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ABSTRACT

Input constraints are useful for many software development tasks.
For example, input constraints of a function enable the generation
of valid inputs, i.e., inputs that follow these constraints, to test the
function deeper. API functions of deep learning (DL) libraries have
DL-specific input constraints, which are described informally in the
free-form API documentation. Existing constraint-extraction tech-
niques are ineffective for extracting DL-specific input constraints.

To fill this gap, we design and implement a new technique—
DocTer—to analyze API documentation to extract DL-specific input
constraints for DL API functions. DocTer features a novel algorithm
that automatically constructs rules to extract API parameter con-
straints from syntactic patterns in the form of dependency parse
trees of API descriptions. These rules are then applied to a large
volume of API documents in popular DL libraries to extract their
input parameter constraints. To demonstrate the effectiveness of
the extracted constraints, DocTer uses the constraints to enable
the automatic generation of valid and invalid inputs to test DL API
functions.

Our evaluation on three popular DL libraries (TensorFlow, Py-
Torch, and MXNet) shows that DocTer’s precision in extracting
input constraints is 85.4%. DocTer detects 94 bugs from 174 API
functions, including one previously unknown security vulnera-
bility that is now documented in the CVE database, while a baseline
technique without input constraints detects only 59 bugs. Most (63)
of the 94 bugs are previously unknown, 54 of which have been
fixed or confirmed by developers after we report them. In addition,
DocTer detects 43 inconsistencies in documents, 39 of which are
fixed or confirmed.
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1 INTRODUCTION

Input constraints are useful for various software development
tasks [16, 21, 32, 52, 56]. For example, input constraints of a function
enable the generation of valid inputs, i.e., inputs that follow these
constraints, to test the function deeper. API functions of DL libraries
expect their input arguments to follow constraints, many of which
are DL-specific. For example, one parameter input of the PyTorch
API function torch.as_strided has to be a tensor. A tensor is rep-
resented using an n-dimensional array, where n is a non-negative
integer. Any input that cannot be interpreted as a tensor (e.g., a
Python list) is invalid. Many such DL-specific input constraints are
described informally in free-form API documentation. The avail-
ability of such DL API documentation presents a great opportunity
to automatically extract DL-specific constraints for better testing
and other software development tasks.

Specifically, DL libraries’ API functions require two types of
constraints for their input arguments: (1) data structures and (2)
properties of these data structures. First, DL libraries often require
their input arguments to be specific data structures such as lists,
tuples, and tensors to perform numerical computations. For exam-
ple, input of the PyTorch API function torch.as_strided has to be
a tensor as dictated by its API document. Any input that cannot be
interpreted as a tensor (e.g., a Python list) is rejected by the func-
tion’s input validity check. Such invalid inputs exercise only the
input validity checking code, failing to test the core functionality of
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tf.nn.max_pool3d

tf.nn.max_pool3d(input, ksize, strides, padding, ...) ©0
Args
input A 5-D Tensor of the format specified by data_format.

An int or list of ints that has length 1, 3 or 5. The size of the window for each

LEEED dimension of the input tensor.

An int or list of ints that has length 1, 3 or 5. The stride of the sliding window for

tride " N .
strides each dimension of the input tensor.

padding A string, either ' VALID' or 'SAME'....

a. API Document

C(p = input) = p € {5} A p, € {tensor} input =
C(p = ksize) = p, € {int} A p, € {list} tf.constant ([[[[[1.0]]1]])
A € 11,031,105
‘ Pop € (111,131,050} Ksize = (0]
C(p = strides) = p € (int} A p € {list}
A b, € (111,131,151} strides = [1]

C(p = padding) p; € {string}

padding = ‘VALID’
A p, € {‘VALID’, ‘SAME’}

b. Extracted constraints c. Bug-triggering input
+ bool non_negative = std::all_of(ksize_.begin(), ksize_.end(),

+ [1(¢int k) {return k > 0; });

+ OP_REQUIRES(context, non_negative,

+ errors::InvalidArgument(“Sliding window ksize field must *
+ “have non-negative dimensions”));

d. Bug fix in pooling_ops_3d.cc

Figure 1: TensorFlow document helps our tool detect a bug
that was fixed after we reported it to TensorFlow developers.

the API function. To test as_strided’s core functionality, a testing
technique needs to generate a tensor object for the input parameter.

Second, API functions of DL libraries require their arguments to
satisfy specific properties of data structures. Generating a correct
data structure with incorrect properties often fails the input validity
checking of the DL API functions. They often require two common
properties of a data structure—dtype and shape. Property dtype
specifies the data type of the data structure (e.g., int32, float64,
and String). In Fig. 1a, the dtype of the parameter padding should
be String. Property shape specifies the length of each dimension
of the data structure. For example, a shape of 3 X 4 matrix is a
2-dimensional tensor with the first dimension of 3 elements and
the second dimension of 4 elements. As another example, Fig. 1a
shows the document for TensorFlow API tf.nn.max_pool3d, which
indicates that the parameter input should be a tensor of 5 dimen-
sions, with the size of each dimension unspecified. Similarly, any
inputs that violate these dtype or shape requirements are rejected,
failing to test the core functionality of the API function.

While existing techniques can extract constraints from code or
software text (e.g., comments and documents), they are insufficient
for extracting DL-specific constraints. Specifically, while Pytype [7]
infers data types from Python code, it cannot precisely infer types
for DL libraries because it cannot analyze across Python and C++
code. In addition, it cannot extract numerical constraints such as
shape and range. Existing techniques that derive constraints from
software text extract different types of constraints that are not DL-
specific, such as exceptions [16, 56], command-line options and file
formats [52], locking [44], call-relations [31, 44], interrupts [45],
nullness [46, 60] and inheritance relations [60]. Although some [16,
31, 56, 60] can extract constraints related to valid ranges, those
are only a small portion of DL-specific constraints (Section 4.1).
Techniques such as C2S [56] require pairs of Javadoc comments
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and formal JML [1] constraints as input. For DL API functions, such
formal constraints are unavailable.

1.1 Our Approach

To fill this gap, we design and implement a new technique—DocTer—
to analyze API documentation to extract DL-specific input con-
straints. DocTer features a novel method to automatically derive
constraint extraction rules from a small set of manually annotated
API documents with precise constraint information. These rules
can predict API parameter constraints based on syntactic patterns
in the form of dependency parse tree in documents. They are then
applied to the full sets of API documents of popular DL libraries to
extract constraints.

To demonstrate the effectiveness of these extracted constraints,
DocTer uses them to guide and improve an important task — gener-
ating test cases automatically to test DL API functions. Testing API
functions of DL libraries (e.g., TensorFlow [14] and PyTorch [38]) is
crucial because these libraries are widely used and contain software
bugs [26, 27, 41, 57, 58], which hurt not only the development but
also the accuracy and speed of the DL models.

Yet, generating test cases for DL libraries’ API functions is chal-
lenging. If a test-generation tool is (1) unaware of DL-specific con-
straints or (2) incapable of using these constraints to generate di-
verse inputs, it is practically impossible to generate valid inputs
to reach deeper states and test the core functionality of DL API
functions. Existing test-generation tools [3, 5, 9, 19, 37, 43] such as
AFL [3] and libFuzzer [5] have no knowledge of such input con-
straints, thus are very limited in testing DL API functions. DocTer
addresses these challenges by using the following techniques:

(1) DL-specific constraint extraction: Since API documents are
written informally in a natural language, manually extracting con-
straints from a large number of API documents (e.g., TensorFlow
v2.1.0 has 2,334 pages of API documents and 854,900 words) is ineffi-
cient and tedious. In addition, since these documents are constantly
evolving, it is undesirable and error-prone to manually analyze
them each time the documents are updated which can be as fre-
quent as every commit. To address these challenges, we develop
a novel method that can automatically derive a set of rules that
predict parameter constraints from parse tree patterns of API de-
scription. Given a small set of API function descriptions and the
corresponding constraint annotations, DocTer identifies a set of
rules as an optimal mapping that can minimize prediction errors
and achieve the maximum coverage of constraints. By applying
these constructed rules to a much larger set of real-world docu-
ments, DocTer can automatically extract DL-specific constraints
for API functions of the most widely used libraries.

