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ABSTRACT. For data which are analytic only close to the boundary of the domain, we prove that in the inviscid limit the
Navier-Stokes solution converges to the corresponding Euler solution. Compared to earlier results, in this paper we only
require boundedness of an integrable analytic norm of the initial data, with respect to the normal variable, thus removing the
uniform in viscosity boundedness assumption on the vorticity. As a consequence, we may allow the initial vorticity to be
unbounded close to the set y = 0, which we take as the boundary of the domain; in particular the vorticity can grow with the
rate 1/y1~? for y close to 0, for any § > 0. September 20, 2020

1. Introduction

In this paper, we address the inviscid limit problem for the Navier-Stokes equations

ou—vAu+u-Vu+Vp=0 (1.1)
divu =0 (1.2)

with an incompressible initial datum
Ult=0 = ug - (1.3)

Itis a well-known open problem to identify the initial data u for which the solutions of the system (1.1)—(1.3) converge
to the solution of the Euler system

u+1u-Vai+Vp=0 (1.4)
divu =0 (1.5)

with the initial condition
Ule=0 = uo . (1.6)

While the question is settled in the absence of boundaries (R? or T?) [53, 58, 30, 4, 8, 12, 49], the problem in a domain
) with boundary remains to a large extend unresolved, due to a mismatch in boundary conditions: The Navier-Stokes
solution satisfies the no-slip boundary condition u|sq = 0, while the Euler one may allow for tangential slip at the
boundary since @ - n|spq = 0. The convergence u — @ in the topology of the energy norm L>°(0,T; L?()) is

equivalent to the condition
T
1// / Vul> -0 as v —=0, (1.7)
0 dist(y,00Q)<cov

which is commonly referred to as Kato’s criterion [31]. Above, ¢y > 0 is an arbitrarily chosen positive constant. Note
that (1.7) demands non-anomalous energy dissipation in a very thin (¥ < 1/v) boundary layer around the boundary.
In this paper, we are interested in identifying general conditions on initial data which permit us to conclude the
convergence of the Navier-Stokes solution toward the Euler one, as v — 0. A classical result of Sammartino and
Caflisch [56, 57] states that this indeed holds for initial data which is analytic in 2. Subsequently, Mackawa [46]
proved that the same is true if the initial data ug has vorticity wy = curl ug that is compactly supported in the interior
of Q2. Both approaches relied on the Prandtl boundary layer expansion, by establishing its validity. Then, Nguyen-
Nguyen have found in [54] a proof of the Sammartino-Caflisch analyticity result without the use of Prandtl correctors
by using a combination of analytic norms which suitably encode the boundary layer behavior of the solution. Recently,
in [38] the authors of the present paper bridged the results of Sammartino-Caflisch and Maekawa by proving that the
inviscid limit holds for data which are analytic in a vicinity of the boundary, and Sobolev regular otherwise. In [38],
1
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three norms were used; two norms in the analytic near-boundary region (a combination of a uniform weighted norm
and an integrable norm), and a Sobolev norm away from the boundary. The analytic norms are defined in a wedge-like
analytic sector with respect to the normal variable. Finally, the third named author of the present paper proved the
analogous statement in three space dimensions in [61]. We would also like to point the important result of Gerard-
Varet, Maekawa, and Masmoudi [19], who proved that the inviscid limit holds for initial data in a proximity of a
monotone and convex shear flow, with only Gevrey-2 regularity in the tangential variable.

The main purpose of this paper is to further relax the requirements on the initial data from [38]: We no longer
demand the boundedness of the vorticity in an analytic sector with respect to the normal variable, and instead only
require its integrability. Recall that in [38] we used two analytic norms in a constant neighborhood of the boundary.
The first norm X () was a weighted L type norm, and Y (t) was an L' type norm. The first norm allows an
O(v~1/?) size of the vorticity in the boundary layer, which is then in turn used in Kato’s criterion to imply the
inviscid limit. However, the use of this norm restricts the initial data to those which are bounded in a neighborhood
of the boundary. Here, we eliminate the norm X (¢) from the analysis, thus allowing more general initial vorticity.
In particular, we only require analytic integrability in a wedge close to the boundary, such as initial vorticity of the
type f(z)/y'=° for y < cy, where cg is constant, and Sobolev regularity for y > co. In addition, the approach
presented here provides a simple proof of the inviscid limit problem with data analytic close to the boundary. Note
also that the integrability requirement is natural and consistent with the paper [10] by Constantin et al, where it is
shown that uniform integrability of the Navier-Stokes vorticity is sufficient for a weak-* convergence on compact sets
in the interior of the domain (see also [7]). Also, as opposed to [38], we no longer use norms which are v-dependent
(note that the weight w used in the definition of the X -norm in [38] depends on the viscosity v).

