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Abstract

Deep learning (DL) systems have been gaining popularity in critical tasks such
as credit evaluation and crime prediction. Such systems demand fairness. Recent
work shows that DL software implementations introduce variance: identical DL
training runs (i.e., identical network, data, configuration, software, and hardware)
with a fixed seed produce different models. Such variance could make DL models
and networks violate fairness compliance laws, resulting in negative social impact.
In this paper, we conduct the first empirical study to quantify the impact of software
implementation on the fairness and its variance of DL systems. Our study of 22
mitigation techniques and five baselines reveals up to 12.6% fairness variance
across identical training runs with identical seeds. In addition, most debiasing
algorithms have a negative impact on the model such as reducing model accuracy,
increasing fairness variance, or increasing accuracy variance. Our literature survey
shows that while fairness is gaining popularity in artificial intelligence (AI) related
conferences, only 34.4% of the papers use multiple identical training runs to evaluate
their approach, raising concerns about their results’ validity. We call for better
fairness evaluation and testing protocols to improve fairness and fairness variance
of DL systems as well as DL research validity and reproducibility at large.

1 Introduction

DL systems, which consist of DL models and DL software (for example libraries such as Tensor-
Flow) [71], are widely used; and enrusing their fairness is of paramount importance [47, 59, 97, 98].
Biases in DL systems have been identified as a major concern for civil rights by the U.S. govern-
ment [27]. Yet, fairness testing for DL systems is still an open challenge.

Although the DL community is aware of the nondeterminism caused by using different random
seeds [72, 90] , such algorithmic factors are not the sole source of DL nondeterminism. Even with the
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same seed, e.g., the same initial weights, DL systems are nondeterministic, i.e., multiple training runs
with the same network configuration, the same dataset, and the same seed, referred to as fixed-seed
identical training runs (FIT runs), produce different models with different accuracies [71]. Such
nondeterminism is caused by software implementation, e.g., software parallelism and floating-point
computation of DL software (details in Appendix E.1).

Our previous work [71] shows that software implementation alone causes models’ accuracies to vary
by up to 2.9%, and most (83.8%) of the DL researchers and practitioners surveyed are unaware or
unsure about the nondeterminism caused by software implementation. The small portion that is
aware of such implemental variance underestimates it. The survey participants are researchers and
practitioners with DL experience from universities and AI companies including Google, NVIDIA,
Microsoft, and Facebook. These results suggest that even with fixed-seed identical training runs, one
may still need to report error bars or use statistical tests.

Since the focus of the prior study [71] was on the variance of accuracy and training time only, it
is unknown how DL software implementation affects the variance of fairness. Various debiasing
algorithms [3, 47, 59, 98, 99] optimize DL models toward a specific fairness goal and it is unclear
how software implementation affects these debiasing algorithms. In addition, unlike accuracy, which
is a widely-accepted metric, dozens of fairness metrics exist [29, 35, 46, 60, 64, 99, 108]. It is unclear
if software implementation causes different levels of variance for different fairness metrics.

In this paper, we study the fairness variance caused by software implementation in training DL
networks. Overall, we found that fairness variance is large—up to 12.6% difference (27.3% versus
39.9%) across 16 fixed-seed identical training runs.

First, our results show that one training run may produce a fair model but another fixed-seed identical
training run may generate an unfair one. For example, we reproduced previous work [47] that
proposed a new network and a debiasing algorithm and we found that one FIT run generates a fair
model (i.e., a model that does not discriminate based on gender) based on the threshold (20%) for the
normalized disparate impact (DI) metric [29, 64] (DI of 17.9%). A DI of 0% is the fairest, while a
100% DI is the least fair. However, a second FIT run produces an unfair model (DI of 20.4%, above
the 20% threshold). This 20% threshold for DI has been used in a U.S. legal case to determine a
system’s fairness [9], where fairness variance could have changed the outcome.

Second, the variance of fairness imposes challenges for the valid evaluation of debiasing algorithms.
For example, our experiments show that while a debiasing algorithm [107] reduces the bias amplifica-
tion (BA) [99, 108] to 6.1% in one FIT run (compared with a BA score of 7.8% for its baseline), this
technique increases the bias amplification instead of reducing it when we check the average of 16 FIT
runs: an average BA score of 8.7% compared to an average BA score of 7.4% for the baseline. The
Mann-Whitney U-test shows the results from the 16 runs are statistically significant. The observed
variance across 16 FIT runs is solely caused by software implementation.

Finally, many mitigation techniques increase fairness variance or hurt accuracy. With Mann-Whitney
U-test and Levene’s test, our experiments show that a majority (68.0%) of the mitigation techniques
reduce biases with a cost: they increase fairness variance, increase accuracy variance, or decrease
model accuracy.

Since existing debiasing algorithms [47, 59] often do not measure the variance of biases, they could
introduce risks. When such debiasing algorithms are applied to online learning, where DL models
are trained continuously [53], the increased variance from debiasing algorithms could cause the
resulting models’ fairness to miss compliance requirements or service-level agreements. For example,
Microsoft Tay [86] became a "racist chatbot" only after a few hours of deployment.

What'’s worse, even with fairness auditing before deployment, which is still not a standard practice in
the industry [39], a model can be fair on pre-deployment data, but unfair on real-world data, due to
the gap between training/test data and real-world data. The fairness variance puts the trained models
at a greater risk of being unfair on real-world data. Theoretically, while debiasing techniques on
average improve fairness on the training set, they increase the variance of fairness on the test set [2].
In practice, such gaps are the key reason that facial recognition systems [58, 76] have a racial bias.

In addition to quantifying fairness variance, we conduct a survey of research papers from top
artificial intelligence (AI) conferences of recent years (2016—2020) to understand how researchers



handle the fairness variance caused by DL software implementations. Only 34.4% of the 32 papers
evaluating or addressing DL fairness issues use multiple training runs in their evaluation.

To the best of our knowledge, we are the first to study software implementations’ impact on DL
fairness variance. The contributions are:

* A variance study of DL fairness of 27 techniques (22 mitigation techniques and five baselines). The
experiments are performed on four popular datasets (CelebA, MS-COCO, imSitu, and CIFAR-10S)
with three DL networks (ResNet-18, ResNet-50, and NIFR [47]), measured by seven popular bias
metrics (Section 3).

