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Computer vision and machine learning systems for microstructural characterization 
and analysis are used for a variety of image analysis tasks, including image 
classification, semantic segmentation, object detection, and instance segmentation, 
leading to accurate, autonomous, objective, repeatable results in an indefatigable 
and permanently available manner. 
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...THE MOST VALUABLE 
MICROSTRUCTURAL DATA SETS 

INCLUDE METADATA THAT 
ENRICHES THEIR  

INFORMATION CONTENT.

Quantitative representation of mi-
crostructure is the foundational 
 tool of microstructural science, 

connecting the material’s structure to its 
composition, process history, and prop-
erties. Microstructural quantification tra-
ditionally involves a human deciding a 
priori what to measure and then devis-
ing a purpose-built method for doing so. 
However, recent advances in data sci-
ence, including computer vision (CV) and 
machine learning (ML), offer new ap-
proaches to extracting information from 
microstructural images[1-7]. The objective 
of CV is to represent the visual content 
of an image in numerical form, and ML 
makes use of these representations to 
accomplish a given goal. Given a micro-
structural image, a CV/ML system can 
perform a variety of analysis objectives, 
including image classification (e.g., fer-
ritic, austenitic, martensitic), property 
prediction (e.g., yield strength), feature 

is less important than exposing the 
ML system to the full scope of the data 
space. This is not a recommendation to 
ignore good microscopy practices, but 
rather a suggestion that many accept-
able images are better than one perfect 
image. Data collection practices that in-
crease the performance of CV/ML sys-
tems include taking redundant images 
of a sample with non-overlapping fields 
of view, standardizing imaging con-
ditions (such as instrument, settings, 
magnification, and orientation), and 
data augmentation via subsampling or 
affine transformations such as transla-
tion or rotation[17]. Moreover, the most 
valuable microstructural data sets in-
clude metadata that enriches their 
information content. Metadata may in-
clude multiple imaging modalities (e.g., 
EBSD and backscatter data for the same 
field of view), as well as information on 
material system, composition, imaging 
information, processing history, prop-
erty measurements, and any other data 
available related to the image.

Data size is often assumed to 
be the limiting factor in developing 
CV/ML methods, and in some cases 
it is. However, excellent results have 
been achieved with very small num-
bers of original micrographs (some-
times fewer than 10). This has to do 
with the data-richness of microstruc- 
tural images. The upshot is that a rela-
tively modest investment in data may 
yield a successful CV/ML system.

IMAGE CLASSIFICATION AND 
CHARACTERIZATION

Image classification may not seem 
important, because microstructures are 
usually known. However, classification 
of images underlies a host of critical ar-
chiving and analysis tasks. Classifica-
tion relies on the fact that the CV feature 
vector is a numerical representation of 
the visual information contained in an 
image. As such, similarities in the fea-
ture vector should correspond to visual 
similarities. Thus, the distance between 
two feature vectors can be used to per-
form visual search, clustering, and clas-
sification. For example, for a database 
of 961 ultrahigh carbon steel (UHCS) mi-
crostructures[18] Fig. 1 shows the three 

it as a vector, and then utilize an artifi-
cial neural network or other ML method 
to draw a conclusion about the visual 
content of the image[10,11]. The first part 
of the CNN pipeline—encoding the im-
age as a feature vector—is termed the 
feature learning stage, and the second 
part—drawing a conclusion—is the clas-
sification stage.

Designing and training a CNN re-
quires deep expertise and a large data 
set (typically millions of images), mak-
ing it impractical for most microstruc-
tural data sets. However, CNNs that 
have been optimized and trained on a 
large set of natural images have been 
successfully used with other kinds of 
images, including microstructures. This 
transfer learning[12] approach enables 
using pre-trained CNNs (such as the 
VGG16 network[13] trained on the Im-
ageNet data set[14]) for microstructur-
al representation. However, because 
the goal is not to classify microstruc-
tural images into the ImageNet cate-
gories (broccoli, bucket, bassoon), the 
network is truncated before the classi-
fication stage. Instead, the CNN layers 
themselves are used as the image rep-
resentations for ML tasks. 