In the rest of the introduction we briefly summarize available results on the topic of inviscid limit; for a more
comprehensive review, see [47]. The papers [32, 59, 62] provide alternatives to the Kato criterion by considering
the vorticity or using tangential/vertical derivatives of the velocity. In [32], the vanishing viscosity limit is related to
accumulation of vorticity on the boundary, showing that L? norms of the vorticity may not be suitable for the study
of convergence when ¢ > 1; also, see [48, 3, 7, 9, 34] for other necessary and sufficient conditions on the vorticity or
velocity for the validity of the inviscid limit. We point out that there are several classes of initial data with different
symmetry assumptions (e.g. plane-parallel flow, pipe flow, etc.) for which one can conclude that the convergence
u — « holds as v — 0 (cf. [35, 5, 27, 33, 43, 44, 47, 51, 52]). Finally, the vanishing viscosity limit and the Prandtl
expansion is known to hold in various settings for the stationary problem over a flat plate [18, 25, 26, 29]. For other
works on the inviscid limit, see [6, 49, 11, 14, 15, 16, 36, 42, 60], while for works on the various aspects of the Prandtl
boundary layer theory, cf. [55, 22, 41, 17, 21, 20, 39, 1, 37, 23, 50, 28, 40, 24, 13].

The paper is organized as follows. In Section 2, we introduce the necessary notation, while in Section 3 we state
the two main results, the first on a uniform existence time with a uniform estimate on solutions of the Navier-Stokes
solution, and the second on the inviscid limit. The next section contains the analytic norm estimate and the estimate
for the nonlinearity. In Section 5, we provide a Sobolev type estimate. This proof provides several improvements
over the approach in [38] by using the analyticity more directly and by providing new bounds on the derivatives of the
velocity and the vorticity. The last two sections contain proofs of the two main theorems; in particular, the last section
gives a proof of the inviscid limit by using only the L!-analytic norm of the vorticity.

2. Notation and norms

For a function f = f(z,y), which is 2m-periodic, we denote the Fourier transform in the x variable by fe. In
particular,

Fla,y) = fe(y)e™.

EEZ
We fix po € (0,1/10), and assume that p € (0, p10). Then

Q,={2€C:0<Rez<1,Imz|<pRez}U{z€C:1<Rez<1+py,|Imz|] <1+ pu—Rez}

denotes the complex domain for functions of the y variable.
For a sufficiently large constant v > 0 to be determined below, which depends on o and the size of the initial
datum (but is independent of v), we require that ¢ satisfies

‘e (o,“o> . @1
2y

We assume, without loss of generality, that v > 10 /2.
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For a complex valued function f defined on €2,,, let

[fller = sup [[fllzra0,) » (2.2)
0<6<pu

where the integration is taken over the two directed paths along the boundary of the domain €. Using (2.2), we define
1flly, = ZHeeo(l-s-u—y)IEIfg”% , (2.3)
3=/

where ¢p > 0 is a sufficiently small constant. In (2.3) and elsewhere, we overload the notation and write y instead of
Re y when it appears inside the exponential. Fix « € (0, 1). For ¢ as in (2.1), we introduce the analytic norm

Iflly@ = sup < S ooty + > (uouvt)“Hai(yay)ijy). (2.4)
0<p<po=7t \o<it <1 "= "
As for the Sobolev part of the norm, let
2
I1£1IE = 19 flT2(y>1/2) = Z||yf5||2L2(yz1/2) (2.5)
EET
and
. . 2
Ifllz= D2 Nadiflls= Do 9005 f (1210 -
0<i+j<3 0<i+j<3 B
Lastly, we denote by
lwlle = llwlly ) + llwll (2.6)

the cumulative vorticity norm.
For the simplicity of the exposition, as in [38], we provide proofs for bounds on the Y (¢) norm using paths in the
real plane. It is not difficult to extend proofs to cover the complex paths, as we show in Appendix A.

3. Main results
Denote by u = u” the solution of the Navier-Stokes system
ou —vAu+u-Vu+Vp=0
dive =0
with the initial condition
uly=0 = Uo

on the half-space domain HH = T x R} = {(z,y) € T x R: y > 0}, where T = [—m, 7], with T-periodic boundary
conditions in x, and the no-slip boundary condition

Uly—o =0 3.1)

on OH = T x {y = 0}. The initial datum wy is divergence free and is assumed to obey the boundary condition (3.1).
We assume that the viscosity v belongs to the range (0,1] throughout. The corresponding vorticity

w=w" = 0yus — Oyu; = Vtou, 3.2)
where V1 = (=9, 9,,), satisfies
wr — VAw = —u - Vw, 3.3)

with the initial data wy = V- - ug. The velocity u is recovered by the Biot-Savart law v = V+A~1w, where A~ 1 is
the inverse of the Laplacian with the homogeneous boundary conditions at y = 0. The boundary condition then reads

v(0y + |6x|)wly:0 = ayA_l(u : vW)|y:0 (3.4)

(cf. [2, 45, 46]).
The following is the local existence result providing a v-independent existence time of solutions.
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THEOREM 3.1. Suppose that wy satisfies
Z ||8;(y8y)jw0||yuo + Z H@;(y@y)jwous <M< oo. (3.5
i+j<2 i+j<4
Then there exist v, T > 0, which depend on M and p, such that the solution w to the system (3.3) is defined on [0, T)

and satisfies
[wlly @) + llwllz < CM,

forallt € 0,7

Theorem 3.1 is proven in Section 6 below.
The next theorem provides a consequence of the above result on the inviscid problem with initial data as in (3.5).

