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Abstract

In a poisoning attack, an adversary who controls
a small fraction of the training data attempts to
select that data, so a model is induced that misbe-
haves in a particular way. We consider poisoning
attacks against convex machine learning models
and propose an efficient poisoning attack designed
to induce a model specified by the adversary. Un-
like previous model-targeted poisoning attacks,
our attack comes with provable convergence to
any attainable target model. We also provide a
lower bound on the minimum number of poison-
ing points needed to achieve a given target model.
Our method uses online convex optimization and
finds poisoning points incrementally. This pro-
vides more flexibility than previous attacks which
require an a priori assumption about the number
of poisoning points. Our attack is the first model-
targeted poisoning attack that provides provable
convergence for convex models. In our experi-
ments, it either exceeds or matches state-of-the-art
attacks in terms of attack success rate and distance
to the target model.

1. Introduction

Machine learning often requires extensive labeled training
data, often collected from untrusted sources. A typical
application is email spam filtering: a spam detector filters
messages based on features (e.g., presence of certain words)
and trains the model using emails labeled by users. In such
a setting, spammers can generate spam messages that inject
benign words likely to occur in legitimate emails. Models
trained on these spam messages observe significant drops in
filtering accuracy (Nelson et al., 2008; Huang et al., 2011).
Such attacks are known as poisoning attacks, and a training
process that uses labels or data from untrusted sources is
potentially vulnerable to them.
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Most work on poisoning attacks has considered one of two
extremal attacker objectives: indiscriminate attacks, where
the adversary’s goal is simply to decrease the overall accu-
racy of the model (Biggio et al., 2012; Xiao et al., 2012;
Mei & Zhu, 2015b; Steinhardt et al., 2017; Koh et al., 2018);
and instance attacks, where the goal is to induce a classifier
that misclassifies a particular input (Shafahi et al., 2018;
Zhu et al., 2019; Koh & Liang, 2017; Geiping et al., 2021;
Huang et al., 2020). Recently, Jagielski et al. (2019) intro-
duced a richer attacker objective known as a subpopulation
attack, where the goal is to increase the error rate or obtain a
particular output for a defined subset of the data distribution.

Depending on the general approach, poisoning attacks
can be categorized as objective-driven or model-targeted.
Objective-driven poisoning attacks have a specified attacker
objective (such as reducing the overall accuracy of the vic-
tim model), and aim to induce a model that maximizes
that objective. Model-targeted attacks have a specific target
model in mind (that satisfies some attacker objective) and
aim to induce a victim model as close as possible to that
target model. Objective-driven attacks are most commonly
studied in the existing literature, and indeed, it is natural
to think about attacks in terms of an adversary’s goals. We
argue, though, that breaking poisoning attacks into the two
steps of first finding a model to target and then selecting
poisoning points to induce that model has significant advan-
tages. This view leads to improvements in our understand-
ing of poisoning attacks and simplifies the task of designing
effective attacks for various objectives. Importantly, it can
also lead to more effective poisoning attacks.

For objective-driven attacks, gradient-based local optimiza-
tion is most commonly used to construct poisoning points
for a particular attacker objective (Biggio et al., 2012; Xiao
etal., 2012; Mei & Zhu, 2015b; Koh & Liang, 2017; Shafahi
et al., 2018; Zhu et al., 2019). These attacks can also be
modified to fit other attacker objectives. However, since they
are based on local optimization techniques, they often get
stuck into bad local optima and fail to find effective sets of
poisoning points (Steinhardt et al., 2017; Koh et al., 2018).
The min-max attack by Steinhardt et al. (2017) circumvents
the issue of local optima by adopting online learning but
only applies to the indiscriminate setting. In contrast, model-
targeted attacks can incorporate any attacker objective into
a target model. Thus, the same model-targeted attack meth-
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ods can be directly applied to a range of indiscriminate and
subpopulation attacks by finding a suitable target model. In
addition, one can avoid the issue of local optima in poison-
ing by working with a target model (Koh et al., 2018).

Contributions. Our main contribution is a principled and
general model-targeted poisoning method, along with proof
that the model it induces converges to the target model.
We study poisoning attacks on convex models because poi-
soning attacks in these simpler settings are still not well
understood. In addition, many important industrial applica-
tions continue to rely on simple models due to their easiness
in model debugging and low computational cost. For many
applications, such simple convex models also have com-
parable or better performances than complex deep neural
networks (Dacrema et al., 2019; Tramer & Boneh, 2021).

Our attack method works in an online fashion and finds
effective poisoning points incrementally. For settings where
the loss function is convex and proper regularization is
adopted in training, we prove that the model induced by
training on the poisoned data set converges to the target
model as the number of poisoning points increases (The-
orem 1). Previous model-targeted attacks lack such con-
vergence guarantees. In addition, our attack applies to in-
cremental poisoning scenarios. It does not require a pre-
determined poisoning rate while previous model-targeted
attacks assume a priori number of poisoning points, which
is typically unavailable in practice. We then prove a lower
bound on the minimum number of poisoning points needed
to reach the target model (Theorem 2). Such a lower bound
can be used to estimate the optimality of model-targeted
poisoning attacks and also indicate the intrinsic hardness of
attacking different targets.