(2) DL-specific input generation: After extracting DL-specific
input constraints (e.g., Fig. 1b), DocTer uses these constraints to
guide test generation to produce valid inputs (e.g, Fig. 1c), invalid
inputs, and boundary inputs (such as -MaxInt, 0, and MaxInt for the
constraint of dtype of int). DocTer evaluates valid inputs by check-
ing if the API runs successfully without failures, e.g., crashes. If a
failure occurs with a valid input, the generated test has manifested
a bug in the implementation of the API’s core functionality.

Fig. 1 shows a previously unknown bug detected by DocTer in
TensorFlow along with its patch that the TensorFlow developers



DocTer: Documentation-Guided Fuzzing for Testing Deep Learning API Functions

committed after we reported the bug. The API document in Fig. 1a
indicates that the shape of input is 5-D, and ksize is an integer
or a list of 1, 3, or 5 integers. DocTer automatically extracts the
constraints in Fig. 1b and generates the bug-triggering input in
Fig. 1c. Detailed constraint formats are explained in Section 2.2.
DocTer generates a valid input. Specifically, parameter input is a
five-dimensional (5-D) tensor as a constant (tf.constant), where
the five pairs of square brackets denote a five-dimensional tensor.
Parameter ksize is a list of length 1, whose element is a zero (i.e.,
[0]), parameter strides is [1], and parameter padding is "VALID".

This bug is only triggered when the parameter ksize has a
zero value. This zero value causes a division-by-zero fault, re-
sulting in a floating point exception. To trigger this bug, the pa-
rameter padding must be either "VALID" or "SAME". Otherwise the
function’s input validity checking would reject the input with an
InvalidArgumentError. Therefore, it is practically impossible for
techniques that randomly generate inputs to trigger this bug. Af-
ter we reported this bug, the TensorFlow developers added the
non_negative range validation for the parameter ksize (Fig. 1d).

In addition, DocTer generates invalid inputs that violate the con-
straints to detect crashes. Despite invalid inputs, DL API functions
should not crash. Instead, they are expected to report an invalid
input (e.g., by throwing an exception or printing an error message).
This point is well confirmed by an API developer after we reported a
crash bug detected by DocTer “A segmentation fault is never OK and
we should fix it with high priority”. Such invalid-input generation is
impossible without the constraints.

(3) Documentation-bug detection: Since incorrect AP documen-
tation provides false information about APIs, which often misleads
APT users to introduce bugs in code [44], it is important to detect
bugs in API documents as well. Different from prior work [44, 46]
that detects inconsistencies between documents/comments and
code, DocTer detects inconsistencies within documents. For exam-
ple, in the document of tf.keras.backend.moving_average_update,
the description for the parameter value is “...with the same shape
as variable,...”, but the parameter variable is not documented. This
documentation bug of erroneous parameter dependencies has been
fixed after we report it.

1.2 Contributions

In this paper, we make the following contributions:

e A novel rule construction technique that formulates the chal-
lenge as an optimization problem aiming to find the smallest
set of rules that can make the largest number of correct extrac-
tions of parameter constraints. We also develop an approximate
solution to the problem based on sample space conditional prob-
ability computation.

A document-analysis technique that extracts 16,035 constraints
automatically from API documentation with the focus on four
categories of input properties in DL APIs: structure, dtype, shape,
and valid values for 2,415 API functions across the three widely-

used DL libraries, TensorFlow [14], PyTorch [38], and MXNet [17].

The constraint extraction precision is 85.4%.
o An application of our extracted constraints to guide the genera-
tion of DL-specific inputs.
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o A tool DocTer that combines the techniques above, and detects
94 bugs in 174 APIs from the three libraries, while a baseline that
generates inputs without the knowledge of constraints detects
59 bugs only. Among the 94 bugs, 63 are previously unknown
bugs, 54 of which have been fixed (49) or confirmed (5) by the de-
velopers after we report them. Notably, one of the previously
unknown bugs was added to the CVE vulnerability data-
base for TensorFlow after we reported it. In addition, DocTer
detects 43 documentation bugs, 39 of which have been fixed (35)
or confirmed (4) after we report them.

While our rule construction and constraint extraction techniques
are general, the constructed rules and extracted constraints are
domain-specific. We focus on testing DL libraries due to their im-
portance and the lack of available constraint-extraction techniques
for them. We leave the extension to other domains, e.g., classic
machine learning libraries such as scikit-learn [39], as future work.

Availability: We share the tool DocTer, bug list, and data in [13].

2 APPROACH

2.1 Overview

Fig. 2 shows the overview of DocTer using an example of the Ten-
sorFlow API tf.nn.atrous_conv2d. DocTer consists of three phases.
The rule construction phase (i.e., the green box in Fig. 2) takes a
small portion of API documents with annotations to construct a set
of rules that can extract concrete constraints from API documents.
The rules are constructed by an optimization-based method. They
are mappings from document dependency parse trees to the corre-
sponding abstract parameter constraints in the form of assertions
(e.g., on dtype and shape), which are called Abstract Constraints
(ACs). In the constraint extraction phase (i.e, the orange box), the
rules are applied to concrete API documents to derive concrete
parameter constraints. To demonstrate the effectiveness of these
extracted constraints, in the testing phase (the purple box), DocTer
generates test inputs either conforming or violating the constraints
(by the input generator), and executes the inputs to detect bugs (by
the test case evaluator), in an iterative fashion.

A major challenge of constraint extraction is analyzing free-form
API documentation written in the natural language [16, 46, 52].
We observe that developers have limited ways to express input
constraints in natural language. However, these expressions are
instantiated differently for different APIs and composed together in
various ways, leading to complex overall syntactic structures that
are difficult to translate to parameter constraints. We hence devise
a novel method that works as follows. It first preprocesses/normal-
izes the documents to dependency parse trees and then breaks the
trees into subtrees. With a small set of API documents and the cor-
responding manually annotated ACs, an algorithm is developed to
identify the optimal mappings between subtrees and parameter con-
straints that can maximize the matching of the mapped constraints
and the ground-truth annotations. These mappings are essentially
our constraint extraction rules. DocTer applies these rules to extract
constraints from API documents automatically. Apart from a fixed
cost of annotating a small portion (e.g., 30%) of API parameters,
our process is automatic and can be reapplied to future versions or
another relevant library with little manual work.
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Figure 2: Overview of DocTer. pr, ps, and pp are the abstract constraints representing the data type, data structure, and number
of dimensions of parameter p, respectively. Detailed constraint formats are explained in Section 2.2.

Preprocessing: During both the rule construction and constraint
extraction phases, DocTer performs two preprocessing steps: nor-
malization and dependency tree parsing to convert free-form API de-
scriptions to dependency parse trees (parse trees for short). (Fig. 2).
The normalizer replaces keywords with abstractions, e.g., replac-
ing data type keywords (e.g., int32, float64) with D_TYPE, structure
type keywords (e.g., Tensor, 1ist) with D_STRUCTURE, and integer
constants with CONSTANT_NUM. This normalization improves the per-
formance of the rule construction algorithm by suppressing in-
stance differences. We use dependency tree parser [33] to convert
the normalized sentences to parse trees.