THEOREM 3.2. Assume that wq satisfies (3.5). Then, as v — 0 the corresponding Navier-Stokes solution u = u”
converges in the norm of L°°(0, T, L?(2)) to the solution of the Euler equation i with the initial data ug, on the time
interval [0, T provided in Theorem 3.1. The convergence holds at the rate O(v'/4).

The proof of Theorem 3.2 is given in Section 7 below.
The vorticity formulation of the Navier-Stokes system (3.2)—(3.4) may be rewritten upon taking a Fourier trans-
form in the tangential x variable as

8tw§ - I/Agu)§ = NE

v(0y + [€))we = Be,  £€Z, (3.6)
where
Ne(s,y) = —(u- Vw)e(s, y)
and
Be(s) = (9,A7 (u- Vw))e(s)ly=0 = — (0, A7 ' Ne(5))ly=o0 - G
Above, we denoted Ay = —£2 + 85, with the Dirichlet boundary condition on JH. The mild formulation of the

system (3.6) reads
o t poo
we(t,y) = / Ge(t,y, z)woe(2) dz + // Ge(t — s,y,2)Ne(s, 2) dzds
0 0Jo

t
—|—/ Ge(t —s,y,0)Be(s) ds, (3.8
0

where G¢(t,y, z) denotes the Green’s function.
In the next statement (cf. Nguyen-Nguyen [54, Proposition 3.3 and Section 3.3]), we recall the upper bounds on
the Green’s function G¢.

LEMMA 3.3. The Green’s function G¢ for the system (3.6) is given by

Ge = He + R,
where
~ 1 (y—2)2 (y+2)? 2
H t’ , ) = —F— e vt _|_ e 4vt eiyg t

is the one dimensional heat kernel for the half space with homogeneous Neumann boundary condition. The residual
kernel R is a function of y + z, and it satisfies the bounds

1 g E2)? _ wvel

OFRe(t,y, )| S oM Hlefoblt=) 4 We e s, k € No, (3.9)

where 0y > 0 is a constant independent of v, but depends on k. The boundary remainder coefficient b in (3.9) is given
by

b=0b(&,v) =& +

The implicit constant in (3.9) depends only on k and 6.

1
7
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4. Estimates for the analytic norm and the nonlinearity

In this section, we recall the Y -norm estimates from [38]. Denote

1 £1ls,. ZHZJngLZ (y>144) »

which is a weighted L? in y, ¢! in £ norm, and should not be confused with the norm || - |5 in (2.5).
LEMMA 4.1 (An estimate of the analytic norm). Let
1
p = pt (ko —p—7s).

Then the nonlinear term in (3.8) is bounded as

(o —p—s) Y

6;(y8y)j/ G(t—s,y,2)N(s,z)dz
0

i+j=2 Yo
+ Z 0L (ydy) / G(t —s,y,2)N(s,2)dz
i+5<1 Yu1
S DO, N (s, )y, + D 055N (s,)]ls,, - .1
i+5<1 i+5<1

The Y,, norm of the trace kernel term in (3.8) is estimated as

(o —p=78) D 1000y Gt = 5.4,0B(s)ly, + D 06wy G(t = 5,5,0)B(s)],
it+j=2 i+j<1
S9N (s, )y, + 19N (s,)ls,) -
i<1
For the initial datum term in (3.8) we have
Z Bi(yay)j/ G(t,y, z)wo(2) dz
i+5<2 0 Yu
S Z 105 (y9y Y wolly,, + Z Znﬁi@iwofny@zup)- (4.2)
i+j<2 i+j<2 ¢

Next, we provide analytic and Sobolev estimates for the nonlinearity
N =u-Vuw.

The estimates are based on the Biot-Savart laws

1 00
ure(y) =5 (-/O e W=D (1 — e (2 dz+/ e KIE (1 4 e 721w (2 )d) (4.3)

and

wse(y) = 22 (/ ~IEI=2) (1 = e=262) (5 dH/me €1G1) (1 — =20€lw) (5 )dz> @
Yy

(cf. [46]), where 7 denotes the imaginary unit.
First, we provide a pointwise inequality for the velocity in terms of the vorticity.

LEMMA 4.2. Let p € (0, g — yS). Then

3 sup eI (@ (4D, ) ur)e| S 105 wlly, + 105 wls, + i
¢ Ve

L Hlyoyelly,) @5

and

Z sup |eco(tHr=v)IEl|
¢ yEeQ,

hold for all i,j € Ng such that0 <1437 < 1.