We evaluate our attack and compare it to the state-of-the-art
model-targeted attack (Koh et al., 2018). We evaluate the
convergence of our attack to the target model and find that
our attack can induce models closer to the target model for
all target models we tried for the same number of poisoning
points (Section 5). The success rate of our attack exceeds
that of the state-of-the-art attack in subpopulation attack
scenarios and is comparable for indiscriminate attacks. As a
supplement, we also compare our attack to the state-of-the-
art objective-driven attacks (Appendix D). With carefully
selected target models, we show that our attack is also more
effective in achieving the attacker objectives than existing
objective-driven attacks.

In this work, we mostly focus on the effectiveness of our
poisoning attack in inducing a given target model that satis-
fies the underlying objective of the adversary. These target
models are selected using heuristic, objective-driven meth-
ods. When employing our attack, we aim to induce that
target model with fewer poisoning points than were needed

by the heuristic method. Note that the selection of this target
model could be improved to improve the effectiveness of our
attack. We defer to future work a full exploration of how to
improve the selection of target models for particular attacker
objectives (but include some preliminary results on this in
Appendix C.3). Also, note that the goal of inducing a target
model also aligns with the goal of previous model-targeted
poisoning attacks (Koh et al., 2018; Mei & Zhu, 2015b).

2. Problem Setup

The poisoning attack proposed in this paper applies to multi-
class prediction tasks or regression problems (by treating
the response variable as an additional data feature), but for
simplicity of presentation we consider a binary prediction
task, h : X — ), where X C R? and ) = {+1, —1}. The
prediction model A is characterized by parameters § € © C
R?. We define the non-negative convex loss on an individual
point, (z,y), as I(6; x, y) (e.g., hinge loss for SVM model).
We also define the empirical loss over a set of points A as

L(0;A) =3 yyea 02, y).

We adopt the game-theoretic formalization of the poisoning
attack process from Steinhardt et al. (2017) to describe our
model-targeted attack scenario:

1. N data points are drawn uniformly at random from the
true data distribution over X x ) and form the clean
training set, D..

2. The adversary, with knowledge of D.., the model train-
ing process and the model space ©, generates a target
classifier , € © that satisfies the attack goal.

3. The adversary produces a set of poisoning points, D,,,
with the knowledge of D, model training process, ©
and 0,,.

4. Model builder trains the model on D, U D,, and pro-
duces a classifier, 0 ..

The adversary’s goal is that the induced classifier, 0,4, is
close to the desired target classifier, 8, (Section 4.2 dis-
cusses how this distance is measured). Step 2 corresponds
to the target classifier generation process. Our attack works
for any target classifier, and in the paper we do not focus
on the question of how to find the best target classifier to
achieve a particular adversarial goal but simply adopt the
heuristic target classifier generation process from Koh et al.
(2018). Step 3 corresponds to our model-targeted poisoning
attack and is also the main contribution of the paper.

We assume the model builder trains a model through em-
pirical risk minimization (ERM) and the training process
details are known to the attacker:

6. = argmin LL(Q;DC) + Cr - R(0) (1)
0€© |D<:|
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where R(6) is the nonnegative regularization function (e.g.,
111613 for SVM model).

Threat Model. We assume an adversary with full knowl-
edge of training data, model space, and training process.
Although this may be unrealistic for many scenarios, this
setting allows us to focus on a particular aspect of poisoning
attacks and is the setting used in many prior works (Biggio
etal., 2011; Mei & Zhu, 2015b; Steinhardt et al., 2017; Koh
et al., 2018; Shafahi et al., 2018). We assume an addition-
only attack where the attacker only adds poisoning points
into the clean training set. A stronger attacker may be able to
modify or remove existing points, but this typically requires
administrative access to the system, which is generally hard
to obtain. The added points are unconstrained, other than
being valid value elements of the input space. They can
have arbitrary features and labels, which enables us to per-
form the worst-case analysis on the robustness of models
against addition-only poisoning attacks. Although some pre-
vious works also allow arbitrary selection of the poisoning
points (Biggio et al., 2011; Mei & Zhu, 2015b; Steinhardt
et al., 2017; Koh et al., 2018), others put different restric-
tions on the poisoning points. A clean-label attack assumes
adversaries can only perturb the features of the data, but
the label is given by a labeling oracle (Koh & Liang, 2017;
Shafahi et al., 2018; Zhu et al., 2019; Huang et al., 2020).
In label-flipping attacks, adversaries are only allowed to
change the labels (Biggio et al., 2011; Xiao et al., 2012;
2015; Jagielski et al., 2019). These restricted attacks are
weaker than unrestricted poisoning attacks (Koh et al., 2018;
Hong et al., 2020).

3. Related Work

Here, we summarize previous work on objective-driven or
model-targeted poisoning attacks.

Objective-Driven Attacks. The most commonly used poi-
soning strategy for objective-driven attacks is a gradient-
based attack. Gradient-based attacks on classification tasks
iteratively modify a candidate poisoning point (&, §) in the
set D, based on the test loss (related to the attacker objec-
tive) defined on & while keeping ¢ fixed. This kind of attack
was first studied on SVM models by Biggio et al. (2012),
and later extended to logistic regression (Demontis et al.,
2019) and larger neural network models (Koh & Liang,
2017; Shafahi et al., 2018; Zhu et al., 2019; Huang et al.,
2020). Jagielski et al. (2018) studied gradient attacks and
principled defenses on linear regression tasks. In addition
to classification and regression tasks, gradient-based poison-
ing attacks have also been applied to topic modeling (Mei
& Zhu, 2015a), collaborative filtering (Li et al., 2016) and
algorithmic fairness (Solans et al., 2020).

