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Computer vision and machine learning systems for microstructural characterization

and analysis are used for a variety of image analysis tasks, including image
classification, semantic segmentation, object detection, and instance segmentation,
leading to accurate, autonomous, objective, repeatable results in an indefatigable
and permanently available manner.
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uantitative representation of mi-

crostructure is the foundational

tool of microstructural science,
connecting the material’s structure to its
composition, process history, and prop-
erties. Microstructural quantification tra-
ditionally involves a human deciding a
priori what to measure and then devis-
ing a purpose-built method for doing so.
However, recent advances in data sci-
ence, including computer vision (CV) and
machine learning (ML), offer new ap-
proaches to extracting information from
microstructural images®* ™. The objective
of CV is to represent the visual content
of an image in numerical form, and ML
makes use of these representations to
accomplish a given goal. Given a micro-
structural image, a CV/ML system can
perform a variety of analysis objectives,
including image classification (e.g., fer-
ritic, austenitic, martensitic), property
prediction (e.g., yield strength), feature

..lHE MOST VALUABLE
MICROSTRUCTURAL DATA SETS
INCLUDE METADATA THAT
ENRICHES THEIR
INFORMATION CONTENT.

measurement (e.g., grain size), constitu-
ent identification (e.g., phase identifica-
tion), or a host of other characterization
tasks. The CV/ML approach is not a sin-
gle solution that addresses every micro-
structural science challenge, but it offers
a path toward objective, repeatable, gen-
eralizable, and scalable methods that
complement the traditional materials
characterization workflow.

COMPUTER VISION AND
MACHINE LEARNING

Computer vision encompasses an
array of methods for creating a numer-
ical representation of a visual image,
termed the feature vector®. Machine
learning methods then extract quan-
titative visual information from the
high-dimensional feature vector®. Most
high-performance CV/ML systems cur-
rently use convolutional neural net-
works (CNNs), which take an image as
input, apply a variety of signal process-
ing operations to it in order to encode

it as a vector, and then utilize an artifi-
cial neural network or other ML method
to draw a conclusion about the visual
content of the imagel*®*Y, The first part
of the CNN pipeline—encoding the im-
age as a feature vector—is termed the
feature learning stage, and the second
part—drawing a conclusion—is the clas-
sification stage.

Designing and training a CNN re-
quires deep expertise and a large data
set (typically millions of images), mak-
ing it impractical for most microstruc-
tural data sets. However, CNNs that
have been optimized and trained on a
large set of natural images have been
successfully used with other kinds of
images, including microstructures. This
transfer learning!'?® approach enables
using pre-trained CNNs (such as the
VGG16 network™ trained on the Im-
ageNet data set™) for microstructur-
al representation. However, because
the goal is not to classify microstruc-
tural images into the ImageNet cate-
gories (broccoli, bucket, bassoon), the
network is truncated before the classi-
fication stage. Instead, the CNN layers
themselves are used as the image rep-
resentations for ML tasks.

Machine learning methods are ei-
ther supervised (trained using known
correct answers, termed ground truth)
or unsupervised (finding patterns with-
out knowledge of a ground truth), and
there are important roles for each ap-
proach. Supervised ML methods make
predictions about new data based onin-
formation learned from training data
with known ground truth answers0:11:15],
In contrast, unsupervised ML algorithms
find relationships between images
without ground truth data or human in-
tervention, typically by generating clus-
ters of related images!®*®. The choice of
ML modality and model depends on the
nature of the input data and the desired
outcome. In this process, it is helpful
to include a domain expert in ML algo-
rithms because the best-in-class solu-
tions are ever-evolving.

MICROSTRUCTURAL
IMAGE DATA

When assembling an image data
set for CV/ML analysis, image quality

is less important than exposing the
ML system to the full scope of the data
space. This is not a recommendation to
ignore good microscopy practices, but
rather a suggestion that many accept-
able images are better than one perfect
image. Data collection practices that in-
crease the performance of CV/ML sys-
tems include taking redundant images
of a sample with non-overlapping fields
of view, standardizing imaging con-
ditions (such as instrument, settings,
magnification, and orientation), and
data augmentation via subsampling or
affine transformations such as transla-
tion or rotation®”. Moreover, the most
valuable microstructural data sets in-
clude metadata that enriches their
information content. Metadata may in-
clude multiple imaging modalities (e.g.,
EBSD and backscatter data for the same
field of view), as well as information on
material system, composition, imaging
information, processing history, prop-
erty measurements, and any other data
available related to the image.