(( >‘(8;y“2)) < 95 wlly, + |0 w] 46)
£

n




INVISCID LIMIT PROBLEM FOR THE NAVIER-STOKES EQUATIONS 6

PROOF OF LEMMA 4.2. The inequality (4.6) is established in [38, Lemma 6.3]. Likewise, (4.5) is proven in [38,
Lemma 6.3], except for the case (4,5) = (0,1). (As in [38], we treat only the case when the variables and integration
paths are real valued; cf. also the appendix). Thus, let 7+ = 0 and j = 1. Differentiating (4.3), we obtain

wune =L [ 01— e elug(s, 2) d

/ e~ l€l(z— y)(1+e 2|5|y)|§|w§(s z)dz
y

+

NN
SIS w\w C\

oo
/ e FIETD (1 4 e W) €we (s, 2) d=
- y/ e 112 g we (s, 2) dz

oo
B y/ e 110 =218l ¢4 (5, 2) dz — yoe (y)
1+p

=L+L+I3+14+ 15+ 1. 4.7
Using

eco(1+u=y)[€l o= ly=21gl < geo(l+n—2)I€] geo(==v) €] = ly—21I€] < geo(1+u—2)le]

provided ¢y < 1, we obtain

1+p
eeo(1+ﬂ—y)|f|(|ll| + | L] + L)) 5/ eeo(1+,u—z)|5||€||w£(57Z)|dz
0
S llglero Ol

which leads to
3 eIl (1| + || + | L) < sl -

13
Also,
eIl (| 1] + |I5)) S/ €l|we (s, 2)dz S [|zI€lwell L2 (z>140) »
14pu
from where
> ettt Rl L| + |I5)) S [|0awlls, -
3
For the last term I = —ywe(y) in (4.7), we have
> sup el (y)] S Jlwlly, + lydywlly, + 10zlly, (4.8)

¢ yeQ,

using the Fundamental Theorem of Calculus. The last term in (4.8) appears when the y derivative falls on the expo-
nential. ]

In the following lemma, we state the analytic estimate for the nonlinearity.

LEMMA 4.3. Let i € (0, uo — 7ys) be arbitrary. For all s, we have the inequalities

INGs. s, £ 3 (18iwlly, + [8iwlls,) S 105 dyVly, (4.9)
i<1 i+tj=1
and
S 11040, N (s, v, < ( S wdyYelv, + 3 (1wl + 0iwls, )) S 1105 (w0, ool
i+j=1 0<5<1 1<i<2 i+j=1
+) (l0iwlly, + 10iwlis,) D 10k (ydy ) wlly, - (4.10)

i<1 i+j=2
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PROOF OF LEMMA 4.3. The inequality (4.9) is proven in [38, Lemma 6.4]. For i 4+ j = 1, by the definition of
Y, norm and Young’s inequality, we have

195, (4, Y N (5, )ly,, S N0swlly, D sup e@H=I(] (43, ) ur )e]

¢ yeN,
S (Olu
+ llydywlly, Z sup eco(Itn=v)lEl ((y@y)J( z 2))
¢ yeQ,, Yy ¢
+||81+1(y8 jLU”Y Z sup e®tH= y)|5||(u1) |
¢ yeQ,
#1050, 3 sup cottnmie|(22) |
3 yeEQ, Yy 13

The proof of (4.10) is then concluded by an application of Lemma 4.2. ]

Finally, we state inequalities for the Sobolev norm of the nonlinear term.

LEMMA 4.4. Let i € (0, po — v8) be arbitrary. We have

INGs, s, S (Iwlly, +lwlls, ) S 10505l @11
i+7=1
and
ST 0N s, £ S (10L0wlly, + [8idiwlls,) D 10L8iw] s,
i+j=1 i+5<1 i35 <1
+ (lwlly, + llwlls,) Y I10L05wlls, - (4.12)
i+j=2
PROOF OF LEMMA 4.4. For the proof, cf. [38, Lemma 6.5]. U

5. The Sobolev estimate

The main goal of this section is to estimate the Sobolev part of the norm
1/2

Z |0z090]| 4 = Z ||y8285“”Lg,y<y21/2>: Z ZHZ/Siﬁgngiz(yzym

i+5<3 i+5<3 i+5<3 \ £

We first state a lemma which estimates the velocity in terms of the vorticity away from the boundary. Recall the
notation || - ||; from (2.6).

LEMMA 5.1. Let t be such that vyt < po/2. Then for all 6 € (0,3/4)

> 0L u®) Lz, o) S lwlle (.1
0<i+j<2
and
> ou®l ;s os S Mol (5.2)
i+j=3 |

where the implicit constants depend on 6. Also, we have

> 1005w, o<y S Nl (5.3)
0<i45<2
and
> 205w (yss < Il (5.4)
i+j=3

under the condition vt < pig/2.
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Note that ¢ < po/2 implies

0
po—t> >
and thus the range 1 < pg — <yt in the definition (2.4) of the analytic norm includes values of ¢ which are greater than

to /4.
In the proof of Lemma 5.1, we need an estimate for high order derivatives of the vorticity in the domains away

from the boundary. The proof of Lemma 5.1 is given after the proof of Lemma 5.3 below.

LEMMA 5.2. Assume that ;o > /4. For every i,j € Ny and 6 > 0, we have

H&;%W”Lq(égygw@ S llwlly,, 1<g< oo, (5.5)

where the implicit constants depend on i + j and 6.

The constants depend on po; however since i is a fixed constant, we do not point out this dependence.

