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Abstract

We present Neural Probabilistic Soft Logic (NeuPSL), a novel neuro-symbolic
(NeSy) framework that unites state-of-the-art symbolic reasoning with the low-level
perception of deep neural networks. To explicitly model the boundary between
neural and symbolic representations, we introduce NeSy Energy-Based Models, a
general family of energy-based models that combine neural and symbolic reasoning.
Using this framework, we show how to seamlessly integrate neural and symbolic
parameter learning and inference. We perform an extensive empirical evaluation
and show that NeuPSL outperforms existing methods on joint inference and has
significantly lower variance in almost all settings.

1 Introduction

The integration of deep learning and symbolic reasoning is one of the earliest, yet open, challenges
in the machine learning community [d’Avila Garcez et al., 2002]. A promising area of research
that incorporates neural perception into logic-based reasoning is neuro-symbolic computing (NeSy)
[Besold et al., 2017, d’Avila Garcez et al., 2019, De Raedt et al., 2020]. This integration has the benefit
of allowing for expressive models that are able to perform joint inference (structured prediction),
i.e., jointly predicting multiple labels or tasks, and joint learning, i.e., parameter learning over a
joint loss function. Joint inference and learning have been used in strictly deep neural architectures
to great success; graph neural networks [Wu et al., 2021], conditional random fields [Zheng et al.,
2015], hidden Markov models [Li et al., 2013], etc. Furthermore, models designed for tasks such as
translation [Bahdanau et al., 2015] or image segmentation [Nowozin and Lampert, 2011] without joint
inference are unable to accurately distinguish predictions. For example, in translation, understanding
the difference between homonyms such as fair (equitable vs. beautiful) or in image segmentation,
making locally consistent decisions about the foreground and background.

In this paper, we introduce a principled NeSy method that integrates deep learning with hard and
soft logical constraints prioritizing joint learning and inference. Our approach, Neural Probabilistic
Soft Logic (NeuPSL), extends probabilistic soft logic (PSL) [Bach et al., 2017], a state-of-the-art
highly scalable probabilistic programming framework that is able to both reason statistically (using
probabilistic inference) and logically (using soft rules). We choose PSL because it encodes an
underlying graphical model that supports scalable and convex joint inference. Additionally, PSL has
been shown to support a wide variety of joint inference and learning tasks including natural language
processing [Beltagy et al., 2014, Deng and Wiebe, 2015, Liu et al., 2016, Rospocher, 2018], data
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Preprint. Under review.

ar
X

iv
:2

20
5.

14
26

8v
2 

 [c
s.L

G
]  

14
 Ju

n 
20

22



mining [Alshukaili et al., 2016, Kimmig et al., 2019], recommender systems [Kouki et al., 2015],
knowledge graph discovery [Pujara et al., 2013], fairness modeling [Farnadi et al., 2019, Dickens
et al., 2020], and causal reasoning [Sridhar et al., 2018].

Our key contributions are: 1) We define a family of energy-based models called Neuro-Symbolic
Energy-Based Models (NeSy-EBMs), 2) We introduce NeuPSL and highlight how it fits into the
NeSy ecosystem, paying particular attention to how it supports joint inference and learning, and
3) We perform an extensive evaluation, showing that NeuPSL consistently outperforms existing
approaches on joint inference in low data settings while maintaining a significantly lower variance in
most settings.

2 Related Work

Neuro-symbolic computing (NeSy) is a very active area of research that aims to incorporate logic-
based reasoning with neural computation d’Avila Garcez et al. [2002], Bader and Hitzler [2005],
d’Avila Garcez et al. [2009], Serafini and d’Avila Garcez [2016], Besold et al. [2017], Donadello
et al. [2017], Yang et al. [2017], Evans and Grefenstette [2018], Manhaeve et al. [2021a], d’Avila
Garcez et al. [2019], De Raedt et al. [2020], Lamb et al. [2020], Badreddine et al. [2022]. This
integration allows for interpretability and reasoning through symbolic knowledge, while providing
robust learning and efficient inference with neural networks. For an in-depth introduction, we refer
the reader to these excellent surveys Besold et al. (2017) and De Raedt et al. (2020). In this section,
we identify key NeSy research categories and provide a brief description of each:

Differentiable frameworks of logical reasoning: Methods in this category use the universal func-
tion approximation properties of neural networks to emulate logical reasoning inside networks. Ex-
amples include: Rocktäschel and Riedel (2017), Bošnjak et al. (2017), Evans and Grefenstette (2018),
and Cohen et al. (2020).

Constrained Output: These approaches enforce constraints or regularizations on the output of
neural networks. Examples include: Hu et al. (2016), Diligenti et al. (2017), Donadello et al. (2017),
Mehta et al. (2018), Xu et al. (2018), and Nandwani et al. (2019).

Executable logic programs: These approaches use neural models to build executable logical pro-
grams. Examples include Liang et al. (2017) and Mao et al. (2019). We highlight Logic Tensor
Networks (LTNs) [Badreddine et al., 2022], as we compare with them in our empirical evaluation.
LTNs connect neural predictions into functions representing symbolic relations with real-valued or
fuzzy logic semantics.

Neural networks as predicates: This line of work integrates neural networks and probabilistic
reasoning by introducing neural networks as predicates in the logical formulae. This technique
provides a very general and flexible framework for neuro-symbolic reasoning, and allows for the
use of multiple networks as well as the full incorporation of constraints and relational information.
Examples include DASL Sikka et al. [2020], NeurASP Yang et al. [2020], DeepProbLog (DPL)
Manhaeve et al. [2021a], and our proposed method (Neural Probabilistic Soft Logic). DPL combines
general-purpose neural networks with the probabilistic modeling of ProbLog De Raedt et al. [2007]
in a way that allows for learning and inference over complex tasks, such as program induction. We
include DPL in our empirical evaluation.

3 Neuro-Symbolic Energy-Based Models

Energy-Based Models (EBMs) [LeCun et al., 2006] measure the compatibility of a collection of
observed or input variables x ∈ X and target or output variables y ∈ Y with a scalar valued energy
function: E : Y×X → R. Low energy states of the variables represent high compatibility. Prediction
or inference in EBMs is performed by finding the lowest energy state of the variables y given x.
Energy functions are parameterized by variables w ∈ W , and learning is the task of finding a
parameter setting that associates low energy to correct solutions.

Building on this well-known formulation, we introduce Neuro-Symbolic Energy-Based Models (NeSy-
EBMs). NeSy-EBMs are a family of EBMs that integrate neural architectures with explicit encodings
of symbolic relations. The input variables are organized into neural, xnn ∈ Xnn, and symbolic,
xsy ∈ Xsy, vectors. Furthermore, the parameters of the energy function, w, are partitioned into
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Figure 1: NeuPSL inference and learning pipeline.

neural parameters, wnn ∈ Wnn, and symbolic parameters, wsy ∈ Wsy . NeSy energy functions are
written as E : Y × X × Xnn ×Wnn ×Wsy → R. Formally,

Definition 1 (Neuro-Symbolic Energy-Based Models). Let y = [yi]
ny

i=1 and x = [xi]
nx
i=1 be

vectors of real valued variables with symbolic interpretations. Let gnn = [gnn,i]
ng

i=1 be neu-
ral networks with corresponding parameters wnn = [wnn,i]

ng

i=1 and, without loss of generality,
inputs xnn. A symbolic potential is a function: ψ(y,x,gnn(xnn,wnn)) ∈ R. A NeSy-EBM
energy function, parameterized by symbolic parameters wsy = [wsy,i]

nsy

i=1, is a mapping of a vec-
tor of symbolic potential outputs, Ψ(y,x,xnn,wnn) = [ψi(y,x,gnn(xnn,wnn))]mi=1, to a real
value: E(Ψ(y,x,xnn,wnn),wsy) ∈ R. For simplicity we also express a NeSy energy function as
E(y,x,xnn,wnn,wsy) ∈ R.

