EAGLE: Creating Equivalent Graphs to Test Deep Learning

Libraries
Jiannan Wang Thibaud Lutellier Shangshu Qian
Purdue University University of Waterloo Purdue University
West Lafayette, USA Waterloo, Canada West Lafayette, USA
wang4524@purdue.edu tlutelli@uwaterloo.ca shangshu@purdue.edu
Hung Viet Pham Lin Tan

University of Waterloo
Waterloo, Canada
hvpham@uwaterloo.ca

ABSTRACT

Testing deep learning (DL) software is crucial and challenging.
Recent approaches use differential testing to cross-check pairs of
implementations of the same functionality across different libraries.
Such approaches require two DL libraries implementing the same
functionality, which is often unavailable. In addition, they rely on
a high-level library, Keras, that implements missing functionality
in all supported DL libraries, which is prohibitively expensive and
thus no longer maintained.

To address this issue, we propose EAGLE, a new technique that
uses differential testing in a different dimension, by using equiv-
alent graphs to test a single DL implementation (e.g., a single DL
library). Equivalent graphs use different Application Programming
Interfaces (APIs), data types, or optimizations to achieve the same
functionality. The rationale is that two equivalent graphs executed
on a single DL implementation should produce identical output
given the same input. Specifically, we design 16 new DL equiva-
lence rules and propose a technique, EAGLE, that (1) uses these
equivalence rules to build concrete pairs of equivalent graphs and
(2) cross-checks the output of these equivalent graphs to detect
inconsistency bugs in a DL library.

Our evaluation on two widely-used DL libraries, i.e., TensorFlow
and PyTorch, shows that EAGLE detects 25 bugs (18 in TensorFlow
and 7 in PyTorch), including 13 previously unknown bugs.

CCS CONCEPTS

« Software and its engineering — Software testing and de-
bugging; Software reliability.

KEYWORDS

software testing, deep learning, differential testing, graph equiva-
lence

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9221-1/22/05.

https://doi.org/10.1145/3510003.3510165

Purdue University
West Lafayette, USA
lintan@purdue.edu

ACM Reference Format:

Jiannan Wang, Thibaud Lutellier, Shangshu Qian, Hung Viet Pham, and Lin
Tan. 2022. EAGLE: Creating Equivalent Graphs to Test Deep Learning Li-
braries. In 44th International Conference on Software Engineering (ICSE °22),
May 21-29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3510003.3510165

1 INTRODUCTION

Testing DL systems is crucial because an increasing number of
DL systems, e.g., self-driving cars and cancer detection, have been
deployed. Bugs in DL systems cause severe consequences; for ex-
ample, when a self-driving system incorrectly responds to a traffic
sign, it causes severe personal injury and economic damage [8].

When DL software fails to implement a model faithfully, e.g., due
to a bug in the software, the output from the software can be wrong
even if the model is correct [31]. Here DL software includes in-
frastructure code that performs core neural network computations
and application code that loads model weights. Thus, in addition
to testing DL models [9, 22, 26, 36-38, 40, 46, 49], there is a high
demand for testing DL software [14, 28, 29, 31, 42, 43, 45, 47].

Existing techniques such as CRADLE [31] and Audee [14] test a
pair of DL libraries to cross-check the two implementations of the
same functionality to detect inconsistency bugs. These differential
testing techniques require at least two implementations in differ-
ent DL libraries, which is often unavailable for DL software. For
example, one could implement a new DL algorithm in one library,
e.g., TensorFlow [1], which does not have a counterpart in another
library (e.g., CNTK [33]). Since only one single implementation
exists, existing cross-library testing techniques cannot test it.

In addition, differential testing on two libraries [14, 31] requires
a high-level library such as Keras [4] to switch across DL libraries
such as TensorFlow and CNTK. Such a high-level library is hard
to develop and maintain because it essentially reimplements func-
tionalities that are only available in one library in all other sup-
ported libraries. This is one of the main reasons why Keras stopped
supporting different DL libraries [18]. Without such a high-level
library, it would be prohibitively expensive to cross-check DL li-
braries because one would need to create separate, complex DL
implementations for other DL libraries.

To address these challenges, we propose to leverage differential
testing in a different dimension: our tool, EAGLE, uses equivalent
graphs to test a single DL implementation. For example, the clas-
sification output should be identical if a DL implementation uses

https://doi.org/10.1145/3510003.3510165
https://doi.org/10.1145/3510003.3510165

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

@ @

Graph 1 Graph 2

tf.transpose

tf.keras.layers.
Bidirectional (batch-major)

[Forward RNN }

-|‘\‘

tf.keras.layers.
Bidirectional (time-major
| I

[Reverse RNN

reverse (time)

h
(

Reverse RNN

T
N
-

[Forward RNN]

reverse (time) reverse (batch)

tf.transpose

a. Correct batch-major graph

il
T

b. Buggy time-major graph

- y_rev = K.reverse(y_rev, 1)

+ time_dim = @ if getattr(self.forward_layer, 'time_major', False) else 1
+ y_rev = K.reverse(y_rev, time_dim)

c. Developer’s Fix

Figure 1: Equivalent graphs that we designed to detect a real
bug in TensorFlow. Red background indicates the buggy line.
I1 is the tensor input. O1 and O1’ are output that is expected
to be identical. The bug causes O1 # O1’.

two different but equivalent Recurrent Neural Networks (RNN) to
perform a classification task. We define equivalent graphs as com-
putational graphs that achieve the same functionality, which should
produce identical output given the same input. The equivalence is
achieved with different APIs, data types, optimizations, etc.

For example, an optimized way of representing mostly-empty
tensors of DL models is using sparse tensors. One can generate two
equivalent computation graphs: the first taking a dense tensor as
input and the second taking a sparse tensor as input. While these
two graphs may invoke different API functions, they are equivalent,
i.e., they should produce the same output given the same input
represented as a dense tensor in the first graph, or a sparse tensor
in the second. When the API functions contain bugs, the output may
be different. EAGLE detects seven bugs related to sparse tensors in
TensorFlow and PyTorch using equivalent graphs.

1.1 Our Approach

A motivating example: Figure 1 shows a real bug in TensorFlow
2.1 detected by EAGLE using two equivalent graphs. The equiva-
lence rule used to generate the two equivalent graphs in Figures 1a
and 1b is inspired by RNN functions that accept two input formats.
A common format is [batch, time] (called batch-major), which is
the usual input format developers use. The other format is [time,
batch] (called time-major). The time-major format better fits RNN
computations because RNNs compute batches step-by-step, and
similar steps from different sequences are represented contiguously
in flattened time-major arrays, thus reducing training time. For
example, given the following two batches of three words (i.e., three

Jiannan Wang, Thibaud Lutellier, Shangshu Qian, Hung Viet Pham, and Lin Tan

time steps) [Ilike dogs] and [I eat apples], the input can be fed to the

RNN in batch-major format (i.e., [like dogs) or time-major
I eat apples
I I
format (i.e., | like eat |). The first matrix is the transpose of

dogs apples
the second matrix. Developers use an argument (e.g., parameter
time_major True or False in TensorFlow) of RNN functions to spec-
ify input’s format. By transposing the correct dimension, one can
transform a time-major input matrix to a batch-major input matrix.

Therefore, leveraging the time-major/batch-major and transpose
properties, we create two equivalent graphs. The graph in Figure 1a
first transposes the time-major input tensor I1 to batch-major, feeds
it to a batch-major RNN (tf.keras.layers.Bidirectional in
this example), then transposes the output back to time-major. The
graph in Figure 1b directly feeds the original time-major input to
the time-major RNN to produce a time-major output. If the RNN
API implementation is correct, these two equivalent graphs should
generate the same output given the same time-major input.

Figure 1b shows a real bug in the TensorFlow API function
tf.keras.layers.Bidirectional (which implements bidirection-
al RNNs) and how the bug causes an inconsistency: the same func-
tion tf.keras.layers.Bidirectional generates different output
O1 and O1’ given the same input I1 (e.g., a tensor representation
of [I like dogs]) on two equivalent graphs. The bug is in red in
Graph 2 (Figure 1b) since the function reverse should be per-
formed on the time dimension instead of the batch dimension.
The bidirectional RNN consists of two independent RNNs: a for-
ward RNN and a reverse RNN. The forward RNN processes the
input in the normal order, and the reverse RNN in the reverse order
(e.g., “T like dogs" becomes “dogs like I"). Since the output of the
reverse RNN is not in the correct order, it needs to be reversed. The
APT’s batch-major mode (Figure 1a) correctly uses the reverse func-
tion on the time dimension, but its time-major mode (Figure 1b)
incorrectly reverses the batch dimension instead of the time di-
mension, i.e., reverse(batch) (in red) is incorrect and should be
reverse(time), resulting in incorrect output O1’.

It is challenging to detect this bug without EAGLE because with-
out Graph 1 in Figure la, one may not know O1’ in Graph 2 in
Figure 1b is the wrong output for input I1. The reason is that it
is hard to know the expected output O1 given input I1 since the
DL calculation (e.g., reverse RNN) is complex [31]. Our equivalent
graph approach addresses this challenge by comparing the output
from two equivalent graphs to identify inconsistencies to detect
software bugs.