PROOF OF LEMMA 5.2. By Holder’s inequality, it is sufficient to prove (5.5) for ¢ = oco. Let

o) = v (%) .

where ¢ € C'™ is a non-decreasing function such that¢) = 0 for0 < y < 1/4 and ¢ = 1 for y > 3/4. Then we write

||3;3§W||Lw(5gyg3/4)

D> l'0je
13 Lo (6<y<3/4)
YN o
< ; Hyﬁrlgﬂ/} (5) 3g],w§HL§o(5SyS3/4) < ; Hya+1€zw (5) a?ZWSHL?(OSySM)
<>

3
+ %Z Hijrlgi,lp/ (%) 6;@5}
3

and thus, by ¥(y) < 1 and y¢'(y) < 1forall y > 0, we have

1020wl L (s<y<sjay S D976 Hwell i o<y<sray + Y 19760 well L1 o<y<s/a) -
3 13
Using the Cauchy estimates on both terms, we get
1020wl L~ (s<y<s/ay S D ||§iW£||L;/2 S et llw o1 = Jwlly, ,
3 3
and the lemma is established. (]

<

S N Fwell oo s<y<sya
13

e (1)

j i ) j+1
cE e (o
L3(0<y<3/4) ; rrenG) e L1(0<y<3/4)

i
Ly (0<y<3/4)

LEMMA 5.3. Assume that ;o > /4. For every i,j € Ny and 6 > 0, we have
10505 ull Las<y<aray S lwlly, + llwllg, .  1<g< oo, (5.6)

where the implicit constant depends on i + j and 6.

PROOF OF LEMMA 5.3. Using induction, as well as the identities 0,u1 + Oyus = 0 and w = Ous — Jyu1, we
obtain

Huy = =00 'w+ 020w — -+ (=1)7201 20w + (—1)720)uy (5.7)
Hug = 0,09 2w — 030)*w + -+ — (=1)7/201 ' + (—1)7/20us, (5.8)
valid for even j, and
Huy = =03 w+ 0209 3w — - 4 (=1)ITD291 71y — (—1)0FD290u, (5.9)
Fug = 0,00 2w — 0309 4w + -+ — (=1)UTD291729, 0 + (—1)0 D200y | (5.10)



INVISCID LIMIT PROBLEM FOR THE NAVIER-STOKES EQUATIONS 9

which holds for odd j. In view of Lemma 5.2 and (5.7)—(5.10), it thus suffices to prove (5.6) for 7 = 0. Note also that
we only need to consider the case ¢ = co. By the Biot-Savart law (4.3), we have

oo
1€ uel| Lge (5<y<aa) S S (/ j€[Pe =1l we (2))] dz) S € wellLy 0<y<itns2) + wellLi 1,00)
)

where we also used |¢['e= %Il < 1 fory < 3/4 and z > 1. Therefore,

105l e (s<y<sray S Y M€ uel| L (s<y<aray + D el (1.00)
13 13

N Z 1€ well L3 0<y<14/2) + Z lwell Ly (1,00)

< Z [|eco(tHr—v)lE]
3

W

2 (y<l+p) + HWHS

and the proof is concluded. ]

PROOF OF LEMMA 5.1. We start with the case ¢ = j = 0, when we write

(o]
[ull oo y>6) < ullpey>0) < ZH“€||L°°(yZO) S Z/O |we ()] dz S ||W||yu + HWHS‘L )
¢ 3

where we used the Biot-Savart laws (4.3)—(4.4). Next, fix ¢, j such that 1 < ¢+ 5 < 2. First, we have
10505u(t)]l 2, (25) S 10205u(t)l|ze, (5<yaay + 190505u(t) | o, /)
- llwlls, + 10505u() Lo, (y>3/4) - (5.11)

@,y

where we used (5.6) in the last step. Based on Au = (—0yw, 01w) and the elliptic estimates, we may bound the last
term in in (5.11) by [lw||, . Thus we have established (5.1).
When ¢ + j = 3, we write

||3§;3§,.U(t)||L’~;’y(y26) S \|8;8§u(t)||Lz (5<y<3/a) + | 0LOIu(t ez, w>3/4)
S llwlly, + llwlls, +10:05u®)lzz, (y>3/2)

and proceed as above.
The inequalities (5.3) and (5.4) are established directly using (5.5). The proof proceeds as above except that we
do not need to use the elliptic estimates to pass from u to w. ]

The following lemma provides the main estimate for the Sobolev norm.
LEMMA 5.4. We have

Y lydidiw®)llFe (1 §( Y ydidwollZe (o ay + 1+t sup floo(s )||3>exp(t sup lw(s)[ls)

i17<3 i+5<3 s€10,t] s€0,t]
(5.12)

SJorall 0 <t < pg/27.

PROOF OF LEMMA 5.4. Denote

o(y) = y¥(y) ,

where 1) € C*° is a non-decreasing function such that ¢y = 0 for 0 < y < 1/4 and ¢ = 1 for y > 1/2. Observe that
Hyf||L§,y(y>1/2 < H¢f||L2(H)~ The energy equality

1d
2.dt

—2/ U9’ 9|0 w|* — Z (g) / Pu - VO Pwdwe? —QV/ ¢ 0%w0, 0w,
H H H

0<B<Lx

60|12 ey + v |6V w22 s
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which holds for o € N2, leads to a pointwise in time estimate for the quantity