An example: Our rule construction component identifies a rule
° (row one of the Rules table in Fig. 2) that maps a frequently
occurring subtree pattern “of type D_TYPE” (e.g., appearing in both
sentences 1 and 2 in Fig. 2) to an abstract type assertion (an AC)
pr € {D_TYPE}, which means that the valid dtype of parameter p
should be one from the set {D_TYPE}, where D_TYPE is an abstraction
of one or more dtypes, which, in this example, are float16, float32,
and float64. In the annotated dataset, the conditional probability
of the type assertion pr € {D_TYPE}, given the subtree pattern is 1.0
and the pattern is the smallest with such predictive power. Thus,
the rule constructor is able to create rule °

The constraint extractor applies constructed rules to all the pre-
processed API documents to automatically extract a set of con-
straints for each input parameter. For example, in the Tensor-
flow document for API tf.nn.atrous_conv2d, one of the parse trees
parsed from the description for parameter value (e.g., Fig. 2) con-
tains two frequent subtrees “a CONSTANT_NUM d D_STRUCTURE ” and “o
type D_TYPE”. These structures correspond to rules o e and
e. DocTer applies these rules and obtains the extracted ACs
for the parameter in Fig. 2 (the middle of the orange box), e.g.,
p = value, AC(p) = pt € {D_TYPE} A ps € {D_STRUCTURE} A pp €
{CONSTANT_NUM} , where pr, ps and pp represent the data type,

data structure and number of dimensions of parameter p, respec-
tively. DocTer further instantiates the abstract symbols (D_TYPE,
D_STRUCTURE, and CONSTANT_NUM) with the corresponding value and
types (i.e., float, Tensor, and 4) from the original sentence to con-
vert the ACs to concrete constraints. We now discuss each individual
step.

2.2 Preprocessing

The first step of DocTer is to collect the natural language API
documents. They are at high volume. For example, there are 2,334
pages of API documents and 854,900 words in TensorFlow v2.1.0.
It is hence a daunting and tedious task for developers to manually
examine such a large set of API documents to identify constraints.

API document collection and tokenization: After collecting
the API documents (in the form of HTML pages from DL libraries’
websites), DocTer parses these files to obtain API signatures and pa-
rameter descriptions with an HTML parsing tool [2]. Since sentence
is a natural unit of organizing constraints, DocTer further splits the
description into sentences with a sentence segmentator [15].

Normalization: The tokenized sentences are normalized. While
developers may have a small number of patterns expressing parame-
ter constraints, these patterns have diverse instantiations according
to the concrete data types and parameters involved. Normalization
abstracts away these instantiation differences.

Specifically, DocTer normalizes keywords such as (1) data types
(e.g., int32) and (2) data structures (e.g., tensor) as D_TYPE and
D_STRUCTURE, respectively. To get the list of keywords for data types,
we collect a list of supported data types from each library [10-12].
We then expand such a list with informal variations (e.g., “integer”,
and “ints”) and missing common types (e.g., String) to match the
format of API documents. In total, we use 84, 74, and 53 type key-
words for TensorFlow, PyTorch, and MXNet, respectively. The full
list of keywords can be found in [13].
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DocTer also normalizes constants such as (3) integer, (4) float, (5)
boolean values as CONSTANT_NUM, CONSTANT_FLOAT, and CONSTANT_BOOL.
It also replaces (6) relational expressions (e.g., “> 1”) with REXPR
and replaces (7) parameter names with PARAM.

The content that is (8) quoted often refers to enumerate values,

so DocTer replaces such content with ENUM. For example, “NWC’
and NCW’ are supported.” is normalized to “ENUM are supported”.
The shape of a parameter is often put within (9) a pair of square
brackets or parentheses, DocTer replaces such content with SHAPE.
For example, “A Tensor of shape [num_classes,dim]” is normalized
to “A D_STRUCTURE of shape SHAPE ”. Finally, consecutive abstract an-
notations of the same type are replaced with just one. For example,
the three type keywords in “Must be of type float16, ‘float32; or
‘float64".” (Fig. 2) are replaced by a single D_TYPE, resulting in a
normalized sentence “must be of type D_TYPE”.
Dependency tree parsing: Once the sentences are normalized,
they are fed to the dependency tree parser [33], which conducts POS-
Tagging and builds tree structure relationships (i.e., dependency
parse trees) between words of a sentence based on the grammati-
cal structure. For example, in the sentence “a D_STRUCTURE of type
D_TYPE” from Fig. 2, the words “D_STRUCTURE”, “type”, and “D_TYPE”
are first tagged as NN (noun). Then the parser conducts dependency
parsing and generates the dependency parse tree as shown in the
figure where D_STRUCTURE is the root, and D_TYPE is the nominal
modifier [4] of the root.

Annotating a subset of API descriptions with ACs: To support
rule construction, we randomly pick a small set of the parameters
(30%) and manually annotate them with their ACs. To minimize
possible biases, the process involves three co-authors. Two authors
independently annotate with 98.2% agreement. All disagreements
are resolved with a third author to reach a consensus.

Abstract Constraints (AC): ACs are abstract constraints/assertions.
These assertions are not on concrete dtype or shape but rather
abstract ones. An AC for a parameter p is denoted in the form of
pr € {T1, T2, ...} where ¢ is the category of AC, and Ty and T, are
the possible abstract values. For example, p7 € {D_TYPE} means
that p is of D_TYPE. Specifically, the annotations of parameter p are
designed as follows:

e pr denotes the data type of an abstract constraint (AC) of p. .

o pg denotes the data structure of an AC of p.

e psp € NP where D € N denotes the shape AC of p, where D

represents the number of dimensions of p.

e pp € N denotes the number of dimensions of an AC of p. There-

fore, pp = psp.length if p is a tensor or pp = 0 if p is a scalar.

e p; denotes an element in parameter p if p is a tensor, where

i=1,2,..., Prod(psp). When p is a scalar, its value is py.

An AC can be instantiated to different concrete constraints. Ta-

ble 1 provides examples of ACs (first column as part of the rules)
and their instantiations (last column) for several APIs.
AC annotation categories: We focus on annotating four categories
of ACs (i.e., structure, dtype, shape, and valid value) because they
represent the most common (93.6%) properties of input parameters
of API functions in major DL libraries. The four categories are:
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o structure: the type of data structure that stores a collection
of values for the input parameter, such as list, tuple, and n-
dimensional array (i.e., tensor).

dtype: the data type, such as int, float, boolean, and String, of
the parameter or the elements of structure.

shape: the shape or number of dimensions of the parameter. For
example, in row 2 of Table 1, weights is of shape [num_classes,
dim] (i.e. it is a 2-D array where the sizes of its first and second
dimensions are num_classes and dim, respectively).

valid value: a set of valid values (e.g., parameter padding can
only be either "VALID" or "SAME") or the valid range of a numer-
ical parameter (e.g., a float between 0 and 1).

We make reasonable assumptions when annotating API descrip-
tions. For example, a parameter is assumed to be a 0-dimensional
non-negative integer if the document states it is a “number of ..."
The assumptions are in the supplementary material [13].

2.3 Rule construction

Although API descriptions are in a natural language, these descrip-
tions often share a small number of syntactic patterns. For example,
a constraint of dtype assertion is mostly described by two syntactic
patterns: “must be one of the following types ...” and “a tensor of type
..” in TensorFlow. Our idea is hence to identify such patterns in
API descriptions and project them to the corresponding parameter
constraints. We call such projections the constraint extraction rules.

Automatically deriving such rules is challenging. The first chal-
lenge is that a syntactic pattern may have different instantiations
in various API descriptions, depending on the variables and types.
For example, the aforementioned pattern “A ‘“Tensor’ of type ...” is
instantiated to “A “Tensor’ of type ‘string’” and “A ‘Tensor’ of type
‘int32”” in two respective parameters contents and crop_window
in API tf.io.decode_and_crop_jpeg. Our normalization step sub-
stantially mitigates this problem. The second challenge is that such
patterns are often convoluted in the overall syntactic structure of an
API description. For example, consider the description of parameter
value as shown in Fig. 2. The normalized sentence “a CONSTANT_NUM
d D_STRUCTURE of type D_TYPE.” is composed of two syntactic pat-
terns “CONSTANT_NUM d D_STRUCTURE” and “of type D_TYPE”. Third,
these patterns may have arbitrary sizes.