Figure 1c shows the fix provided by TensorFlow developers, who
fixed the bug by setting the appropriate dimension to reverse ac-
cording to the input format, with the buggy line in red background
and the fixed line in blue background.

Such graph equivalence on time-major and batch-major is gen-
eral as most DL libraries, including TensorFlow and PyTorch, use
such representation. We apply EAGLE to test 13 RNN functions in
TensorFlow and PyTorch and detect that all bidirectional RNNs in
TensorFlow incorrectly implement the time-major functionality.

EAGLE: Creating Equivalent Graphs to Test Deep Learning Libraries

This motivating example demonstrates how equivalent graphs

enable the discovery of hard-to-find bugs in DL libraries. We present
below the main steps of our approach.
Equivalence rule definition: The first step is to generate rules to
build equivalent graphs. There are two main criteria for generating
these rules. First, the rules should be generalizable to multiple APIs
and DL libraries. Second, the rules should be non-trivial to detect
real-world bugs. To cover as many libraries as possible, we carefully
inspect API documentation from TensorFlow and PyTorch libraries.
In total, we design a list of 16 new equivalence rules that covers
1,427 APIs of these two DL libraries.

Equivalent graph construction: Once we have a set of equiva-
lence rules, we concretize these general abstract rules into concrete
graphs. Specifically, we test a concrete DL function with specific
configurations (e.g., weights) and input. For example, the rule pre-
sented in Figure 1 applies to any RNN function (e.g., RNN, LSTM,
GRU, and biLSTM). This results in 10 pairs of TensorFlow equiva-
lent graphs, each is tested with 400 sets of (input, configuration).
We follow previous work [43] to generate valid input based on
constraints automatically extracted from the API documentation.
Bug detection: We compare the output from a pair of concrete
equivalent graphs to detect inconsistency bugs.

1.2 Contributions

In this paper, we make the following contribution:

o We design 16 new equivalence rules to create equivalent graphs
to test DL libraries. These rules cover six categories of DL graph
equivalence, i.e., optimization, API redundancy, data structure
equivalence, data format equivalence, inverse equivalence, and
model evaluation equivalence.

e We propose a novel idea of using equivalent graphs to detect
bugs and implement this idea as a new testing technique—EAGLE,
that generates equivalent graphs and detects bugs in DL libraries.

e We evaluate EAGLE on five of the latest versions of the most
popular DL libraries (TensorFlow and PyTorch). Using the 16
rules, EAGLE generates 6,861 pairs of equivalent graphs and
detects 25 bugs (18 in TensorFlow and 7 in PyTorch), including
13 previously unknown bugs.

Availability: Data is available in our GitHub repository!.

The rest of the paper is organized as follows. Section 2 presents
the definition of key concepts such as graphs, inputs, and config-
urations. Section 3 describes the equivalence rules and EAGLE’s
implementation. Section 4 describes our experimental setup. In
Section 5, we evaluate EAGLE on two popular DL libraries, describe
some bugs that EAGLE detects, compare EAGLE to state-of-the-art
DL testing techniques, and present its execution time. Sections 6
and 7 respectively describe threats to validity and related work.
Finally, Section 8 concludes the paper.

2 DEFINITION AND TERMINOLOGY

A graph in this paper represents a computational graph in which
the nodes are operations performed on variables.

A set of (input, configuration) is required to compute a graph
and generate an output. The input (I1 in Figure 1) is the object,

Uhttps://github.com/lin-tan/eagle

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

often one or several tensors, on which the computation is done. We
call configuration all the other arguments necessary to perform the
computation (e.g., weights, number of neurons, etc.). For simplicity,
we only list the input I in the equivalence rules (Table 1), but
the configuration of the two equivalent graphs is assumed to be
identical, except when explicitly described in the rule. For example,
for the batch-major/time-major rule presented in Figure 1, the two
graphs have identical configurations (weights and other arguments),
except for the time_major argument, which is False in Graph 1,
and True in Graph 2. Since it is the only difference, it is the only
configuration explicitly described in Table 1 for this rule.

3 APPROACH

Finding bugs, especially non-crash bugs, in DL libraries is challeng-
ing because it is difficult to know the expected output, given that
DL computations are complex. We cannot use the ground truth
as the expected output of DL software since DL models are not
100% accurate [31]. When a model makes a mistake on input I, the
expected output O of the software is different from the ground truth
output O°. EAGLE uses differential testing to address this challenge
to find non-crash bugs.

Figure 2 presents the overview of our work, which consists of
three main steps. First, we define generalizable rules for creating
equivalent graphs (Step 1 in Figure 2). Second, for each rule, we
obtain applicable APIs by checking DL API’s documentation, and
build pairs of concrete equivalent graphs (Step 2). Finally, we exe-
cute the two equivalent graphs by feeding them fuzzed input [43]
and compare their output (for example O1 and O1’ in Figure 2) to
detect inconsistency bugs (Step 3).

The rest of the approach section describes the equivalence rules
(Section 3.1), the equivalent graph construction (Section 3.2), and
the bug detection process (Section 3.3).

3.1 Equivalence Rules

The first step is to create rules to build equivalent graphs. Recall
that equivalent graphs are computational graphs that achieve the
same functionality, which should produce identical output given
the same input. In practice, if the output difference is below a thresh-
old ¢, we also consider the outputs identical. Such a threshold is
needed because DL computations are mostly performed on floating
numbers, and equivalent floating-point computations often result
in slightly different outputs.

To create equivalence rules that are more likely to find real bugs
in DL libraries, we examine the following two sources:

(1) API documentation: The API documentation of neural net-
work functions provides us with information about their imple-
mentation. Sometimes, the description of several APIs provides
connections among these APIs that help us create equivalence
rules. For example, by reading the description of the function
tf.keras.layers.DepthwiseConv2D, we found that this function
could be implemented by multiple invocations of the function
tf.keras.layers.Conv2D, each of which is performed over a sin-
gle channel of the input to tf.keras.layers.DepthwiseConv2D.
This implementation using tf.keras.layers.Conv2D is different
from the implementation of tf.keras.layers.DepthwiseConv2D
in TensorFlow. Although tf.keras.layers.DepthwiseConv2D

https://github.com/lin-tan/eagle

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

API documentation

DL issues about
non-crash bugs

Equivalence rules

F(I) = F(sparse(I))
F(I) = optimized(F(I))

o Equivalence rule definition

Jiannan Wang, Thibaud Lutellier, Shangshu Qian, Hung Viet Pham, and Lin Tan

Relevant API extraction

Relevant APIs

tf.keras.layers.Dense

| Output comparison |

! t
Concrete DL graph generation Equivalent graph execution Input
. generation
Equivalent graphs 01 = Dense(I1)
le—|
S I=17I1,...

Dense (I) — Dense (I.to_sparse())

Ol’= Dense (Il.to_sparse())

\

9 Equivalent graph construction

0 Bug detection

Figure 2: Overview of EAGLE

can be implemented using tf.keras.layers.Conv2D, TensorFlow
chooses a more efficient implementation and computes the depth-
wise convolution directly without splitting it by the channels. There-
fore, we have two different but equivalent implementations of
tf.keras.layers.DepthwiseConv2D and we can use them to build
equivalent graphs to detect bugs.

(2) Non-crash bugs in DL libraries: Similar to prior work [17],
we study non-crash bugs in DL libraries to summarize common
bug patterns and equivalence rules that can potentially detect those
bugs. We first manually investigate GitHub issues related to non-
crash bugs in TensorFlow and PyTorch’s repositories. Then we
reproduce those bugs and build a pair of equivalent graphs to detect
each bug for the particular buggy API described in the issue. We
then convert the graphs to a general equivalence rule by abstracting
the inputs, API functions, and configurations (e.g., metrics and
optimizations used).

Designing Equivalence Rules: We first create a concrete equiva-
lence rule for a specific API for which we read the documentation

or that contains a known bug. Then, we generalize the rule by ab-
stracting the inputs, API functions, and configurations (e.g., metrics

and optimization used). For example, the concrete rule used for

the API function tf.keras.layers.Bidirectional in Figure 1 is

(Bidirectional(llT, .., return_sequences, ..., batch—major))T

=Bidirectional(I1,..,return_sequences,..., time-major), whe-
re I1 is an input tensor and I17 is the transpose of I1. This rule

requires the time_major argument to be False (i.e., using batch-
major) for the graph in Figure 1a and True for the equivalent graph

in Figure 1b. We generalize the API function Bidirectional to

all relevant API functions F, generalize input I1 to any input I,
and generalize the configuration return_sequences so that the

parameter return_sequences can be True or False, while only
True was used in this concrete rule. The generalized equivalence

rule is (FUT, batch-major))T = F(I, time-major). To make

the generalized rules look cleaner, we generalize but omit in the

rule notation all other parameters of the API functions includ-
ing return_sequences, which is part of the configurations as ex-
plained in Section 2.