Q= Z ||¢6§7613WH%2(H)7
i+j<3

which reads

1dQ i o)
S dt S (V + HU2HL<>O(y21/4) + Z ||8zaiu||Lg?y(y21/4)>Q
1<i+j<2

+ Z Ha;agj;u(t)HLiy(yzl/zl) ”(z)VW”LOO(H) Q1/2

i+j=3
+ (V + “U2I|Lgf?!(l/4§y§1/2)) Z ”8;813wl|%§’y(1/4§y§1/2)
1+j<3
S (14 101 )@+ Dl 109y @12+ (4 il ) ol
In the second term, we use (5.2) to write
VWl ooy S NV (W) oo gy + 10w oo ) + ||wHLgfy(1/4gy§1/2)
S S 11086 g + Iolly, S 3 90205 agmy + Iy,

i+5<3 i+5<3
QY2+ |wly, -
Thus, we obtain

% S A+ lw®l)Q + A+ lw®l)lw @)

from where, using the Gronwall inequality and ¢ < 1

s€[0,t] s€[0,t] s€[0,t

Q) < <Q(0) +t sup Jlw(s)lI2 +1 sup ||IW(8)||§> exp(t sup [lw(s)]ls),

and (5.12) follows by the properties of the functions ¢ and ). |

6. Proof of the main local existence theorem
In this section, we prove Theorem 3.1.

PROOF OF THEOREM 3.1. Denote
Mo =Y 1050y wolly,, + Y D N0:0w0ellirwziem + Y [9050)wollL2(y>1/a) S M.

i+j<2 i+j<2 € i+j<3

Lett < po/2vand p < po — t. By (4.1)—~(4.2), we have
> 110k wdy) )]y,

i+j=2
t
1 ) ) .y
< M, +/ 0, (y0y)? N (s, - + |0;,0! N (s, - ds,
0t | e e iﬂZﬂ(H 0,) N (s, )ly,,, + 10205 N (s, s, )
and then by (4.11)-(4.12),
t 2 < 2
; j lew ()l supg<s<¢ lw(s)l3
05 (y0y, ) w(t < M, Jr/ = ds S My + == 6.1)
mz;zn 20, P ey, < Mo o (o —p—rys)tte O o — =t
Similarly, for the lower order terms, i.e., when ¢ + j < 1, we obtain
. . ¢ 2 SUpg< <y lw(s)]2
Y loiwa, ey, S Mo+/ M@ g < g 4 BP0z )l 6.2)
e o (o —p—s) gl

i+j<1
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Using (6.1) and (6.2), it follows that

2
SUpg<s<t lw(s)l2
o (®)lly S Mo+ 20 <;” Gl 63)

On the other hand, the Sobolev estimate (5.12) reads
lw®l 7 < (Mo +1+t"2 sup IIW(5)||§/2> exp <t sup ||IW(S)|IS> 7
s€[0,t] s€[0,t]
and thus by ¢ < po/(27), we get
1/2 Ho Ho
w(t < Mo—l-l—i- sup [w(s 3/2 exp | — sup |w(s)|s |, 0<t< —. 6.4)
lo(®)l ( S )] o o Il .

s€[0,t

Upon adding (6.3) and (6.4), and recalling the definition of || - ||; in (2.6), we arrive at the estimate

1/2
0 Ho
Mo +1+ ?/2 sup Jlw(s)[2? | exp [ &= sup Jw(s)]s | .
s€[0,1] 27 sefo,y

forall t € (0, 1o/ (27)]. Since [|wollo < Mo, the proof is concluded by choosing v = C(1 + M), where C > 0 is a
sufficiently large constant, and applying a barrier argument. |

SUP;e(o,¢] IHw(S)HI2

v

lw®)lle < Mo +

The justification of the a priori estimates is obtained as in [38, Remark 3.11].

7. Strong inviscid limit

In this final section, we prove Theorem 3.2. The idea is to combine the bounds provided by Theorem 3.1 with the
self-regularization of the Navier-Stokes equation to deduce a bound on the vorticity which is uniform all the way up
to the boundary, but degenerates at t = 0 (cf. (7.5) below). The Kato criterion then concludes the proof.

PROOF OF THEOREM 3.2. First, note that (3.5) implies
S [ lelenta)lds 5 1.
e Jo
Next, we bound the uniform norm of the vorticity. Using (3.8), we have for £ € Z and (¢, y) € (0,7 x (0, c0),

welt,y)] < / Gty 2)lwoe (2)] d=

t oo t
[ [ 16t = s, 2INe(s A dads + [ 1Gelt — 5.0, 0) 1 Be(s) s
o Jo 0
=L+ Dh+1s. -1
From Lemma 3.3 recall the pointwise bound

Geltn 2 5 oo (<220 ) besp (bl + ). (2)

where 6y > 0 is a constant and b = |£| + 1/4/v. Therefore, we may estimate the first term in (7.1) as

hglm<jﬂwp<QZIP)+Mm(b%@+@0Mm@ﬂM

I ! > 1
S oo [ ez [ (G 16l) kel + [ Lol ds

1 oo oo

< — w zdz+/ + 1)|woe(2)| dz,
N7 |woe (2)] ; (1] + 1)|woe ()]

where we used

ot (i 1
be W) < byio 1 (y) + ;X[l,oo)(y) (7.3)
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in the second inequality. For the second term in (7.1), we also use the bound (7.2) and write

b 1 (y—=2)°
I, < /0 /0 <V(t—s) exp (_41/(t—5)> + bexp(—bbo(y + z))) |Ne(s,2)| dzds

