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Abstract: We propose a visually-grounded library of behaviors approach for
learning to manipulate diverse objects across varying initial and goal configu-
rations and camera placements. Our key innovation is to disentangle the stan-
dard image-to-action mapping into two separate modules that use different types
of perceptual input: (1) a behavior selector which conditions on intrinsic and
semantically-rich object appearance features to select the behaviors that can suc-
cessfully perform the desired tasks on the object in hand, and (2) a library of
behaviors each of which conditions on extrinsic and abstract object properties,
such as object location and pose, to predict actions to execute over time. The
selector uses a semantically-rich 3D object feature representation extracted from
images in a differential end-to-end manner. This representation is trained to be
view-invariant and affordance-aware using self-supervision, by predicting vary-
ing views and successful object manipulations. We test our framework on pushing
and grasping diverse objects in simulation as well as transporting rigid, granular,
and liquid food ingredients in a real robot setup. Our model outperforms image-
to-action mappings that do not factorize static and dynamic object properties. We
further ablate the contribution of the selector’s input and show the benefits of the
proposed view-predictive, affordance-aware 3D visual object representations.
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1 Introduction

Object manipulation in unstructured environments is challenging since methods to manipulate ob-
jects largely depend on the object’s visual appearance. One approach to capture the dependence
between actions and visual features is to learn a direct mapping from image to actions with deep
neural networks [1, 2, 3]. Despite their flexibility, such end-to-end image-to-action mappings have
been shown to be data aggressive [4], and cannot easily generalize across objects, camera view-
points, or scene configurations [5].

Approaches that abstract away object details and encode only a subset of their properties, e.g., their
3D locations and velocities [6] or 3D keypoints [7, 8] make the state-to-action mapping easier to
learn with less data. However, this abstraction may substantially limit the range of objects that
a policy can handle, since useful information (object shapes, softness, weight, and material, for
example) for the downstream task may be ignored. The challenging question is: how can we design
a framework for object manipulation that uses abstract representations for sample efficient behavior
learning, but at the same time is capable of utilizing semantically-rich representations for handling
diverse objects and views.

We propose Visually-grounded library of BEhaviors (V-BEs), a hierarchical framework for vision-
based object manipulation. Our main contribution is that the two levels of our policy hierarchy use
different visual representations. At the lower level of the hierarchy, a behavior library contains a set
of distinct behaviors each of which operates on an abstract object state representation that captures
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2D-to-3D operations, 3D convolution-based refinement, and 3D rotation operations that align the
3D feature representations with the robot’s coordinate frame (as opposed to camera frame), with
W,H,D denoting the width, height and depth of the scene map and C denotes the feature dimension
of the 3D scene feature map.

From the scene map M, we obtain object-centric feature representation F(Iv, o;φ) = crop(M, o) ∈
R

64×64×64×32 by cropping the scene map using a fixed-size axis-aligned box o, centered around the
object we wish to manipulate. The feature cropping operation is similar to the one used in Mask-
RCNN [39]. The retrieval policies keys are also learned in the same representation space. Thus,
both F(Iv, o;φ) and κi, (i = 1, . . . ,K) have length 64× 64× 64× 32 in the experiments.

3D object detector. We learn a detector with 3D Mask-RCNN built on top of the GRNNs feature
encoder [12]. We use groundtruth 3D object boxes at training time, and predicted 3D object boxes
at test time, where we train our representation to detect objects in 3D.

View prediction and occupancy prediction as an auxiliary task. We use view prediction and
occupancy prediction as an auxiliary task to help our image encoder generalize better in its ability
to select behaviors. These two self-supervised prediction tasks have been shown to provide a useful
pretraining or co-training objective for 3D object detection in [40]. Given an input posed image Inv
and a query view qn, the overall self-supervised prediction loss reads:

Lself-pred(φ, θ, η) =
N∑

n=1

‖Pθ(GRNNφ(I
n
v ), q

n)− Īnq ‖
2

2
︸ ︷︷ ︸

view prediction loss

+ ‖Occη(GRNNφ(I
n
v ))− occn‖1

︸ ︷︷ ︸

occupancy prediction loss

, (3)

where Pθ(M, q) is a projection function that projects a 3D feature map M from the query viewpoint
q to a 2D feature map and decodes it to a target image Īnq using an image decoder with neural

network weights θ, Occη(M) ∈ R
64×64×64 is a voxel occupancy prediction function that predicts

a 3D occupancy map from an input 3D feature map M using a single 3D convolution layer with
weights η, and occn is the estimated occupancy map computed from all available input views in
the nth data point by voxelizing the unprojected point clouds from all available depth images. We
train the model from unlabelled multi-view images captured around the table by simply moving the
cameras, capturing the images, and recording the corresponding camera locations.