NeSy-EBM models are differentiated from one another by the instantiation process, the form of
the symbolic potentials, and the method for combining the symbolic potentials to define the energy
function. One example of a NeSy-EBM is DeepProbLog (DPL) [Manhaeve et al., 2018]. DPL
uses the output of a neural network to specify probabilities of events. The events are then used
in logical formulae defining probabilistic dependencies and act as symbolic potentials. The DPL
energy function is a joint distribution and inference is finding the highest-probability, i.e., lowest
energy, state of the variables. Logic Tensor Networks (LTNs) [Badreddine et al., 2022] are another
NeSy method that belongs to the NeSy-EBM family, and instantiates a model which forwards neural
network predictions into functions representing symbolic relations with real-valued or fuzzy logic
semantics. From the NeSy-EBM point of view, the fuzzy logic functions are the symbolic potentials
and their composition defines the energy function.

4 Neural Probabilistic Soft Logic

Having laid the NeSy-EBM groundwork, we now introduce Neural Probabilistic Soft Logic (NeuPSL),
a novel NeSy-EBM framework that extends the probabilistic soft logic (PSL) probabilistic framework
[Bach et al., 2017]. As illustrated in Figure 1, NeuPSL leverages the low-level perception of neural
networks by integrating their outputs into a set of symbolic potentials created by a PSL program. The
symbolic potentials and neural networks together define a deep hinge-loss Markov random field (Deep-
HL-MRF), a tractable probabilistic graphical model that supports scalable convex joint inference. This
section provides a comprehensive description of how NeuPSL instantiates its symbolic potentials and
how the symbolic potentials are combined to define an energy function, while the following section
details NeuPSL’s end-to-end neural-symbolic inference, learning, and joint reasoning processes.

NeuPSL instantiates the symbolic potentials of its energy function using the PSL language where
dependencies between relations and attributes of entities in a domain, defined as atoms, are encoded
with weighted first-order logical clauses and linear arithmetic inequalities referred to as rules. To
illustrate, consider a setting in which a neural network is used to classify the species of an animal in an
image. Further, suppose there exists external information suggesting when two images may contain
the same entity. The information linking the images may come from a variety of sources, such as the
images’ caption or metadata indicating the images were captured by the same device within a short
period of time. NeuPSL represents the neural network’s animal classification of an image (Image1)
as a species (Species) with the atom NEURAL(Image1, Species) and the probability that two
images (Image1 and Image2) contain the same entity with the atom SAMEENTITY(Image1, Image2).
Additionally, we represent NeuPSL’s classification of Image2 with CLASS(Image2, Species). The
following weighted logical rule in NeuPSL represents the notion that two images identified as the
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same entity may also be of the same species:

w : NEURAL(Image1, Species) ∧ SAMEENTITY(Image1, Image2)→ CLASS(Image2, Species) (1)

The parameter w is the weight of the rule and it quantifies its relative importance in the model. Note,
these rules can either be hard or soft constraints. Atoms and weighted rules are templates for creating
the symbolic potentials, or soft constraints. To create these symbolic potentials, atoms and rules
are instantiated with observed data and neural predictions. Atoms instantiated with elements from
the data are referred to as ground atoms. Then, valid combinations of ground atoms substituted
in the rules create ground rules. To illustrate, suppose that there are two images {Id1, Id2} and
three species classes {Cat,Dog, Frog}. Using the above data for cats would result in the following
ground rules (analogous ground rules would be created for dogs and frogs):

w :NEURAL(Id1, Cat) ∧ SAMEENTITY(Id1, Id2)→ CLASS(Id2, Cat)

w :NEURAL(Id2, Cat) ∧ SAMEENTITY(Id2, Id1)→ CLASS(Id1, Cat)

Ground atoms are mapped to either an observed variable, xi, target variable, yi, or a neural function
with inputs xnn and parameters wnn,i: gnn,i(xnn,wnn,i). Then, variables are aggregated into the
vectors x = [xi]

nx
i=1 and y = [yi]

ny

i=1 and neural outputs are aggregated into the vector gnn =
[gnn,i]

ng

i=1. Each ground rule creates one or more potentials defined over x, y, and gnn. Logical
rules, such as the one given in example (1), are relaxed using Łukasiewicz continuous valued logical
semantics Klir and Yuan [1995]. NeuPSL also supports arithmetic rules for defining penalty functions.
Each potential φi is associated with a parameter wpsl,i that is inherited from its instantiating rule.
The potentials and weights from the instantiation process are used to define a member of a tractable
class of graphical models, deep hinge-loss Markov random fields (Deep-HL-MRF):

Definition 2 (Deep Hinge-Loss Markov Random Field). Let y = [yi]
ny

i=1 and x = [xi]
nx
i=1 be

vectors of real valued variables. Let gnn = [gnn,i]
ng

i=1 be functions with corresponding parameters
wnn = [wnn,i]

ng

i=1 and inputs xnn. A deep hinge-loss potential is a function of the form

φ(y,x,xnn,wnn) = max(l(y,x,gnn(xnn,wnn)), 0)α (2)

where α ∈ {1, 2}. Let T = [ti]
r
i=1 denote an ordered partition of a set ofm deep hinge-loss potentials

{φ1, · · · , φm}. Next, for each partition ti define Φi(y,x,xnn,wnn) :=
∑

j∈ti φi(y,x,xnn,wnn)

and let Φ(y,x,xnn,wnn) := [Φi(y,x,xnn,wnn)]ri=1. Further, let wpsl = [wi]
r
i=1 be a vector of

non-negative weights corresponding to the partition T . Then, a deep hinge-loss energy function is

E(y,x,xnn,wnn,wpsl) =

R∑
i=1

wpsl[i]Φi(y,x,xnn,wnn) = wT
pslΦ(y,x,xnn,wnn) (3)

Further, let c = [ci]
q
i=1 be a vector of q linear constraints in standard form, defining the feasible

set Ω = {y,x | ci(y,x) ≤ 0, ∀i}. Then a deep hinge-loss Markov random field, P , with random
variables y conditioned on x and xnn is a probability density of the form

P (y|x,xnn) =

{
1

Z(x,xnn,wnn,wpsl)
exp(−E(y,x,xnn,wnn,wpsl)) (y,x) ∈ Ω

0 o.w.
(4)

Z(x,xnn,wnn,wpsl) =

∫
y|y,x∈Ω

exp(−E(y,x,xnn,wnn,wpsl))dy (5)

5 NeuPSL Inference and Learning

There is a clear connection between neural and symbolic inference in NeuPSL that allows any neural
architecture to interact with symbolic reasoning in a simple and expressive manner. The NeuPSL
neural-symbolic interface and inference pipeline is shown in Figure 1. Neural inference is computing
the output of the neural networks given the input xnn, i.e., computing gnn,i(xnn,wnn,i) for all i.
NeuPSL symbolic inference minimizes the energy function over y:

y∗ = arg min
y|(y,x)∈Ω

E(y,x,xnn,wnn,wpsl) (6)

Note that the energy function and constraints are convex in y. Any scalable convex optimizer can be
applied to solve (6). NeuPSL uses the alternating direction method of multipliers [Boyd et al., 2010].
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NeuPSL learning is the task of finding both neural parameters and symbolic parameters, i.e., rule
weights, that assign low energy to correct values of the output variables, and higher energies to
incorrect values. Learning objectives are functionals mapping an energy function and a set of training
examples S = {(yi,xi,xi,nn) : i = 1, · · · , P} to a real-valued loss. As the energy function for
NeuPSL is parameterized by the neural parameters wnn and symbolic parameters wpsl, we express
the learning objective as a function of wnn, wpsl, and S: L(S,wnn,wpsl). Learning objectives
follow the standard empirical risk minimization framework and are therefore separable over the
training examples in S as a sum of per-sample loss functions Li(yi,xi,xi,nn,wnn,wpsl). Concisely,
NeuPSL learning is the following minimization:

arg min
wnn,wpsl

L(wnn,wpsl,S) = arg min
wnn,wpsl

P∑
i=1

Li(yi,xi,xi,nn,wnn,wpsl)

In the learning setting, variables yi from the training set S are partitioned into vectors yi,t and zi. The
variables yi,t represent variables for which there is a corresponding truth value, while zi represent
latent variables. Without loss of generality, we write yi = (yi,t, zi).