— Finding 1: Across 16 FIT runs, software implementation causes a maximum difference in
bias metrics of up to 12.6% in the Demographic Parity (DP) metric and up to 11.8% in the DI
metric. Yet, most (83.8%) researchers and practitioners are unaware or unsure about the DL
nondeterminism caused by software implementation [71].

— Finding 2: The effectiveness of the debiasing algorithms can be inaccurate with only one
fixed-seed training run.

— Finding 3: Most of (15 out of 22) the mitigation techniques tested increase at least one of the
bias metrics.

— Finding 4: In a majority (68.0%, or 70) of 103 experiments, debiasing algorithms have a negative
impact on the model.

* A literature survey on the fairness research papers of top machine learning (ML), (NeurIPS/NIPS,
ICML, AAALI and FAccT), and computer vision (CVPR, ICCV, and ECCV) conferences (Section 4).

* Implications and suggestions for DL fairness researchers and practitioners (Section 5), including
one should use FIT runs (setup details in Section 2.5) with statistical tests (Appendix B.3) to
evaluate debiasing algorithms, when nondeterminism from DL software is unavoidable.

Data and code availability: Experiment data and artifact for reproducibility study are available in a
public GitHub repository'.

2 Experimental method

We investigate 27 techniques of DL fairness on four popular datasets with three networks by repro-
ducing four previous works [47, 59, 98, 99] that fit our scope.

2.1 Scope

We focus on the impact of DL software implementation on the variance of group fairness [26] in
classification tasks, where two orthogonal labels are assigned to each instance in the dataset, a task
label for training a classifier, and a protected label that should not be discriminated against (e.g.,
gender). The set of instances with the same protected label forms a protected group.

Although the protected labels are not used in the classification task, the trained models could still be
biased because the protected labels can be leaked into the prediction by proxy variables [3, 59, 98, 108].

2.2 Bias metrics

Various metrics exist to measure biases of ML algorithms. Yet, it is still an open problem to select
these metrics as an optimization goal for real-world problems [49]. Therefore, we choose three
fairness conditions and seven bias metrics derived from them. Fairness conditions include statistical
parity [26] (SP), predictive equality [19] (PE), and equality of opportunity [35] (EOp). Seven bias
metrics include demographic parity [15] (DP), normalized disparate impact [15] (DI), statistical parity
subgroup fairness [46] (SPSF), false positive subgroup fairness [46] (FPSF), equalized odds false
positive [24] (EOFP), equalized odds true positive [35] (EOTP), and bias amplification [99, 108]
(BA). For all bias metrics, 0 indicates the fairness condition is satisfied, i.e., a completely fair model,
and 1 indicates a completely unfair model. Details of these metrics are in Appendix A.

'nttps://github.com/lin-tan/fairness-variance/
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Table 1: Evaluated mitigation techniques and baselines

Task Technique Debiasing Algorithm Network Tgt
S-Base Baseline
S-RS Data Rebalancing
S-UC Uniform confusion loss
S-GR Gradient reversal

Multi-class classification S-DD1 Sum of probabilities

in CIFAR-10S [99] (1) S-DD2 Max of prob. w/ prior shift
S-DD3 Sum of prob. w/ prior shift
S-DD4 RBA debias

ResNet-18  BA

S-DI1 Domain independent, conditional
S-DI2 Domain independent, sum
C-Base Baseline
C-R1 Data rebalancing, M/F = 1
Multi-label classification C-R2 Data rebalancing, M/F < 2 DP

in MS-COCO [98] (2) C-R3  Data rebalancing, M/F < 3 ResNet-30' (ga+)

C-A4 Ady training at 4th conv block
C-AS Ady training at Sth conv block

I-Base Baseline
I-R1 Data rebalancing, M/F = 1
Multi-class classification I-R2 Data rebalancing, M/F < 2 ResNet-50 DP
in imSitu [98] (3) I-R3 Data rebalancing, M/F < 3 (BA*)
I-A4 Ady training at 4th conv block
I-AS Adv training at 5th conv block

Binary classification A-Base  Baseline

. A-L2 L2 penalty ResNet-18  EO
in CelebA [59] (4) AALM  FairALM

Binary classification N-Base  Baseline

in CelebA [47] (5) N-Flow  Conditional Flow NIFR bp

Per-class and overall bias: Bias calculated on each class is called per-class bias and the bias for each
model is the overall bias. For example, there are ten per-class biases in models trained on CIFAR-10
(one per class). The overall bias of the model is the average of all per-class biases.

Multi-(task)label classification: We treat each task label as an independent binary classification,
and the overall bias value of the model is the average across all labels.

2.3 Reproduced studies

We conduct a literature survey of published papers from the recent five years (2016-2020) of the top
ML (NeurIPS/NIPS, ICML, AAAI and FAccT), and computer vision (CVPR, ICCV, and ECCV)
conferences (Section 4). Out of the 32 papers relevant to the fairness of DL systems, only four [47, 59,
98, 99] have a working replication package so that we can reproduce their results. These papers study
the fairness of DL systems for the five tasks described in Table 1 (expanded details in Appendix B.1).
Overall, we replicate 27 different techniques from four state-of-the-art papers on five classification
tasks. In the next section, we introduce each technique and detail our experiments.

2.4 Techniques

Table 1 lists the 27 techniques that we reproduce for our study. Column Task lists the tasks on
which these techniques are applied. Column Technique lists the technique abbreviations we used.
Column Debiasing Algorithm lists the debiasing algorithms used for each technique. Column Network
lists the DL network used to train the models. Finally, column 7gt indicates which bias metric the
corresponding debiasing algorithm is designed to reduce.



Five techniques (S-Base, C-Base, I-Base, A-Base, and N-Base) are baselines (i.e., do not use any
debiasing algorithm), and the other 22 use debiasing algorithms. Techniques starting with “S” are
from [99]; techniques starting with “C” and “T” are from [98] trained for tasks (2) and (3) respectively;
techniques starting with “A” are from [59]; and techniques starting with “N” are from [47].

Apart from five baseline techniques, the remaining algorithms can be grouped into three categories
including data rebalancing, fairness through blindness, and fairness through awareness. Details can
be found in Appendix B.2.

Optimization target for tasks (2) and (3): The study [98] uses “bias amplification” as their opti-
mization goal. However, current literature does not use this term consistently. The original study
definition (noted as BA*) is different from the one proposed by Zhao et al. [108] (noted as BA) and
BA¥* is more analogous to the DP metric. Therefore, we denote this optimization target as DP (BA*).