The final objective for training the affordance-based visual features is

minimize
κ,φ,θ,η

L(κ, φ, θ, η) = Lself-pred(φ, θ, η) + λa · Lafford(κ, φ), (4)

where λa is a hyperparameter for balancing the two losses.

3.2 Building a Library of State Abstracted Behaviors

Any existing behaviors, whether engineered or learned using reinforcement or imitation learning,
can be included in our library. This flexibility is a contribution of our modular architecture. In this
paper, we consider three common manipulation tasks: pushing, grasping, and transporting. We build
appropriate behavior libraries for each.

In pushing, the behaviors are deterministic goal conditioned policies at = π(st, g) that map a state
of the environment and the robot st = [set , s

r
t ] and a goal state g to an action at at time step t. The

environment state set is the 3D object centroid and the robot state srt is the gripper 3D location, pose,
and whether it is opened or closed. Actions include 3D translation, opening (position control), and
closing (force control) of the gripper. A goal state g is a target centroid location for the object. We
use a total of 25 goal conditioned policies – one is trained from the whole set of objects, while the
others are trained on disjoint subsets of object configurations organized based on object category
and initial poses. We train all policies using deterministic policy gradients (DDPG) [25] with goal
relabelling (HER) [9] while randomizing initial and goal object 3D locations.

In grasping, we design controllers π(at|g; p
grasp, qgrasp) which given a 3D grasping point pgrasp ∈

R
3 relative to the center of the object and a grasping 3D angle qgrasp ∈ R

2, move the gripper
(open loop) to the grasping 3D point location, close it, and move it to the desired goal location. The
grasping angle qgrasp consists of two numbers describing the yaw of the gripper and the elevation
angles between the gripper and the table surface. When the elevation angle is smaller than 90
degrees (not top-down grasps), we constrain the gripper to point toward the center of the object on
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the x-y plane. We manually select 30 different controllers including top-down grasps with different
yaw orientations (top-grasps) and grasps from the side with different elevation angles of the gripper
(side-grasps). We empirically found that these parameterized controllers are quite stable and can be
shared across multiple objects. More details are provided in the supplementary materials.

4 Experiments

Our experiments aim to answer the following questions: (1) Does the proposed library-based ap-
proach outperform existing methods that use a single combined perception and policy module, ei-
ther using 2D images, 3D object locations, or 3D scene feature maps as input? (2) Is the proposed
view-invariant and affordance-aware 3D feature representation a necessary choice for the selector?
(3) Does the method work on a real robot? We test our model on grasping and pushing a wide variety
of objects in the MuJoCo simulator [41] and further test a transporting task on a real-world Franka
Panda robot arm.

4.1 Simulation Experiments

Our simulated environment consists of a Fetch Robot equipped with a parallel-jaw gripper. The
robot is positioned in front of a table of height 0.4m. To obtain the visual observations, on each
episode we choose 3 random cameras from cameras placed at 30 nominal different views including
10 different azimuths ranging from 0◦ to 360◦ combined with 3 different elevation angles from 20◦,
40◦, 60◦. All cameras are looking at the center of the table top, and are 0.5 meter away from that
point. All images have size 128× 128.

Task Descriptions: In the grasping task, the agent has to grasp an object and move it to a specified
target location above the table. We use 274 distinct object meshes from 6 categories in ShapeNet
[42] including toy buses, toy cars, cans, bowls, plates, and bottles. The materials and densities of all
objects are identical. We randomly split the dataset into 207 training objects, and 67 testing objects.
After augmenting the meshes with random scaling from 0.8 to 1.5 and random rotations around
the vertical z-axis, we get a total of 800 distinct object configurations (object instance and pose),
600 for training and 200 for testing. At the start of each episode, an object is placed in an area of
30cm × 16cm around the center of the table, and a goal is sampled uniformly 10 ∼ 30cm away
from the gripper’s initial position. An episode is successful if the object centroid is within 5cm of
the target at the final timestep.

In the pushing task, the agent has to push an object placed on the table to a specified target location.
We use 100 objects from 12 categories in ShapeNet [42]: baskets, bowls, bottles, toy buses, cameras,
cans, caps, toy cars, earphones, keyboards, knives, and mugs. After augmentation and splitting to
train and test sets, we obtain 615 training object configurations and 200 for testing. The initial and
the goal position of the object are both uniformly sampled to be within 15cm of the center of the
table along both x-axis and y-axis, although we resample if that location is already in the goal area.
An episode is successful if the object centroid is within 5cm of the goal within 50 timesteps.

Baselines: We compare our method with various learning and non-learning based methods for object
manipulation:

(a) Single Behavior w/ Abstract 3D State (Abstract 3D) [9, 25]: a policy takes as input ground truth
3D bounding box of the object and gripper and outputs actions.

(b) Single Behavior w/ Abstract 3D State and 2D Images (Abstract 3D + Image): a policy takes
both RGB-D images and the ground truth 3D bounding box as inputs and outputs actions. Our
architecture resembles that of [43], but we further include ground truth object position as extra
inputs to the model. For fair comparisons to other methods, the model only takes as input the
current state as opposed to the states in 5 past steps, as in [43].