There are multiple losses that one could motivate for optimizing the parameters of an EBM. The most
common losses, including the loss we present in this work, use the following terms:

z∗i = arg min
z|((yi,t,z),x)∈Ω

E((yi,t, z),xi,xi,nn,wnn,wpsl) and y∗i = arg min
y|(y,xi)∈Ω

E(y,xi,xi,nn,wnn,wpsl)

In words, z∗i and y∗i are the lowest energy states given (yi,t,xi,xi,nn) and (x,xi,nn), respectively.
A special case of learning is when the per-sample losses are not functions of z∗i and y∗i , and more
specifically, the losses do not require any subproblem optimization. We refer to this situation
as constraint learning. Constraint learning reduces the time required per iteration at the cost of
expressivity.

All interesting learning losses for NeuPSL are a composition of the energy function. Thus, a
gradient-based learning algorithm will necessarily require the following partials derivatives: 2

∂E(·)
∂wpsl[i]

= Φi(y,x,xnn,wnn) and
∂E(·)
∂wnn[i]

= wT
psl∇wnn[i]Φ(y,x,xnn,wnn)

Continuing with the derivative chain rule and noting the potential can be squared (α = 2) or linear
(α = 1), the potential partial derivative with respect to wnn[i] is the piece-wise defined function:2

∂φ(·)
∂wnn[i]

=

{
∂

∂gnn[i]
φ(·) · ∂

∂wnn[i]
gnn[i](xnn,wnn) α = 1

2 · φ(·) · ∂
∂gnn[i]

φ(·) · ∂
∂wnn[i]

gnn[i](xnn,wnn) α = 2

∂φ(·)
∂gnn[i]

=

{
0 φ(·) = 0

∂
∂gnn[i]

l(y,x,gnn(xnn,wnn)) φ(·) > 0

Since l(y,x,gnn(xnn,wnn)) is a linear function, the partial gradient with respect to gnn[i] is trivial.
With the partial derivatives presented here, standard backpropagation-based algorithms for computing
gradients can be applied for both neural and symbolic parameter learning.

Energy Loss: A variety of differentiable loss functions can be chosen for L. For simplicity, in this
work we present the energy loss. The energy loss parameter learning scheme directly minimizes the
energy of the training samples, i.e., the per-sample losses are:

Li(yi,xi,xi,nn,wnn,wpsl) = E((yi,t, z
∗
i ),xi,xi,nn,wnn,wpsl)

Notice that inference over the latent variables is necessary for gradient and objective value computa-
tions. However, a complete prediction from NeuPSL, i.e., inference over all components of y, is not
necessary. Therefore the parameter learning problem is as follows:

arg min
wnn,wpsl

L(wnn,wpsl,S) = arg min
wnn,wpsl

P∑
i=1

min
z|((yi,t,z),x)∈Ω

wT
pslΦ((yi,t, z),xi,xi,nn,wnn)

With L2 regularization, the NeuPSL energy function is strongly convex in all components of yi. Thus,
by Danskin (1966), the gradient of the energy loss, Li(·), with respect to wpsl at yi,xi,xi,nnwnn is:

∇wpslLi(yi,xi,wnn,wpsl) = Φ((yi,t, z
∗
i ),xi,xi,nn,wnn)

2Note arguments of the energy function and symbolic potentials are dropped for simplicity, i.e., E(·) =
E(y,xi,xi,nn,wnn,wpsl), φ(·) = φ(y,x,xnn,wnn).
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(a) Independent Energy (b) Joint-Energy

Figure 2: Example of non-joint and joint energy functions.

Then the per-sample energy loss partial derivative with respect to wnn[j] at yi,xi,xi,nn,wpsl is:

∂Li(yi,xi,xi,nn,wnn,wpsl)

∂wnn[j]
=

R∑
r=1

wpsl[r]
∑
q∈τr

∂φq((yi,t, z
∗
i ),xi,xi,nn,wnn)

∂wnn[j]

Details on the learning algorithms and accounting for degenerate solutions of the energy loss are
included in the appendix.

6 Joint Reasoning in NeSy-EBMs

The EBM energy function encodes dependencies between potentially high dimensional input vari-
ables, x, and output variables, y. We highlight two important categories of energy functions: joint
and independent energy functions. Formally, we refer to an energy function that is additively sep-
arable over the output variables y as an independent energy function, i.e., there exists functions
E1(y[1],x), · · · , Eny (y[ny],x) such that E(y,x) =

∑ny

i=1Ei(y[i],x). While a function that is
not separable over output variables y is a joint energy function. This categorization allows for an
important distinction during inference and learning. In independent inference, the predicted value for
a variable y[i] has no influence over that of y[j] where j 6= i and can therefore be predicted separately,
i.e., independently. Independent energy functions speed up inference and learning, however, they
cannot leverage joint information that may be used to improve predictions.

To illustrate, recall the example described in Section 4 where a neural network is used to classify the
species of an animal in an image with external information. Figure 2 outlines the distinction between
independent and joint prediction for this scenario. In Figure 2(a), the independent setting, the input
is a single image, and the energy function is defined over the three possible classes: dog, cat, and
frog. While in Figure 2(b), the joint setting, the input is a pair of images, and the energy function is
defined for every possible combination of labels (e.g., (dog, dog), (dog, cat), etc.). The joint energy
function of (b) leverages external information suggesting the images are of the same entity. Joint
reasoning enables a model to make structured predictions that resolve contradictions an independent
model could not detect.

For NeSy-EBMs, a joint energy function encodes dependencies between its output variables through
its symbolic potentials. NeuPSL additionally benefits from scalable convex inference to speed up
learning over a dependent set of output variables. As we will see in the experiments section, utilizing
joint inference and learning in NeSy-EBMs not only provides a boost in performance but produces
results that non-joint methods cannot (even with five times the amount of data).

7 Experimental Evaluation

We perform a series of experiments highlighting 1) the runtime of NeuPSL symbolic inference, 2)
NeuPSL’s ability to integrate neural and symbolic inference and learning, 3) the effectiveness of Ne-
uPSL’s joint inference and learning, and 4) NeuPSL’s performance on Visual-Sudoku-Classification,
a new NeSy task. NeuPSL is implemented using the open-source PSL software package and can be
used with any neural network library (in this paper, we use TensorFlow). 3 In addition to NeuPSL,

3Implementation details including hyperparameters, network architectures, hardware, and NeuPSL symbolic
models are described in the appendix materials.
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we include results for DeepProbLog (DPL) Manhaeve et al. [2021a], Logic Tensor Networks (LTNs)
[Badreddine et al., 2022], and convolutional neural network baselines (CNNs).

The first three experiments are performed over two canonical NeSy tasks: MNIST-Add1 and
MNIST-Add2 [Manhaeve et al., 2018]. These tasks extend the classic MNIST image classification
problem [LeCun et al., 1998] by constructing addition equations using MNIST images and requiring
classification to be performed using only their sum as a label. For example, a MNIST-Add1
addition is (

[ ]
+
[ ]

= 8), and a MNIST-Add2 addition is (
[

,
]

+
[
,
]

= 41). Given n
randomly selected MNIST images, we create n/2 MNIST-Add1 or n/4 MNIST-Add2 additions.
We emphasize that individual MNIST images do not have labels, only the resulting sum. All results
are averaged over ten splits constructed from a set of 10, 000 randomly sampled MNIST images.