2.5 Variance experiments setup

Following the prior work [71], we use FIT runs to measure the variance of trained model fairness.
For each technique, all the training runs are executed with the same training data (also the original
training/test split), hyper-parameters, and optimizers. With the fixed seed, all training runs also have
the same order of data and the same initial weights. We perform 16 FIT runs with the same random
seed for each technique, and then evaluate the fairness of the trained models using seven bias metrics.

Since there is no theoretical bound on the variance caused by DL software implementations, and
each set of 16 FIT runs can only be viewed as a sample of the real distribution, we use statistical
tests, including Mann-Whitney U-test, Cohen’s d value, and Levene’s test to ensure the statistical
significance of our findings. Details of these statistical tests can be found in Appendix B.3.

3 Findings

We evaluate the fairness variance of 27 techniques (22 mitigation and five baseline) using seven bias
metrics. These are 189 experiments (technique-metric pairs). To evaluate the impact of DL software
implementation on different bias metrics, we perform 16 FIT runs for each of the 27 techniques,
which produce 432 models. Each experiment generates one bias value per run (i.e., 16 bias values per
experiment), which is a total of 3,024 bias values. The training time of the 189 experiments is 7,117
hours (about 9.8 months). Details of the hardware and software environment are in Appendix B.4.

To measure the difference across multiple FIT runs, we use two metrics: (1) the difference in percentage
point as MaxDiff (maximum difference) and (2) the standard deviation in percentage point as STDEV.
MaxDiff is the range of the bias values from a set of 16 FIT runs. For example, the MaxDIiff of 16
runs, whose bias values are between 20.0%—-30.0% inclusive, is 10.0%.

3.1 RQI1: How much variance of fairness does DL software implementation introduce?

Table 2 shows the fairness variance introduced by software implementation. Row Technigue lists the
techniques we focus on for this RQ. Row Metric shows the bias metrics used for evaluation. Row
Overall shows the bias for the overall technique. Row Per-class shows the results for the class within
each technique that has the most variance.

Table 2 shows that software implementation impacts all bias metrics. For example, we observed a
maximum difference in DP with technique A-L2 of 12.6% (27.3%—39.9%), i.e., the most unfair model
has 12.6% more gender bias measured by DP than the fairest model. Also, in technique S-GR, we
observed a maximum difference in DI of 11.8% (21.3%-33.1%). Software implementation solely
causes such variance, and thus cannot be eliminated by fixing the random seeds.

The per-class variance of fairness and single class fairness failure could be problematic if a class
is privileged. For example, in a DL model for loan applications, the approval is the privileged class. A
difference of 100% for DI means that in one run, the model is completely fair for all races (protected
groups) to get approval. In another run, none of the applicants of a particular race gets approved,
which is 100% bias against this minority group, even if the overall fairness variance is small.



Table 2: Maximum difference (MaxDiff) and standard deviation (STDEV) on the seven bias metrics
for S-GR, A-L2, C-Base, and C-AS. All numbers are in percentage points.

Lo B Lom & A
n n = K n o B E
9 — o O < [ o O
Metric 8 B 3 BE @ 8 & 2 B 5 & 2 3 &
Technique S-GR A-L2

MaxDiff 1.7 11.8 09 05 12 72 42 126 80 6.0 16 72 72 11.6
STDEV 05 35 03 02 04 20 13 29 24 14 05 21 21 31
Per-class (%) MaxDiff 73 50.1 3.6 25 57346193 126 31.1 6.0 3.5 143 143 159
STDEV 1.9 127 1.0 07 14 81 50 29 88 14 12 48 48 42
Technique C-Base C-AS
MaxDiff <0.1 2.6 <0.1 <0.1 <0.1 19 14 0.1 24 <0.1 <0.1 <0.1 2.6 3.1
STDEV <0.1 0.8 <0.1 <0.1 <0.1 06 04 <0.1 0.6 <0.1 <0.1 <0.1 0.6 0.8
MaxDiff 1.6 100.0 0.8 0.5 1.1 33.3 33.3 37 100.0 1.8 1.0 2.1 439 654

Per-class (%)
STDEV 05 389 03 02 04117 8.1 09 282 04 0.2 05108 21.8

Overall (%)

Overall (%)

Finding 1: Across 16 FIT runs, software implementation causes a maximum difference of up to
12.6% in the DP bias metric, and up to 11.8% in the DI metric. A complete single-class fairness
failure is possible, where one run produces a model with 0% bias while another with 100% bias.

Additional results of this RQ can be found in Appendix D.1. We discuss the implications of these
results for researchers and practitioners in Section 5.

3.2 RQ2: How does software implementation affect debiasing algorithms?

To quantify the impact of software implementation on debiasing algorithms, we use the Mann-Whitney
U-test and Levene’s test to check whether the average bias value and the variance of bias value
after debiasing are statistically different from those of its baseline respectively. We normalize each
technique’s bias values before Levene’s test to eliminate the impact of the average value [5, 28, 77, 91].

For 22.1% (34 of 154) of the experiments (the comparison of 22 mitigation techniques with their
baseline techniques evaluated using seven bias metrics), the mitigation techniques’ bias values overlap
with those of the baselines. For example, the range of EOTP bias values for the A-ALM debiasing is
19.6%—24.3%, while its baseline’s (A-Base) range is 22.6%—24.7%.

For 9.1% (14 of 154) of the experiments, the mitigation technique’s average bias metric is higher than
the baseline, yet a single run’s bias value is lower than a single run of the baseline. Thus, using a
single run, one may incorrectly conclude that the mitigation technique is fairer, but on average, the
mitigation technique is less fair. For example, S-Base (7.4% BA) is fairer than S-GR (8.7% BA) on
average of 16 FIT runs (p = 0.0011 in U-test). However, one may obtain a fairer model with S-GR
from one training run (e.g., BA of 6.1% for S-GR vs. 7.8% for S-Base). Therefore, DL fairness
researchers should perform multiple runs and check statistical tests to ensure the effectiveness and
validity of the debiasing algorithms. Our Levene’s test results also confirm that the variance of bias
values of S-GR is statistically higher than that of S-Base (p = 0.0005).

Finding 2: The effectiveness of the debiasing algorithms can be inaccurate with only one fixed-seed
training run.

Since there is no consensus on which bias metric to use [19, 49], and some bias constraints cannot be
satisfied simultaneously [50], we study if and how a debiasing algorithm reduces biases measured by
one bias metric but increases biases measured by a different metric.