An optimization problem: We propose a novel method to auto-
matically derive the extraction rules from a small set of APIs with
their ACs manually annotated. We formulate it as an optimization
problem. Specifically, given an API f, its normalized natural lan-
guage description is denoted as Dy, its ACs are denoted as Ag. We
use trees(Df) to denote all the subtrees of the parse tree of Dy.
For example, Fig. 2 gives a 3-layer parse tree of the normalized
sentence “a D_STRUCTURE of type D_TYPE”, which has subtrees “of
type D_TYPE” and “a D_STRUCTURE type”. Such subtrees consider both
parent-child (direct) connections and ancestor-descendant (indirect)
connections. We use Tree and AC to denote the domains of sub-
trees and ACs, respectively. Our goal is hence to derive a mapping
R : Tree — AC. The mapping should satisfy the following opti-
mization objectives. First, the tree patterns can be used to precisely
predict the corresponding ACs. If we consider the tree patterns
and the ACs form a distribution, the conditional probability of an
AC given the condition of its tree pattern shall be high. Second, all
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ACs can be predicted by these patterns, i.e., our mappings should
be comprehensive. Third, the number of the mappings from a tree
pattern to an AC in R is minimum. The objective is needed oth-
erwise a simple solution would be to include all tree patterns in
descriptions. Fourth, the size of each tree pattern is minimum. It
is very likely that a tree pattern and its sub-patterns both can pre-
dict a constraint. In such cases, we prefer the smallest one, which
provides the maximum generalization.

Formally, the process to find the set of rules, that is, the optimal
mappings R, is the following.

1— P(alt)
a€Ay,tetrees(Dyr),R(t)=a
|Ar]
|{a € Af|3§t € trees(Dy) s.t. R(t) = a}| +

+
arg min E(Df,Af)~N
R

IR| + > i
acAyg,tetrees(Dr),R(t)=a

1)
Here, N denotes the distribution of API description and the
corresponding ground-truth ACs. The above formula means that
we are looking for an R that can minimize the expected objective
function value for all samples (Dy, Ar) ~ N. The objective function
is the sum of four terms. The first one is the average conditional
probabilities for all the ACs in Ay. Intuitively, it means that for
each AC a in an API, our mapping R should associate a tree pattern
t with a such that the conditional probability P(a|t) is maximum.
The second term means that the number of ACs in A¢ for which
R does not have a mapping is minimum. This is to maximize the
coverage of our rules. The third term is to minimize the size of R.

The last term is to minimize the size of each tree pattern in R.

Approximate solution: Solving the above optimization problem
is difficult because it is discrete. Its complexity is NP. This is not a
typical learning problem as it does not aim to learn a distribution
but rather to construct a minimum and yet complete set of rules.
In addition, the amount of data available for training is relatively
small compared to other domains that have successful applications
of deep learning models. We hence devise an approximate solution.
The first term can be approximated by computing the sample space
conditional probabilities and then including the top associations in
R. The sample space conditional probabilities are:

[ {flaeAr At e trees(Df) } |
[ {f | t € trees(Df)}|

Intuitively, it is the number of co-occurrences of a tree pattern
and an AC divided by the number of occurrences of the tree pattern.
We further observe that if a tree pattern ¢ is rare, it is usually
not related to parameters. As such, we can focus on the frequent
subtrees. We use frequent subtree mining [55] to efficiently discover
the most frequent subtrees. We filter out the rare tree patterns with
threshold min_support, i.e., any tree patterns that occur less than
or equal to min_support times are discarded. The second and third
terms are approximated by selecting only the associations (of a and
t) with a large sample space conditional probability. Specifically,

P(alt) = (2

DocTer includes in R associations (of a and t) with P(al) greater
than or equal to min_confidence (the selection of and min_support
and min_confidence is a trade-off between precision and recall and
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Algorithm 1 Rule Construction

1: function RULECONSTRUCTION(Sample, min_support, min_confidence)
2 parser < DEPENDENCYTREEPARSER()

3 Df, F rquf — 0

4 R0

5: foreach sentence € Sample do

6 dependencyParseTree < parser.PARSE(sentence)

7 Dy .ApD(dependencyParseTree)

8 end foreach

9 FreqDy « GETFREQSUBTREE(Dy, min_support, MAX_SIZE)

10: foreach t € FreqDy do

11: foreach a € seLEcTAC(Sample, t, min_confidence) do
12: R.ADD(¢ — a)

13: end foreach

14: end foreach

15: return R

will be discussed in Section 3). An alternative to approximate the
second term is to use a greedy algorithm to include additionally
needed tree patterns to achieve (full) coverage of ACs. However,
this often contradicts the third term. Empirically (see Section 4.1),
we find that including the top associations provides a good balance.
To approximate the fourth term, which minimizes the tree patterns,
we keep only the smallest tree pattern when multiple patterns can
be used to predict an AC.

Algorithm 1 formalizes the process of finding the approximated
solution. For each sentence in the annotated data (Sample), the
dependency tree parser parses the sentence and generates the parse
tree, which is added to the set D (lines 5-7). Then, we select the
set of frequent tree patterns FreqDy whose frequencies are at least
min_support using frequent subtree mining (GETFREQSUBTREE) (line
9). This process keeps only tree patterns whose size is smaller than
or equal to MAX_SIZE. For each frequent tree pattern ¢, SELECTAC
selects a set of ACs (a) with probabilities P(a|t) greater than or
equal to min_confidence. Then, each association of g and ¢ is added
to the set R (lines 10-14).

Table 1 shows examples of the automatically discovered rules by
DocTer (col. “Extraction rules”) and examples of matched sentences
(col. “API sentences”). For example, rule o in Table 1 is used
to extract the enumerated value (e.g., valid value) of parameter
p, which is associated with the AC py € ENUM. In rule e, the
pattern “number of” implies parameter p should be a 0-dimensional
non-negative integer.

2.4 Constraint extraction

Given an API description, the constraint extractor matches the tree
patterns in the rules with the parse tree of the description. Matches
are then projected to the corresponding ACs, which are further
instantiated in the context of the description to derive the concrete
constraints. For example, in Fig. 2, the constraint extractor finds
rules o e, and e match the two subtrees “a CONSTANT_NUM d
D_STRUCTURE” and “of type D_TYPE” in the parse tree of the value
description. DocTer then assigns the three relevant ACs to the pa-
rameter value. DocTer then instantiates the ACs with the concrete
data types, structure types, and constants to generate the final con-
straints. In row 2 of Table. 1, the annotation SHAPE is instantiated
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Table 1: Rule examples and the extracted constraints from TensorFlow, PyTorch, and MXNet

Extraction rules APl sentences

Normalized sentences Extracted constraints

type y:

Must have the same

same pA}leM —> AC(p) = p, € {&PARAM} type as ‘x'.

as

y: P=Y
must have the same C(p) =p, € {&x}
type as PARAM

weights:

A p,, € {SHAPE}
of shape

weights: p = weights
C(p) =p € { }

A Pgy € {[&num_classes,dim]}

a of
shape SHAPE

ENUM padding:
—» AC(p) = p, € {ENUM}
either

A string, either
"'VALID'® or “'SAME'". ENUM

e AC(p) = p, € { } A of shape
SHAPE — [num_classes,dim]

padding:
a D_TYPE, either

p = padding
C(p) = p, € {string}
A p, € {'VALID', ‘SAME’}

number AC(p) = p, € {int} num_group:
o | — A p, € {0} Number of group
of A P, € {[0,~]} partitions.

num_group: P = num_group:
C(p) = p, € {int}

A p, € {0} A p, € {[0,=]}

number of group
partitions

based on the original text, i.e., “[num_classes, dim]”. Row 3 in Ta-
ble. 1 shows an example rule of valid value constraints. DocTer
detects the pattern “either ENUM” and uses it to extract the valid
value constraint in the last column.

Constraint dependencies graphs: The description of one param-
eter often refers to the dtype or value of another parameter from
the same API function. In such cases, DocTer extracts constraints
that involve dependencies among input parameters. These depen-
dencies are useful not only for generating valid inputs but also for
determining the parameters’ generation order. The automatically
constructed rules can detect dtype dependencies. For example, row
1 in the Table. 1) shows the pattern “must have the same type as ...”
which indicates a type dependency. In this example, the operator
‘&’ is to acquire the dtype of a parameter. An example of shape
dependency is shown in row 2 of Table 1. Specifically, parameter
weights should have shape [num_classes,dim] where the size of the
first dimension is the value of another parameter num_classes while
dim is a non-negative integer.