7.1 Symbolic Inference and Runtime

We compare runtimes of a latent variable NeuPSL model, a constraint-based NeuPSL model, and a
DPL model for both MNIST-Add tasks. Models are trained on additions constructed from 6, 000
MNIST images. Table 1 4 shows the average inference times per addition and standard deviation
across ten splits with the fastest approach bolded. We see the benefit of NeuPSL’s convex symbolic
inference as we consistently see a 2-3 times speedup for the fastest NeuPSL models. NeuPSL-
Constraint requires significantly less runtime than NeuPSL-Latent for MNIST-Add1. This is because
the instantiated latent model contains roughly twice the number of symbolic potentials and decision
variables; hence, inference requires more time to converge. However, for MNIST-Add2, introducing
additional latent variables results in a more concise set of symbolic potentials, and despite the latent
model having more decision variables, the reduction in model size is enough to achieve significantly
faster inference. For the remaining experiments, we report the results on NeuPSL-Constraint for
MNIST-Add1 and NeuPSL-Latent for MNIST-Add2. Note that inference in neural baselines and
LTNs for MNIST-Add are equivalent to making a feed forward pass in a neural network, and
therefore not comparable to the complex symbolic inference done in DPL and NeuPSL. This trivial
inference is very fast, but comes with a decrease in predictive performance that we will examine next.

DPL NeuPSL-Constraint NeuPSL-Latent

MNIST-Add1 1.34e-2 ± 1.67e-4 4.00e-3 ± 1.00e-4 2.98e-2 ± 2.33e-4
MNIST-Add2 1.65e+3 ± 4.80e+2 8.76e+3 ± —.—4 7.38e+2 ± 3.36e+1

Table 1: Inference times (milliseconds) on test sets constructed from 10, 000 MNIST images.

7.2 Deep Learning and Symbolic Reasoning

We evaluate the predictive performance of NeuPSL, DPL, LTNs, and neural baselines on MNIST-
Add with varying amounts of training data. Table 25 shows the average accuracy and standard
deviation across ten splits. The best average accuracy and results within a standard deviation of the
best are in bold. In all but two settings, NeuPSL is either the highest performing model or within a
standard deviation of the highest performing model. Moreover, NeuPSL has markedly lower variance
for nearly all amounts of training examples in both MNIST-Add tasks.

7.3 Joint Inference and Learning

To quantify the benefit of joint learning and inference, we propose variants for MNIST-Add in which
digits are re-used across multiple additions. Figure 3 illustrates the new information that joint models
can leverage to narrow the space of possible labels when MNIST images are re-used. Since the same
MNIST image of a zero appears in two addition samples, the value it takes must satisfy both, i.e., the
possible label space can no longer include a two or three as it would violate the second addition.

4Timing results includes both model instantiation and inference. In the interest of time, NeuPSL-Constraint
was only run once for MNIST-Add2.

5Exact inference results are reported for DPL in most settings as in Manhaeve et al. (2021a). However, exact
inference in both 50, 000 MNIST-Add experiments produce random predictions (likely due to a NaN in DPL’s
loss). For these settings we report the results of DPL’s approximate inference as described in Manhaeve et al.
[2021b], which generally produces slightly lower accuracy with higher variance compared to exact inference.
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Method
MNIST-Add1 MNIST-Add2

Number of Additions
300 3,000 25,000 150 1,500 12,500

CNN 17.16 ± 00.62 78.99 ± 01.14 96.30 ± 00.30 01.31 ± 00.23 01.69 ± 00.27 23.88 ± 04.32
LTNs 69.23 ± 15.68 93.90 ± 00.51 80.54 ± 23.33 02.02 ± 00.97 71.79 ± 27.76 77.54 ± 35.55
DPL 85.61 ± 01.28 92.59 ± 01.40 74.08 ± 15.335 71.37 ± 03.90 87.44 ± 02.15 92.23 ± 01.015

NeuPSL 82.58 ± 02.56 93.66 ± 00.32 97.34 ± 00.26 56.94 ± 06.33 87.05 ± 01.48 93.91 ± 00.37
Table 2: Test set accuracy and standard deviation on MNIST-Add.

Figure 3: Example of overlapping MNIST images in MNIST-Add1. On the left, distinct images are
used for each zero. On the right, the same image is used for both zeros.

To create overlap (reused MNIST images), we begin with a set of n unique MNIST images from
which we re-sample to create a collection of (n+m)/2 MNIST-Add1 and (n+m)/4 MNIST-Add2
additions. We vary the amount of overlap with m ∈ {0, n/2, n, 2n} and compare model performance
in low data settings, n ∈ {40, 75, 150}. In low data settings there is not enough structure from the
original additions for symbolic inference to discern the correct digit labels for training the neural
models. Results are reported over test sets of 10, 000 MNIST images with overlap proportional to the
respective train set.

Figure 4: Average test set accuracy and standard deviation on MNIST-Add datasets with varying
amounts of overlap.

Figure 4 shows the accuracy and standard deviation of all methods with varying amounts of overlap.
We see that even though the number of unique MNIST images remains the same, as the number of
additions increases, both DPL and NeuPSL are able to take advantage of the added joint information
to improve their predictions. We see that in almost all cases, NeuPSL has the best performance.
Furthermore, we again see NeuPSL has a lower standard deviation compared to DPL. LTNs and the
CNN baseline benefit the least from joint information, likely this is a consequence of both learning
and inference being performed independently across batches of additions.

7.4 Visual Sudoku Classification

Finally, we introduce Visual-Sudoku-Classification, a new NeSy task where 4x4 Sudoku puzzles
are constructed using unlabeled MNIST images, and the task is to identify whether a puzzle is correct,
i.e., has no duplicate digits in any row, column, or square. Unlike Wang et al. [2019], this task does
not require learning the underlying label for images but rather whether an entire puzzle is valid. For
instance,

[ ]
does not need to belong to a "3" class, instead

[ ]
and

[ ]
need to be labeled as

different. In this setting, n MNIST images creates n/16 Visual-Sudoku-Classification puzzles.
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Method Number of Puzzles
10 20 100 200

CNN-Visual 51.09 ± 15.78 51.36 ± 03.93 50.09 ± 02.17 51.23 ± 02.20
CNN-Digit 55.45 ± 05.22 54.55 ± 07.57 71.09 ± 04.99 82.22 ± 01.77

NeuPSL 64.54 ± 12.93 72.27 ± 06.84 84.72 ± 03.61 85.05 ± 02.65
Table 3: Test set accuracy and standard deviation on Visual-Sudoku-Classification.

We compare NeuPSL with two CNN baselines, CNN-Visual and CNN-Digit. CNN-Visual takes as
input the pixels for a Sudoku puzzle and outputs the probability of the puzzle being valid. To verify
whether the neural model is able to learn the Sudoku rules, we additionally introduce the CNN-Digit
baseline that also outputs a probability of the puzzle being valid, but is provided all sixteen digit
labels. Table 3 shows the test set accuracy and standard deviation of results with the best performing
method in bold. We see that NeuPSL consistently outperforms both neural baselines. Furthermore,
even when CNN-Digit is provided as input the sixteen digit labels, NeuPSL is able to outperform this
baseline using half the amount of puzzles.

Figure 5: Average test set accuracy and standard deviation on Visual-Sudoku-Classification dataset
with varying amounts of overlap.

Furthermore, we evaluate performance after adding relational structure in a similar fashion to the
MNIST-Add variations. Figure 5 shows the accuracy and standard deviation of NeuPSL and CNN
models on Visual-Sudoku-Classification with varying amounts of overlap. NeuPSL is efficient
at leveraging the joint information across training examples, and is able to create a ~65% puzzle
classifier using only about 64 MNIST images across 20 puzzles. This is a particularly impressive
result as this performance implies the neural network in the NeuPSL model was trained to be a ~89%
4-digit distinguisher without any digit labels. Additionally, we observe that CNN-Visual is unable to
generalize even in the highest settings (3200 MNIST images across 200 puzzles).