Researchers have also explored using generative adversar-
ial networks to craft poisoning points efficiently for larger
neural networks, but with limited effectiveness (Yang et al.,
2017; Munoz-Gonzalez et al., 2019). The strongest attack
so far is the min-max attack (Steinhardt et al., 2017), which
only works for the indiscriminate attack setting but addition-
ally provides a certificate on worst-case test loss for a fixed
number of poisoning points. Our adoption of online con-
vex optimization to instantiate our model-targeted attacks
is inspired by Steinhardt et al. (2017), but applies it to a
more general attack scenario. Our approach is also related
to (Wang & Chaudhuri, 2018)’s poisoning attack against
online learning, which considers a setting where training
data arrives in a streaming manner. In contrast, we consider
the offline setting with training data being fixed.

Another kind of poisoning attack objective is when an ad-
versary guarantees an increase in the probability of an arbi-
trary “bad” property that otherwise would have some non-
negligible chance of occurring naturally (Mahloujifar et al.,
2019a; 2018; 2019b). These attacks cannot be applied in
the model-targeted setting, though, since there is no known
way to construct a target model with the desired property.

Model-Targeted Attacks. Mei & Zhu (2015b) first intro-
duced a specific target model into a poisoning attack and
then utilized the Karush-Kuhn-Tucker (KKT) conditions
(Karush, 1939; Kuhn & Tucker, 1951) to transform the poi-
soning problem into a tractable form. However, their attack
is still uses gradient-based local optimization techniques and
suffers from bad local optima (Steinhardt et al., 2017; Koh
et al., 2018). Koh et al. (2018) proposed the KKT attack
with a target model, which converts the complicated bi-level
optimization into a simple convex optimization problem
utilizing the KKT conditions and the Carathéodory number
of the set of scaled gradients, avoiding the local optima
issues. However, their attack is limited to margin-based
losses, cannot scale to multi-class classification, and does
not provide a guarantee on the number of poisoning points
required to converge to the target classifier. Additionally,
these two attacks require knowing the number of poisoning
points before running the attack, which is often impractical.

There are also model-targeted attacks proposed in different
settings. Zhang et al. (2020) presented a poisoning attack
against online learning which assumes the training data
arrives sequentially. Ma et al. (2019) proposed poisoning
attacks that work for objective-driven or model-targeted
settings. Related to our Theorem 2, they also derived a
lower bound on the number of poisoning points (needed to
induce a target model). However, their attacks and lower
bound only apply when differential privacy is deployed
during the model training process and hence compromises
the model utility.
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4. Poisoning Attack with a Target Model

Our new poisoning attack determines a target model and
selects poisoning points to achieve that target model. The
target model generation is not our focus and we adopt the
heuristic approach proposed by Koh et al. (2018). For the
new poisoning attack, we first show how the algorithm gen-
erates the poisoning points (Section 4.1). Then, we prove
that the generated poisoning points, once added to the clean
data, can produce a classifier that asymptotically converges
to the target classifier (Section 4.2).

4.1. Model-Targeted Poisoning with Online Learning

The main idea of our attack, shown in Algorithm 1, is to
sequentially add the poisoning point that has the maximum
loss difference between the intermediate model obtained so
far (that is, the model induced by training on the clean data
and generated poisoning points from previous iterations)
and the target model. By repeating this process, we can
gradually minimize the maximum loss difference between
the induced intermediate classifier and the target classifier,
eventually inducing a classifier that has a similar loss distri-
bution as the target classifier. We show in Section 4.2 why
similar loss distribution implies convergence.

Algorithm 1 ModelTargetedPoisoning
Input: D, the loss functions (L and [), target model 6,,,
regularization strength C'r

Output: D,
1: D=0
2: while stopping criteria not met do
3: 6 =argmin ML(Q;DCUDPH—CR.R(G)
40 (a%,y*) = argmaxy y [0 2, y) — 1(0p; 2, )
50 Dp=DpU{(z",y")}
6: end while
return D,

Algorithm 1 requires the input of clean training set D, the
Loss function (L for a set of points and [ for individual
point), and the target model 6,,. The output from Algorithm
1 will be the set of poisoning points D,,. The algorithm
is simple: first, adversaries train the intermediate model
6: on the mixture of clean and poisoning points D, U D,
with D,, an empty set in the first iteration (Line 3). Then,
it searches for the point that maximizes the loss difference
between 6, and 0, (Line 4). After the point of maximum
loss difference is found, it is added to the poisoning set
D, (Line 5). The whole process repeats until the stopping
condition is satisfied (Line 2). The stopping condition is
flexible and it can take various forms: 1) adversary has
a budget 7' on the number of poisoning points, and the
algorithm halts when the algorithm runs for 7" iterations; 2)
the intermediate classifier 6; is closer to the target classifier
(than a preset threshold €) in terms of the maximum loss

difference, and more details regarding this distance metric
will be introduced in Section 4.2; 3) adversary has some
requirement on the accuracy and the algorithm terminates
when 6, satisfies the accuracy requirement. Since we focus
on producing a classifier close to the target model, we adopt
the second stop criterion that measures the distance with
respect to the maximum loss difference, and report results
based on this criterion in Section 5. Algorithm 1 selects
poisoning points in D,, sequentially in order. However, we
assume the adversary has no control over the training order,
so when the victim trains a model on D U D), the training
set is shuffled randomly.