Based on our study of DL bugs and API documentation, we
define 16 equivalence rules that can transform a graph into an
equivalent graph. We group these rules into 6 categories (Table 1),

where I is a general input (often a tensor) and F denotes an API
function. Function implement(F,, Fg) is a function that uses
function Fp to implement the functionality of function F4. Fop
and F3p are API functions that compute 2D and 3D operations
(e.g., tf.keras.layers.Conv2D and tf.keras.layers.Conv3D)
respectively. Function dense transfers input I to a dense tensor,
while Function sparse transfers input I to a sparse tensor. Func-
tions normalize and denormalize transfer image input I from
float representation in range [0, 1.0] to integer representation in
range [0, 255], and trasfer the function F’s output back from integer
to float. Function cast is a type-casting function that converts I to
the expected data type, while typex and typey are two different
data types. Functions decode and encode are a pair of functions
that decode an image file to a tensor or encode a tensor to an image
file (e.g., tf.io.decode_png and tf.io.encode_png). Function
pad denotes a padding function, while unpad is a function that re-
verses the padding procedure, (e.g., tf.image.extract_glimpse).
Finally, M indicates a pretrained DL model, while eval is the model
evaluation procedure.

Below, we first go through a detailed example of one rule, then
describe the other rules.

3.1.1 A Detailed Example: Optimization Equivalence Rule. Tensor-
Flow and PyTorch include several graph compilation optimizations
that cause a function to be compiled as a callable graph. Compiling
the program into callable graphs enables optimizations such as op-
eration pruning or constant folding, which can significantly reduce
execution time.

Optimization is known to cause many bugs [23, 41] in other
domains (e.g., compiler optimization [20, 21, 35]). DL optimization
(e.g., autograph transformation) is also complex and error-prone.
For example, we found two non-crash bugs related to TensorFlow
optimization by looking at GitHub issues (GitHub issue 479702).
Function tf.math.floordiv behaves differently with and without
optimization, and so does tf.linalg.eigh.

Based on this bug report, we build two equivalent graphs (Fig-
ures 3) to reproduce the bug. Then we generalize the equivalence
rule by abstracting the API tf.math.floordiv, the optimization
@tf.function, and its input to build Rule 1 in Table 1. Rule 1 states

2https://github.com/tensorflow/tensorflow/issues/47970

https://github.com/tensorflow/tensorflow/issues/47970

EAGLE: Creating Equivalent Graphs to Test Deep Learning Libraries

? ?

Graph 1 Graph 2

12
{ @tf. function }

(tf.math.floordiv | (tf.math.floordiv |
I T

Figure 3: Example of pair of concrete equivalent graphs gen-
erated from TensorFlow issue 47970.

Table 1: List of rules. F is an API function, I is input, and M
is a pretrained model.

ID ‘ Equivalence Rule

Optimization
1 | F(I) = optimized(F(I))

API Redundancy

F(I, padding=SAME) = F(pad(I,SAME))
implement(F,p, F3p)(I) = Fap(I)
implement(depthwise, conv2d)(I) = depthwise(I)
implement(separable, depthwise)(I) = separable(I)
implement(dilated, conv2d)(I) = dilated(I)
implement(F, documentf)(I) = F(I)

NN o W
A~~~

Data Structure Equivalence
8 | F(dense(I)) = F(sparse(I))

Data Format Equivalence

9 | F(I) = denormalize(F(normalize(I)))
10 | (FUT, batch-major))” = F(I, time-major)
11 | F(I) = F(Dataset(I))
12 | F(cast(l, typex)) = F(cast(l, typey))
Inverse Equivalence

13 | decode(encode(I)) =1
14 | unpad(pad(l)) = I

Model Evaluation Equivalence
15 | eval(M, I, batch-size=s1) = eval(M, I, batch-size=s2)
16 | eval(M, I) = save(M), eval(load(M), I)

that the computation of an arbitrary function F on input I is equiva-
lent to the optimized version of this computation on the same input.
Using this rule, EAGLE detects ten new bugs, including seven of
them already confirmed or fixed by the developers. (Section 5.1).

3.1.2 Description of All Other Rules. We describe all other equiva-
lence rules that we create category by category.

API Redundancy (Rules 2 to 7): The second category of rules
concerns API redundancy, i.e., generating an equivalent graph using
a different API. We identified several types of API redundancy.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Some APIs have built-in functionalities that can be executed ex-
ternally. For example, many DL functions support built-in padding
as an argument. SAME padding is a popular padding setting that
produces an output of identical shape to the input when the stride is
set to one. Therefore, using the built-in padding argument is equiv-
alent to padding the input using SAME padding and then feeding
the padded input to the function without using its padding option
(Rule 2).

Many 2D functions (e.g., tf.keras.layers.Conv2D) can be im-
plemented using the 3D version of the function by adding a dimen-
sion of length one to both the input and kernel, setting the stride to
one for this dimension, and removing that dummy dimension from
the output. These layers cover different API functions but should
behave identically (Rule 3).

Rules 4 to 6 are about the reimplementation of advanced convo-
lutions. There are many variants of advanced convolutions (e.g., di-
lated, depthwise, or separable). DL libraries provide built-in APIs for
these advanced convolutions, but they can be reimplemented using
other convolutions. For example, TensorFlow’s DepthwiseConv2D
function can be reimplemented using only Conv2D (Rule 4) by
splitting the input and filters into X slices (X being the number of
channels of the input) and computing the convolution for each slice
of input and filter.

Finally, Rule 7 leverages formulas found in API documenta-
tion to reimplement specific functions. For example, TensorFlow’s
tf.keras.layers.BatchNormalization’s documentation states
that “the layer (function) returns gamma * (batch - mean(batch)) /
sqrt(var(batch) + epsilon) + beta." From this formula, two equiv-
alent graphs can be created. The first one uses the API call to
BatchNormalization, and the second one contains our reimple-
mentation based on the documentation’s formula. We generalize
this example to obtain the following equivalence rule: when a for-
mula is available in the API documentation, using the API should
be equivalent to using the formula. While the formula will likely be
implemented in some way in the API, the function likely contains
additional control flow or conversion to handle exceptions or edge
cases that might introduce inconsistencies.

Data Structure Equivalence (Rules 8): Many APIs take different
types of data structures as input, and the functionality of such an
API is identical regardless of the types of data structures used. For
example, DL libraries often use tensors (multi-dimensional data
structures) as input. These tensors can be represented as dense or
sparse tensors. Sparse tensors are a tensor representation that is
more efficient with mostly-empty tensors. DL libraries are expected
to handle both representations either by having an API supporting
both dense and sparse tensors or by providing an equivalent API
specifically for sparse tensors. Therefore, given the same input, any
function taking dense tensors should produce identical output to
the same function (or its sparse version) taking a sparse tensor as
input, with the only difference being computation time.

Data Format Equivalence (Rules 9 to 11): Data can be presented
to DL APIs in different formats that can become equivalent with a
few transformations.

For example, there are two principal ways to feed images to a DL
network. In the first one, each pixel is represented as an integer (e.g.,
between 0 and 255 for the RGB file format). In the second one, each

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

pixel is represented as a floating-point number (e.g., between 0.0 and
1.0). One can normalize values between 0 and 255 to values between
0.0 and 1.0, and vice versa. Many different functions are supposed
to support both types of representation without any casting. Given
the same input in the two representations, either normalized or not,
the outputs (one as is and one denormalized) of these functions
should be equivalent (given a threshold related to floating-point
imprecision). Thus, we create Rule 9 to build equivalent graphs
using these two types of image formats.

In addition to images, text is another common type of input
to DL functions. Textual input can be fed to RNN either in time-
major or batch-major format. Thus, we create the equivalence rule
(Rule 10) described in the Introduction (Figures 1a and 1b). While
these two Figures display two concrete equivalent graphs for a
specific TensorFlow function (tf . keras. layers.Bidirectional),
this rule applies to any API that supports time-major and batch-
major inputs.

DL libraries provide a specific class called Dataset in PyTorch
and TensorFlow to support complex input pipelines for model train-
ing and evaluation. Input can be applied to DL functions in two
ways: (1) the input I can be passed to the DL function F directly, or
(2) the input can be transformed to a Dataset object before being
fed to F. Transforming the input to a Dataset has several advan-
tages, including many built-in APIs that can be used to interact with
the Dataset efficiently. We generate an equivalence rule (Rule 11)
based on these two ways of applying an input to a DL function.

Finally, DL libraries accept different input data formats that are
often equivalent for specific data ranges. We build Rule 12 based
on this observation. We cast the input to two different data types,
typex and typey, and then feed them to an API function. The
outputs are expected to be the same, if the input is within the inter-
section of typeyx and typey’s ranges, unless data overflows occur.
For example, if a function accepts both int8 and int16 integers as
input, any int16 input that falls within the int8 range ([-128,127])
should produce an equivalent output to its int8 counterpart’s com-
putation output. One exception is when the int8 computation
overflows, e.g., an addition of two int8 numbers may not overflow
int16 but overflow int8, in which case an exception would be
thrown.

Inverse Equivalence (Rules 13 to 14): Many DL APIs have in-
verse functions. We develop two rules based on two extremely
common DL preprocessing steps that can be inversed: encoding
and padding.

Many types of input (e.g., image, sound, and text) have multiple
encoding types (e.g., gif and png for images). Many of these en-
codings are built-in in DL libraries and should therefore be tested
thoroughly. Any input encoded then decoded with the correct loss-
less encoding and decoding algorithms should be equivalent to the
original input (Rule 13).