8 Conclusion

In this paper we introduced NeuPSL, a novel NeSy framework that integrates neural architectures
and a tractable class of graphical models for jointly reasoning over symbolic relations and showed its
utility across a range of neuro-symbolic tasks. There are many avenues for future work including
exploration of different learning objectives, such as ones that balance traditional neural and energy-
based losses, and new application domains. Each of these is likely to provide new challenges and
insights.
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Appendix
The appendix include the following sections: Additional NeuPSL Optimization Details (Appendix A),
Dataset Details (Appendix B), NeuPSL Models (Appendix C), Baseline Neural Models (Appendix
D), Extended Evaluation Details (Appendix E), and Computational Hardware Details (Appendix F).

A Additional NeuPSL Optimization Details

This section expands the discussion of the learning algorithm (Section 5) with algorithmic details
and discussion of degenerate solutions of NeuPSL neural and symbolic parameter learning with the
energy loss. We begin by introducing a simplex constraint on the NeuPSL symbolic parameters. The
simplex constraint is used to prevent the first degenerate solution we show exists, when the weights
are all zero. We then show there are additional degenerate solutions of the simplex constrained
problem at corners of the simplex. In order to address these degenerate solutions, we regularize the
energy loss objective with a negative log function. Finally, we provide the learning algorithm used
throughout all the experiments, projected gradient descent.

A.1 Simplex Constrained Symbolic Parameters

The NeuPSL learning problem constrains the symbolic parameters to the unit simplex. Srinivasan
et al. (2021) showed that MAP inference in HL-MRFs is invariant to the scale of the weights.
Formally, for all weight configurations wpsl and scalars c̃ ∈ R+,

arg max
y|(y,x)∈Ω

E(y,x,xnn,wnn,wpsl) = arg max
y|(y,x)∈Ω

E(y,x,xnn,wnn, c̃ ·wpsl) (7)

For this reason, it is possible to constrain the search space of the symbolic parameters to the unit
simplex, ∆r = {w ∈ Rr

+

∣∣‖w‖1 = 1}, without inhibiting the expressivity of the model when the
HL-MRF is exclusively used to obtain MAP inference predictions.

A.2 Energy Loss Degenerate Solutions

We now show two degenerate solutions of energy learning for NeuPSL and method for overcoming
them. Recall that the energy loss learning problem presented in this work for end-to-end training of
the symbolic and neural parameters of a NeuPSL model is:

arg min
(wnn,wpsl)∈Rnn×Rr

+

L(wnn,wpsl,S) (8)

= arg min
(wnn,wpsl)∈Rnn×Rr

+

P∑
i=1

E((yi,t, z
∗
i ),xi,xi,nn,wnn,wpsl) (9)

= arg min
(wnn,wpsl)∈Rnn×Rr

+

P∑
i=1

min
z|((yi,t,z),x)∈Ω

wT
pslΦ((yi,t, z),xi,xi,nn,wnn) (10)

Note that the symbolic parameters are constrained to be non-negative real numbers. Furthermore, as
every symbolic potential is of the form:

φi(y,x,xnn,wnn) = max(li(y,x,gnn(xnn,wnn)), 0)α (11)

we have that φi(y,x,xnn,wnn) ≥ 0 for all settings of the variables y,x,xnn,wnn.
Thus, Φi(y,x,xnn,wnn) :=

∑
j∈ti φi(y,x,xnn,wnn) ≥ 0 and Φ(y,x,xnn,wnn) :=

[Φi(y,x,xnn,wnn)]ri=1 � 0. We therefore have that

L(wnn,wpsl,S) =
P∑
i=1

min
z|((yi,t,z),x)∈Ω

wT
pslΦ((yi,t, z),xi,xi,nn,wnn) ≥ 0

In fact, L(wnn,wpsl,S) = 0 when wpsl = 0. The 0 solution to the weight learning problem
is degenerate and should be avoided. Precisely, wpsl = 0 results in a collapsed energy function:
a function that assigns all points y ∈ Y to the same energy. Collapsed energy functions have
no predictive power since inference, i.e., finding a lowest energy state of the variables is trivial
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and uninformative. Adding the simplex constraint discussed in the previous section, Section A.1,
wpsl ∈ ∆r, makes the degenerate solution wpsl = 0 infeasible. This constraint also ensures non-
negativity of the parameters, and does not inhibit the expressivity of NeuPSL as a MAP inference
predictor.

An additional degenerate solution arises from the introduction of the simplex constraint in conjunction
with the fact that the energy loss is concave in the symbolic parameters wpsl for fixed wnn and S.
Precisely, a solution to the problem must exist at corner points of the simplex ∆r.
Lemma 1. The energy loss function

L(wnn,wpsl,S) =
P∑
i=1

min
z|((yi,t,z),x)∈Ω

wT
pslΦ((yi,t, z),xi,xi,nn,wnn)

is concave in wpsl.

Proof. For all i

E((yi,t, z
∗
i ),xi,xi,nn,wnn,wpsl) = inf

z|((yi,t,z),x)∈Ω
wT

pslΦ((yi,t, z),xi,xi,nn,wnn) (12)

is a pointwise infimum of a set of affine, hence concave, functions of wpsl and is therefore concave
[Boyd and Vandenberghe, 2004]. Therefore,

L(wnn,wpsl,S) =
P∑
i=1

E((yi,t, z
∗
i ),xi,xi,nn,wnn,wpsl) (13)

is a sum of concave functions of wpsl and is concave.

Further, ∆r is a polyhedron described by the set.

∆r = {wpsl | 1Twpsl = 1} (14)

The unit simplex, ∆r, is therefore a convex set. A concave function is globally minimized over a
polyhedron at one of the vertices, this can be shown by definition of concavity. In this case, we can
find a solution to the energy minimization problem by comparing the objective value at each point of
the simplex, i.e., setting one of the symbolic parameter components to 1 and the remaining parameters
to 0. This solution is however undesirable; we want each of the symbolic relations corresponding to
the parameters to be represented and have influence over the model predictions. For this reason we
propose the use of the negative logarithm as a regularizer to break the concavity of the objective and
give the simplex corner solutions infinitely high energy. With negative log regularization and simplex
constraints, energy loss symbolic parameter learning is:

min
wnn∈Wnn,wpsl∈∆r

L(wnn,wpsl,S)−
r∑

i=1

logb(wpsl[i]) (15)

A.3 Projected Gradient Descent

Minimizing the regularized and constrained energy loss problem introduced in Section 5 is possible
with a variety of algorithms. For simplicity we use projected gradient descent with a decaying
learning rate, γ.

Algorithm 1: Projected Gradient Descent Algorithm

Input: E(·),S, γ0

1 k ← 0;
2 repeat
3 wk+1

nn ← wk
nn + γ∇wnnL(wk

nn,w
k
psl,S)

4 wk+1
psl ← Π∆r

[
wk

psl + γ∇wpsl
L(wk

nn,w
k
psl,S)

]
5 γk+1 ← γk/(k + 1);
6 k ← k + 1;
7 until stopping criteria satisfied;
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B Datasets

In this section we provide additional information on MNIST-Add Manhaeve et al. [2018] and
Visual-Sudoku-Classification tasks. Both tasks make use of the MNIST image classification dataset
introduced in LeCun et al. [1998]. Each MNIST image is a 28x28 matrix consisting of pixel gray
scale values normalized to lie in the range [0, 1].

B.1 MNIST-Add

The MNIST-Add dataset, originally proposed by Manhaeve et al. (2018), constructs addition equations
using MNIST images with only their summation as a label. As shown in Figure 6, equations consist
of two numbers each comprised of k MNIST images, i.e., MNIST-Add1 consists of two numbers with
one image each (k = 1) and MNIST-Add2 consists of two numbers with two images each (k = 2).
Given two numbers (2 ∗ k images), the classification task is to predict the sum.