Machine learning methods are ei-
ther supervised (trained using known 
correct answers, termed ground truth) 
or unsupervised (finding patterns with-
out knowledge of a ground truth), and 
there are important roles for each ap-
proach. Supervised ML methods make 
predictions about new data based on in- 
formation learned from training data 
with known ground truth answers[10,11,15]. 
In contrast, unsupervised ML algorithms 
find relationships between images 
without ground truth data or human in-
tervention, typically by generating clus-
ters of related images[6,16]. The choice of 
ML modality and model depends on the 
nature of the input data and the desired 
outcome. In this process, it is helpful 
to include a domain expert in ML algo-
rithms because the best-in-class solu-
tions are ever-evolving.

MICROSTRUCTURAL 
IMAGE DATA

When assembling an image data 
set for CV/ML analysis, image quality 

measurement (e.g., grain size), constitu-
ent identification (e.g., phase identifica-
tion), or a host of other characterization 
tasks. The CV/ML approach is not a sin-
gle solution that addresses every micro-
structural science challenge, but it offers 
a path toward objective, repeatable, gen-
eralizable, and scalable methods that 
complement the traditional materials 
characterization workflow.

COMPUTER VISION AND 
MACHINE LEARNING

Computer vision encompasses an 
array of methods for creating a numer-
ical representation of a visual image, 
termed the feature vector[8]. Machine 
learning methods then extract quan-
titative visual information from the 
high-dimensional feature vector[9]. Most 
high-performance CV/ML systems cur-
rently use convolutional neural net-
works (CNNs), which take an image as 
input, apply a variety of signal process-
ing operations to it in order to encode 
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images with feature vectors closest to 
that of a given target image; obvious-
ly, feature vector similarity is reflected 
in visual similarity. This makes it easy 
to search an image database for relat-
ed microstructures. For the same set 
of UHCS micrographs, Fig. 2 shows a vi-
sual clustering map where each point 
represents an image; point color corre-
sponds to the primary microstructural 
constituent in each micrograph. Clearly, 
similar images cluster, which illustrates 
the visual structure of the data set.

Feature vectors can also be used 
to quantify microstructural information 
directly. Figure 3 shows an example that 
uses the feature vector to measure av-
erage grain size in polycrystalline mi-
crostructures; the results are within a 
standard error of 2.3%. Finally, the fea-
ture vector can contain visual informa-
tion that is not perceptible to humans. 
For instance, chemical composition is 
not usually measured visually, but rath-
er with specialized tools such as energy 
dispersive spectroscopy (EDS). Figure 4 
shows the results of a ML approach that 
achieves 76% total accuracy in classi-
fying the composition of inclusions in 
steel from backscattered SEM images. 
This demonstrates the ability of the CV/
ML system to sense subtle visual details 
like feature size, shape, contrast, and 
color distribution with a fidelity that ex-
ceeds human perception. 

SEMANTIC SEGMENTATION
Quantitative measurement of ma-

terials microstructure typically requires 
the image to be segmented, where each 
pixel in the image is assigned to a mi-
crostructural constituent. Convention-
al segmentation algorithms, such as 
those incorporated in ImageJ[19], can 
work well on suitable microstructures, 
but become less effective for com-
plex or non-ideal images and often re-
quire considerable human intervention. 
Therefore, we turn to CV/ML methods to 
address these challenges. 

Image segmentation has import-
ant applications in robotics and medical 
imaging among others, so there is con-
siderable research activity in developing 
segmentation methods. These meth-
ods can be adapted to microstructural 

Fig. 1 — Visual search for images with similar feature vectors in a database of 961 ultrahigh 
carbon steel micrographs[18]. Visually similar micrographs contain similar microstructural 
constituents, here comprised of a mix of network, Widmanstatten, and spheroidite carbides.

Fig. 2 — Visual clustering plot in which micrographs cluster according to their primary 
microconstituent: spheroidite (blue), network carbide (red), or pearlite (green)[2]. Example 
microstructures for each cluster are shown in the insets.
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annotations, and certainly adequate for 
quantitative analysis. Besides the excel-
lent performance, the CV/ML system is 
also fast, autonomous, objective, and 
repeatable, enabling the high through-
put necessary for applications such as 
3D reconstruction or quality control.