For the 154 experiments above, we conduct a series of Mann-Whitney U-tests on the bias values
obtained. For each test that exhibits a statistically significant difference, we compute effect size using
Cohen’s d value between the two sets of bias values (baseline and mitigation) involved. The d values
tell us whether each mitigation technique has a meaningful effect or not. Raw values before and after
mitigation are available in the supplementary material.



Il Huge - W Large - Small - Small + Large + I Huge +

Il Very Large - Medium - NS Medium + [ Very Large +
oP - I N I I I I N B N
DI - Il
spsr -l Il
FpsF - I N I I I I O Il
EOFP - [ ] ]
Qo [ | | [ [ | [ [ | [ [ [ I [ | .
oA - I N R R N O N O N O O -
%] Q o — o~ m < — o~ — o~ m < n — o~ m <t n o~ = =
x 5 6 0 90909355 & s < F ez << g7 I3
Y Y S S G R e S ST
n o n un n < =

Figure 1: Effect size of bias changes between before and after mitigation application. Blue is a bias
decrease (good), orange an increase (bad), and grey not statistically significant (NS).

Figure 1 shows the effect sizes of bias value between 22 mitigation techniques and their corresponding
baselines. The x-axis and y-axis labels are the abbreviations for the techniques and bias metrics. If a
mitigation technique statistically reduces the bias value on a bias metric (with respect to its baseline),
the corresponding block is blue. Oppositely, the block is orange. The block is grey for mitigation
techniques that do not induce a statistically significant difference from its baseline. The different
shades of color show the standard grouping and interpretation of the effect size, such as “Huge” and
“Very large”. Figure 1’s legend shows the color details. Blocks with a “*” are the bias metric that the
mitigation technique is designed to reduce in the original research (e.g., BA for S-DI2 and DP for
N-Flow). An “0” is a reminder that the optimization target of the mitigation techniques that begin
with “C” and “T” is better captured by the DP metric (BA* in the original research, see Section 2.4).

Figure 1 shows that most (96 out of 103) mitigation techniques that induce a statistically significant
improvement on the bias value have a huge effect (deep blue block). However, the vast majority
(68.2%, 15 of 22) of mitigation techniques fail to reduce biases measured by all seven bias metrics.
For example, A-L2 and A-ALM aim to improve bias metric EOFP. Although they succeeded, they
also increase biases for BA.

This experiment shows that for most of the mitigation techniques, bias metrics may not be compat-
ible with each other. Practitioners applying mitigation techniques must understand the techniques’
optimization goal and use statistical tests.

Finding 3: Most of (15 out of 22) the mitigation techniques tested increase at least one of the bias
metrics: all 15 of them fail to improve the newly introduced bias amplification metric.

3.3 RQ3: How does software implementation affect the cost of mitigation techniques?

The most known cost of mitigation techniques is the trade-off between fairness and model accuracy [25,
100]. However, with the software implementation taken into consideration, mitigation techniques
could introduce new costs including more variance of model accuracy and fairness.

There are three dimensions to the cost of mitigation techniques: lower accuracy, higher accuracy
variance, and higher fairness variance. We excluded the techniques that increase bias for all metrics
compared to its baseline. For accuracy, we use U-test to check if the reduction is statistically significant.
For the variance of both model accuracy and model bias, we use Levene’s test.

Figure 2 shows the cost of mitigation techniques on fairness variance (Levene’s test). Labels on x-axis
and y-axis are the same as those in Figure 1. Blue and orange blocks respectively indicate lower and
higher variance than the baseline. Grey blocks mean no statistically significant change in the variance
of bias values, and “X” indicates mitigation technique fails to improve the bias metric tested. For
example, the orange [N-Flow, DP] block shows that N-Flow generates models whose variance of DP
bias values is higher than that of the baseline, and the comparison results are statistically significant.

To study the relationship among the three types of cost, we further examine the 154 experiments on
mitigation techniques. Most of the experiments (103) reduce biases. The majority of them (70 out of
103) achieve bias reduction with a cost in one or more of the three dimensions. Eight experiments
come with all three costs: lower accuracy, higher accuracy variance, and higher fairness variance, and
are from A-L2 and A-ALM. However, there is no correlation between accuracy variance and bias
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Figure 2: Cost of bias mitigation techniques on the variance of bias metrics after normalization
(Levene’s tests). Blue denotes a decrease in variance (good), orange an increase in variance (bad),
and grey not statistically significant (NS).

variance. Interestingly, mitigation technique S-DD4 (RBA [108] debiasing) successfully reduces all
of the seven bias metrics without sacrificing model accuracy or introducing more variance.

DL researchers and practitioners might overlook the cost of fairness variance when optimizing a model
toward a particular fairness goal if they are unaware of the variance caused by DL software [71].

Finding 4: Out of 154 experiments with debiasing algorithms, 103 experiments show the applied
algorithms reduce the bias values. In a majority (68.0%, or 70) of these 103 experiments, the
debiasing algorithms have a negative impact on the model (36 increase the variance of bias value,
54 decrease the accuracy, and 15 increase the variance of accuracy, not exclusively).

4 Literature survey

We conduct a literature survey from the top ML conferences to evaluate the awareness of fairness
variance of DL systems.

Paper selection criteria: We extract papers from the last five years (2016-2020) of the top ML
(NeurIPS/NIPS, ICML, and AAAI), and computer vision (CVPR, ICCV, and ECCV) conferences.

We also include FAccT and its predecessor FAT/ML workshop, an interdisciplinary venue of ML and
fairness.

We only consider papers that contain fairness-related keywords (fair, bias, discriminate, aware, balance,
disparity, opportunity, audit, gender, stereotype, race, amplification, ethic) in their titles using the
Snowball Stemmer [73]. Then, we read the abstract and the paper and keep relevant papers involving

the fairness of a classification task. Out of 24,186 papers, we extracted 274 papers studying fairness,
including 32 dedicated to DL systems’ fairness.

Paper survey results: While still taking only a small portion of accepted papers, the number of
papers related to fairness has been increasing over the last five years. Researchers need to be aware of
DL models’ fairness variance caused by DL software implementations.

Finding 5: DL fairness is gaining more attention in the research community since 2017. The
number of papers related to DL fairness in top ML and computer vision conferences has increased
750% since 2017 (two papers in 2017, 17 papers in 2020).

To understand whether researchers are aware of the fairness variance of DL training, we manually
check whether the papers on the fairness of DL systems use multiple identical runs in their evaluation.