A nice property of Algorithm 1 is that the classifier 0,
trained on D.UD),, is close to the target model #,, and asymp-
totically converges to 6,,. Details of the convergence will be
shown in the next section. The algorithm may appear to be
slow, particularly for larger models due to the requirement
of repeatedly training a model in line 3. However, this is
not an issue. First, as will be shown in the next section, the
algorithm is an online optimization process and line 3 corre-
sponds to solving the online optimization problem exactly.
However, people often use the very efficient online gradient
descent method to approximately solve the problem and
its asymptotic performance is the same (Shalev-Shwartz,
2012). Second, if we solve the optimization problem ex-
actly, we can add multiple copies of (z*,y*) into D, each
time. This reduces the overall iteration number, and hence
reduces the number of times retraining models. The proof
of convergence will be similar. For simplicity in interpreting
the results, we do not use this in our experiments and add
only one copy of (z*,y*) each iteration. However, we also
tested the performance by adding two copies of (x*,y*)
and find that the attack results are nearly the same while
the efficiency is improved significantly. For example, for
experiments on MNIST 1-7 dataset, by adding 2 copies of
points, with the same number of poisoning points, the attack
success rate decreases at most by 0.7% while the execution
time is reduced approximately by half.

4.2. Convergence of Our Poisoning Attack

Before proving the convergence of Algorithm 1, we first
formally define the attainable models in Definition 1. Then,
we define a general closeness measure based on their predic-
tion performance to measure the distance of the model 8,4,
trained on D, U D, to the target model 0,,. Both definitions
will be used to state the convergence theorem in Theorem 1.

Definition 1 (Attainable models). We say 6 is Cg-
attainable with respect to loss function [ and regularization
function R if there exists a training set D such that

1
0 = argmin — - L(0; D) + Cr - R(0)
oeo |D|

and 0 is the unique minimizer for the above.
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Definition 2 (Loss-based distance and e-close). For two
models 6; and 6, a space X x ) and a loss {(0; x,y), we
define loss-based distance D) x y: © x © — R as

Dy xy(0:1,02) = UOr;2,y) — 1(02;2,9),

max
(z,y)€EXXY

and we say model 6, is e-close to model 63 when the loss-
based distance from 6, to 5 is upper bounded by e.

Measuring model distance We use loss-based distance
to capture the “behavioral” distance between two models.
Namely, if 6, is e-close (as measured by loss-based dis-
tance) to 6 and vice versa, then 61 and 65 would have an
almost equal loss on all the points, meaning that they have
almost the same behavior across all the space. Note that
our general definition of loss-based distance does not have
the symmetry property of metrics and hence is not a met-
ric. However, it has some other properties of metrics in the
space of attainable models. For example, if some model 6
is attainable using ERM, no model could have a negative
distance to it. To further show the value of this distance no-
tion, in Appendix B we demonstrate an O(e) upper bound
on the ¢1-norm of difference between two models that are
e-close with respect to loss-based distance for the special
case of Hinge loss. For Hinge loss, it also satisfies the bi-
directional closeness, that is if 0 is e-close to 05, then 05 is
O(e)-close to 6 (details can be found in Corollary 3), and
the proof details can be found in Appendix B. In the rest
of the paper, we will use the terms e-close or e-closeness to
denote that a model is € away from another model based on
the loss-based distance. Our convergence theorem uses the
loss-based distance to establish that the attack of Algorithm
1 produces model that converges to the target classifier:
Theorem 1. For 6 > 0, if 6, is a Cr(1 + 0)-attainable
model, after at most 7 steps, Algorithm 1 will produce the
poisoning set D, so that a classifier trained on D, U D),
using Eq. (1) is e-close to 6, with respect to loss-based
distance, D; x,y, for

Oé(T) + L<€p; Dc) - L(907 Dc)
T-9/145

where «(T) is the regret of the follow-the-leader algorithm
for a series of loss functions 4;(-) = (-, x;,y:;) + Cr - R(*)
and (x;,y;) is the ith poisoning point.

Remark 1. Sublinear regret bounds for follow-the-leader
can be applied to show the convergence. Here, we adopt the
regret analysis from McMahan (2017). Specifically, «(7') is
in the order of O(log T')) and we have € < O(#) when
the loss function is Lipschitz continuous and the regularizer
R(#) is strongly convex, and € — 0 when T — +o00. «(T)
is also in the order of O(logT) when the loss function
used for training is strongly convex and the regularizer is
convex. Strong convexity is critical for the convergence of

our attack since the attack may not converge in the general
setting of convex loss functions without a strongly convex
regularizer. In the general case, the loss function can be
“unstable” across iterations, and the learned model weights
in neighboring iterations can change drastically.