Padding is widely used to enlarge the size of input. We can unpad
the padded input by extracting a window of the original size from
the padded input. The extracted input should be equivalent to the
initial input (Rule 14).

Model Evaluation Equivalence (Rules 15 and 16): In inference
mode, evaluating the same trained model on the same test data

Jiannan Wang, Thibaud Lutellier, Shangshu Qian, Hung Viet Pham, and Lin Tan

should result in the same output (e.g., the same label for an instance
or the same accuracy) independently of the batch sizes (Rule 15).

A model should behave equivalently (in terms of accuracy, loss
function, and weights) before and after being saved and loaded,
independent of how it was saved and loaded (Rule 16). Bugs in the
saving and loading code can cause inconsistencies, thus enabling
EAGLE to detect such bugs.

3.2 Equivalent Graph Construction

The equivalence rules presented in Section 3.1 are general and
applicable to many DL API functions. The next step (step 2 in
Figure 2) is to concretize these rules into specific graphs by replacing
abstract elements of the rules (e.g., F and I) with concrete APIs,
input, and configurations.

For each rule, we identify a list of relevant APIs for the DL li-
brary under test by referencing its documentation. EAGLE then
concretizes the rules for each applicable API. For example, EAGLE
concretizes Rule 1 to a graph by replacing F with the TensorFlow
API tf.math.xdivy and “optimized” with tf.function (Tensor-
Flow’s graph compilation optimization). It is relatively straight-
forward to extract applicable APIs in the target library by using
heuristics and regular expression matching, and then manually
verify them.

Some rules apply to many APIs: for example, Rule 1 of EAGLE
generates equivalent graphs for 960 TensorFlow and 435 PyTorch
APIs. Other rules such as Rule 10 are only applicable to certain
API functions: for example, PyTorch’s documentation lists three
main RNN functions that can be tested with Rule 10 (torch.nn.RNN,
torch.nn.LSTM, and torch.nn.GRU). While testing only three APIs
might not seem general, these high-level APIs support multiple
configurations that will test different underlying APIs. For example,
under some configurations, the torch.nn.GRU function might also
call the Dropout or Bidirectional functions. Obtaining applicable
APIs is a one-time cost, and it is fast using heuristics.

3.3 Bug Detection

The final step (step 3 in Figure 2) is to generate input, e.g., to con-
cretize I in Rule 1, and compare the output of the concretized graphs
given the same input. We use existing work D2C [43] to gener-
ate input automatically. For example, EAGLE further concretizes
the I of Rule 1 for API tf.math.xdivy(x,y) to [-3.e+38+0.],
2.e+37-2.e+383] (Figure 4). We then compare the output of each
pair of concrete equivalent graphs, given the same input. To mit-
igate the impact of non-determinism of DL computation, we use
the same random seed for the two equivalent graphs’ executions
and report all inconsistent output above a threshold.

With the concrete function and input, EAGLE detects a pre-
viously unknown bug in TensorFlow 2.5 and 2.6 that developers
confirmed (Figure 4 in Section 5.2).

The main contribution of EAGLE is equivalence rules, which
can be used together with any other test generation approach. Sec-
tion 5.3 shows that 20 bugs that EAGLE detects cannot be detected
by the chosen test generation technique (i.e., D2C) without equiv-
alent graphs. Since our goal is to detect hard-to-detect non-crash
bugs (due to the oracle challenge [3]) by detecting inconsistent
behaviors (as opposed to, for example, crashes due to mishandling

EAGLE: Creating Equivalent Graphs to Test Deep Learning Libraries

of invalid input), we need a technique that is capable of generating
valid input for DL API functions.

Instead of manually writing input constraints, which is com-
monly used in testing [10, 27], we leverage D2C that analyzes rele-
vant API documentation to extract input constraints, and uses the
constraints to guide the generation of input. For example, given the
API document sentence for tf.math.xdivy(x,y)—“A Tensor. Must
be one of the following types: half, float32, float64, complex64,
or complex128”, it randomly generates a tensor whose elements
are of type half, float32, float64, complex64, or complex128.
D2C extracts four categories of constraints: structure such as list, tu-
ple, and n-dimensional array (i.e., tensor), type such as int, float,
boolean, and String, shape such as two-dimensional (2-D) array,
and valid value such as parameter padding can only be one of
“zeros”, “border”, and “reflection”.

D2C uses sequential pattern mining [13, 15] to mine frequently
occurring patterns (e.g., “Must be one of the following types”) in
API documents and transforms them into rules (e.g., “Must be one
of the following types <type 1>, <type 2>”) to extract input con-
straints automatically. The precision and recall is 94.4% and 92.4%
for TensorFlow and 95.6% and 93.5% for PyTorch. We then manually
verify the extracted constraints and add any missing ones.

For test generation, given an API function and its extracted
constraints, the technique aims to generate valid input following
the extracted constraints. Specifically, it chooses a type from the
list of types in the constraints and creates a shape following the
constraints. If the constraints do not specify a list of valid types,
the test generation selects one from types supported by the library.
Finally, the structure constraints are checked. For example, if the
generated value is 1-dimensional and the constraints explicitly
specify the structure (e.g., tuple or list), the input generator converts
the generated value accordingly.

We finally execute all inputs and report inconsistencies between
equivalent graphs.

4 EXPERIMENTAL SETUP

In total, we investigate 1,542 issues in TensorFlow and PyTorch.
For TensorFlow, we focus on issues in TensorFlow 2.X only. For
both PyTorch and TensorFlow, we use the GitHub search engine
for closed issues labeled as “bug” with the keywords “fix” Then
we manually check all the issues to filter out crash-related issues.
Out of these 1,542 issues, 35 are relevant non-crash bugs, from
which we create and generalize rules. Many GitHub issues are
not relevant because (1) they are not bugs, e.g., user mistakes or
feature requests, and (2) many issues describe crash bugs. In total,
we extract 16 equivalence rules.

For rules 1-14, we use D2C to generate inputs. We generate
up to 400 inputs per API. We use D2C to generate inputs for 963
TensorFlow APIs and 464 PyTorch APIs. For rule 15 and rule 16,
we save 18 TensorFlow Keras pretrained models and 12 PyTorch
pretrained models for testing. For the input, we extract 1,000 images
from the ImageNet dataset and preprocess them according to the
models.

After we generate inputs, we define a list of applicable APIs for
each rule by referencing the API documents. EAGLE uses these

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

rules to generate equivalent graphs for each applicable API and
uses the inputs generated to compute the results.

We consult the inconsistency threshold formula that TensorFlow
and PyTorch use in their test suite to determine whether the two
outputs from two equivalent graphs are equivalent. For example,
for the equivalent graphs G; and G with respective outputs O1 and
O1’ (given input I1), their results are equivalent if abs(01,01") <=
atol + rtol * abs(01’), with atol=1072 and rtol=107>.

We evaluate EAGLE on TensorFlow 2.1, 2.2, and 2.3 and PyTorch
1.6 and 1.9 since they were the latest versions available when we
started this project. We only report a bug to developers if we can
reproduce the bug on the latest version of TensorFlow and PyTorch
(TensorFlow 2.6 and PyTorch 1.9) at the time of writing.

We obtain the total number of bugs by considering all inconsis-
tencies for each rule and API pair as one bug. For example, in Rule
16, if five different models display inconsistencies to load with one
API (e.g., load_state_dict), we only count it as one unique bug.

5 EVALUATION AND RESULTS

This section presents the results of our five Research Questions
(RQs). RQ1 (Section 5.1) presents the number of bugs EAGLE detects.
RQ2 (Section 5.2) describes some of the bugs for each category. RQ3
(Section 5.3) compares EAGLE to other DL testing approaches, and
RQ4 (Section 5.4) explores how developers use equivalent graphs.
Finally, RQ5 (Section 5.5) studies EAGLE’s execution time.

5.1 RQ1: How many bugs does EAGLE detect?

We implement 16 rules to test the two most popular DL libraries,
TensorFlow and PyTorch, resulting in 6,861 pairs of concrete equiv-
alent graphs. We use previous work [43] to generate up to 400
sets of (input, configurations) per pair of equivalent graphs. A
set of (input, configuration) consists of input to an API and its
configuration (weights, etc.). For example, when testing the API
tf.keras.layers.Dense, the input is a Tensor, and the config-
urations include weights, kernel initializer, and bias regularizer.
For each set of input and configuration values, we compare the
corresponding equivalent graphs.

Table 2 displays the number of bugs found in TensorFlow and
PyTorch. Overall, EAGLE generates 6,861 pairs of equivalent graphs
and detects 1,212 inconsistencies automatically. Multiple inconsis-
tencies that are triggered by the same API function (with different
inputs) are counted as one bug. As a result, these inconsistencies
map to 25 bugs, including 13 previously unknown bugs (Table 2).
Most (9) of these previously unknown bugs have been confirmed
or fixed by TensorFlow or PyTorch developers. EAGLE also detects
crashes for 42 APIs, among which we have only manually verified
five since our focus is on non-crash bugs, which existing techniques
have a hard time detecting.

Table 2 also shows the number of bugs found in each rule cate-
gory. For example, Optimization is the category for which EAGLE
finds the most number of bugs, with a total of ten bugs found. All
those ten bugs are previously unknown bugs, seven of which have
been confirmed or fixed by the developers. Section 5.2 describes
examples of bugs found by EAGLE.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Table 2: Bugs found by each rule category.