Finding 6: Of 32 papers relevant to the fairness of DL systems, only 34.4% (11 out of 32) of them
use multiple identical runs to evaluate their proposed approaches.

A complete list of 32 papers surveyed in this section can be found in Appendix D.3.



5 Implications and suggestions

Research validity: When comparing the results of a proposed method (e.g., a new debiasing algorithm
or a new DL network), it is necessary to run statistical tests to confirm any improvements.

Testing for fairness in online learning: When testing an online-learning software system for fairness
(where models are continuously updated), such as identity-inference-based advertisement targeting
systems [7, 70, 101], multiple identical runs are necessary, and statistical test results should be reported
to measure the variance of bias values caused by the DL software implementation.

Research reproducibility: Given the increasing number of papers on fairness in Al [6, 32, 48, 49,
63, 65, 79, 105], software engineering [10, 14, 16, 94], and other conferences [2, 18, 52], reproduci-
bility becomes increasingly important [4, 78].  Following prior efforts [43, 56, 72] that improve
the reproducibility of DL methods, researchers may want to develop such guidance for fairness,
e.g., considering multiple bias metrics, as variance levels are different for different bias metrics.
Proper documentation of the software and hardware development environment and configuration
parameters would also facilitate the reproduction of research results. As shown in Section 3.1, software
implementation alone causes software fairness to vary by up to 12.6%, which is much higher than the
2.9% accuracy variance discovered by previous work [71].

Balancing hidden costs of debiasing: Since variance is a hidden cost for debiasing algorithms and
could harm the fairness performance of online learning algorithms (Section 3.3), there is usually a
trade-off between model accuracy, fairness, and variance. It is important that DL researchers and
practitioners understand debiasing algorithms’ costs, especially variance, and strike a balance among
them.

Deterministic DL software for model tuning and debugging: Building deterministic DL libraries
could be a research topic to improve model tuning and the debugging of DL systems. For a partial
solution, one could use the deterministic mode (Appendix E.1) when it is provided by DL libraries.

Maximizing fairness through multiple runs: To take advantage of software variance, practitioners
could train multiple times to select the fairest model. In this case, proper testing of the DL model is
recommended to ensure the satisfaction of regulatory requirements, considering the pre-deployment
and real-world data gap.

Selection of bias metrics: In most cases, a debiasing algorithm does not reduce bias on all targets
(Section 3.2), and multiple fairness constraints could contradict each other [49, 50]. Therefore,
developers and testers for DL systems should carefully select fairness requirements. Furthermore,
optimizing on one bias metric may not be enough as it might make the model less fair on other metrics.
DL researchers should consider the task and use the appropriate bias metric. In the strictest sense,
one may need to use multiple bias metrics to ensure fairness across multiple dimensions.

6 Limitations and discussions

Limitation: It is known that gender bias exists in language embeddings [108]. We only study image
classification tasks because they are a better fit for our scope of group fairness and bias metrics on
image classification tasks are better defined. Also, we only empirically obtain the upper bound of
fairness variance and did not include any theoretical proof. We leave both limitations as future work.

All 27 techniques reproduced are implemented in PyTorch instead of other popular DL frameworks
such as TensorFlow and MXNet. We decide to reuse the implementation from the original authors as it
is error-prone to reimplement all the techniques in another framework. Since modern DL frameworks
share many implementation concepts (e.g., parallelism and auto-tuning, see Appendix E.1) as well
as underlying libraries such as cuDNN and CUDA, they are likely to suffer from the same variance
problem.

Deterministic mode of DL frameworks: A deterministic mode has been introduced to modern DL
frameworks such as PyTorch and TensorFlow to tackle the nondeterminism from software imple-
mentations. However, at the time of writing, the deterministic mode cannot eliminate the fairness
variance described in this paper (See Appendix E.2 for details). In addition, as the survey in our
prior work [71] shows, over 80% of the respondents are unaware or unsure about the nondeterminism



caused by software implementations. DL researchers and practitioners would not use the deterministic
mode if they are unaware of the fairness variance caused by DL software.

Negative social impact: With FIT runs to estimate the fairness variance of neural networks, our
proposed approach could increase the power consumption and CO4 emissions of DL model training.
However, such additional evaluation is required for experimental validity and fairness compliance. In
other words, the negative social impact of not performing multiple training runs includes dispropor-
tionally hurting certain races or genders. Our paper raises awareness of this issue and calls for new
solutions to strike a balance. We are working on theoretically quantifying the upper bound of fairness
variance and cheaper ways to estimate/bound variance.

7 Related work

Anecdotal evidence in fairness variance: Agrawal et al. [2] apply debiasing on the random forest
classifiers and test for fairness variance with different random seeds and data splits for cross-validation.
They find that debiasing algorithms could increase the fairness variance introduced by algorithmic
nondeterminism. Different from their work, we focus on DL models and variance caused by DL
software implementations, which cannot be removed by fixing random seeds.

Friedler et al. [30] investigate the stability of debiasing algorithms by measuring the standard deviation
of fairness metrics over different dataset splits. However, they overlook the nondeterminism from the
DL software implementations and only perform one training run for each split.

Fairness studies of ML systems: The fairness of ML and DL systems have gained attention and
several studies pointed out fairness issues in datasets (e.g., CelebA [81], GitHub [41], and StackOver-
flow [61]) and major ML systems such as language models [13, 92, 95], face recognition [89], and
sentiment analysis [88]. Such studies demonstrate that ML systems can be unfair and highlight the
importance of fairness. Yet to the best of our knowledge, we are the first to study the impact of DL
software implementation on fairness.

Bias metrics: Many metrics [6, 15, 19, 24,26, 31, 35, 44, 46, 67, 82, 102, 103] have been proposed to
measure biases of ML systems. Most of them can be applied to DL systems too. We evaluate fairness
using seven of the most popular metrics and show that they are all impacted by DL implementation
variance. None of the existing metrics considers such variance in their definition.

Debiasing algorithms: To mitigate biases of DL systems, many debiasing algorithms or bias resistant
networks have been proposed and evaluated [10, 15, 16, 17, 45, 47, 54, 59, 66, 83, 98, 99, 106]. These
techniques are important to improve the fairness of DL systems but their evaluation can be affected by
fairness variance introduced by DL software implementations. Our study shows that the impact of
some debiasing algorithms is not consistent during different identical runs.