Proof idea. The full proof of Theorem 1 is in Appendix A.
Here, we only summarize the high-level proof idea. The
key idea is to frame the poisoning problem as an online
learning problem. In this formulation, each step of the
online learning problem corresponds to the i*" poison point
(24,9;). In particular, the loss function at iteration 4 of
the online learning problem is set to I(-; x;, y;). Then, we
show that by defining the parameters of the online learning
problem carefully, the output of the follow-the-leader (FTL)
algorithm (Shalev-Shwartz, 2012) at iteration ¢ is a model
that is identical to training a model on a dataset consisting of
the clean points and the first ¢ — 1 poisoning points. On the
other hand, the way the poisoning points are selected, we can
show that at the i*" iteration the maximum loss difference
between the target model and the best induced model so
far would be smaller than the regret of the FTL algorithm
divided by the number of poisoning points. The convergence
bound of Theorem 1 boils down to regret analysis of the
FTL algorithm based on the loss function. Since we are
assuming the loss function is convex with a strongly convex
regularizer (or a strongly convex loss function with a convex
regularizer), we can show that the regret is bounded by
O(log T') and hence the loss distance between the induced
model and the target model converges to 0.

Implications of Theorem 1 The theorem says that the
loss-based distance of the model trained on D. U D,, to the
target model correlates to the loss difference between the
target model and the clean model 6, (trained on D) on D,,
and correlates inversely with the number of poisoning points.
Therefore, it implies 1) if the target classifier 6, has a lower
loss on D, then it is easier to achieve the target model, and
2) with more poisoning points, we get closer to the target
classifier and our attack will be more effective. The theorem
also justifies the motivation behind the heuristic method
in Koh et al. (2018) to select a target classifier with a lower
loss on clean data. For the indiscriminate attack scenario, we
also improve the heuristic approach by adaptively updating
the model and producing target classifiers with a much lower
loss on the clean set. This helps to empirically validate our
theorem. Details of the original and improved heuristic
approach and relevant experiments are in Appendix C.3.

4.3. Lower Bound on the Number of Poisoning Points

We first provide the lower bound on the number of poison-
ing points required for producing the target classifier in the
addition-only setting (Theorem 2) and then explain how
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the lower bound estimation can be incorporated into Algo-
rithm 1. The intuition behind the theorem below is, when
the number of poisoning points added to the clean training
set is smaller than the lower bound, there always exists a
classifier § with lower loss compared to ,, and hence the
target classifier cannot be attained. The full proof of the
theorem is in Appendix A.

Theorem 2 (Lower Bound). Given a target classifier 6, to
reproduce ¢, by adding the poisoning set D,, into D, the
number of poisoning points |D,,| cannot be lower than

sup z(0) =
0

L(6,;D.) — L(6; D.) + NCr(R(9,) — R())
sup, , (1652, y) — 1(0p;z,y)) + Cr(R(0) — R(6,))

Corollary 1. If we further assume bi-directional closeness
in the loss-based distance, we can also derive the lower
bound on number of poisoning points needed to induce
models that are e-close to the target model. More precisely,
if 01 being e-close to f- implies that 65 is also & - € close to
01, then we have,

sup 2’'(0) =
0

L(0p;De) — L(0;D;) — NCr - R* — Nke
Supw,y (1(0’ x??/) - l(ep;x7 y)) + CR - R* + ké.

where R* is an upper bound on the regularizer R(9).

The formula for the lower bound in Theorem 2 (and also
the lower bound in Corollary 1) can be easily incorporated
into Algorithm 1 to obtain a tighter theoretical lower bound.
We simply need to check all of the intermediate classifiers
0; produced during the attack process and replace 6 with
6:, and the lower bound can be computed for the pair of
0 and 0,,. Algorithm 1 then additionally returns the lower
bound, which is the highest lower bound computed from our
poisoning procedure. When the loss function is Lipschitz
continuous and the data and model space are closed convex
sets (all common in practice), the loss function is bounded
and the returned lower bound will often be nonzero. We
empirically show this for linear SVM models in Table 1 and
Table 2. We note that, for unbounded loss difference, the
lower bounds of Theorem 2 and Corollary 1 will be 0. But,
this doesn’t mean that our results are vacuous—it means the
attacker is very powerful and our attack will converge with
only a few poisoning points (possibly even just one) and the
lower bound of 0 is close to the number of poisoning points
used by the adversary.

5. Experiments

We present the experimental results by showing the con-
vergence of Algorithm 1, the comparison of attack success

rates to state-of-the-art model-targeted poisoning attack, and
the theoretical lower bound for inducing a given target clas-
sifier and its gap to the number of poisoning points used
by our attack. All of our evaluation code is available at:
https://github.com/suyeecav/model-targeted-poisoning.