Category ‘ TensorFlow PyTorch ‘ Sum
Optimization 10 0 10
API Redundancy 0 0 0
Data Structure Equivalence 3 4 7
Data Format Equivalence 1 3 4
Inverse Equivalence 2 0 2
Model Evaluation Equivalence 2 0 2
Total \ 18 7| 25
Inconsistency revealing input
Il = {np.array([-3.e+38+0.j], dtype='complex64'),
2.e+37-2.e+385}
I
[]
Graph 1 Graph 2
12
l @tf.function
(tf.math.xdivy | (tf.math.xdivy
I T
v v
(Ol = Tensor([-0.14-1 48j])> (ol = Tensor([—0.0+0.0j])>
Output 1 Output 2

Figure 4: Two equivalent graphs that detect a new inconsis-
tency bug in TensorFlow, which has been confirmed by de-
velopers after we reported it.

Summary: EAGLE detects 25 bugs in the most widely-used
DL libraries TensorFlow and PyTorch, including 13 previously
unknown bugs, nine of which have already been confirmed or
fixed after we report them.

5.2 RQ2: What bugs are detected by EAGLE?
We describe non-crash bug examples in each category of rules.

Optimization: EAGLE detects ten bugs that are revealed by incon-
sistencies between a standard graph and an optimized graph. All of
these bugs are previously unknown bugs for which optimized Ten-
sorFlow API functions generate incorrect outputs. Figure 4 shows
an example of a new bug in the tf.math.xdivy API detected by
EAGLE that TensorFlow developers confirmed after we reported it.
The annotation @tf. function on Graph 2 tells TensorFlow that the
function below should be optimized. According to TensorFlow de-
velopers, this bug is caused by an overflow for complex64 divisions
in the optimization.

Data Structure Equivalence: With the rules of data structure
equivalence, EAGLE detects three bugs in TensorFlow and four
bugs in PyTorch. Figure 5 displays two equivalent graphs that EA-
GLE generated, which revealed a bug in PyTorch. API functions
torch.addmm and torch. sspaddmm perform the same computation
for dense and sparse tensors, respectively. Given three input ten-
sors, T1, T2, and T3, these functions multiply T2 and T3, then add
T1 to the result. The bug was deep in the C++ backend code of
torch. sspaddmm in a low-level function (indices.data_ptr) that

Jiannan Wang, Thibaud Lutellier, Shangshu Qian, Hung Viet Pham, and Lin Tan

Inconsistency revealing input

I1 = {T1 = torch.tensor([[-0.8196],[-1.4280]1),

T2 torch.tensor([[0.1602, 0.2102],
[-0.3482, -0.779111),
T3 = torch.tensor ([[1.0358],[1.1674]1]1)}
I
I]
Graph 1 Graph 2

T1l.to_sparse \
T3.to_sparse
A Y

[torch.addmm] [torch. sspaddmm]

¥
[to_dense]
I
[[
01 = torch.tensor(Ol’ = torch.tensor(
[[-0.7689],[-2.3375]]) [[-0.4083],[-2.6982]])
Output 1 Output 2

Figure 5: Pair of equivalent graphs that detects an inconsis-
tency bug in PyTorch.

assumes row-contiguous storage of tensors, while torch. sspaddmm
used another type of storage. The APIs under test (torch.addmm
and torch. sspaddmm) do not have a direct counterpart in Tensor-
Flow, so it would be very difficult to find this bug using cross-library
differential testing techniques such as CRADLE or Audee.

Data Format Equivalence: EAGLE detects four bugs in this cate-
gory, including the bug in Figure 1. The other three bugs are incon-
sistency bugs in three different PyTorch APIs. In torch. fmod and
torch.remainder, there is a large inconsistency between equiva-
lent int64 and float64 input while the cosine_similarity API
has inconsistencies between int8 and int16. These are bugs in the
C++ low-level tensor library (ATen) used by PyTorch.

Inverse Equivalence: EAGLE detects two bugs in this category,
including one new bug related to the tf.io.decode_gif APIL Gif
encoding is supposed to be lossless, but we found that in Tensor-
Flow, for specific inputs, this encoding is not lossless, i.e., encoding
and then decoding an input instance can result in significantly dif-
ferent outputs. The consequence of this bug is severe because image
preprocessing is an essential part of many DL systems, and any bug
in that preprocessing may modify the input to the DL models in an
unexpected way that may lead to incorrect output, which would be
hard to debug.

Model Evaluation Equivalence: EAGLE detects two bugs in this
category. Those two bugs are inconsistency bugs in model configu-
rations or metrics. For example, Rule 16 enables EAGLE to detect a
bug in TensorFlow API tf.keras.Sequential. from_config. Ten-
sorFlow APIs get_config and from_config extract a model’s con-
figuration and build a model object from such a configuration re-
spectively. Combined with get_weights and set_weights, they
can achieve the functionality of saving and loading a model. Saving
the model using get_configand get_weights and loading it using
from_config and set_weights cause the model’s configuration
to be incorrect, which leads to the detected inconsistencies.

EAGLE: Creating Equivalent Graphs to Test Deep Learning Libraries

API Redundancy: EAGLE finds no bugs using the API redundancy
rules. After investigating both TensorFlow and PyTorch libraries, we
find a possible reason is that developers already implemented some
rules from this category in their test suite after finding a bug in a
previous version. For example, a concrete pair of equivalent graphs
that EAGLE generates for Rule 7 with the BatchNormalization
APl is included in the TensorFlow test suite. Similarly, we also found
reimplementations of depthwise convolutions using Conv2D in the
TensorFlow test suite (Rule 4). This demonstrates that developers
are already using some equivalence rules to test their libraries as
an afterthought of relevant bugs. A comprehensive set of rules and
a technique that uses the rules to generate equivalent graphs and
detects bugs would be beneficial for them to improve their testing
system further.

False Positives: Out of all 26 inconsistent APIs detected by EA-
GLE, we found one false positive (the other 25 are true bugs). This
false positive is revealed by Rule 16 in PyTorch. When testing
Rule 16 in PyTorch, we evaluate the pretrained model InceptionV3
before saving its internal states and after reloading them using
load_state_dict. InceptionV3’s input needs to be normalized
and the normalization process is included along with the model
architecture. When the pretrained weights are used, PyTorch not
only loads the weights but also configures the model architecture
by adding the input normalization process accordingly. However,
the input normalization is not configured correctly after model
saving and loading, which leads to the inconsistencies.

Generalizability of the Rules: All 16 rules apply to both Tensor-
Flow and PyTorch, and Rule 8 finds bugs in both libraries. While a
single rule can find bugs in both TensorFlow and PyTorch, it does
not mean that these bugs can be found by cross-library differential
testing techniques [14, 31], because when the rules are concretized
to concrete graphs, the concrete APIs often only exist in one library.
For example, Rule 8 finds bugs in both TensorFlow and PyTorch,
but the APIin which some of the bugs occur (torch. sspaddm) only
exists in PyTorch.

In total, we generate 6,861 pairs of concrete equivalent graphs
(429 pairs of graphs per rule on average) that are each tested on 400
sets of (input, configuration). The largest number of APIs covered
by a unique rule is 963 and 464 for TensorFlow and PyTorch, respec-
tively. Overall, the 25 bugs detected by EAGLE occur in very diverse
APIs, from DL layers (tf.keras.layers.Bidirectional), low-
level computation libraries (torch.smm), utility APIs
(tf.keras.Sequential.from_config), optimization
(@tf.function), or data preprocessing (tf.image.decode_gif).

Summary: The 25 bugs detected by EAGLE in TensorFlow and
PyTorch are in a very diverse set of DL APIs, including prepro-
cessing, DL layers, low-level APIs, and utility functions, demon-
strating the diversity and generality of our rules.

5.3 RQ3: Does EAGLE detect bugs not detected
by other DL library testing techniques?

We compare EAGLE with two types of techniques that test DL
libraries to better understand EAGLE’s contribution. First, we com-
pare EAGLE with a state-of-the-art fuzzing technique, D2C [43].

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Second, we compare with two state-of-the-art differential testing
techniques for DL libraries, CRADLE [31] and Audee [14].

Comparison with D2C [43] We ran D2C on the same PyTorch
and TensorFlow versions on which we evaluated EAGLE. Although
EAGLE uses D2C’s input generation, only five of the bugs detected
by EAGLE are also detected by D2C. D2C cannot detect any of the
other bugs because it focuses on crash bugs, while the majority (20
out of 25) of the bugs found by EAGLE are non-crash bugs.

Comparison with CRADLE [31] and Audee [14] CRADLE and
Audee are DL testing approaches that rely on Keras’ high-level
API to perform differential testing across libraries. Audee also has
non-differential testing checkers, but since they do not detect in-
consistencies, we focus on the differential testing aspect of Audee
for this RQ).

Differential testing techniques such as CRADLE and Audee can-
not detect bugs that EAGLE detects for the following reasons. Keras
is a high-level library that allows users to build DL models in a back-
end library-independent manner, i.e., one can seamlessly switch
the backend DL library. Keras models can then be executed with-
out reimplementation using different DL backends (TensorFlow,
Theano, and CNTK). To do that, all backends must either implement
the same functionalities, or Keras must implement missing features
of backends.