These dependencies are denoted in a graph with each edge rep-
resenting a constraint dependency. During input generation, the
graph is traversed in a topological order to ensure dependencies
are properly considered. The graph construction is straightforward
and hence elided.

2.5 Testing phase

To demonstrate the effectiveness of the extracted constraints, for
each API function, DocTer iteratively generates an input i.e., values
of the API function’s parameters, and evaluates that input to detect
crashes. By either following or violating the extracted constraints,
the input generator generates conforming inputs (Cls) or violating
inputs (VIs), respectively. The conforming inputs are designed to
test the core functionality of the API function while the violating
inputs aim to test the API function’s input validity checking code. In
both cases, DocTer reports bug-triggering inputs that cause serious
crashes (e.g., segmentation fault). DocTer tests each API function
with maxIter number of inputs, and the ratio of inputs allocated to
each mode (CI or VI) is determined by the ratio conform_ratio.

Input generator: In each iteration, DocTer generates values for
all required parameters and some optional parameters (for testing
more diverse code). The probability for generating each optional
parameter is optional_ratio.

The input generator generates one input for each iteration. Given
the extracted constraints, DocTer generates a value for each param-
eter following the order determined by constraint dependencies
(Section 2.4). For a conforming input, all generated arguments sat-
isfy the extracted constraints for structure, dtype, shape, and valid
value. If concrete values are specified (e.g., enumerated values) in
the constraints, the input generator chooses from those values. Oth-
erwise, it chooses a dtype from the list of dtypes specified in the
constraints and creates a shape following the constraints. If the
constraints do not specify valid dtypes, DocTer selects one from
a default list of dtype described in Section 2.2. While the input
generator is choosing dtype and shape for a parameter, it ensures
they are generated according to the parameter dependencies, if any.
For example, parameters often have matching dimension(s), so the
input generator needs to ensure such shape consistency.

Once the dtype and shape are determined, the input generator
generates an n-dimensional array with values satisfying the given
dtype, shape, and the range as specified in the constraints, if any.
Finally, the structure constraints are checked and satisfied. For ex-
ample, if the generated value is 1-dimensional and the constraints
explicitly specify the structure (e.g., tuple or list) for the parameter,
the input generator converts the generated value accordingly.

To generate an invalid input, the input generator randomly se-
lects one parameter and generates a value that violates one or
multiple relevant constraints of that parameter. For all other param-
eters, DocTer generates their values in the same way as conforming
inputs (i.e., conforming to all constraints).

Constraint-guided boundary-input generation: Boundary in-
put values (e.g., 0 and None) tend to cause bugs due to off-by-one
errors etc. [18, 24]. Thanks to the extracted constraints, DocTer gen-
erates boundary values that follow the constraints and boundary
values that violate the constraints. For each API, DocTer picks one
parameter with the probability of mutation_p to be mutated to one
of the boundary cases. We consider six types of boundary mutators:
one constraint-specific (boundary values of constraints) and five
generics (None, zero, zero dimension, empty list, and empty string).
As an example, the mutator “zero dimension" sets the size of one of
the dimensions of the parameter’s shape to 0 (e.g., it mutates a 3-D
tensor of shape [1,1,1]1to [1,0,11).

Test case evaluator: The test case evaluator invokes the target
function with the generated input. If a severe failure occurs, DocTer
reports the input as a bug-triggering input. Specifically, DocTer
returns those inputs causing a segmentation fault, floating-point
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exception, abort, and bus error in the C++ backend. We exclude
aborts caused by assertion failures in MXNet since MXNet uses
those for exceptions. Crashes from the C++ backend (which handles
computationally-intensive DL tasks) indicate severe problems.

3 EXPERIMENTAL SETUP

Data collection: We choose three popular DL libraries (Tensor-
Flow 2.1.0, PyTorch 1.5.0, and MXNet 1.6.0) as test subjects. There
are 144,541-854,900 words in the collected API documents. Among
them, we consider 1008, 529, and 1021 relevant APIs for the three
respective libraries. An API is irrelevant if it (1) is deprecated, (2)
has no input argument, (3) cannot be parsed due to HTML syntactic
errors and typos, (4) is a non-layer class constructor, or (5) has an
API document without a “Parameter” description section. In total,
2,666 APIs are filtered out due to the five reasons above, 53.5% of
which are due to reason (1). We list the break down in [13].

Rule construction and constraints extraction: DocTer applies
three thresholds MAX_SIZE, min_support, and min_confidence to con-
struct extraction rules (Section 2.3). We set MAX_SIZE to 7 to all three
libraries. To select the best value for min_support and min_confidence,
we conducted 5-fold cross-validation on the 30% annotated data and
measure the quality of the extracted constraints. By selecting the
best F1 score, we set min_support to 10, 10, 20, and min_confidence
to 0.9, 0.7, 0.9 for TensorFlow, PyTorch, and MXNet, respectively.

Input generation and testing: We use Docker with Ubuntu
18.04, TensorFlow 2.1.0, PyTorch 1.5.0, and MXNet 1.6.0. For multi-
dimensional arrays, DocTer generates shapes of 0-5 dimensions
or as specified by the constraints. By trying different values of
optional_ratioand mutation_p on 10% randomly sampled APIs,
we choose optional_ratio=0.2 and mutation_p=0.4.

Manual and execution time: The AC annotation (Section 2.2)
takes 36 manual hours. DocTer takes 34 minutes to perform rule
construction and constraints extraction for all libraries. On average,
it takes DocTer 0.14 seconds to generate and test each input.

4 EVALUATION AND RESULTS

We answer four research questions (RQs): RQ1: How effective is
DocTer in extracting constraints from DL API documentation?
(Section 4.1) RQ2: How is DocTer compared to existing constraint-
extraction approaches? (Section 4.2) RQ3: Can the extracted con-
straints enable DocTer to detect more bugs? (Section 4.3) and RQ4:
How effective is DocTer in generating valid inputs? (Section 4.4)

4.1 ROQ1: Effectiveness of constraint extraction

Approach: We apply DocTer to extract constraints in our subjects
and study the number and quality of constraints. We randomly
sample an extra of 5% (603) of input parameters (excluding the 30%
AC annotated data for rule construction) to form an evaluation set.
We manually annotate these parameters with concrete constraints
to build the ground truth. The constraints extracted by DocTer are
then compared against the evaluation set.

For each parameter, we consider all valid options for one cat-
egory as one constraint. And the constraint for this category is
correct iff all valid options are correctly extracted. For example,
the parameter size of tf.slice can be either int32 or int64. The
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Table 2: Quality of constraint extraction

TensorFlow PyTorch MXNet Total/Avg
# APIs with constr. extracted 911 498 1,006 2,415
# constr. extracted 5,908 3,201 6,926 16,035
# constr. per API: Avg (Min-Max) 6.5 (1-51) 6.4 (1-33) 6.9 (1-111) 6.6 (1-65)
# evaluated param. 190 93 320 603
# evaluated param. with constr. 161 83 229 473
# evaluated constr. 350 170 363 883

Precision/Recall/F1 for All (%) 90.0/74.8/81.7  78.4/77.4/77.9 87.9/82.4/85.1 85.4/78.2/81.6

Precision/Recall/F1 for dtype (%) 93.0/82.3/87.3  78.1/79.4/78.7 92.9/81.9/87.0  88.0/81.2/84.3
Precision/Recall/F1 for structure (%) 78.9/88.2/83.3  85.7/90.0/87.8 91.7/90.2/92.4  85.4/89.5/87.8
Precision/Recall/F1 for shape (%) 89.1/74.5/81.2  80.0/76.9/78.4 76.1/79.8/77.9  81.7/77.1/79.2
Precision/Recall/F1 for valid value (%) 87.5/47.7/61.8  66.7/60.0/63.2  90.0/60.0/72.0 ~ 81.4/55.9/65.7

extracted dtype constraint pr € {int32,int64} is deemed correct,
while pr € {int32} is considered incorrect. If a parameter’s docu-
ment contains no constraints of the four categories, it is excluded
from the precision and recall computation. While it is reasonable to
include such no-constraint parameters in our calculation because
DocTer can trivially extract nothing, the accuracy may be inflated
if there is a large portion of such parameters. Among the sampled
parameters, the numbers of no-constraint parameters are 29 (15.3%),
10 (10.8%), and 91 (28.4%) for TensorFlow, PyTorch, and MXNet,
respectively (details in Extraction result section below).