Datasets and Subpopulations. We experiment on both the
practical subpopulation and the conventional indiscriminate
attack scenarios. We selected datasets and models for our
experiments based on evaluations of previous poisoning at-
tacks (Biggio et al., 2012; Mei & Zhu, 2015a; Koh et al.,
2018; Steinhardt et al., 2017; Koh & Liang, 2017; Jagielski
et al., 2019). For the subpopulation attack experiments, we
use the Adult dataset (Dua & Graff, 2017), which was used
for evaluation by (Jagielski et al., 2019). We downsampled
the Adult dataset to make it class-balanced and ended up
with 15,682 training and 7,692 test examples. Each example
has the dimension of 57 after one-hot encoding the categor-
ical attributes. For the indiscriminate setting, we use the
Dogfish (Koh & Liang, 2017) and MNIST 1-7 datasets (Le-
Cun, 1998)!. The Dogfish dataset contains 1,800 training
and 600 test samples. We use the same Inception-v3 fea-
tures (Szegedy et al., 2016) as in Koh & Liang (2017);
Steinhardt et al. (2017); Koh et al. (2018) and each image is
represented by a 2,048-dimensional vector. The MNIST 1-7
dataset contains 13,007 training and 2,163 test samples, and
each image is flattened to a 784-dimensional vector.

We identify the subpopulations for the Adult dataset using k-
means clustering techniques (ClusterMatch in Jagielski et al.
(2019)) to obtain different clusters (k = 20). For each clus-
ter, we select instances with the label “< 50K” to form the
subpopulation (indicating all instances in the subpopulation
are in the low-income group). This way of defining subpop-
ulation is rather arbitrary (in contrast to a more likely attack
goal that would select subpopulations based on demographic
characteristics), but enables us to simplify analyses. From
the 20 subpopulations obtained, we select three subpopu-
lations with the highest test accuracy on the clean model.
They all have 100% test accuracy, indicating all instances in
these subpopulations are correctly classified as low income.
This enables us to use “attack success rate” and “accuracy”
without any ambiguity on the subpopulation—for each of
our subpopulations, all instances are originally classified
as low income, and the simulated attacker’s goal is to have
them classified as high income.

Models and Attacks. We conduct experiments on linear
SVM and logistic regression (LR) models. Although our
theoretical results do not apply to non-convex models, for
curiosity we also tested our attack on deep neural networks
and report results in Appendix E.

'"MNIST 1-7 dataset is a subset of the well-known MNIST
dataset that only contains digit 1 and 7.


https://github.com/suyeecav/model-targeted-poisoning

Model-Targeted Poisoning Attacks with Provable Convergence

We use the heuristic approach from Koh et al. (2018) to
generate target classifiers for both attack settings. In the
subpopulation setting, for each subpopulation, we generate
a target model that has 0% accuracy (100% attacker suc-
cess) on the subpopulation, indicating that all subpopulation
instances are now classified as high income. In the indis-
criminate setting, for MNIST 1-7, we aim to generate three
target classifiers with overall test errors of 5%, 10%, and
15%. For SVM, we obtained target models of test accura-
cies of 94.0%, 88.8%, and 83.3%, and for LR, the target
models are of test accuracies of 94.7%, 89.0%, and 84.5%.
For Dogfish, we aim to generate target models with overall
test errors of 10%, 20%, and 30%. For SVM, we obtained
target models of test accuracies of 89.3%, 78.3%, and 67.2%
and for logistic regression, we obtained target models of
test accuracies of 89.0% 79.5%, and 67.3%. The test accu-
racy of the clean SVM model is 78.5% on Adult, 98.9% on
MNIST 1-7 and is 98.5% on Dogfish. The test accuracy of
clean LR model is 79.9% on Adult, 99.1% on MNIST 1-7
and 98.5% on Dogfish.

We compare our model-targeted poisoning attack in Al-
gorithm 1 to the state-of-the-art KKT attack (Koh et al.,
2018). We omit the model-targeted attack from Mei & Zhu
(2015b) because there is no open source implementation
and this attack is also reported to underperform the KKT
attack (Koh et al., 2018). Our main focus here is to compare
with other model-targeted attacks in terms of achieving the
target models, but we also do include experiments (in Ap-
pendix D) comparing our attack to existing objective-driven
attacks, where the target model for our attack is selected
to achieve that objective. With a carefully selected target
model, our attack can also outperform the state-of-the-art
objective-driven attack.

Both our attack and the KKT attack take as input a target
model and the original training data, and output a set of
poisoning points intended to induce a model as close as
possible to the target model when the poisoning points are
added to the original training data. We compare the effec-
tiveness of the attacks by testing them using the same target
model and measuring convergence of their induced models
to the target model.

The KKT attack requires the number of poisoning points as
an input, while our attack is more flexible and can produce
poisoning points in priority order without a preset number.
As a stopping condition for our experiments, we use either a
target number of poisoning points or a threshold for e-close
distance to the target model. Since we do not know the
number of poisoning points needed to reach some attacker
goal in advance for the KKT attack, we first run our attack
and produce a classifier that satisfies the selected e-close
distance threshold. The loss function is hinge loss for SVM
and logistic loss for LR. For SVM model, we set € as 0.01

on Adult, 0.1 on MNIST 1-7 and 2.0 on Dogfish dataset.
For LR model, we set € as 0.05 on Adult, 0.1 on MNIST 1-7
and 1.0 on Dogfish. Then, we use the size of the poisoning
set returned from our attack (denoted by n,) as the input
to the KKT attack for the target number of poisons needed.
We also compare the two attacks with varying numbers of
poisoning points up to n,. For the KKT attack, its entire
optimization process must be rerun whenever the target
number of poisoning points changes. Hence, it is infeasible
to evaluate the KKT attack on many different poisoning
set sizes. In our experiments, we run the KKT attack five
poisoning set sizes: 0.2 - ny, 0.4 - ny, 0.6 - ny, 0.8 - ny,
and n,. For our attack, we simply run iterations up to
the maximum number of poisoning points, collecting a data
point for each iteration up to n,,. In Appendix C, we also plot
the performance of our attack with respect to the number
of poisoning points added across iterations. Generation of
poisoning points can be done offline, so we do not focus on
the computational cost of different poisoning attacks here.
The two attacks we consider are both very efficient, and all
of our experiments can be run on a typical laptop.