With the explosion of DL in the last few years, DL libraries are
growing fast, and many new types of DL functions are proposed
that are not implemented in all libraries, making it extremely hard to
maintain cross-backend execution in Keras (since functions unique
to a DL library must be reimplemented for all libraries). In addition,
new DL libraries have grown to be very popular (e.g., PyTorch and
HuggingFace’s Transformer) that are not supported by Keras, while
libraries (Theano and CNTK) supported by Keras are no longer
maintained. As a result, maintaining cross-backend support in Keras
became unmanageable, and Keras dropped this feature in 2019,
making it challenging to run differential testing techniques such as
CRADLE or Audee. Reimplementing such a high-level library to
allow differential testing would be extremely expensive and tedious.
EAGLE addresses this challenge by requiring only one DL library
to detect bugs.

It is possible to perform differential testing only on functionali-
ties that are implemented identically in both libraries (e.g., Dense
layer and Conv2D). However, doing so would miss many bugs, i.e.,
15 of the 25 bugs (60%) that EAGLE detects. For example, the bug
displayed in Figure 5 occurs in a PyTorch API that does not have a
direct counterpart in TensorFlow.

In addition, even if we have a high-level library that supports
cross-backend execution, CRADLE and Audee might still not find
the remaining ten bugs that EAGLE detects because they focus on
complete system testing (i.e., they take a full DL model as input
and measure inconsistencies in accuracy). In contrast, EAGLE fo-
cuses on single low-level API testing (unit testing) to find bugs
buried deep in a DL library. For example, while all the inconsis-
tencies reported by Audee concern incorrectly implemented DL
layers (ThresholdedReLU, DepthwiseConv2D, SeparableConv2D,
and padding implementation), EAGLE finds bugs in very low-level
functionalities such as ATen, the low-level tensor library used by
PyTorch (Section 5.2). CRADLE and Audee might miss these bugs

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

because they only produce inconsistencies at a system level for
specific models and input.

The equivalence rules are orthogonal contributions, which can
be combined with CRADLE or Audee to help them generate more
DL models to test more DL library code. For example, CRADLE and
Audee may use our Rule 1 to test optimization code cross libraries
if a high-level library such as Keras is revamped.

Summary: The majority (20) of the 25 bugs detected by EAGLE
are non-crash bugs, whose relevant APIs have little cross-library
redundancy. Thus, it would be difficult for existing testing ap-
proaches to detect these bugs.

5.4 RQ4: Do DL library developers use
equivalent graphs?

In this RQ, we investigate if our rules are new by studying if and how

developers have been using equivalent graphs to test DL libraries.

We manually examine TensorFlow and PyTorch’s test suites and

check if any test cases implement (or partially implement) our rules.

Most (15 of the 16) rules are not implemented or not fully im-
plemented in PyTorch test cases: 13 rules are not implemented at
all, while two rules (1 and 16) are implemented only for a few APIs.
Only Rule 8 is implemented for all the APIs tested by EAGLE.

The majority (13 out of 16 rules) are not implemented or not
fully implemented in TensorFlow test cases: nine rules are not
implemented at all, four rules (1, 8, 15, and 16) are implemented for
only a few APIs, and only three rules (4, 6, and 7) are implemented
for all the APIs tested by EAGLE for that rule. Such test cases were
created likely as an afterthought after a bug was found. For example,
after finding a bug in torch. sspaddmm from GitHub issue 45113°,
developers implemented a test case to test torch.sspaddmm and
its dense version torch.addmm in PyTorch 1.7.

The fact that developers use equivalent graphs to make sure a
bug is fixed shows that such graphs are useful to test DL libraries.
However, equivalent graphs have not been implemented proac-
tively to create test cases (i.e., to find bugs). EAGLE offers a more
complete list of equivalence rules to generate equivalent graphs
that developers have not manually implemented and can therefore
improve the reliability of DL libraries.

Summary: Most (13 out of 16) rules are not implemented in DL
libraries’ test suites. The few test cases that implement equiva-
lent graphs were only implemented as an afterthought after a
bug has been reported. This indicates that EAGLE complements
developers’ test cases and can detect bugs that would be hard
to find manually.

5.5 RQ5: What is the run time of EAGLE?

Table 3 shows EAGLE’s execution time. On average, it takes 33
minutes to execute a pair of equivalent graphs with a set of 400
(input, configuration) in TensorFlow and 26 minutes in PyTorch. In
total, EAGLE executes 6,861 pairs of equivalent graphs. It is easy to
execute graphs in parallel. For example, on our Xeon Gold 5120R
CPUs (56 cores in total) and 512 GB of memory server, we execute
24 graphs at a time.

3https://github.com/pytorch/pytorch/issues/45113

Jiannan Wang, Thibaud Lutellier, Shangshu Qian, Hung Viet Pham, and Lin Tan

Table 3: Execution Time of EAGLE

‘ TensorFlow | PyTorch

of pairs of concrete graphs 5,817 1,044
of (input, config) per graph 400 400
Time per pair (minutes) 33 26

6 THREATS TO VALIDITY

EAGLE does not find all bugs: Since we focus on detecting incon-
sistencies between equivalent graphs, EAGLE might miss bugs that
do not cause inconsistent outputs. For example, if a rule generates a
pair of equivalent graphs that use two redundant APIs that contain
the same bug, EAGLE will not detect the inconsistency. However,
EAGLE is effective in detecting 25 bugs in TensorFlow and PyTorch
automatically.

Manual rule construction: The rules to generate equivalent graphs
have been manually designed. As a result, they might not be fully
representative of real bugs in DL systems. To mitigate this issue,
we look at existing bug reports in two popular DL libraries (Tensor-
Flow and PyTorch) when designing our rules. Our results show that
the rules designed for EAGLE find 13 previously unknown bugs,
showing that they can be used to detect new real-world bugs.

Generability to different DL libraries: Our approach might not
be generalizable to other DL libraries. To mitigate this threat, we
evaluate EAGLE on the two most popular DL libraries, Tensor-
Flow and PyTorch. EAGLE finds bugs in both libraries. In the fu-
ture, we could further extend EAGLE to test different libraries (e.g.,
DeepLearning4]) to show EAGLE’s generalizability.

Potential bugs in our implementation: Our implementations
might be buggy. If that is the case we will either (1) incorrectly detect
inconsistencies or (2) not detect the inconsistency. We mitigate
(1) by manually looking at the inconsistencies we detect before
considering them as bugs. None of the inconsistencies EAGLE finds
are the result of a bug in our code. In addition, developers confirmed
nine of the 13 new bugs EAGLE detects. For (2), our approach might
not detect some bugs because of issues in our implementation.
However, this can only hurt our results and therefore does not
impact the validity of our findings. If bugs in our code cause us
to miss inconsistencies, our technique might perform even better
once we fix them.

Nondeterminism: Not all inconsistencies are bugs because DL
APIs can be nondeterministic [32]. We address nondeterminism by
fixing the random seed to make API testing reproducible. We also
use a threshold used by popular DL libraries to take into considera-
tion floating-point precision inconsistencies. Overall, all but one
inconsistencies that EAGLE detects are the result of true bugs.

7 RELATED WORK

DL library testing suffers from the oracle problem. Specifically,
DL API functionalities are very complex, and it is often hard to
know or even approximate the expected output manually. Previous
work [28, 48] shows that such oracle approximations are often
used in DL libraries but are error-prone, resulting in flaky tests or
requiring a manual update from the developers.

https://github.com/pytorch/pytorch/issues/45113

EAGLE: Creating Equivalent Graphs to Test Deep Learning Libraries

Fuzzing and differential testing can be used to mitigate the ora-
cle problem. Fuzzing often only detects crashes, while differential
testing generally requires two different libraries that implement the
same functionality, which is difficult to achieve and error-prone.
Our work is different since we leverage within library equivalences
such as API redundancy or optimization to build equivalent graphs
to detect non-crash bugs. Since the graphs EAGLE uses are equiv-
alent, they both have the same expected output, addressing the
oracle problem. To the best of our knowledge, we are the first to
propose equivalent graphs and to use them to find 25 bugs in DL
libraries.

Differential testing of DL libraries: Previous work [6, 14, 28, 31,
34, 39, 42] uses differential testing to find inconsistencies between
DL libraries. Such inconsistencies are often the result of a bug in DL
libraries. For example, CRADLE [31] finds bugs in Keras by running
the same model with different DL backends (TensorFlow, Theano,
and CNTK).

These approaches require either (1) a high-level library that
supports several DL backends (e.g., Keras), (2) a good model con-
verter (e.g., MMdnn), or (3) heavy engineering to reimplement the
same DL computation in different DL libraries. Unfortunately, while
Keras initially supported several backends and was used in previ-
ous studies [14, 28, 31, 42], Keras now only supports TensorFlow.
MMdnn[24] or ONNX][2] are frameworks that allow transferring
models across DL libraries, but MMdnn only supports a few popu-
lar layers (e.g., RNN layers are not supported), and PyTorch, one
of the most popular DL libraries, cannot execute ONNX models.
Therefore, the only solution for thorough differential testing across
DL libraries is to reimplement the DL computation in different
frameworks, which is time-consuming and error-prone. For exam-
ple, previous work [34] only reimplemented two ML algorithms
(K-Nearest Neighbours and Naive Bayes) when using differential
testing on Weka, Rapid Miner, and KNIME.