8 Conclusion

This work studies the fairness variance of DL systems caused by software implementations. We
examine five tasks on three networks and four datasets using 22 mitigation techniques. We find up to
12.6% difference in bias values across FIT runs and 68.0% of the experiments reduce model biases
with cost in fairness variance, accuracy, or accuracy variance. Our paper survey shows that only
34.4% of the papers use multiple identical runs to evaluate the proposed approaches. We call for the
awareness of the fairness variance of DL systems caused by software implementations.
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A Bias Metrics

A.1 Symbols

For a binary classification task, we abbreviate the content in the confusion matrix as TP, FN, TN,
and F'P. Positive (P) instances include both T'P and F'N, while negative (/V) instances include both
TN and F'P.

Prediction positive rate (P P R), true positive rate (T' P R), and false positive rate (F'P R) are derived
from the confusion matrix and describe a binary classifier. RIRISHISTatioIoNifistancesiclassificd

T PR is the ratio of T'P to the positive
instances (%). F PR is the ratio of F'P to the negative instances (%).

Each protected group g takes Pr[g| (Plii%g) of the dataset. We note the confusion matrix and the

derived metrics for group g by adding an annotation to the terms (e.g., T'P;, F'P,, P;, N,, PPR,,
TPRy, and FPR,).

A.2 Selected Bias Metrics
Condition 1: Statistical Parity (SP) [26]: PPRy = PPR;
* Demographic Parity [15]: DP = |PPRy — PPR;|
— PP PP
* Normalized Disparate Impact [15]: DI = 1 — min( 2 Pg? ' P Pﬁ(l))

* Statistical Parity Subgroup Fairness [46]: SPSF =} _ Pr[g] X [PPR — PPRy|

Condition 2: Predictive Equality (PE) [19]: FPRy = FPR;

* False Positive Subgroup Fairness [46]: FPSF = 3 . Pr[g] x [FPR — FPR,|
 Equalized Odds (False Positive) [24]: EOFP = |F PRy — FPR;|

Condition 3: Equality of Opportunity (EOp) [35]: TPRy = T PR,
* Equalized Odds (True Positive) [35]: EOTP = [TPRy — TPR;|
The last bias metric, bias amplification [99, 108] does not fit any existing fairness conditions.

TP, + FP; P P,
« BA = ﬁ_% , wheregzargr;axﬁg

B Details of Reproduced Studies

B.1 Tasks

(1) Multi-class image classification in CIFAR-10S [99]: This study classifies images from the
CIFAR-10S dataset into ten task labels. CIFAR-10S is designed to study fairness issues and debiasing
algorithms. Its protected label is whether the images are color or grayscale. Nine different debiasing
algorithms (and a baseline) have been evaluated with this dataset using the popular ResNet-18
network [36].

License: Either CIFAR-10 [51] or CIFAR-10S [99] datasets did not specify the type of license used.

(2) Multi-label classification in MS-COCO [98]: The MS-COCO dataset [55] contains images with
several objects (i.e., several labels in each image). In their fairness study, Wang et al. [98] find that
this dataset can leak gender information (i.e., gender is the protected label) and study five different
debiasing algorithms (plus one baseline) on ResNet-50 [36] models trained on MS-COCO.

License: The annotations [20] released under Creative Commons Attribution 4.0 License, and the
images from MS-COCO datasets must abide by Flicker Terms of Use [93].
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(3) Multi-class classification in imSitu [98]: This task is the second task used for benchmarking
debiasing algorithms in previous work [98]. The task labels in imSitu [104] are actions (e.g., cooking),
and the protected label is gender. Wang et al. [98] compare the same five debiasing algorithms as for
task (2) with the same network.

License: The images of the imSitu dataset is gathered from Google Image Search [104], and the
annotations are labeled by Amazon Mechanical Turk [104]. The authors did not specify the type of
license used.

(4) Binary classification in CelebA [59]: Lokhande et al. [59] propose a new debiasing algorithm
(FairALM) and compare it to a baseline and another debiasing algorithm on a ResNet-18 model
trained on the CelebA dataset [57]. CelebA contains faces of celebrities with several binary task
labels and two protected labels (gender and youth). Task (4) uses the task label “attractive” and the
protected label “gender”.

License: The CelebA dataset is available for non-commercial research purposes only [57].

(5) Binary classification in CelebA with NIFR network [47]: For the final task, we reproduced
another work [47] that uses the CelebA dataset. Key differences with task (4) are the use of NIFR
network, different debiasing algorithms, and a different task label (“smile” instead of “attractive”).

B.2 Debiasing Algorithms

Data rebalancing rebalances the training data to either be perfectly balanced (techniques S-RS, C-R1,
I-R1) or within a certain ratio between the number of instances from each protected group (techniques
C-R2, C-R3, I-R2, I-R3).

Fairness through blindness removes the protected label and creates an intermediate representation
for each instance. Then a downstream classifier is trained to predict the task label on this representation.
Adversarial training is the most popular debiasing algorithm within such category (techniques S-UC,
S-GR, C-A4, C-AS5, I-A4, I-A5). Recently, invertible neural networks [42] are also used to remove
sensitive information (technique N-Flow).

Fairness through awareness consists of two categories: (1) the debiasing algorithm uses a loss
function on protected labels to penalize the classifier’s biases (techniques A-L2, A-ALM); and (2) the
debiasing algorithm involves a fine-grained classifier that predicts the task label and the protected label
of each instance. Before the final prediction on the task label, the predicted protected label is used to
remove possible biases in the final prediction (techniques S-DD1, S-DD2, S-DD3, S-DD4, S-DI1,
S-DI2). One concern of this debiasing algorithm is the waste of classification power to discriminate
the boundaries between each protected group [99].

B.3 Statistical Tests

Mann-Whitney U-test: One-sided U-test is used in this paper to compare the mean of two sample
distributions. U-test is chosen instead of T-test because it does not require normality in the sample
distribution. For two experiments A and B, the null hypothesis is that the mean bias value of 16 runs
in experiment A is similar to that in experiment B. We choose a significance level of 5%, i.e., if we
get a p-value < 0.05, we are 95% confident that experiment A has a statistically different mean bias
value than experiment B.

Cohen’s d: In addition to the p-value from U-test, we use Cohen’s d to quantify the impact of
debiasing algorithms. We use the empirical interpretation of effect size [85] to represent Cohen’s d
values (e.g., Cohen’s d of 0.8 represents a “large” impact while a 2.0 represents a “huge” impact).