We use the standard metrics precision, recall, and F1 score of the
extracted constraints of the sampled parameters for each constraint
category. Precision is the percentage of the correctly extracted con-
straints (i.e., extracted constraints that match the ground-truth)
over the number of all extracted constraints. Recall is the percent-
age of correctly extracted constraints over the total number of all
ground truth constraints. F1 is the harmonic mean of precision and
recall.

Extraction results: Table 2 shows the quality of extracted con-
straints. In total, DocTer extracts 16,035 constraints automatically
from the three libraries (row #constr. extracted). Specifically, TreeM-
iner [55] collects 873, 426, and 321 frequent parse subtrees from
the three libraries respectively with the corresponding min_support.
Then DocTer constructs rules with 665, 398, and 275 subtrees. The
remaining subtrees do not constitute any rules because no AC is
associated with the subtree with large enough conditional proba-
bility. Using these rules, DocTer extracts on average 6.6 constraints
per API for all three libraries (row #constr. per API: Avg (Min-Max)
Table 2). Overall, DocTer can extract constraints from 90.4%, 94.1%,
and 98.5% of relevant APIs (details in Section 3) for TensorFlow,
PyTorch, and MXNet, respectively.

For each library, Table 2 shows the number of parameters in
the evaluation set (row #evaluated param.), the number of the pa-
rameters in the evaluation set with at least one constraint (row
#evaluated param. with constr.), the number of constraints manually
labeled in the evaluation set (row #evaluated constr.). The Total/Avg
column shows the total number of parameters and constraints in
the evaluation set, and the average precision, recall, and F1 score.

Overall, DocTer achieves a high precision (85.4%) and recall (78.2%)
of constraint extraction across all three subjects. DocTer is quite
effective in extracting constraints for dtype and structure with F1
score over 80%. It is less effective when extracting constraints for
valid value. The reason is that sentences that describe constraints
for valid value are not as common in the annotated data compared
with other categories, e.g., structure, and thus DocTer misses some
patterns given the min_support and min_confidence thresholds. For
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Table 3: Number of rules and constraints

TensorFlow PyTorch MXNet Total

Category

Rules Constraints  Rules Constraints Rules Constraints Rules Constraints
dtype 405 2,392 114 1,163 196 2,272 715 5,827
structure 230 1,305 151 890 78 2,466 459 4,661
shape 306 1,825 282 852 173 1,699 761 4,376
valid value 97 386 22 296 11 489 130 1,171
All 665 5,908 398 3,201 275 6,926 1,338 16,035

example, when analyzing the sentence “Only Zeros’ is supported
for quantized convolution at the moment”, DocTer misses the valid
value constraint py € {‘zeros’} because the pattern “Only ... is/are
supported” is not frequent enough in the annotated dataset and did
not pass the set thresholds. In Fig. 1, DocTer misses the constraint
that parameter ksize can also be a single integer due to the same
reason. With the extracted incomplete constraints (i.e., ksize is a
list of integers), DocTer still detects the bug. This confirms that
to detect real-world bugs effectively, one does not need to have
complete constraints [52]. We choose the thresholds as a trade-off
between precision and recall, and one can choose lower thresholds
for a better recall.

To show the impact of our rule extraction design (Section 2.3),
we conduct an ablation study, where we do not use the conditional
probabilities (Eq. 2) when constructing rules (the set R) and instead
set the min_confidence to 0 (instead of the settings in Section 3).
Under these settings, any frequent subtree in trees(Dy) and any
ACin Af that has more than one co-occurrence will be considered
as a rule. As a result, this version of DocTer without the conditional
probabilities extracts 1,621 imprecise rules and extracts constraints
with an F-1 of 27.9% on the same evaluation set (Table 2). In contrast,
our DocTer, with the conditional probabilities, constructs 1,338
rules (Table 3) and extracts constraints with a much higher F-1 of
81.6% (Table 2) on the same data.

Overall, DocTer extracts tens of thousands of correct constraints
for these libraries, which enables the generation of valid inputs for
detecting 94 bugs. We show the breakdown of the number of rules
and constraints extracted for all three libraries in Table 3. Note that
a subtree can be mapped to multiple categories of ACs.

Sensitivity study: Since one can choose to annotate fewer param-
eters to save manual effort at the cost of a reduced F-1 score, we
quantify the trade-off between the effectiveness of our approach
(measured by F-1) and manual effort, which is measured by the
amount of parameters to annotate. Specifically, we evaluate the F-1
scores of our approach by using different amounts of the annotated
data, i.e., 5%, 10%, and 30% of parameters. The 5% of parameters are
a subset of the 10% of the parameters, which is a subset of the 30%
of the parameters. DocTer achieves an overall F-1 score of 66.0%
with just 514 annotated parameters (5% of the parameters), 73.9%
with 1,028 annotated parameters (10% of parameters), and 81.6%
with 3,086 annotated parameters (30% of the parameters).

Generality of rules: To evaluate the generality across libraries,
we apply the rules constructed from TensorFlow and MxNet to
the documentation of PyTorch, and get the constraints with preci-
sion, recall, and F1 of 87.9%, 70.3%, and 78.1%. In addition, with the
rules DocTer constructed from all three libraries, we extract 2,312
constraints from 223 scikit-learn APIs’ documents. We manually
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inspect the extracted constraints on 5% (59) randomly sampled pa-
rameters of scikit-learn APIs. DocTer achieves a precision/recall/F1
of 71.3/66.1/68.6%. The results suggest that DocTer can be applied to
new libraries completely automatically without requiring annotating
any documents of the new libraries.

To evaluate the generality across versions of the same library, we
apply the rules that DocTer constructed from TensorFlow v2.1.0,
PyTorch v1.5.0, and MXNet v1.6.0 to six versions: two more re-
cent versions from each library respectively (TensorFlow v2.2.0 and
v2.3.0, PyTorch v1.6.0 and v1.7.0, and MXNet v1.7.0 and 1.8.0). Doc-
Ter extracts 59,936 constraints from 7,684 APIs containing 580,187
words. For evaluation, we randomly sample 603 parameters (same
number of parameters as the evaluation in Table 2) that are ei-
ther with updated descriptions or newly added to the more recent
versions. The results show that the rules that DocTer constructed
are general across versions and can extract constraints from other
versions with a precision/recall/F1 of 81.9/77.7/79.7%.

4.2 RQ2: Comparison with existing approaches

We compare DocTer with grep and state-of-the-art constraint ex-
traction approaches (e.g., Jdoctor [16]).

Comparison with grep: While it may appear to be straightfor-
ward to use a grep-like technique (i.e., matching existing keywords
in documents) to extract constraints, such a technique can only iden-
tify relevant API document sentences. DocTer, on the other hand,
extracts concrete constraints automatically. The grep-like approach
could assign a constraint to a match, e.g., if a sentence contains the
keyword “integer”, the corresponding parameter would be assigned
the constraint pr € {int}. We implement this approach by search-
ing in the documents for keywords of dtype constraints (e.g., “int”
and “integer”) , and structure constraints (e.g., “list” and “tensor”).
We manually collect such keywords in the API documents. This ap-
proach misses 47.8% of the constraints that DocTer extracts, i.e, all
shape, all valid value, 33% of dtype, and 4% of structure constraints.