Data size is often assumed to
be the limiting factor in developing
CV/ML methods, and in some cases
it is. However, excellent results have
been achieved with very small num-
bers of original micrographs (some-
times fewer than 10). This has to do
with the data-richness of microstruc-
tural images. The upshot is that a rela-
tively modest investment in data may
yield a successful CV/ML system.

IMAGE CLASSIFICATION AND
CHARACTERIZATION

Image classification may not seem
important, because microstructures are
usually known. However, classification
of images underlies a host of critical ar-
chiving and analysis tasks. Classifica-
tion relies on the fact that the CV feature
vector is a numerical representation of
the visual information contained in an
image. As such, similarities in the fea-
ture vector should correspond to visual
similarities. Thus, the distance between
two feature vectors can be used to per-
form visual search, clustering, and clas-
sification. For example, for a database
of 961 ultrahigh carbon steel (UHCS) mi-
crostructures®® Fig. 1 shows the three
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Fig. 1 — Visual search forimages with similar feature vectors in a database of 961 ultrahigh
carbon steel micrographs®. Visually similar micrographs contain similar microstructural
constituents, here comprised of a mix of network, Widmanstatten, and spheroidite carbides.

e Spheroidite
e Network
* Pearlite

Fig. 2 — Visual clustering plot in which micrographs cluster according to their primary
microconstituent: spheroidite (blue), network carbide (red), or pearlite (green)?. Example
microstructures for each cluster are shown in the insets.

images with feature vectors closest to
that of a given target image; obvious-
ly, feature vector similarity is reflected
in visual similarity. This makes it easy
to search an image database for relat-
ed microstructures. For the same set
of UHCS micrographs, Fig. 2 shows a vi-
sual clustering map where each point
represents an image; point color corre-
sponds to the primary microstructural
constituentin each micrograph. Clearly,
similar images cluster, which illustrates
the visual structure of the data set.

Feature vectors can also be used
to quantify microstructural information
directly. Figure 3 shows an example that
uses the feature vector to measure av-
erage grain size in polycrystalline mi-
crostructures; the results are within a
standard error of 2.3%. Finally, the fea-
ture vector can contain visual informa-
tion that is not perceptible to humans.
For instance, chemical composition is
not usually measured visually, but rath-
er with specialized tools such as energy
dispersive spectroscopy (EDS). Figure 4
shows the results of a ML approach that
achieves 76% total accuracy in classi-
fying the composition of inclusions in
steel from backscattered SEM images.
This demonstrates the ability of the CV/
ML system to sense subtle visual details
like feature size, shape, contrast, and
color distribution with a fidelity that ex-
ceeds human perception.

SEMANTIC SEGMENTATION

Quantitative measurement of ma-
terials microstructure typically requires
theimage to be segmented, where each
pixel in the image is assigned to a mi-
crostructural constituent. Convention-
al segmentation algorithms, such as
those incorporated in ImagelJ®, can
work well on suitable microstructures,
but become less effective for com-
plex or non-ideal images and often re-
quire considerable human intervention.
Therefore, we turn to CV/ML methods to
address these challenges.

Image segmentation has import-
antapplicationsin robotics and medical
imaging among others, so there is con-
siderableresearch activity in developing
segmentation methods. These meth-
ods can be adapted to microstructural
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True label

images via transfer learning. For exam-
ple, the PixelNet CNN®2Y trained on the
ImageNet database of natural images!**
has been used to classify pixels accord-
ing to their microstructural constituent
as shown in Fig. 5. In Fig. 5a, the system
was trained using 20 hand-annotated

images from the UHCS micrograph da-
tabase®, and in Fig. 5b, the system was
trained on 30 hand-annotated images
from a set of tomographic slices of an
Al-Zn solidification dendrite®. In both
cases, the predicted segmentations are
arguably equal in quality to the human
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Fig. 3 — Measurement of average grain size from a database of 15,213 synthetic polycrystalline
microstructures using deep regression. The red line corresponds to perfect accuracy. Inset

shows an example microstructure.
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Fig. 4 — Classification results for steel inclusion composition from a database of 2543
backscattered SEM image patches (example images are shown to the right). The prediction
accuracy for each inclusion type is shown along the diagonal; overall accuracy is about 76%.

annotations, and certainly adequate for
quantitative analysis. Besides the excel-
lent performance, the CV/ML system is
also fast, autonomous, objective, and
repeatable, enabling the high through-
put necessary for applications such as
3D reconstruction or quality control.