1 t [eS) 1 t 1 1 t o q
gﬁ/o /0 \/ﬁ|NE(s,z)|dzds+/o /0 <ﬁ+|§|> |Ne(s, 2)] dzds—l—/o /1 ;\Ng(s,zﬂ dzds

by (7.3). For the third term in (7.1), recall from (3.7) and [38, (4.29)] that we have

Be(s) = ~(0,A¢ Ne(ohlyma = [ TN, 2) s,

and we may bound

t [e'e) 1 y2 t o0
ns [ [ eXp<)€£Z|N (sl dads + [ [ b e 99 N s, )] deds
o Jo Vs P\ e f o Jo 5
=1I31 + I32. 74

The first term in (7.4) is estimated by dividing the integration in the z variable to integrals over [0, 1] and [1, c0]

obtaining
1 [t/ > 1
Iy < — —lelz| N, dz )| ——d
31N\/>/ (/ € | 5(872)‘ z m $

(/ N£53|d2>\/—d8+\f/ (/ |Ngsz)|dz) tl—sds'

On the other hand, for the second term in (7.4), we write

t 1 t o]
Bo 5 [ [ bertoore N s o dzds [ bt e e N, 2z

// <|§|+)|N5(sz|dzds+ // \Ngsz|dzds+// =|Ne(s, 2)| dzds

since \§|e_|5|z < 1/z. Collecting the bounds for Iy, I5, and I3 and using

[ el 91dz < 1aVe(s, e
1

we obtain
et £~ [l az + [+ Dhane@ltz 4 = [ 2 azas

t 1 1
+/0 /0 (\/17 + €|) |N€(S,Z)‘ dzds +/0 /1 > |N§(s,z)| dzds
1 t

HZN§(37 Z)”LQ(zZl) ds.

1
N 0 \/t — S
Therefore, since |w(t, 2, y)| < D ¢ |we(y)| holds pointwise in z and y, upon recalling the definition of the Y'(¢) norm
in (2.4), we get

JT
ot S 3 [ lene@ e+ 32 [0+ Dl e 77 371G e
s€[0,T ¢
VT
ENNINe(8, 2) || L1 (2<1)dS + —= sup zNe( 2(5>1),
SN Mo+ U s SN i

since 7' < 1. At this point we appeal to Lemma 4.3 and Lemma 4.4 (with © > 0 arbitrarily small, in particular, we
can let 4 = (po — ~yt)/2) to bound the nonlinear terms in the above estimate, which results in the estimate

1 > t 1 VT
w(t,z,y)| S — 5—!—1/ woe (2 dz—|—/ —— —ds sup |[|w(s §+— sup |[lw(s i,
|w(t,,y)] \/ﬁz&:(‘ |+ 1) ; |woe (2)] G —se lw(s)l N flw(s)l

s€1[0,T
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asv < land T < 1. Since by the assumption (3.5) we have » (1 + [¢]) J5~ lwoe (2)| dz < M, by Theorem 3.1 we
obtain

w(t, z,y)| < ; (1.5)

-
“

where the implicit constant depends on M and on g (recall that v = 1).
To get the convergence of u” to @, we apply Kato’s criterion from [31] by estimating

T T
u// |Vul? dacddeZV// |w|? dxdyds
0/H oJH
T T
= V// |w]|? dxdyds+y// |w|? dzdyds
0J{y<1/2} 0J{y>1/2}

T T
1
< V// —|w|dmdyds+y// |w|? dadyds
0J{y<1/2} VV5 0J/{y=1/2}

T T
1 2
= 0 e (5) 12 gy s+ v [ (o) ds
i WE%: el w<i/2) ; s

T T
L 2
Sv [ = Wl s+ [l ds < Vo

where we used (7.5) in the first inequality; note that the implicit constants depend on M, 1, and T'. Using [31], we
obtain that the inviscid limit holds in the strong topology of L (0, T'; L?(H)) with a rate of O(1/*/*), which is known
to be optimal (see e.g. [47, 34]). O

Appendix A. An estimate of the analytic norm using complex paths

In this paper, for the simplicity and clarity of arguments, we have used real paths to establish various inequalities
involving norms over complex paths. In order to illustrate how the arguments can be adapted to the general situation,
we provide here the proof of (4.1) from Lemma 4.1 using complex paths.

LEMMA A.1. Let p € (0, o — 7ys) and y € §2, be arbitrary. For (i, j) € N2 with i + j < 1, we have

S 1050, N(s)lly,, + IN(s)lly, + 110,95 N(s)lls (A.1)

0.0, [ H(t~ 509N (s, dz
Fy

Yy
where 'y = 0Qg U {z € R : x > 1+ 0} with 0 such that y € 0Q.

Note that the I, is a directed path starting at 0, passing through y and connecting to 4-c0.