The original dataset consists of three training sizes, n = {600, 6000, 50000}, and a single test size,
n = 10, 000, where n represents the number of unique MNIST images. These images are broken into
n/(2 ∗ k) addition examples, e.g., the training sizes MNIST-Add1 creates {300, 3, 000, 25, 000} ad-
ditions and MNIST-Add2 creates {150, 1, 500, 12, 500} additions. The addition examples are created
by first shuffling the list of MNIST images, and then partitioning, in order, pairs of numbers. For ex-
ample, let the training size n = 6 with the corresponding list of MNIST images, [ , , , , , ].
First this list is shuffled, [ , , , , , ], and then partitioned into 2 ∗ k tuples in order. In this
scenario, MNIST-Add1 creates 3 addition examples,

[
[ , ], [ , ], [ , ]

]
.

We follow this same data generation process, and repeat it for 10 splits. We maintain the same train
sizes n = {600, 6, 000, 50, 000} and test sizes n = 10, 000. Each train and test split is randomly
sampled without replacement from the complete train partition of the MNIST dataset provided by
TensorFlow Abadi et al. [2015].

(a) MNIST-Add1 (b) MNIST-Add2

Figure 6: Example of MNIST-Add1 and MNIST-Add2.

B.1.1 Overlap

As discussed in Section 7.3, we create variations of the MNIST-Add datasets that introduces overlap
across examples in the MNIST-Add datasets. For this experiment we focus on the train set sizes
n ∈ {40, 75, 150}. In low data settings, leveraging overlap is especially important because there is
not enough structure from the original additions for symbolic inference to discern the correct digit
labels for training the neural models.

The overlap variation of the dataset augments the original list of MNIST images with duplicate
images to create more addition examples. Precisely, as for the standard MNIST-Add task, for every
split and train size, n images are randomly sampled without replacement. Then, m ∈ {0, n/2, n, 2n}
images are randomly sampled with replacement MNIST images from the n unique MNIST images.
These two collections are joined to make MNIST image collections of n+m. Finally, these lists are
shuffled and then used to generate MNIST-Add examples using the process described in the previous
section.

15



B.2 Visual-Sudoku-Classification

Inspired by Wang et al. [2019], the Visual-Sudoku-Classification task uses MNIST images to create
4x4 Sudoku puzzles as shown in Figure 7. MNIST images, without labels, are used instead of digits
to represent each cell in the puzzle. However, unlike Wang et al. [2019] in which MNIST zeros are
used to represent blank squares, and the task is to solve the puzzle, the Visual-Sudoku-Classification
task is to identify whether a puzzle is correct, i.e., there are no duplicate digits in any row, column, or
square.

Similar to MNIST-Add, puzzles are created using n ∈ {160, 320, 1, 600, 3, 200}MNIST images for
the training set and n ∈ {320, 640, 3, 200, 6, 400} MNIST images for the test set. These images
are broken into n/16 puzzle examples. Precisely, MNIST images are first randomly sampled over
each class in equal proportions. In other words, an equal number of zeros, ones, twos, and threes
are randomly sampled from the original MNIST dataset. Then correct puzzles are created by
sampling 4 unique images of each class and putting them into a valid puzzle configuration. A
valid puzzle configuration is a single tuple where the first MNIST image represents the top left
corner of the puzzle and the last is the bottom right corner. For example, Figure 7 would be
{1, 2, 4, 3, 4, 3, 1, 2, 2, 4, 3, 1, 3, 1, 2, 4}.

Figure 7: An example of a valid Visual-Sudoku-Classification puzzle.

B.2.1 Puzzle Corruption

In addition to generating correctly solved Sudoku puzzles, incorrect puzzles are generated. Instead of
randomly creating puzzles and checking if they are correct, we begin with correct puzzles and corrupt
them. In this way, we hope to create puzzles that are more subtle and closer to the incorrect puzzles
that a human may create, as opposed to randomly generated puzzles that may be obviously incorrect.

The corruptions are done in one of two ways: replacement or substitution. A replacement corruption
chooses a random cell and replaces it with a random image of another class. Replacement images are
chosen uniformly from the same split. A substitution corruption randomly chooses two cells in the
same puzzle and swaps them.

Each correct puzzle has one corrupted puzzle made from it, resulting in a balanced dataset. For each
puzzle, a fair coin is flipped to decide which corruption method will be used. After each corruption is
made a fair coin is flipped to see if the process continues. After the corruption process is complete,
the puzzle is checked to ensure it is not a valid Sudoku puzzle. If the puzzle is invalid it is added to
the split, otherwise the process is repeated using the same correct puzzle.

B.2.2 Overlap

As discussed in Section 7.4, we create variations that introduce overlap across examples in the
Visual-Sudoku-Classification task. Overlap augments the original list of MNIST images by adding
duplications. We decrease the train set sizes to be n ∈ {64, 160, 320}. As with MNIST-Add,
overlap has a greater impact in lower data settings. For every split and train size, n MNIST images
are uniformly sampled over each class, e.g., an equal number of zeros, ones, twos, and threes are
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randomly sampled. Before the process of generating Visual-Sudoku-Classification examples, we
add m ∈ {0, n, 3n} randomly sampled with replacement MNIST images from the n unique MNIST
images. These two sets are joined to make train and test MNIST image sizes of n+m. Finally, these
lists are shuffled and then used to generate Visual-Sudoku-Classification examples as per the process
described above.

C NeuPSL Models

In this section we provide details on the NeuPSL neural and symbolic models for both the MNIST-Add
and Visual-Sudoku-Classification experiments.

C.1 NeuPSL Neural Model

All NeuPSL models use the following neural model to predict image labels for their respective tasks.
This is the same neural architecture used for the digit label predictor in Manhaeve et al. [2018].
Additional details on the hyperparameter search for this model are given for each NeuPSL model.

Order Layer Parameter Value

1 Convolutional
Kernel Size 5

Output Channels 6
2 Max Pooling

Pooling Width 2
Pooling Height 2

Activation ReLU
3 Convolutional

Kernel Size 5
Output Channels 16

4 Max Pooling
Pooling Width 2
Pooling Height 2

Activation ReLU
5 Fully Connected

Input Shape 256
Output Shape 120

Activation ReLU
6 Fully Connected

Input Shape 120
Output Shape 84

Activation ReLU
7 Fully Connected

Input Shape 84
Output Shape 10

Activation Softmax

Table 4: The architecture of the CNN network used in NeuPSL for both MNIST-Add and Visual-
Sudoku-Classification experiments.

C.2 MNIST-Add

There are two groups of MNIST-Add models we evaluate in this work: 1) NeuPSL-Constraint models
enforce constraints directly on the output of the neural model with no latent variables in either
inference or learning and 2) NeuPSL-Latent models enforce constraints directly on the output of the
neural model with latent variables representing either a digit label for an image or the sum of two
digits. Both versions of the model are presented in the following subsections and are different for the
MNIST-Add1 and MNIST-Add2 tasks. The MNIST-Add1 and MNIST-Add2 NeuPSL models both
contain the follow two predicates:

NEURAL(Img, X) The NEURAL predicate is the class probability for each image as inferred by the
neural network. Img is MNIST image identifier and X is a digit class that the image may represent.

DIGITSUM(X, Y, Z) The DIGIT predicate takes a 0 or 1 value representing whether the sum of two
digits X and Y adds up to Z. This predicate only instantiates observations, i.e., variables from this
predicate are fixed during inference and learning as described in Section 3, 4, and 5.
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C.2.1 MNIST-Add1

In addition, both NeuPSL-Constraint and NeuPSL-Latent models for MNIST-Add1 contain the
following two predicates:

SUM(Img1, Img2, Z) The SUM predicate is the probability that the digits represented in the images
identified by arguments Img1 and Img2 add up to the number identified by the argument Z. This
predicate instantiates decision variables, i.e., variables from this predicate are not fixed during
inference and learning as described in Section 3, 4, and 5.

POSSIBLEDIGITS(X, Z) The POSSIBLEDIGITS predicate represents whether the digit identi-
fied, X, is possible when it is in a sum that totals to the number identified, Z. For in-
stance POSSIBLEDIGITS(9, 0) = 0 because no positive digit added to 9 equals 0, while
POSSIBLEDIGITS(9, 17) = 1 because 8 added to 9 is 17.