Levene’s test: We use Levene’s test to compare the magnitude of the variance between experiment
runs. For two experiments A and B, the null hypothesis is that the variance of the bias value from 16
runs of experiment A is similar to that of experiment B. The significance level is also 5%.

B.4 Hardware and Software

We conduct our experiments on a server with two Xeon Gold 5120 CPUs (56 cores in total) and 384
GB of memory. We use an RTX 2080Ti graphics card with 11GB of memory for each training run.
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Table 3: Confusion matrix and bias metric values for a biased image classifier. “Sport” and “Cook”
are the number of instances of real labels of “Sport" and “Cook” activity in the image. “Pred-Sport”
and “Pred-Cook” are the number of instances of the predicted labels. "Male" and "Female" are the
protected groups.

Female (200) Male (200) Total

Pred-Sport Pred-Cook Pred-Sport Pred-Cook
Sport 80 20 60 40 200
Cook 10 90 70 30 200
Total 90 110 130 70 400

Metric DP DI SPSF FPSF EOFP EOTP BA
Value (%) 20.0 336 10.0 20.0 40.0 40.0 10.1

We use CUDA 10.0 and cuDNN 7.6, TensorFlow 1.15, and PyTorch 1.7 DL libraries. Each run is
isolated using Docker.

C Bias Metrics Running Example

We use the running example in Table 3 to explain SPSF, DP, and BA in detail. Table 3 shows the
prediction results from a biased binary classifier and its bias values using the seven metrics. The
classifier assigns labels “Sport” and “Cook” with respect to the activity in the image, which is a
common classification task with DL [37]. For example, for the 200 images containing a woman, 80
images doing sport are classified as “Sport”, while another 20 of them are misclassified as “Cook”. The
protected label is gender, i.e., whether the person inside the image is “Male” or “Female” (nonbinary
genders exist but are not considered in this example). The ground-truth labels of the dataset are
balanced, i.e., 100 instances for each task label in each protected group. Bias metrics are calculated
on both task labels, and the average of the two is the bias of the model.

We choose to balance the protected group in the sample dataset because we would like to stress that
even with a balanced dataset, the trained model could still be biased. With unbalanced groups, the
bias could be even bigger [99, 108], and the biases from the best scenario are already worrisome.

(1) Demographic Parity (DP) [15]: DP is measured by the difference of the P PR between different
protected classes. Without losing generality, we consider “Sport” the positive class in the binary
classifier. Following the DP formula in Appendix A.2, for the “Sport” class, the PP Rtemale 1S
45.0% (90 / 200), and PP R a1e is 65.0% (130 / 200), a difference of 20.0%, i.e., the male group
is 20.0% more likely to be labeled as “Sport”. The DP bias metric for the “Sport” class is 20.0%
(110/200 — 70/200). Similarly, the DP for the “Cook™ class is 20.0%. Therefore, the model has a
DP bias of 20.0%, which is the average of the two per-class biases.

(2) Disparate Impact (DI, DI) [15]: DI measures the ratio of P PR between protected groups. The
less protected groups are discriminated against, the closer DI gets to 1. In this paper, we measure
Normalized DI (DI) as the difference between 1 and DI (DI = 1—DI) to be consistent with other bias
metrics (i.e., the model is completely fair when DI = 0, and unfair when DI = 1).

(3) Statistical Parity Subgroup Fairness (SPSF) [46]: SPSF is also known as the equality of
classification rates. The goal of SPSF is that all protected classes have the same P PR as the whole
dataset.

PPR is 55.0% (220 / 400) for the dataset. PP Ry, ,e is 65.0% (130 /200), 10.0% more likely to be
predicted as positive. PP Rgemale is 45.0% (90 /200), 10.0% less likely to be predicted positive. The
difference in PP R for each group is both 10.0%, and each group makes up 50.0% of the instances
(Pr[male] and Pr[female]). Therefore, the SPSF bias for the “Sport” class is 10.0%. Similarly, the
SPSF bias for the “Cook™ class is also 10.0%. The overall SPSF bias is the weighted average of the
two: 10.0%.
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(3) False Positive Subgroup Fairness: (FPSF) [46] Similar to SPSF, FPSF requires each protected
class to have the same false positive rate as the whole dataset. Compared with SPSF, this metric
considers the accuracy of the classifier. It should be used with SPSF together to measure the fairness
of the classifier.

(5) and (6) Equalized Odds (EO) [24, 35]: Equalized Odds was originally introduced in recidivism
prediction. There are two variants of this metric. One requires the same 7'P IR, and the other requires
the same F' PR across all protected classes. We name these two variants as Equalized Odds - True
Positive (EOTP) and Equalized Odds - False Positive (EOFP) by their definition.

The female group has a T'PR of 80% (80 / (80 + 20)), and the male group has a TP R of 60% (60
/ (60 + 40)). The difference between TP Riomale and T' PR a1c is 20%, which is a EOTP of 0.2.
Similarly, the EOTP for “Cook” class is 0.6. And the classifier has a EOTP of 0.4.

Similar to the process in EOTP, the classifier has a EOFP of 0.4 on this dataset.

(7) Bias Amplification (BA) [99, 108]: Unlike the six bias metrics above, which only look at the
outcome of a classifier, bias amplification separates the bias in the dataset and the bias caused by the
algorithm. It assumes a pre-existing skew inside the dataset (e.g., gender bias), and measures how
much the algorithm amplifies such skew.

The “Sport” class has 100 male (% = 50.0%) and 100 female (Pfel‘;:'f“e = 50.0%) instances. In

- T Premate+F Premate . 80410 __
the prediction result, there are 90 female (===l I pomale = 7 TR0 = 40.9%) and 130 male
(PPt ibmate — SOT0 — 59.1%) instances. The prediction result for the “Sport” class is 9.1%

more biased towards the male group than the dataset, and the model amplifies bias towards the male
group by 9.1%, which is a BA of 9.1% for the “Sport” class.

Similarly, for the “Cook” class, the model amplifies bias toward the female group by 11.1% (BA of
11.1%). Therefore, the classifier has a BA of 10.1% (average of 9.1% and 11.1%), i.e., amplifies bias
by 10.1%.

D Additional Results

D.1 RQl

Table 4 shows the aggregated results for all of the 27 techniques evaluated with DI metric. This table,
together with Table 2, shows that fairness variance is not tied to a particular debiasing algorithm nor a
particular bias metric. A per-class absolute maximum difference of 100% in DI metric occurred for
multiple techniques (C-Base, C-R3, C-A4, and C-AS).