PROOF OF LEMMA A.1. We start with the case (4,j) = (0,1). Let ¢v: Ry — R, be a smooth non-increasing
cut-off function such that ¢)(x) = 1 for 0 < z < 1/2, and ¢(x) = 0 for z > 3/4. Also, denote

II(a,b) ={z € C:a <Rez < b}

the complex strip corresponding to the real values a and b, where b > a. For every £ € Z, we have

y(?y/ He(t —s,y,2)Ne(s, 2) dz
ry

Re z
_ _y/ " (R) 0. He(t — s,y,2)Ne(s, 2) dz
', NI1(0,3Re y/4) ey
y , [ Rez
_ _Z w ()H(ts,y,z)N (S7Z)dz
Rey Jr,nn(rey/2,3Re y/4) Rey) "* ‘

R
+y/ <1—1/) (ez)) He(t —s,y,2)0.Ne(s, 2) dz
Iy NI (Re y/2,14u) Rey

—i-y/ He(t —s,y,2)0,Ne(s, 2) dz
Iy NIT(14-p,00)

=L+ L+I+1,. (A2)
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Note that
(y —2) 1 w22 2.
62H = — 8 H = 4v(t—s) vE (t ‘5)
Yy 13 Y yi1g yQV(t—S) I/(t—s)e €
and by
3R
ly| <10ly — 2|, 0<Rez< 4ey, Y,z €€,
we arrive at
1 _ (Rey—Rez)? 3R
Y0, He| S ———=€ 5G9 evE(t=s) 0<Rez< eyv Y,z € Q.

v(t—s) 4

Therefore,
1 _ (Rey—Rez)?
L) < / e o e U N (s, 2)| |dal. (A3)

I, AI(0,3Re y/4) \/V(t — 5)

Defining
(2) z, ifRez>0
z =
* 0, otherwise,
the inequality (A.3) implies
|660(1+M*y)+‘§u’1| S / #efwefuﬁ(tfs) ‘660(1+M7z)+|§|NE(8, Z)| |dZ| ’
I, NI(0,3Re y/4) \/V(t — 5)

where we also used
‘660(1+#*y)+|§|| < |e€0(1+lt*2)+|§||
~ b

for y,z € €, such that 0 < Rez < 3Rey/4 with p sufficiently small. Integrating in y, changing the order of
integration, and using

1 _ (Rey—Rez)?
— ¢ ®(-9) <1, (A4)
Vit —s) Lot
we arrive at
1 _ (Rey—Rez)
eeg(l-&-/L—y)Jr\&\Il < sup / / T60(t— 57) |e€o(1+u z)+\§\||N£(S Z)| ‘dz||dy|
‘ L 0<0<p JoQy JT,NI1(0,3Re y/4) \/V v(t—s)
660(1+M—Z)+\5\N5(3) .
L
Summing over ¢ yields the bound
11 ($)lly, - (A.5)

The term I3 in (A.2) is treated analogously by [|7/'|| ;.. < 1 and |y/Rey| < 1 since Imy < pRey, leading to the
same upper bound as in (A.5). For the term I3 in (A.2), we use the inequality

|eéo(1+u—y)+\§|| < |650(1+#—2)+\f\efo(z—y)+|§|| < |660(1+M—Z)+|£||€Eo(Rcy—RcZ)2/2V(t—5)eeoVE2(t—S)/2 (A.6)
and the bound (A.4) to deduce

I Zs]ly, = Z 650(1+M—y)+|5|[3‘

4 L
Z / #e %keo(lﬂt )+1820, Ne(s, )| |dz|
¢ D, NI(Rey/2,14+p) \/V(t = 5) i
p

5 Z Eo(1+#—z)+‘£‘|2;8ZN§(S)|H£1 = HZ([)ZNS(S)HYH
5 M
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where we also used that €j is small. To bound I, we use (A.6), the fact that €, is sufficiently small, and the bound
Rey <1+ pu < Rez, to estimate

|eeo(1+u—y)+|£|14| < / 1
I, A (1+u,00) /Y (E—8)

_ (Rey—Rez)?

|eeo(z—y)+\§\|e We_%”gz(t_s)wzl\fg(s,z)\ |dz|

1 _ (Rey—Rez)?
§/ —————e =9 |0, N¢(s,2)||dz]|.
I, A (1+u,00) /Y (E —$)

We integrate the above inequality in y, use (A.4), and sum in £ to get

1ally, S S 10-Ne() s osrspy S 10N (3)]ls,
3

concluding the proof of (A.1) when (¢, 5) = (0,1).
The estimate (A.1) for (4, j) = (1,0) follows from the bound (A.1) for (¢, j) = (0, 0) with NV replaced by 0, N.
To prove (A.1) for (7,5) = (0,0), we split fru H(t —s,y,2)N(s, z)dz as

/ He(t — s,y,2)Ne(s, z) dz
Fy

R
= / W (ez) He(t —s,y,2)Ne(s, z) dz
r,NI(0,3Rey/4) \Rey

R
+/ (1 — (ez)) He(t —s,y,2)Ne(s, z) dz + He(t —s,y,2)Ne(s, z) dz
IyNII(Rey/2,1+up) Rey 14+p

=L +J+Js.
When observing the proof for (7, j) = (0, 1), we note that using (A.4) we have
1 ly, + 1l S UNS)ly, -
On the other hand, the term J3 is estimated exactly as I, above, and we obtain
15ly, S IN)s, -

This concludes the proof of the lemma. ([
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