NeuPSL-Constraint
The NeuPSL-Constraint model expresses domain constraints over the NEURAL(Img, X) predicate.

# Digit Sums

w1 : NEURAL(Img1, X) ∧ NEURAL(Img2, Y) ∧ DIGITSUM(X, Y, Z)→ SUM(Img1, Img2, Z)

w2 : ¬NEURAL(Img1, X) ∧ NEURAL(Img2, Y) ∧ DIGITSUM(X, Y, Z)→ ¬SUM(Img1, Img2, Z)

w3 : NEURAL(Img1, X) ∧ ¬NEURAL(Img2, Y) ∧ DIGITSUM(X, Y, Z)→ ¬SUM(Img1, Img2, Z)

# Digit Constraints

w4 : NEURAL(Img1,+X) >= SUM(Img1, Img2, Z){X : POSSIBLEDIGITS(X, Z)}
w5 : NEURAL(Img2,+X) >= SUM(Img1, Img2, Z){X : POSSIBLEDIGITS(X, Z)}

# Simplex Constraints

SUM(Img1, Img2,+Z) = 1.

Figure 8: NeuPSL-Constraint MNIST-Add1 Model

The group of rules labeled Digit Sums represents the summation of the two images Img1 and Img2,
i.e., if the neural model labels the image id Img1 as digit X and Img2 as Y and the digits X and Y sum
to Z then the sum of the images must be Z.

The group of rules labeled Digit Constraints restrict the possible values of the SUM predicate based
on the neural model’s prediction. For instance, if the neural model predicts that the digit label for
image Img1 is 1, then the sum that Img1 is involved in cannot be any less than 1 or greater than 10.

NeuPSL-Latent
NeuPSL-Latent model for MNIST-Add1 includes the same domain constraints and relations as the
NeuPSL-Constraint model for MNIST-Add1 but also expresses them over latent variables instantiated
by the following predicate:

DIGIT(Img, X) The DIGIT predicate has the same arguments as the NEURAL predicate, and repre-
sents the probability the image identified by the argument Img has the digit label X.
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# Neural and Latent Variable Proximity

w1 : NEURAL(Img, X) = DIGIT(Img, X)

# Digit Sums

DIGIT(Img1, X) ∧ DIGIT(Img2, Y) ∧ DIGITSUM(X, Y, Z)→ SUM(Img1, Img2, Z)

¬DIGIT(Img1, X) ∧ DIGIT(Img2, Y) ∧ DIGITSUM(X, Y, Z)→ ¬SUM(Img1, Img2, Z)

DIGIT(Img1, X) ∧ ¬DIGIT(Img2, Y) ∧ DIGITSUM(X, Y, Z)→ ¬SUM(Img1, Img2, Z)

# Digit Constraints

DIGIT(Img1,+X) >= SUM(Img1, Img2, Z){X : POSSIBLEDIGITS(X, Z)}
DIGIT(Img2,+X) >= SUM(Img1, Img2, Z){X : POSSIBLEDIGITS(X, Z)}

# Digit Sums

w2 : NEURAL(Img1, X) ∧ NEURAL(Img2, Y) ∧ DIGITSUM(X, Y, Z)→ SUM(Img1, Img2, Z)

w3 : ¬NEURAL(Img1, X) ∧ NEURAL(Img2, Y) ∧ DIGITSUM(X, Y, Z)→ ¬SUM(Img1, Img2, Z)

w4 : NEURAL(Img1, X) ∧ ¬NEURAL(Img2, Y) ∧ DIGITSUM(X, Y, Z)→ ¬SUM(Img1, Img2, Z)

# Digit Constraints

w5 : NEURAL(Img1,+X) >= SUM(Img1, Img2, Z){X : POSSIBLEDIGITS(X, Z)}
w6 : NEURAL(Img2,+X) >= SUM(Img1, Img2, Z){X : POSSIBLEDIGITS(X, Z)}

# Simplex Constraints

SUM(Img1, Img2,+Z) = 1.

DIGIT(ImgId,+X) = 1.

Figure 9: NeuPSL-Latent MNIST-Add1 Model

The Neural and Latent Variable Proximity rule is introduced to increase the energy of solutions with
conflicting NEURAL(Img, X) and DIGIT(Img, X) predictions.

The rule groups from the MNIST-Add1-Constraint model are added for the DIGIT(Img, X) predi-
cates. However, they are not weighted, and un-weighted rules create hard constraints rather than
potentials. Since DIGIT(Img, X) instantiates latent variables, a feasible solution satisfying all hard
constraints is possible. A feasible DIGIT(Img, X) solution is critical during energy loss parameter
learning as a subproblem is finding an energy minimizing state of the latent variables given the
true values of the SUM(Img1, Img2,+Z) variables. In other words, a setting of the DIGIT(Img, X)
variables is found that satisfies all of the constraints expressed in the model when the true values
of SUM(Img1, Img2,+Z) are known. The low energy state of DIGIT(Img, X) interacts with neural
parameter learning via the Neural and Latent Variable Proximity rule. The gradient the neural model
backpropagates to fit its parameters during learning will push the neural predictions to be closer to
the low energy and feasible DIGIT(Img, X) variables in order to satisfy the constraints.

The NeuPSL-Constraint model rules are duplicated for the latent DIGIT(Img, X) variables which
results in the NeuPSL-Latent model having roughly twice as many instantiated potentials. Further-
more, the DIGIT(Img, X) variables are additional decision variables in the optimization problem for
inference that the NeuPSL-Latent model must solve.

MNIST-Add1 Hyperparameters
Table 5 shows the hyperparameter values and the tuning ranges of the NeuPSL MNIST-Add1 models.
The Neural Learning Rate is the learning rate of the neural model used to predict image labels and the
ADMM Max Iterations parameter is the number of ADMM iterations performed between each step of
gradient descent during learning. The hyperparameter search was performed on the MNIST-Add1
300 additions setting and the best parameters were used for the other data settings. All unspecified
values were left at their default values.

Hyperparameter Tuning Range Final Value

Neural Learning Rate {1e-2, 1e-3, 1e-4} 1e-3
ADMM Max Iterations {50, 100, 500, 1000} 500

Table 5: Hyperparameters searched over and used for the MNIST-Add1 experiments
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C.2.2 MNIST-Add2

The NeuPSL-Constraint and NeuPSL-Latent NeuPSL models for MNIST-Add2 contain the follow
three predicates in common:

SUM(Img1, Img2, Img3, Img4, Z) The SUM predicate is the probability that the numbers repre-
sented in the images identified by arguments (Img1, Img2) and (Img3, Img4) add up to the number
identified by the argument Z. This predicate instantiates decision variables, i.e., variables from this
predicate are not fixed during inference and learning as described in Section 3, 4, and 5. Note that
this is similar, however, not the same predicate as the analogous SUM in the NeuPSL MNIST-Add1
models. In this predicate there are four Img arguments that represent the sum of two digit numbers.
The Img1 and Img3 arguments identify the images for the digits in the tens place, and Img2 and Img4
identify images in the ones place.

POSSIBLETENDIGITS(X, Z) The POSSIBLETENDIGITS predicate takes 0 or 1 value representing
whether the digit identified by the argument X is possible when it is in the tens place of a num-
ber involved in a sum that totals to the the number identified by the argument Z. For instance
POSSIBLETENDIGITS(9, 70) = 0 as no positive number added to a number with a 9 in the tens
place, e.g., 92, equals 70, while POSSIBLETENDIGITS(9, 170) = 1 as 78 added to 92 is 170.

POSSIBLEONESDIGITS(X, Z) The POSSIBLEONESDIGITS predicate takes 0 or 1 value represent-
ing whether the digit identified by the argument X is possible when it is in the ones place of a
number involved in a sum that totals to the the number identified by the argument Z. For instance
POSSIBLEONESDIGITS(9, 7) = 0 as no positive number added to a number with a 9 in the ones
place, e.g., 9, equals 7 while POSSIBLEONESDIGITS(9, 170) = 1 as 71 added to 99 is 170.