In contrast, EAGLE uses equivalent graphs to find bugs in DL
APIs, which is not limited by third-party libraries (converter or high-
level API support). For example, EAGLE detects a bug in biRNN
layers of TensorFlow, which would not have been found by differen-
tial testing using MMdnn or Keras since MMdnn does not support
biRNN layers and Keras does not support multiple backends any-
more.

Fuzzing DL libraries: Fuzzing is another popular approach to test
DL networks. Classic fuzzing techniques [11, 25, 30] can be used
to find some crash bugs, but more advanced fuzzing techniques
targetting DL systems have been proposed [29, 43, 45, 47]. We use
the approach developed by Xie et al. [43] to generate valid inputs for
our approach; however, these fuzzing approaches still suffer from
the oracle problem and can only find crash bugs (see Section 5.3).
For example, previous work [43] could only find five of the 25 bugs
detected by EAGLE; hence our approach complements existing
fuzzing techniques.

Some of ProbFuzz’s [6] checkers use differential testing and can
detect non-crash bugs in probabilistic systems. They use across
library differential testing or several implementations of the same

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

API in different languages (e.g., Py-Stan and R-Stan). Similar to
other differential testing techniques, ProbFuzz requires multiple

libraries implementing the same functionality and has some scope
limitations (e.g., ProbFuzz does not support loops) that make it

difficult to apply to DL libraries. EAGLE tests DL APIs generally
and aims at finding general bugs that ProbFuzz does not cover.

Other work testing DL libraries: Static analysis has been used
to detect specific types of bugs (e.g., shape-related bugs) in DL sys-
tems [19]. EAGLE finds very diverse bugs in DL systems (Section 5.2)
that are hard to find without equivalent graphs. Metamorphic test-
ing has also been used to test and validate ML classifiers [5, 7, 44].
These approaches have only found injected bugs in ML systems,
and previous work shows that injected bugs often only have a weak
correlation with real bugs [12].

Equivalent graph generation: TASO [16] automatically gener-
ates graph substitutions to optimize a given deep neural network
computation graph. It generates equivalent graph substitutions
based on a given architecture and finds the one with the least in-
ference time among all the substitutions. While TASO generates
equivalent graphs, it does not use them to find bugs; instead, it uses
equivalent graphs to optimize DL computations. Most of the TASO
equivalence rules are mathematical equivalence rules such as for
any tensors A, B, and C of concrete shape, (A® B)®C = A® (B®QC),
where ® denotes matrix multiplication. We implemented eight of
the TASO rules and none detected any bugs. We focus on building
rules that are inspired by real bugs and API documentation. All
of the rules that we design for EAGLE are new, different from the
ones in TASO.

Differential testing for compilers: Differential testing has been
used for testing compilers [20, 21, 35]. Instead of equivalent graphs,
these work generate equivalent programs modulo input (EMI). The
key in EMI is to create a collection of correct programs that have the
same output given the same input (but might have different outputs
for other inputs. Our work is different since program compilation
is a different problem than DL graph execution which presents its
own challenges.

8 CONCLUSION

We propose and evaluate EAGLE, a new differential testing ap-
proach that uses equivalent graphs to test a single DL library. We
design 16 new equivalence rules that can generate pairs of equiv-
alent graphs. We evaluate EAGLE on the two most popular DL
libraries, TensorFlow and PyTorch, and found 25 bugs, 13 of them
are previously unknown bugs, and nine have already been con-
firmed or fixed by developers. In the future, the rules we describe
could be combined to detect bugs in more complex API interactions
within DL libraries.

ACKNOWLEDGEMENT

The authors thank the anonymous reviewers for their invaluable
feedback. The research is partially supported by NSF 2006688, a
J.P.Morgan Al Faculty Research Award, and a Facebook Research
Award.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA Jiannan Wang, Thibaud Lutellier, Shangshu Qian, Hung Viet Pham, and Lin Tan

REFERENCES [22] Zenan Li, Xiaoxing Ma, Chang Xu, Chun Cao, Jingwei Xu, and Jian Lii. 2019.
[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Boos_ting Operational DNN Test%ng Efﬁgiency through Conditioning._ In P ro-
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San- ceedings of the 2019 27t.h ACM Joint Mee”’f‘g on European Soﬁware Engmeermg
jay Ghemawat, lan Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Conference and Symposium on the Foundations of Software Engineering.
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, (23] J. ngng, Y Chen, M. Wang, Y: Jiang, Z. Yang, C. Sun, X.]139, gnd J Sun. 2019.
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Engineering a Bettgr Fuzzer w1th Synergically IntegltateAdA Opt1m¥zat19ns. In 2019
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul IEEE 30th Internaflanal Symposium on Software Reliability Engineering (ISSRE).
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, 82-92. https://dm.org/lO.1109/ISSlRE.'201940'0018‘)))
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaogiang Zheng. Yu Liu, Cheng Chen, Ru Zhang, Tingting Qin, Xiang Ji, Haoxiang Lin, and Mao
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Yang. 2020. Enhax-lcmg the 1nter(?perab111ty between dee?p learn{ng frameworks
https://www.tensorflow.org/ Software available from tensorflow.org. by model conversion. In Proceedings of the 28th ACM Joint Meeting on European

[24

[2] Junjie Bai, Fang Lu, Ke Zhang, et al. 2019. ONNX: Open Neural Network Exchange. Suft?vare 'Engineering Conference and Symposium on the Foundations of Software
https://github.com/onnx/onnx. Engineering. 132‘0—1330')) '
[3] Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla, Michael D [25] LLVM. 2021. libFuzzer — a library for coverage-guided fuzz testing. http:

Ernst, Mauro Pezzé, and Sergio Delgado Castellanos. 2018. Translating code /Mlvm.org/docs/LibFuzzer.html

comments to procedure specifications. In Proceedings of the 27th ACM SIGSOFT Lei Ma, FEHX Juefei?Xu, Fuyluaanh'ang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang

International Symposium on Software Testing and Analysis. 242-253. Chen, Ting Su, Li Li, Yang Liu, Jianjun Zhao, and Yadong Wang. 2018. DeepGauge:

] Frangois Chollet et al. 2015. Keras. https://keras.io. Multi-Granularity Testing Criteria for Deep Learning Systems. In ASE.

[5] Junhua Ding, Xiaojun Kang, and Xin-Hua Hu. 2017. Validating a Deep Learning [27] R Majumd;} and R. Xu. 2007. Directed Test Gener?tion Using Symbolic Grammars.
Framework by Metamorphic Testing, In Proceedings of the 2nd International In Proceedlngs of.the 22nd IEEE/ACM International Conference on Automated
Workshop on Metamorphic Testing (MET ’17). IEEE Press, 28-34. Soﬁ‘wqre E.ngmeer'mg. 134-143. o

[6] Saikat Dutta, Owolabi Legunsen, Zixin Huang, and Sasa Misailovic. 2018. Testing [28 Mahdl Ne)adghohl and}]mq?u Yang. 2019. A study of oracle approximations in
probabilistic programming systems. In Proceedings of the 2018 26th ACM Joint testing deep learning hbrar?es. Iljl 2019 34th IEEE/ACM International Conference
Meeting on European Software Engineering Conference and Symposium on the on Automated Software Engineering (ASE). IEEE, 785~796.

[26

Foundations of Software Engineering. 574-586. [29] Augustus Odena, Catherine Olsson, David Andersen, and Ian Goodfellow. 2019.
[7] Anurag Dwarakanath, Manish Ahuja, Samarth Sikand, Raghotham M. Rao, R. P. Ten_sorfuzz: Debugging neura_l networks with coverage-guided fuzzing. In Inter-

Jagadeesh Chandra Bose, Neville Dubash, and Sanjay Podder. 2018. Identify- national Conference on Machine Learning. PMLR, 4901-4911. .

ing Implementation Bugs in Machine Learning Based Image Classifiers Using [30] Carlps Pacheco and Mlchael‘D Ernst. 2007. Randoop: feedback-directed randpm

Metamorphic Testing. In Proceedings of the 27th ACM SIGSOFT International testlng for Java. In ‘Companmn to the 22lnd ACM SIGPLAfN conference on Object-

Symposium on Software Testing and Analysis (ISSTA 2018). ACM, New York, NY, orrentedflzrogrammmg systems am'i appllgatzons companion. 815-816.

USA, 118-128. https:/doi.org/10.1145/3213846.3213858 [31] Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, and Lin Tan. 2019. CRADLE:
(8] Amir Efrati. 2018, Uber Finds Deadly Accident Likely Caused by Software Set to cross-backend validation to detect and localize bugs in deep learning libraries.

Ignore Objects on Road. The information (2018). In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).