(c) Single Behavior w/ 3D Feature Tensor (Contextual 3D): a policy takes as input RGB-D images
and the ground truth 3D bounding box and outputs actions. Different from (b), the model first
transforms the image into a view-invariant 3D feature tensor using GRNNs [12], then converts
the 3D feature tensor into a feature vector though three 3D-convolutional layers and a fully
connected layer, and concatenates it with the rest of the inputs to predict actions.

(d) Ours, Library of Behaviors w/ Visual Selector (V-BEs): Our model takes the same input as (b)
and (c). The 3D bounding boxes are used as input to all the behaviors. The RGB-D images are
transformed into 3D affordance-aware visual features and treated as input to the selector.
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Single Behavior Library of Ablation study on the selector’s
Behaviors visual feature representation

Abstract 3D Abstract 3D Contextual V-BEs V-BEs w/ V-BEs w/o Fine-tuning
[9, 25] + Image 3D (Ours) 2D features on Interaction Labels [45, 12]

grasping 0.30 0.35 0.20 0.78 0.46 0.31
pushing 0.83 0.70 0.10 0.88 0.81 0.46

Table 1: Success rates on grasping and pushing unseen objects. We also ablate the proposed method
with selectors operating on varying representations.

We train the baselines with different learning methods including behavior cloning [4], DDPG-HER
[11, 9] and DAGGER [44]. We report the best performance we got by training the model with these
different methods. We also attempt to make all the models have similar number of parameters so
the comparison is fair. However, larger networks are empirically harder to train and do not converge
well, so we instead increase the number of parameters in smaller networks until their performance
saturates. For pushing, we found that using DDPG-HER is enough to lean a good Abstract 3D policy
from scratch. For abstract 3D + Image, we found it is critical to use behavior cloning from expert
demonstrations to obtain good policies. The expert demonstrations are obtained from trained expert
policies on single objects. For Contextual 3D, we include DAGGER to enforce behavior cloning
during execution. To train the grasping policies, we further include human demonstrations in the
replay buffer when training it with DDPG-HER. Both abstract 3D + Image and Contextual 3D are
trained with DAGGER since offline behavior cloning is insufficient.

4.2 Single Behavior versus a Library of Behaviors

We compare the proposed model with models that do not use a library-based approach, i.e., single
behavior approaches. As shown in Table 1, our method outperforms all the single behavior base-
lines. Abstract 3D performs well, but since it does not use any visual information, its performance
saturates at around 0.8 for pushing and 0.3 for grasping. Abstract 3D performs poorly for grasping.
The learned behaviors do not transfer well to new objects. Adding a 2D image helps, but not dramat-
ically (see Abstract 3D + Image in Table 1). Although 3D feature maps obtained from GRNNs are
semantically rich and can handle varying viewpoints, the mapping to actions is harder to learn due to
the higher dimensionality of the 3D scene map, resulting in under-fitting models. Our model takes
advantage of both abstract and semantically rich representation and thus can handle better object
variability and transferability. The combinatorial nature of the proposed method allows the model
to capture the multi-modality in trajectory generation.

4.3 The Necessity of Building the Selector with the Proposed 3D Representations

Next, we show the importance of using view-invariant 3D visual feature representations and fine-
tuning the selector with interaction labels. We compare our method with two baselines: (a) a model
with a selector that learns the visual affordance features using 2D visual features extracted from 2D
CNNs, and (a) a model with a selector that operates over 3D visual feature representation learned
only with the view and occupancy prediction loss, as suggested in [45, 12], without fine tuning
with interaction labels. See Table 1 for the results. Our method significantly outperforms these two
baselines, which shows the importance of both proposed components. To fully test the power of
existing 2D CNNs, we also tested 2D feature selector with existing VGG network [46] pretrained
on ImageNet and fine-tuned on our interaction labels. However, the performance ( a success rate of
0.78 on pushing) does not differ too much with shallower 2D CNNs trained from scratch.

4.4 Transporting Task on a Real Robot

We test our model on a 7-DOF Franka robot arm equipped with a parallel-jaw gripper (using [47]’s
software stack) for a transporting task, where the robot needs to transport various rigid, granular, or
liquid food ingredients from random initial positions and poses onto a plate (see Figure 4). We set
up 4 Intel RealSense RGB-D cameras that have full view of the workspace around the the center of
the table. In each trial, an object is placed in a 50cm × 30cm region on the table, and the goal is
transport all objects to a plate 25cm to the left of the starting region. Granular objects and liquids
are placed inside containers in the beginning of the trial. An episode is considered successful if
the object is successfully transported into the plate. For granular objects and liquid, an episode is
considered successful if at least half of the total quantity ends up in the plate.
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