Comparison with existing constraint-extraction techniques:
We compare DocTer with the state-of-the-art constraint-extraction
techniques, including Jdocter [16], DASE [52], Zhou et al. [60], and
Advance [31]. We exclude C2S [56] because it requires formal spec-
ifications (JML [1]), which is unavailable for the three libraries.
We exclude Pytype [7] because it cannot analyze across Python
and C++ code, therefore, cannot precisely infer types for DL li-
braries. Jdocter [16], DASE [52], and Advance [31] can only extract
constraints for valid value (e.g., range). With the assumption that
they can extract all valid value constraints correctly, the best (up-
per bound) recall that these tools can achieve is 11.9%. Aside from
valid value, Zhou et al. [60] is able to extract specifications for type
restrictions. However, we found that their heuristics that can be ap-
plied to DL document, e.g., “[something] be not [SpecClassName]”,
extract at most 28 constraints (0.2% of DocTer constraints). This
results in their best recall of 12.3%, while DocTer has a recall of
78.2%. Overall, shape constraints are DL-specific that DocTer ex-
tracts while existing techniques do not consider. The results show
that DocTer complements existing constraint-extraction techniques
by extracting DL-specific constraints automatically.
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Table 4: Number of verified new / new/ all bugs (buggy APIs)

Approach TensorFlow PyTorch MXNet Total
22/26/41(79) 6/ 6/ 7(8) 6/ 9/11(21) 34/41/ 59(108)
All 31/38/61(114)13/13/18(28) 10/ 12/15(32) 54 /63 /94 (174)

CI 21/28/47(93) 11/11/14(23) 10/ 12/14(27) 42/51/ 75 (143)
VI 28/32/51(83) 13/13/18(25) 8/ 10/12(27) 49/55/ 81 (135)

Baseline

DocTer

4.3 RQ3: Bug detection results

Approach: We demonstrate the effectiveness of DocTer’s con-
straint extraction using the constraints to guide input generation to
detect bugs in API documents and library code. For documentation
bugs, DocTer detects inconsistencies within API documents when
extracting constraints, which will be discussed later in this section.
For library code bugs, we use all 16,035 (Table 2) constraints ex-
tracted by DocTer to generate inputs for API functions that have at
least one extracted constraint. Table 2 shows the numbers of these
API functions (row #APIs with extracted constr)). We set maxIter to
2,000. For each API function, DocTer generates 2, 000 test inputs
(1,000 conforming and 1,000 violating inputs), evaluates them, and
returns bug-triggering inputs that cause serious failures (details
in Section 2.5). We manually examine those bug-triggering inputs
to check if they reveal real bugs. For those inputs that still trigger
the same failures in the nightly version, we report the bugs to the
developers.

We implement an unguided input generation tool as the baseline.
The only difference between DocTer and the baseline is that the
baseline has no knowledge of constraints. Specifically, the baseline
generates 2,000 random inputs for parameters without any con-
straint knowledge. For a fair comparison, we convert the generated
array inputs to tensors assuming that the baseline minimally knows
which input arguments should be tensors. Without this conversion,
non-tensor input arguments are trivially rejected by PyTorch and
MXNet, thus very ineffective in exercising the code in depth.

The extracted constraints can be used together with other input
generation tools to improve their testing effectiveness. In this paper,
we choose to implement our own baseline instead of using exist-
ing fuzzers [3, 5, 43] such as AFL [3] for practical reasons. These
fuzzers cannot test Python code: the most popular language for DL.
Moreover, these fuzzers require code coverage, which is currently
unavailable across Python and C++. Instead of code coverage, Doc-
Ter uses constraints extracted from documents to guide the testing
of both Python and C++ code, by generating inputs for the Python
API functions, in which C++ code is invoked. In addition, existing
fuzzers [3, 5, 43] generate inputs in the format of a sequence of
byte arrays. Randomly mutating some bytes is unlikely to gener-
ate valid DL-specific inputs. Our baseline is similar to AFL with
two enhancements: (1) knowledge of tensors and (2) automatically
testing Python and C++ code.

Bugs in libraries code: Table 4 presents the number of verified
new bugs, new bugs, all bugs, and buggy APIs (in “()") found by
the baseline and DocTer. A bug is verified if it has been fixed or
confirmed by the developers. A new bug refers to a previously
unknown bug that we reported. The unverified new bugs are repro-
ducible and waiting for developers’ responses. We count one bug
for each required fixing location.
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DocTer detects 94 bugs, including 63 previously unknown bugs,
54 of which have been verified by the developers (49 fixed and 5
confirmed). Of the 49 fixed bugs, 19 are fixed in C++, 11 are fixed
in Python, 7 are fixed in both, and 12 is fixed silently after we
reported. The 94 bugs cause 174 APIs to fail because one bug can
cause failures in multiple APIs but are fixed in one location. We
count them as 94 instead of 174 bugs. Of the 174 buggy APIs, 12
have parameters with constraint dependencies. DocTer has also
detected 31 (94 — 63) known bugs that have been fixed in the nightly
versions.

The baseline detects only 59 bugs with 41 new bugs causing 108
APIs to crash. DocTer detects 52 bugs that the baseline cannot while
missing 7 bugs found by the baseline due to the randomness of the
input generation process.

False positives: Only 3 out of 66 newly reported bugs receive
“won’t fix” responses from the developers. They claim such inputs
are not supported, which is not stated in the document. We do not
count these 3 bugs in our results.

DocTer uses the automatically extracted constraints without
any manual examination. It is possible that documents themselves
are incorrect or incomplete, causing incorrect constraints to be
extracted, leading to false positives, where the code is correct, but
the API documentation is incorrect. Since we focus on severe bugs
such as crashes, all detected bugs are in library code bugs, as well
said by a developer after we reported a crash bug “A segmentation
fault is never OK and we should fix it with high priority."

Conforming and violating inputs: DocTer generates both con-
forming inputs (CIs) and violating inputs (VIs). Rows “CI” and “VI”
in Table 4 present the breakdown of the bug detection for CIs and
VIs with conform_ratio = 50%. We find that DocTer is insensitive
to conform_ratio. When it is between 20%-60% (with a 10% incre-
ment): the number of detected bugs differs by at most one. Thus,
we use conform_ratio = 50% as the default ratio to be more general.

The results show that the CIs alone, with only 50% (1,000) of the
number of test inputs of the baseline (2,000), finds more bugs (75
bugs) than the baseline (59 bugs), and the VIs alone (with 50% of
the test inputs) finds more bugs (81 bugs) than the baseline. We
manually verify the generated CIs and VIs: out of 75 CI bugs we
found, 57 of them are caused by valid inputs conforming to the
ground truth constraints. The rest of the CI bugs are caused by
invalid inputs generated by conforming to inaccurate constraints;
out of 81 VI bugs we found, all of them are caused by invalid inputs
violating the ground truth constraints.

Many bugs are detected by both Cls and VIs (comparing the “All”
row with the “CI” and “VI” rows in Table 4) because DocTer violates
the constraints of one parameter only when generating VIs. When
a crash is caused by one of the conforming parameters of a VI, it
is likely to be triggered by a CI also. However, both CIs and VIs
trigger bugs in unique APIs, thus both are effective in finding bugs.

Without the constraints, a baseline is much worse than the results
from any of the ratio setups. Table 4 shows that a key contribution
of our work is the ability to extract constraints from documents. One
cannot choose to focus on valid or invalid inputs without knowing
the definition of valid inputs for an APL DocTer enables this choice
since it extracts input constraints automatically.
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Impact of fuzzer’s nondeterminism: Since the fuzzing process
is non-deterministic, we investigate the impact of this nondeter-
minism to ensure the validity of our results, i.e., the reported im-
provement of DocTer is not due the randomness in the fuzzer. Our
results suggest that it is statistically significant that DocTer (which
is guided by constraints) outperforms a baseline fuzzer. Specifically,
we repeat the fuzzing experiment (with the same set of extracted
constraints) eight times. For each run, we generate 2,000 test inputs
for the baseline and 2,000 test inputs for DocTer for all APIs from
the three libraries. In each run, we use the same random seed for
both the baseline and DocTer. Different runs use different seeds.
Since it requires significant manual effort to inspect the detected
bugs from all eight runs, which are 2,301 API crashes to examine, we
use the number of buggy APIs (i.e., the number of APIs that crash)
to indicate the fuzzers’ effectiveness. Overall, among the eight runs,
DocTer on average detects 172.0 buggy APIs while the baseline on
average detects 115.6 buggy APIs. We perform the Mann-Whitney
U-test and confirm the improvement is statistically significant with
a p-value of 0.0004 and the Cohen’s d effect size of 8.96 (effect size
more than 2.0 is huge). The detailed results are in [13].