An additional benefit of this ap-
proach is the ability to capture human- 
like judgments about image features. 
For instance, in Fig. 5a, the spheroid-
ite matrix constituent, comprised of 
spheroidite particles in a ferrite matrix, 
is segmented as a single constituent (or-
ange). Likewise, in Fig. 5b, the system 
learns to ignore sample preparation ar-
tifacts such as the sample edge, pores, 
and the circular beam spot at the cen-
ter of the image. Conventional segmen-
tation methods would be challenged 
to handle these complex features. It is 
this capacity for learning what to look 
for and what to ignore that distinguish-
es the CV/ML approach to semantic 
segmentation.

OBJECT DETECTION AND 
INSTANCE SEGMENTATION

Object detection entails locat-
ing each unique object of its kind in 
an image, i.e., finding each individual 
precipitate in a micrograph. Instance 
segmentation extends this technique 
to also generate segmentation masks 
for each individual object. Specialized 
CNNs have been developed for object 
detection and instance segmentation[22]. 
As in the case of semantic segmenta-
tion, transfer learning allows models 
trained on natural images to be adapt-
ed to materials science applications.

For example, the presence of small 
satellite particles is known to affect the 
flowability of metal powders used in ad-
ditive manufacturing. A CV/ML approach 
utilizing object detection and instance 
segmentation demonstrated the abili-
ty to identify individual powder parti-
cles and their satellites in dense powder 
images. Tedious manual annotation 
yielded five and ten labeled images for 
powder particles and satellites, respec-
tively. The CV/ML system was trained on 
these images, and sample predictions 
are shown in Fig. 6. The powder parti-
cle masks showed very good agreement 

images via transfer learning. For exam-
ple, the PixelNet CNN[20] trained on the 
ImageNet database of natural images[14] 
has been used to classify pixels accord-
ing to their microstructural constituent 
as shown in Fig. 5. In Fig. 5a, the system 
was trained using 20 hand-annotated 

Fig. 4 — Classification results for steel inclusion composition from a database of 2543 
backscattered SEM image patches (example images are shown to the right). The prediction 
accuracy for each inclusion type is shown along the diagonal; overall accuracy is about 76%.

Fig. 3 — Measurement of average grain size from a database of 15,213 synthetic polycrystalline 
microstructures using deep regression. The red line corresponds to perfect accuracy. Inset 
shows an example microstructure.

images from the UHCS micrograph da-
tabase[3], and in Fig. 5b, the system was 
trained on 30 hand-annotated images 
from a set of tomographic slices of an 
Al-Zn solidification dendrite[21]. In both 
cases, the predicted segmentations are 
arguably equal in quality to the human 
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with the manual annotations and indi-
cated that the model approached hu-
man-level performance for identifying 
individual particles. Detecting satellites 
is a much harder problem, resulting in 
lower model performance. However, 
most of the predictions still matched 
with the annotations, indicating that 
satellites can consistently be detected 
in these images. Overlaying the parti-
cle and satellite masks to determine the 
fraction of particles that contain sat-
ellites provided a new, objective, and 
self-consistent method of characteriz-
ing the satellite content of powder sam-
ples that showed good agreement with 
the expected trends for images of differ-
ent powder samples.

CONCLUSIONS
The key function of CV is to nu-

merically encode the visual information 
contained in a microstructural image 
for ML algorithms to find associations 
and trends. CV/ML systems for micro-
structural characterization and analysis 
span the gamut of image analysis tasks, 
including image classification, seman-
tic segmentation, object detection, and 
instance segmentation. Applications 
include:
x� Visual search, sort, and classifi-

cation of micrographs via feature 
vector similarity.

x� Extracting information not readily 
visible to humans, such as chemical 

composition in SEM micrographs.
x� Performing semantic segmentation 

of microstructural constituents with 
a high accuracy and human-like 
judgment about what to look for 
and what to ignore.

x� Finding all instances of individual 
objects, even when they impinge 
and overlap.

x� Segmenting individual objects to 
enable new capabilities in micro-
structural image analysis.

A common characteristic among 
all of these applications is that they 
capitalize on the ability of computation-
al systems to produce accurate, autono-
mous, objective, and repeatable results 
in an indefatigable and permanently 
available manner. ~AM&P 
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