An additional benefit of this ap-
proach is the ability to capture human-
like judgments about image features.
For instance, in Fig. 5a, the spheroid-
ite matrix constituent, comprised of
spheroidite particles in a ferrite matrix,
is segmented as a single constituent (or-
ange). Likewise, in Fig. 5b, the system
learns to ignore sample preparation ar-
tifacts such as the sample edge, pores,
and the circular beam spot at the cen-
ter of the image. Conventional segmen-
tation methods would be challenged
to handle these complex features. It is
this capacity for learning what to look
for and what to ignore that distinguish-
es the CV/ML approach to semantic
segmentation.

OBJECT DETECTION AND
INSTANCE SEGMENTATION

Object detection entails locat-
ing each unique object of its kind in
an image, i.e., finding each individual
precipitate in a micrograph. Instance
segmentation extends this technique
to also generate segmentation masks
for each individual object. Specialized
CNNs have been developed for object
detection and instance segmentation?.
As in the case of semantic segmenta-
tion, transfer learning allows models
trained on natural images to be adapt-
ed to materials science applications.

For example, the presence of small
satellite particles is known to affect the
flowability of metal powders used in ad-
ditive manufacturing. ACV/ML approach
utilizing object detection and instance
segmentation demonstrated the abili-
ty to identify individual powder parti-
cles and their satellites in dense powder
images. Tedious manual annotation
yielded five and ten labeled images for
powder particles and satellites, respec-
tively. The CV/ML system was trained on
these images, and sample predictions
are shown in Fig. 6. The powder parti-
cle masks showed very good agreement
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Fig. 5 — Semantic segmentation of microstructural images using a CV/ML system. (a

) Segmen-

tation of microstructural constituents in an SEM micrograph of ultrahigh carbon steel. Constitu-
ents include network carbide (light blue), ferritic denuded zone (dark blue), Widmanstatten
carbide (green), and spheroidite matrix (gold). (b) Segmentation of a tomographic section of an
Al-Zn alloy. The solidification dendrite is shown in white on a black background.

Fig. 6 — Predicted powder particle (left) and satellite (middle) segmentation masks for SEM
images of metal powders used in additive manufacturing. Colors are randomly assigned for
visual clarity and do not have physical significance. Sample satellited powder particle (right)
detected by overlaying the powder particle and satellite masks.

with the manual annotations and indi-
cated that the model approached hu-
man-level performance for identifying
individual particles. Detecting satellites
is a much harder problem, resulting in
lower model performance. However,
most of the predictions still matched
with the annotations, indicating that
satellites can consistently be detected
in these images. Overlaying the parti-
cle and satellite masks to determine the
fraction of particles that contain sat-
ellites provided a new, objective, and
self-consistent method of characteriz-
ing the satellite content of powder sam-
ples that showed good agreement with
the expected trends for images of differ-
ent powder samples.

CONCLUSIONS

The key function of CV is to nu-
merically encode the visual information
contained in a microstructural image
for ML algorithms to find associations
and trends. CV/ML systems for micro-
structural characterization and analysis
span the gamut of image analysis tasks,
including image classification, seman-
tic segmentation, object detection, and
instance segmentation. Applications
include:

e Visual search, sort, and classifi-
cation of micrographs via feature
vector similarity.

e Extracting information not readily
visible to humans, such as chemical

composition in SEM micrographs.

e Performing semantic segmentation
of microstructural constituents with
a high accuracy and human-like
judgment about what to look for
and what to ignore.

e Finding all instances of individual
objects, even when they impinge
and overlap.

e Segmenting individual objects to
enable new capabilities in micro-
structural image analysis.

A common characteristic among
all of these applications is that they
capitalize on the ability of computation-
al systems to produce accurate, autono-
mous, objective, and repeatable results
in an indefatigable and permanently
available manner. ~AM&P
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NOW

While we were looking forward to seeing
everyone in-person at AeroMat 2021 and
ITSC 2021 in Quebec City this May, the
safety and well-being of our attendees
and exhibitors is our top priority.

Based on concerns related to the

coronavirus pandemic and its continued
impact on our international community’s
ability to travel to the conference, both
events are pivoting to a 100% virtual
conference and expo platform.
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INTERNATIONAL THERMAL SPRAY
CONFERENCE AND EXPOSITION

MAY 24-28, 2021

HERE IS A SNAPSHOT OF WHAT

YOU CAN EXPECT:

+ TWO conferences for the price of one!

+ On-demand access to technical presentations
» Keynote Sessions and Industry Panel Sessions
«Virtual Exhibit Hall Experience

«Engage and Interact with your colleagues from
around the world

+Online access to ITSC 2021 Conference
Proceedings and AeroMat 2021 Abstracts

VIRTUAL

AEROMAT ORGANIZER:

o IN'FEHNK!'II:INAI_

aeromatevent.org

ITSC ORGANIZERS:
TSS

ERMAN WELDING
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