Convergence. Figure 1 shows the convergence of Algo-
rithm 1 using both maximum loss difference and Euclidean
distance to the target, and the result is reported on the first
subpopulation (Cluster 0) of Adult and the model is SVM.
The maximum number of poisoning points (n,,) for the ex-
periments is obtained when the classifier from Algorithm 1
is 0.01-close to the target classifier. Our attack steadily re-
duces the maximum loss difference and Euclidean distance
to the target model, in contrast to the KKT attack which
does not seem to converge towards the target model reliably.
Concretely, at the maximum number of poisons in Figure 1,
both the maximum loss difference and Euclidean distance of
our attack (to the target) are less than 2% of the correspond-
ing distances of the KKT attack. Similar observations are
also observed for the indiscriminate and other subpopulation
attack settings, see Appendix C.

We believe our attack outperforms the KKT attack in conver-
gence to the target model because it approaches the target
classifier differently. The foundation of the KKT attack is
that for binary classification, for any target classifier gen-
erated by training on a set D, U D,, with |D,| = n, the
(exact) same classifier can also be obtained by training on
set D. U Dy, with | D},| < n. This poisoning set D}, only
contains two distinct points, one from each class. In prac-
tice, the KKT attack often aims to induce the exact same
classifier with much fewer poisoning points, which may not
be feasible and leads the KKT attack to fail. In contrast,
our attack does not try to obtain the exact target model but
just selects each poisoning point in turn as the one with the
best expected impact. Hence, our attack gets close to the
target model with fewer poisoning points than the number
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Figure 1. Convergence to the target model. Results shown are for the first subpopulation (Cluster 0) and the model is SVM.

Model/  Target n Lower 0.2n, 0.4n, 0.6m, 0.8n,, Ny
Dataset ~ Model r Bound KKT Ours KKT Ours KKT Ours KKT Ours KKT Ours
SVM/ Cluster 0 1,866 1,667+2.4 96.8 98.4 65.4 51.6 14.9 35.6 1.1 2.7 15.4 0.5
Adult Cluster 1 2,097 1,831.4+5.0 72.2 77.1 41.0 23.6 2.8 0.7 14 0.7 6.9 0.0

U Cluster 2 2,163.3£2.5 1,863.0+£9.2 949 +0.7 24.3+0.3 15.9 203 343+02 121 216+01 03 203+07 03
LR/ Cluster 0 2,005 N/A 82.1+1.0 75.6 71.7+04 422 46.7 159 36.6+2.1 19 243+08 04
Adult Cluster 1 1,630+1.1 N/A 98.1 94.9 97.2 79.0 96.7 34.1 95.8 6.1 95.8 0.5
Cluster 2 2,428 N/A 97.9 94.5 93.9 458 898+07 58 792+46 06 602+17 0.6

Table 1. Subpopulation attack on Adult: comparison of test accuracies on subpopulations (%). Target models for Adult dataset consist
of models with 0% accuracy on the selected subpopulations (Cluster O - Cluster 2). n, denotes the maximum number of poisoning
points used by our attack, and xn, denotes comparing the two attacks at xn,, poisoning points. n,, is set by running our attack till the
induced model becomes 0.01-close to the target model. All results are averaged over 4 runs and standard error is 0 (exact same number
of misclassifications across the runs), except where reported. We do not show lower bound for LR because we can only compute an
approximate maximum loss difference and the lower bound will no longer be valid.

Model/ Target Lower 0.2n, 0.4n, 0.6n,, 0.8n, ny

Dataset Model M Bound KKT Ours KKT Ours KKT Ours KKT Ours KKT Ours
SVYM/ 5% Error 1,737 874 973 97.1 96.4 96.1 95.7 95.7 949 949 943 94.6
MNIST 1.7 10% Error 5,458 3,850.44+0.8 958 95.5 934 92.1 92.7 90.9 91.1  90.7 90.2 90.2
15% Error 6,192 4,904 983 97.8 96.3 98.1 97.2 97.3 98.3 927 827 85.9
SVM/ 10% Error 32 15 97.0 95.8 94.0 93.3 92.2 91.2 90.7 90.2 903 89.8
Doafish 20% Error 89 45 95.5 957 92.5 92.2 90.3 88.7 847 847 823 82.0
i 30% Error 169 83 95.5 957 93.5 90.7 88.3 82.5 783 752 718 71.7
LR/ 5% Error 756 N/A 97.5 96.9 97.4 96.5 97.2 96.0 96.9 957 969 95.2
MNIST 1-7 10% Error 2,113 N/A 97.0 95.7 96.9 93.8 96.8 92.3 96.2 914 964 90.4
15% Error 3,907 N/A 96.9 954 97.0 93.3 97.1 90.7 97.1 883 97.1 87.1
LR/ 10% Error 62 N/A 98.8 93.0 985+0.1 89.7+03 988 89.2 98.8 89.2 98.8 89.0
Dosfish 20% Error 120 N/A 98.5 93.2 99.2 88.2 99.3 85.3 99.5 83.0 995 80.7