Simos Gerasimou, Hasan Ferit-Eniser, Alper Sen, and Alper Cakan. 2020. IEEE, 10_2771038' R X . .
Importance-Driven Deep Learning System Testing. In ICSE. [32] Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan

P. Godefroid, A. Kiezun, and M. Y. Levin. 2008. Grammar-based Whitebox Fuzzing. Rosenthal, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan. 2020. Problems and

In Proceedings of the ACM SIGPLAN conference on Programming language design opportunities in training deep learning software systems: an analysis of vari-
and implementation. 206-215. ance. In Proceedings of the 35th IEEE/ACM International Conference on Automated

[11] Google. 2021. OSS-Fuzz. https://github.com/google/oss-fuzz Software _Engineering._771—783A . ,
[33] Frank Seide and Amit Agarwal. 2016. CNTK: Microsoft’s open-source deep-

[9

=

[10

[12] Rahul Gopinath, Carlos Jensen, and Alex Groce. 2014. Mutations: How close ¢ ! ¢ -
are they to real faults?. In 2014 IEEE 25th International Symposium on Software learning toolkit. In Proceedings of the 22nd ACM SIGKDD International Conference
Reliability Engineering. IEEE, 189-200. on Knowledge Discovery and Data Mining. 2135-2135.

[13] Karam Gouda, Mosab Hassaan, and Mohammed J Zaki. 2010. Prism: An effective (34] Siwakpm Srisakaokul, Zhengkai Wuf Angelle Astorga, Olreoluwa Alebiosu, and
approach for frequent sequence mining via prime-block encoding. J. Comput. Tao Xie. 2018. Multiple-implementation testing of supervised learning software.
System Sci. 76, 1 (2010), 88-102. In Workshops at the Thirty-Second AAAI Conference on Artificial Intelligence.

[14] Qianyu Guo, Xiaofei Xie, Yi Li, Xiaoyu Zhang, Yang Liu, Xiaohong Li, and Chao (35] Chengnian Sun, Vu Le, am':l Zhendong Su. 2016. Finding Compilef Bugs via Live
Shen. 2020. Audee: Automated testing for deep learning frameworks. In 2020 35th Code Mutation. In Proceedings of the 2016 ACM SIGPLAN International Conference
IEEE/ACM International Conference on Automated Software Engineering (ASE). on Object-OrlAenAted Prugrammmg, Systems, Languages, and Applications (OOPSLA
IEEE, 486-498. 2016). Association for Computing Machinery, New York, NY, USA, 849-863.

[15] Jiawei Han, Jian Pei, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen, Umesh- https://d01.org/10:1 145/29839?0'2984038' X i
war Dayal, and Meichun Hsu. 2001. Prefixspan: Mining sequential patterns [36] Y°“9he“g Sug, Min W, Wen]lg Ruan,' Xiaowei Huang, Marta Kwiatkowska, and
efficiently by prefix-projected pattern growth. In proceedings of the 17th interna- Daniel Kroening. 2018. Concolic Testing for Deep Neural Networks. In ASE.
tional conference on data engineering. Citeseer, 215-224. [37] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Automated

[16] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and Testing of De_ep-Neural—Network—Driven Autor}omgus Cars. In Proceedings of the
Alex Aiken. 2019. TASO: Optimizing Deep Learning Computation with Automatic 40th I'nt efrnat ton al Conference on Software Engineer mg. X X
Generation of Graph Substitutions. In Proceedings of the 27th ACM Symposium on (38] Yuchi Tla‘?’ Ziyuan Zhong, Vu:‘ente Ordonez, Qall Ka}ser, and Baishakhi Ray.
Operating Systems Principles (SOSP °19). Association for Computing Machinery, 2020. Testing DNN Image Classifier f(?r ConfUS}on & Bl,as Errors. In {CSE' .
New York, NY, USA, 47-62. https://doi.org/10.1145/3341301.3359630 [39] Jackson Vanover, Xuan Deng, and Cindy Rubio-Gonzalez. 2020. Discovering

[17] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. 2012. dlscrepa_nues in numerlcal libraries. In }_’ruceedings oft_he 29th ACM SIGSOFT
Understanding and detecting real-world performance bugs. ACM SIGPLAN Inte“rnatmnal Symposzum on Software Testlng anfl Analysis. 485_501'

Notices 47, 6 (2012), 77-88. [40] Huiyan Wang, Jingweiu Xu, Chang Xu, Xiaoxing Ma, and Jian Lu. 2020. DIS-

[18] Keras. 2019. Keras 2.3.0: This is also the last major release of multi-backend Keras. SECTQR: Input Validation for Deep Learning Applications by Crossing-layer
https://github.com/keras-team/keras/releases/tag/2.3.0. Dl.ssectmnA In ICSE' X X X X

[19] Sifis Lagouvardos, Julian Dolby, Neville Grech, Anastasios Antoniadis, and Yannis [41] Mmgzhe Wang, Jie Liang, Chijin Zhou, Yu Jiang, Rui Wang, Chengnian Sun,'and
Smaragdakis. 2020. Static analysis of shape in TensorFlow programs. In 34th]1aggang Sun. 2021. RIFF: Reduced In§truct10n Footprint for Coverage-Guided
European Conference on Object-Oriented Programming (ECOOP 2020). Schloss Fuzzing. In 20?1 USEND(A?nual Technical Conference (USEN{XATC 21). 147-159.
Dagstuhl-Leibniz-Zentrum fiir Informatik. [42] Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang. 2020. Deep

[20] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler Validation via learning library testing via effective model generation. In Proceedings of the 28th

Equivalence modulo Inputs. In Proceedings of the 35th ACM SIGPLAN Con- ACM Joint Meeting on European Software Engineering Conference and Symposium

ference on Programming Language Design and Implementation (PLDI ’14). As- on [h‘j’ Four%datif)ns afSOfthare E"gi"ee’i"g- 7§8_799' i .
sociation for Computing Machinery, New York, NY, USA, 216-226. https: Danning Xie, Yitong Li, Mijung Kim, Hung Viet Pham, Lin Tan, Xiangyu Zhang,
//doi.org/10.1145/2594291.2594334 and Michael Godfrey. 2021. Leveraging Documentation to Test Deep Learning

Library Functions. (2021). arXiv:cs.SE/2109.01002

Xiaoyuan Xie, Joshua WK Ho, Christian Murphy, Gail Kaiser, Baowen Xu, and
Tsong Yueh Chen. 2011. Testing and validating machine learning classifiers by
metamorphic testing. Journal of Systems and Software 84, 4 (2011), 544-558.
Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun
Zhao, Bo Li, Jianxiong Yin, and Simon See. 2019. Deephunter: a coverage-guided
fuzz testing framework for deep neural networks. In Proceedings of the 28th ACM

"~
&

[21

Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding Deep Compiler Bugs via
Guided Stochastic Program Mutation. In Proceedings of the 2015 ACM SIGPLAN [44
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA 2015). Association for Computing Machinery, New
York, NYY, USA, 386-399. https://doi.org/10.1145/2814270.2814319 [45

https://www.tensorflow.org/
https://github.com/onnx/onnx
https://keras.io
https://doi.org/10.1145/3213846.3213858
https://github.com/google/oss-fuzz
https://doi.org/10.1145/3341301.3359630
https://github.com/keras-team/keras/releases/tag/2.3.0
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2814270.2814319
https://doi.org/10.1109/ISSRE.2019.00018
http://llvm.org/docs/LibFuzzer.html
http://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1145/2983990.2984038
https://arxiv.org/abs/cs.SE/2109.01002

EAGLE: Creating Equivalent Graphs to Test Deep Learning Libraries

[46

[47

]

SIGSOFT International Symposium on Software Testing and Analysis. 146-157.
Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khur-
shid. 2018. DeepRoad: GAN-Based Metamorphic Testing and Input Validation
Framework for Autonomous Driving Systems. In ASE.

Xufan Zhang, Ning Sun, Chunrong Fang, Jiawei Liu, Jia Liu, Dong Chai, Jiang
Wang, and Zhenyu Chen. 2021. Predoo: precision testing of deep learning
operators. In Proceedings of the 30th ACM SIGSOFT International Symposium
on Software Testing and Analysis. 400-412.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

[48] Wujie Zheng, Wenyu Wang, Dian Liu, Changrong Zhang, Qinsong Zeng, Yuetang

[49

Deng, Wei Yang, Pinjia He, and Tao Xie. 2019. Testing untestable neural machine
translation: An industrial case. In 2019 IEEE/ACM 41st International Conference on
Software Engineering: Companion Proceedings (ICSE-Companion). IEEE, 314-315.
Husheng Zhou, Wei Li, Zelun Kong, Junfeng Guo, Yuqun Zhang, Lingming Zhang,
Bei Yu, and Cong Liu. 2020. DeepBillboard: Systematic Physical-World Testing
of Autonomous Driving Systems. In ICSE.

	Abstract
	1 Introduction
	1.1 Our Approach
	1.2 Contributions

	2 Definition and Terminology
	3 Approach
	3.1 Equivalence Rules
	3.2 Equivalent Graph Construction
	3.3 Bug Detection

	4 Experimental Setup
	5 Evaluation and Results
	5.1 RQ1: How many bugs does EAGLE detect?
	5.2 RQ2: What bugs are detected by EAGLE?
	5.3 RQ3: Does EAGLE detect bugs not detected by other DL library testing techniques?
	5.4 RQ4: Do DL library developers use equivalent graphs?
	5.5 RQ5: What is the run time of EAGLE?

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References

