for neglected tropical disease surveillance, PLoS Neglected

Tropical Diseases, 5 (5), e1206.

Christen, J. A. and Fox, C. (2010). A general purpose sampling
algorithm for continuous distributions (the t-walk), Bayesian Analysis,
5 (2), 263-281.

Ciampi, A., Appice, A. and Malerba, D. (2010). Discovering
trend-based clusters in spatially distributed data streams, in
International Workshop of Mining Ubiquitous and Social Environments,

107-122.

Cotter, S. L., Dashti, M., Robinson, J. C. and Stuart, A. M.
(2009). Bayesian inverse problems for functions and applications to fluid

mechanics, Inverse Problems, 25, 115008.

Dashti, M. and Stuart, A. M. (2013). The Bayesian approach to
inverse problems, ArXiv e-prints, 1302.6989.

De Angelis, D., Presanis, A. M., Birrell, P. J., Tomba, G. S.
and House, T. (2015). Four key challenges in infectious disease

modelling using data from multiple sources, Epidemics, 10, 83-87.

Del Valle, S. Y., McMahon, B. H., Asher, J., Hatchett, R.,
Lega, J. C., Brown, H. E., Leany, M. E., Pantazis, Y., Roberts,
D. J., Moore, S., Peterson, A. T., Escobar, L. E., Qiao, H.,
Hengartner, N. W. and Mukundan, H. (2018). Summary results
of the 2014-2015 DARPA chikungunya challenge, BMC Infectious
Diseases, 18 (1), 1-14.



Spatio-Temporal Biosurv. Climate Sens. MBD Using Online SM 25

[12]

[13]

[14]

[15]

[19]

El-Metwally, A. A. (2015). Google search trend of dengue fever in
developing countries in 2013-2014: An internet-based analysis, Journal

of Health Informatics in Developing Countries, 9 (1).

Escobar, L. E., Qiao, H. and Peterson, A. T. (2016).
Forecasting chikungunya spread in the Americas via data-driven

empirical approaches, Parasites & Vectors, 9 (1), 1-12.

Gluskin, R. T., Johansson, M. A., Santillana, M. and
Brownstein, J. S. (2014). Evaluation of internet-based dengue query
data: Google dengue trends, PLoS Neglected Tropical Diseases, 8 (2),
e2713.

Huang, X., Iliev, I.R., Lyubchich, V., and Gel, Y.R. (2018).
Riding down the Bay: Spacetime clustering of ecological trends,

Environmetrics, 29(5-6), €2455.

Hyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G.,
Chhay, L., O’Hara-Wild, M., Petropoulos, F., Razbash, S.,
Wang, E., and Yasmeen, F. (2020). forecast: Forecasting Functions
for Time Series and Linear Models, URL https://CRAN.R-Bproject.
org/package=forecast, R package version 8.12.

Johansson, M. A., Powers, A. M., Pesik, N., Cohen, N. J. and
Staples, J. E. (2014). Nowcasting the spread of chikungunya virus in
the Americas, PloS one, 9 (8), e104915.

Kermack, W. O. and McKendrick, A. G. (1927). A contribution
to the mathematical theory of epidemics, Proc. R. Soc. Lond. B Biol.
Sci., 115 (772), 700-721.

Kermack, W. O. and McKendrick, A. G. (1932). Contributions to
the mathematical theory of epidemics. II. The problem of endemicity,
Proc. R. Soc. Lond. A, 138 (834), 55-83.


https://CRAN.R-project.org/package=forecast
https://CRAN.R-project.org/package=forecast

26

[20]

[21]

[22]

23]

[26]

[27]

Journal, Indian Statistical Association

Kermack, W. O. and McKendrick, A. G. (1933). Contributions
to the mathematical theory of epidemics. III. — Further studies of the
problem of endemicity, Proc. R. Soc. Lond. A, 141 (843), 94-122.

Lazer, D., Kennedy, R., King, G. and Vespignani, A. (2014).
The parable of Google Flu: traps in big data analysis, Science, 343
(6176), 1203-1205.

Lo, D. and Park, B. (2018). Modeling the spread of the Zika virus
using topological data analysis, PLOS One, 13(2), p.e0192120.

Lyubchich, V. and Gel, Y. R. (2018). funtimes: Functions for Time
Series Analysis, https://CRAN.R-Bproject.org/package=funtimes,
R package ver. 5.0.

McGough, S. F., Brownstein, J. S., Hawkins, J. B. and
Santillana, M. (2017). Forecasting Zika incidence in the 2016 Latin
America outbreak combining traditional disease surveillance with

search, social media, and news report data, PLoS Neglected Tropical
Diseases, 11 (1), e0005295.

Milinovich, G. J., Williams, G. M., Clements, A. C. and Hu,
W. (2014). Internet-based surveillance systems for monitoring emerging

infectious diseases, The Lancet Infectious Diseases, 14 (2), 160-168.

Pacheco, 0., Martinez, M., Alarcén, A., Bonilla, M.,
Caycedo, A., Valbuena, T. and Zabaleta, A. (2017). Estimation
of underreporting of Chikungunya virus infection cases in Girardot,
Colombia, from November, 2014, to May, 2015, Biomédica, 37 (4),
507-515.