g 30% Error 181 N/A 97.8 923 98.8 85.7+0.2 992 81.3+£03 995 757 995 725+0.2

Table 2. Indiscriminate attack on MNIST 1-7 and Dogfish: comparison of overall test accuracies (%). The target models are of certain
overall test errors. m,, is set by running our attack till the induced model becomes e-close to the target model and we set € as 0.1
for MNIST 1-7 and 2.0 for Dogfish dataset. All results are averaged over 4 runs and standard error is O (exact same number of
misclassifications across the runs), except where reported.

of points used to exactly produce the target model.

Attack Success. Next, we compare the classifiers induced
by the two attacks in terms of the attacker’s goal. Table 1
summarize the results of the subpopulation attacks, where
attack success is measured on the targeted cluster. At the

maximum number of poisons, our attack is much more
successful than the KKT attack, for both the SVM and LR
models. For example, on Cluster 1 with LR, the induced
classifier from our attack has 0.5% accuracy compared to
the 95.8% accuracy of KKT. Table 2 shows the results of
indiscriminate attacks on MNIST 1-7 and Dogfish, and the
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attack success is the overall test error. For the indiscriminate
attack on SVM, both on MNIST 1-7 and Dogfish, the two
attacks have similar performance while for LR, our attack is
much better than the KKT attack. KKT’s failure on LR is
that its objective function becomes highly non-convex and
is very hard to optimize. More details about the formulation
can be found in Koh et al. (2018). For logistic loss, our
attack also needs to maximize a non-concave maximum loss
difference? (Step 4 in Algorithm 1). However, this objective
is much easier to optimize than that of the KKT attack and
our attack is still very effective on LR models.

Optimality of Our Attack. To check the optimality of our
attack, we calculate a lower bound on the number of poi-
soning points needed to induce the model induced by the
poisoning points found by our attack. We calculate this
lower bound on the number of poisons using Theorem 2
(details in Section 4.3). Note that Theorem 2 provides a
valid lower bound based on any intermediate model. To
get a lower bound on the number of poisoning points, we
only need to use Theorem 2 on the encountered intermedi-
ate models and report the best one. We do this by running
Algorithm 1 using the induced model (and not the previous
target model) as the target model, terminating when the in-
duced classifier is e-close to the given target model. Note
that for LR, maximizing the loss difference is not concave
and therefore, we cannot obtain the actual maximum loss
difference, which is required in the denominator in The-
orem 2. Therefore, we only report results on SVM. For
the subpopulation attack on Adult, we set ¢ = 0.01 and
for the indiscriminate attack on MNIST 1-7 and Dogfish,
we set € to 0.1 and 2.0, respectively. We then consider
all the intermediate classifiers that the algorithm induced
across the iterations. Our calculated lower bound in Table 1
(Column 3-4) shows that for the Adult dataset, the gap be-
tween the lower bound and the number of used poisoning
points is relatively small. This means our attack is nearly
optimal in terms of minimizing the number of poisoning
points needed to induce the target classifier. However, for
the MNIST 1-7 and Dogfish datasets in Table 2, there still
exists some gap between the lower bound and the number of
poisoning points used by our attack, indicating there might
exist more efficient model-targeted poisoning attacks.

6. Limitations

Our theoretical analysis only applies to convex loss func-
tions and it is an interesting future direction to extend our
theoretical analysis into non-convex loss functions (e.g.,
DNNs). The efficient search of the point with maximum
loss difference requires the difference of the loss function

2We use Adam optimizer (Kingma & Ba, 2014) with random
restarts to solve this maximization problem approximately.

to be concave or in some easily optimizable forms where
the global optima can be easily found. This excludes some
classes of common loss functions such as the logistic loss,
but empirically, we find that gradient based optimization
techniques can still solve the optimization problem well and
our attack is very effective in these cases (see the results on
LR models). Our work mainly focuses on inducing given
target models and does not provide a principled way to gen-
erate target classifiers such that the attacker objectives can
be achieved efficiently using our attack. In Appendix D, we
show some heuristics in selecting better target models, but a
systematic investigation on the generation of better target
classifiers is the important next step.

‘We have not considered defenses in this work, and it is an
important and interesting direction to study the effective-
ness of our attack against data poisoning defenses. Defenses
may be designed to limit the search space of the points with
maximum loss difference and hence increase the number of
poisoning points needed. We also leave the investigation
of the application of our model-targeted attacks in other at-
tacker objectives, e.g., backdoor attacks and privacy attacks,
for future work.

7. Conclusion

We propose a general poisoning framework with provable
guarantees to approach any attainable target classifier, along
with a lower (Theorem 2) and upper bound (the proposed
poisoning attack) on the number of poisoning points needed.
Our attack is a generic tool that first captures the adversary’s
goal as a target model and then focuses on the power of
attacks to induce that model. This separation enables fu-
ture work to explore the effectiveness of poisoning attacks
corresponding to different adversarial goals.
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