Bugs in API documents: DocTer detects three types of docu-
mentation bugs: (1) formatting bugs (e.g., indentation issue); (2)
signature-description mismatch (the description refers to param-
eters that are not specified in the API signature); and (3) unclear
constraint dependency (Section 2.4). DocTer detects 43 previously
unknown documentation bugs in 46 APIs (11 formatting bugs, 29
signature-description mismatches, 3 unclear constraint dependen-
cies). Majority (39 of 43) are fixed or confirmed after we report,
indicating that DocTer detects documentation bugs that developers
care to fix.

Bug examples: We present three bugs detected by DocTer that
the baseline fails to detect. All of them have been fixed by devel-
opers after we report them. Bug 3 is also reported as a security
vulnerability CVE-2020-15265.

Bug 1: The previously unknown bug in TensorFlow tf.nn.max_pool3d
discussed in the Introduction (Fig. 1).

Bug 2: In the API tf. image. combined_non_max_suppression, DocTer
detects a previously-unknown bug and triggers a memory overflow
by passing a large value of 311452676677046672 for the parameter
max_total_size. To successfully trigger this bug, DocTer needs to
generate correct shaped values for parameters boxes and scores.
Specifically, the parameter boxes needs to be 4-D with the size of the
last dimension equals to 4 while the parameter scores needs to be
3-D. DocTer also needs to follow the dependencies between those
two parameters — the sizes of the first two dimensions of boxes
and scores need to be the same. DocTer does this by extracting
relevant shape constraints and the dependencies correctly from the
API document. Without such knowledge, random input generation
fails to produce valid input for boxes and scores to trigger this bug.

Bug 3: DocTer triggers a segmentation fault bug in the TensorFlow
API tf.quantization.quantize_and_dequantize using an input ten-
sor of any shape with an out-of-bound axis value (i.e., the value
of axis is larger than the number of input dimensions). After we
report the bug, TensorFlow developers report this as a security
vulnerability CVE-2020-15265 to the national vulnerability data-
base (NVD). The extracted constraints enable DocTer to trigger
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this bug by ensuring the generation of many valid input values for
all parameters of this API other than the axis values. For example,
the extracted constraints contain the boolean type for parameters
narrow_range, range_given, and signed_input and the valid values
(“HALF_TO_EVEN” and “HALF_UP”) for parameter round_mode, which
help DocTer generate valid values for these parameters. In contrast,
since the baseline is unaware of these constraints, the baseline gen-
erates invalid values for these parameters, which are rejected by
TensorFlow’s input validation code, therefore avoiding exposing
this security vulnerability.

4.4 ROQ4: Valid-input generation results

Approach: As discussed in the Introduction, generating valid in-
puts is essential to exercise the core functionality of the API func-
tion. While DocTer attempts to generate CIs, these CIs may still
be invalid if the constraints extracted are incorrect or incomplete.
We study the percentage of generated Cls that are valid inputs. We
compute the ratio out of 1,000 CIs (confirming_ratio = 50%) with
the first 1,000 baseline inputs for each API function. Since manually
examining the validity of all inputs is impractical and the validity
checking of mature projects (e.g., our subjects) is generally reliable,
we make a reasonable approximation by counting the number of
passing inputs whose executions terminate normally.

Results: Fig. 3 presents the ratio of passing inputs for each sub-
ject and the average. On average, DocTer achieves 33.4% ratio of
passing inputs, which outperforms the baseline (21.5%) by generat-
ing 55.3% more passing inputs. The results suggest that DocTer is
more effective in generating valid inputs than the baseline to detect
more bugs. Although DocTer outperforms the baseline, the ratio
of passing inputs is still low (33.4%), because API documents are
often incomplete. DocTer might convince developers to write more
complete documents since documents can help them find bugs.

5 THREATS TO VALIDITY

Complex constraints: DocTer does not work with complex con-
straints that require a nested structure or indirect dependency with
the constraints of another parameter. However, these complex con-
straints are uncommon in DL libraries (appeared in only 6.4% of
our sampled parameters).

Testing Python and C++ code: Since DL libraries’ core computa-
tions are in C++, it may appear to be more reasonable to directly
test C++ code. However, since Python APIs are the most popular
for DL, testing them is testing the common use cases. DocTer tests
Python APIs which invoke the computations in C++, so DocTer
finds bugs in both Python (26 bugs) code and C++ (18 bugs) code.
Manual annotations: There is a one-time cost of up to 36 man
hours of manually annotating 30% of parameters with their ACs
(Section 2.2). Since the DocTer-generated rules are applicable to
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other libraries and versions (Section 4.1), this one-time cost is rea-
sonable. Such manual annotation cost is widely accepted in other
domains (e.g., supervised learning). Moreover, to minimize biases
with the manual annotation, our process involves three co-authors.
Two authors independently annotate with 98.2% agreement. All
disagreements are resolved with a third author to reach a consensus.

6 RELATED WORK

DocTer is the first technique to extract DL-specific constraints from
API documentation, and the first DL library testing technique that
is guided by such input-constraints.

Constraint extraction: Existing constraint-extraction techniques
are insufficient for extracting DL-specific constraints [7, 16, 31, 46,
52, 56, 60], because they miss most of the DL-specific constraints,
cannot analyze across Python and C++ code, or requires formal
specifications. Many existing techniques [16, 22, 46, 52, 53] use a
handful of manually-designed rules to extract constraints. Instead,
DocTer uses subtree matching to automatically construct rules to
extract constraints.

Analyzing software text to detect bugs: Prior work leverages
documents [31] and comments [44-46, 60] to detect inconsistency
bugs between code and its specifications. Some prior work trans-
lates software specifications into assertions [30] and oracles [22, 34].
Different from these techniques, DocTer uses frequent subtree min-
ing and association rule learning to extract constraints from API
documents to guide input generation for testing DL libraries.

Testing DL libraries and fuzzing: The constraints extracted may
be used to improve existing testing techniques. The DL library test-
ing techniques focus on addressing the test oracle challenge, by
using differential testing [18, 24, 41, 42, 49, 51] or oracle approx-
imation [35, 59]. DocTer uses crashes instead and addresses the
challenge of obtaining input constraints automatically.

Existing techniques are designed to detect specific types of bugs
such as shape-related (e.g., tensor shape mismatch) [18, 28], numer-
ical [18, 24] (e.g., returns NaN/Inf), decreased accuracy [18], and
performance [47]. On the other hand, DocTer finds general bugs
that lead to serious crashes.

TensorFlow developers use OSS-Fuzz [6] along with libFuzzer [5]
to test only 19 TensorFlow’s C++ API functions. It requires devel-
opers to manually encode test inputs from the byte-arrays returned
by libFuzzer. This would take a prohibitive amount of manual effort
to test the 2,415 APIs that DocTer tests.

Fuzzers [3, 5, 9] have been adopted to test non-DL libraries [29,

40]. They would not work well for DL libraries (Section 4.3). Since
Randoop [37] works only for a statically-typed language (e.g., Java),
it would fail to create valid dynamically-typed objects for Python
(the most popular language for DL [8]).
Testing DL models: Many fuzzing techniques test the robustness
of DL models instead of DL libraries [ 20, 23, 25, 36, 48, 50, 54]. DocTer
tests DL libraries since testing DL models alone is insufficient as
DL libraries contain bugs [26, 27, 41].

7 CONCLUSION

We propose DocTer, which features a novel method to derive gen-
eral rules to translate API documents to precise parameter con-
straints. We apply these rules to popular DL libraries to extract a

Danning Xie, Yitong Li, Mijung Kim, Hung Viet Pham, Lin Tan, Xiangyu Zhang, and Michael W. Godfrey

large number of DL-specific constraints. We use the constraints to
guide the input generation of DL API functions. The constraints
enable DocTer to generate valid and invalid inputs to detect more
bugs in code and documents.
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