PAHO (2018). Chikungunya, https://www.paho.org/hq/index.
php?option=


https://CRAN.R-project.org/package=funtimes
https://www.paho.org/hq/index.php?option=com_topics&view=article&id=343&Itemid=40931&lang=en
https://www.paho.org/hq/index.php?option=com_topics&view=article&id=343&Itemid=40931&lang=en
https://www.paho.org/hq/index.php?option=com_topics&view=article&id=343&Itemid=40931&lang=en

Spatio-Temporal Biosurv. Climate Sens. MBD Using Online SM 27

28]

[29]

[34]

com_topics&view=article&id=343&Itemid=40931&lang=en, [Online;
accessed 2018-10-04].

Paixao, E. S., Teixeira, M. G. and Rodrigues L. C. (2018). Zika,
chikungunya and dengue: the causes and threats of new and re-emerging

arboviral diseases, BMJ Global Health, 3 (Suppl 1), e000530.

R Core Team (2018). R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,

URL https://www.R-Bproject.org/.

Safta, C., Ray, J., Sargsyan, K., Lefantzi, S., Cheng, K. and
Crary, D. (2011). Real-time characterization of partially observed
epidemics using surrogate models, Technical report, Sandia National

Laboratories.

Santillana, M., Nguyen, A. T., Dredze, M., Paul, M. J.,
Nsoesie, E. O. and Brownstein, J. S. (2015). Combining search,
social media, and traditional data sources to improve influenza

surveillance, PLoS Computational Biology, 11 (10), e1004513.

Schaeffer, E. D., Testa, J. M., Gel, Y. R. and Lyubchich,
V. (2016): “On information criteria for dynamic spatio-temporal
clustering,” in Banerjee, A., Ding, W., Dy, J., Lyubchich, V., Rhines,
A., Ebert-Uphoff, I., Monteleoni, C. and Nychka, D. eds., Proceedings
of the 6th International Workshop on Climate Informatics: CI 2016,
5-8, NCAR Technical Note NCAR/TN-529+PROC.

Soliman, M., Lyubchich, V. and Gel, Y.R. (2020). Ensemble
forecasting of the Zika spacetime spread with topological data analysis,

Environmetrics, 31(7), €2629.

Strauss, R. A., Castro, J. S., Reintjes, R. and Torres, J. R.
(2017). Google dengue trends: an indicator of epidemic behavior. The


https://www.paho.org/hq/index.php?option=com_topics&view=article&id=343&Itemid=40931&lang=en
https://www.paho.org/hq/index.php?option=com_topics&view=article&id=343&Itemid=40931&lang=en
https://www.paho.org/hq/index.php?option=com_topics&view=article&id=343&Itemid=40931&lang=en
https://www.R-project.org/

28

[38]

[39]

Journal, Indian Statistical Association

Venezuelan Case, International Journal of Medical Informatics, 104,

26-30.

Stuart, A. M. (2010). Inverse problems: A Bayesian perspective, Acta
Numerica,19, 451-559.

Sullivan, T. J. (2015). Introduction to Uncertainty Quantification,
Texts in Applied Mathematics, 63, Cham: Springer.

Van Bortel, Dorleans, W., F., Rosine, J., Blateau
Aand Rousseau, D., Matheus, S., Leparc-Goffart, I., Flusin,
O., Prat, C., Césaire, R., Najioullah, F., Ardillon, V.,
Balleydier, E., Carvalho, L., Lemaitre, A. Noel, H., Servas, V.,
Six, C., Zurbaran, M., Léon, L., Guinard,A., van den Kerkhof,
J., Henry, M., Fanoy, E., Braks, M., Reimerink, J., Swaan, C.,
Georges, R., Brooks, L., Freedman, J., Sudre, B., and Zeller,
H. (2014). Chikungunya outbreak in the Caribbean region, December
2013 to March 2014, and the significance for Europe, Eurosurveillance,
19 (13), 207509.

Yakob, L. and Clements, A. C. A. (2013). A mathematical model
of chikungunya dynamics and control: the major epidemic on Réunion
Island, PloS One, 8 (3), e57448.

Yang, S., Kou, S. C., Lu, F., Brownstein, J. S., Brooke, N. and
Santillana, M. (2017). Advances in using Internet searches to track

dengue, PLoS Computational Biology, 13 (17), e1005607.

L. Leticia Ramirez Ramirez
CIMAT, Jalisco S/N, Col. Valenciana

CP:

36023. Guanajuato, Gto, Mexico

E-mail: leticia.ramirezQcimat.mx



Spatio-Temporal Biosurv. Climate Sens. MBD Using Online SM

Vyacheslav Lyubchich

Chesapeake Biological Laboratory, UMCES

146 Williams St., Solomons, Maryland, 20688, USA
E-mail: lyubchich@umces.edu

Yulia R. Gel

University of Texas at Dallas
Richardson, Texas, 75080, USA
E-mail: ygl@Qutdallas.edu

29



	Introduction
	Data description and challenges
	Proposed methodology
	Spatio-temporal clustering
	Inverse problem of an ODE epidemic model
	The joint modeling framework

	Case study: Predictive Analytics for Chikungunya in the Dominican Republic
	Clustering results
	Prediction with an epidemic deterministic model subjected to uncertainty

	Discussion