D.2 RQ3

Figure 3 shows the cost of mitigation techniques on the model accuracy and the variance of accuracy.
Mann-Whitney U-test confirms the cost in model accuracy and Levene’s test confirms the cost in
accuracy variance. The upper subgraph is the cost on model accuracy, and the lower subgraph is
the cost on variance of model accuracy. A blue block indicates an increase in model accuracy or
a decrease in the variance of model accuracy. Oppositely, an orange block is used. A grey block
indicates no statistically significant change. An “X” inside the block indicates that the mitigation
technique fails to improve any of the bias metrics tested.

D.3 Literature Survey

Table 5 shows the detailed results of the 32 papers related to DL fairness in our literature survey.
Column “Paper” cites the each paper, and column “Use multiple runs” indicates whether one paper
uses multiple training runs to ensure validity or not. The other three columns indicate whether a
paper reports the average value (“Mean”), standard deviation (“STDEV™), and range (“Range”). A
“Y” means “yes”, a “N” means “no”, and a “-” indicates the column is not applicable for the paper.

From the table, only 11 out of 32 papers use multiple training runs to evaluate the proposed approaches.
All of the papers that use multiple runs report mean values but some of them only report the standard
deviation instead of range. We believe it is important to report all three statistical values as the range
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Table 4: Maximum differences of DI values for all techniques

T . Overall (%) Per-class (%)
echnique
MaxDiff STDEV MaxDiff STDEV
S-Base 2.0 0.5 7.0 1.9
S-RS 2.0 0.5 5.8 1.2
S-UC 5.1 1.7 18.4 4.6
S-GR 11.8 3.5 50.1 12.7
S-DD1 2.3 0.6 5.4 1.5
S-DD2 1.5 0.4 53 1.7
S-DD3 1.4 0.4 5.7 1.7
S-DD4 1.0 0.2 8.0 1.8
S-DI1 1.8 0.5 5.0 1.4
S-DI2 1.1 0.3 4.2 1.0
C-Base 2.6 0.8 100.0 38.9
C-R1 1.0 0.3 50.0 19.5
C-R2 2.8 0.8 62.5 21.1
C-R3 3.7 1.1 100.0 29.9
C-A4 3.7 0.8 100.0 22.8
C-A5 2.4 0.6 100.0 28.2
I-Base 0.8 0.2 58.9 22.6
I-R1 0.9 0.3 50.0 14.8
I-R2 0.7 0.2 30.0 8.1
1I-R3 1.2 0.4 44.7 13.4
1-A4 0.8 0.2 40.0 14.5
1-AS 1.0 0.3 50.0 23.2
A-Base 1.7 0.5 5.8 1.8
A-L2 8.0 24 31.1 8.8
A-ALM 4.5 1.2 9.3 3.0
N-Base 0.0 0.0 0.0 0.0
N-Flow 2.5 0.6 3.6 0.9
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Figure 3: Cost of bias mitigation techniques on model accuracy and accuracy variance

could indicate the worst (or the best) case scenario, which is critical to the compliance requirements
of the trained models.

E Discussion of DL Software Nondeterministic

E.1 Causes

As our prior work [71] pointed out, nondeterminism in DL software can be divided into two parts:
algorithmic nondeterminism and implementation-level nondeterminism.
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Table 5: Result of literature survey. “Y” and “N” under each column indicate whether the correspond-
ing paper uses multiple training runs or reports statistical values.

Paper Use multiple runs Mean STDEV  Range

Li et al. [54]
Min et al. [66]
Wang and Deng [97]
Wang et al. [99]
Quadrianto et al. [75]
Wang et al. [98]
Lokhande et al. [59]
Sarhan et al. [83]
Rockwell and Fouhey [80]
Kehrenberg et al. [47]
Hendricks et al. [37]
Savani et al. [84]
Vig et al. [95]
Nam et al. [69]
Tan and Celis [92]
Grover et al. [33]
McDuff et al. [62]
Creager et al. [21]
Pryzant et al. [74]
Guo et al. [34]
Dev et al. [22]
Singh et al. [89]
Sen and Ganguly [87]
Adel et al. [1]
Nabi and Shpitser [68]
Black et al. [11]
Ryu et al. [81]
Shen et al. [88]
Wadsworth et al. [96]
Hendricks et al. [38]
Blodgett and O’ Connor [12]
Beutel et al. [8]
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Algorithmic nondeterminism includes nondeterministic DL layers such as dropout, weight initializa-
tion, data augmentation such as random cropping and rotation, and batch ordering [71].

With fixed-seed training, we can completely eliminate algorithmic nondeterminism and have exactly
the same training data, dropout behavior, and initial weight.

Implementation-level nondeterminism has two causes [71]:

1. DL software selects primitive operations at runtime. For example, cuBLAS automatically
selects computation kernels with respect to buffer availability, and DL frameworks such as
PyTorch choose the fastest CUDA kernel based on benchmark results before every training
run.

2. Float-point calculations are not associative. For faster training and pre-processing, data is
handled by the DL system in parallel processes, and such processes finish the local task at a
different speed, resulting in different orders of data fed into the network. Neural network
training on GPUs is also highly parallelized. Thread scheduling results in nondeterministic
floating-point reduction orders, causing different results across multiple identical training
runs.
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E.2 Deterministic Mode of DL Software

There is no easy way to eliminate implementation-level nondeterminism. One direction is to enable the
deterministic mode provided by DL libraries such as PyTorch, which avoids certain nondeterministic
primitives provided by NVIDIA under the hood. However, implementing a deterministic mode is
difficult and may not be possible for all DL functions, since the underlying NVIDIA primitives are
closed source and their mechanism remains highly opaque.

Although training with deterministic mode can produce identical results across multiple FIT runs,
many common APIs (e.g., 25 APIs in PyTorch) still lack deterministic implementation at the time
of writing. For example, “MaxPool3d” and “NLLLoss” do not have a deterministic implementation
in PyTorch [23]. Popular networks such as “Seq2Seq” [40] will not be trained if PyTorch is under
deterministic mode.

Overhead of deterministic mode: The deterministic mode hurts the training speed. Our experiments
show that the PyTorch deterministic mode adds (i) on average 17.8% of training-time overhead on
FIT runs for technique S-Base, and (ii) 20.8% overhead training a ResNet101 and 14.1% overhead
training a DenseNet121 with FIT runs.
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