NeuPSL-Constraint
The NeuPSL-Constraint model uses a similar modeling pattern to the MNIST-Add1 NeuPSL-
Constraint model. Specifically, the MNIST-Add2-Constraint model enforces domain constraints
over the NEURAL(Img, X) predicate and the summation relation is expressed using the following
predicate:

NUMBERSUM(X10, X1, Y10, Y1, Z) The NUMBERSUM predicate takes a 0 or 1 value representing
whether the sum of the two numbers identified by arguments (X10, X1) and (Y10, Y1) adds up to the
number identified by the argument Z.

The Number Sums rules are analogous to the Digit Sums rules in the MNIST-Add1-Constraint
model and represent the summation of the two collections of images (Img1, Img2) and (Img3, Img4).
Specifically, if the neural model labels the images Img1 as X10, Img2 as X1, Img3 as Y10, and Img4
as Y1 and the numbers (X10, X1) and (Y10, Y1) sum to Z, then the sum of the images must be Z.

The Tens Digit Constraints restrict the possible values of the SUM predicate based on the neural
model’s prediction for the digit in the tens place of a number. For instance, if the neural model
predicts that the digit label for the image Img1 is 1 and Img1 is in the tens place of a number, then
the sum that Img1 is involved in cannot be any less than 10 or greater than 118.

The Ones Digit Constraints restrict the possible values of the SUM predicate based on the neural
model’s prediction for the digit in the ones place of a number. For instance, if the neural model
predicts that the digit label for the image Img2 is 5 and Img2 is in the one place of a number, then the
sum that Img2 is involved in cannot be any less than 5 or greater than 194.

Notice that every instantiation of NUMBERSUM(X10, X1, Y10, Y1, Z) that is non-zero in the Number
Sums rules will create a potential that is non-trivial, i.e., the potential can be dis-satisfied depending
on the values of the other predicates in the rule. Thus, since there are 10 possible classes for each of
X10, X1, Y10, Y1 we have 104 instantiations of each rule in the Number Sums group and each addition.
This modelling pattern does not scale to larger MNIST-Add settings; in general, for MNIST-Add(n)
the analogous NUMBERSUM predicate will instantiate 102·n potentials for each rule in the Number
Sums group.

NeuPSL-Latent
The NeuPSL model for MNIST-Add2 includes similar constraints and relations described in the
NeuPSL2-Constraint MNIST-Add model, but uses latent variables to capture dependencies and
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# Number Sums

w1 : NEURAL(Img1, X10) ∧ NEURAL(Img2, X1) ∧ NEURAL(Img3, Y10) ∧ NEURAL(Img4, Y1)

∧ NUMBERSUM(X10, X1, Y10, Y1, Z)→ SUM(Img1, Img2, Img3, Img4, Z)

w2 : ¬NEURAL(Img1, X10) ∧ NEURAL(Img2, X1) ∧ NEURAL(Img3, Y10) ∧ NEURAL(Img4, Y1)

∧ NUMBERSUM(X10, X1, Y10, Y1, Z)→ ¬SUM(Img1, Img2, Img3, Img4, Z)

w3 : NEURAL(Img1, X10) ∧ ¬NEURAL(Img2, X1) ∧ NEURAL(Img3, Y10) ∧ NEURAL(Img4, Y1)

∧ NUMBERSUM(X10, X1, Y10, Y1, Z)→ ¬SUM(Img1, Img2, Img3, Img4, Z)

w4 : NEURAL(Img1, X10) ∧ NEURAL(Img2, X1) ∧ ¬NEURAL(Img3, Y10) ∧ NEURAL(Img4, Y1)

∧ NUMBERSUM(X10, X1, Y10, Y1, Z)→ ¬SUM(Img1, Img2, Img3, Img4, Z)

w5 : NEURAL(Img1, X10) ∧ NEURAL(Img2, X1) ∧ NEURAL(Img3, Y10) ∧ ¬NEURAL(Img4, Y1)

∧ NUMBERSUM(X10, X1, Y10, Y1, Z)→ ¬SUM(Img1, Img2, Img3, Img4, Z)

# Tens Digit Constraints

w6 : NEURAL(Img1,+X) >= SUM(Img1, Img2, Img3, Img4, Z){X : POSSIBLETENSDIGITS(X, Z)}
w7 : NEURAL(Img3,+X) >= SUM(Img1, Img2, Img3, Img4, Z){X : POSSIBLETENSDIGITS(X, Z)}

# Ones Digit Constraints

w8 : NEURAL(Img2,+X) >= SUM(Img1, Img2, Img3, Img4, Z){X : POSSIBLEONESDIGITS(X, Z)}
w9 : NEURAL(Img4,+X) >= SUM(Img1, Img2, Img3, Img4, Z){X : POSSIBLEONESDIGITS(X, Z)}

# Simplex Constraints

SUM(Img1, Img2, Img3, Img4,+X) = 1.

Figure 10: NeuPSL-Constraint MNIST-Add2 Model

relations in a more concise manner. NeuPSL-Latent model for MNIST-Add introduces the following
predicates:

IMAGEDIGITSUM(Img1, Img2, Z) The IMAGEDIGITSUM predicate is the probability that the
digits represented in the images identified by arguments Img1 and Img2 adds up to the number
identified by the argument Z. The variables instantiated by this predicate are latent in the NeuPSL
model because in neither learning nor inference do we have the true value of the sum of the digits
represented by the images in the ones or tens places of the two numbers in the addition.

PLACENUMBERSUM(Z10, Z1, Z) The PLACENUMBERSUM predicate takes a 0 or 1 value rep-
resenting whether the sum of the numbers Z10 and Z1, where Z10 is the sum of digits in the
tens place and Z1 is the sum of digits in the one place, adds up to the number Z. For instance
PLACENUMBERSUM(1, 15, 25) is 1 as 1 · 10 + 15 = 25.
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# Tens Digit Sums

w1 : NEURAL(Img1, X) ∧ NEURAL(Img3, Y) ∧ DIGITSUM(X, Y, Z)→ IMAGEDIGITSUM(Img1, Img3, Z)

w2 : ¬NEURAL(Img1, X) ∧ NEURAL(Img3, Y) ∧ DIGITSUM(X, Y, Z)→ ¬IMAGEDIGITSUM(Img1, Img3, Z)

w3 : NEURAL(Img1, X) ∧ ¬NEURAL(Img3, Y) ∧ DIGITSUM(X, Y, Z)→ ¬IMAGEDIGITSUM(Img1, Img3, Z)

# Ones Digit Sums

w4 : NEURAL(Img2, X) ∧ NEURAL(Img4, Y) ∧ DIGITSUM(X, Y, Z)→ IMAGEDIGITSUM(Img2, Img4, Z)

w5 : ¬NEURAL(Img2, X) ∧ NEURAL(Img4, Y) ∧ DIGITSUM(X, Y, Z)→ ¬IMAGEDIGITSUM(Img2, Img4, Z)

w6 : NEURAL(Img2, X) ∧ ¬NEURAL(Img4, Y) ∧ DIGITSUM(X, Y, Z)→ ¬IMAGEDIGITSUM(Img2, Img4, Z)

# Place Digit Sums

IMAGEDIGITSUM(Img1, Img3, Z10) ∧ IMAGEDIGITSUM(Img2, Img4, Z1) ∧ PLACENUMBERSUM(Z10, Z1, Z)

→ SUM(Img1, Img2, Img3, Img4, Z)

¬IMAGEDIGITSUM(Img1, Img3, Z10) ∧ IMAGEDIGITSUM(Img2, Img4, Z1) ∧ PLACENUMBERSUM(Z10, Z1, Z)

→ ¬SUM(Img1, Img2, Img3, Img4, Z)

IMAGEDIGITSUM(Img1, Img3, Z10) ∧ ¬IMAGEDIGITSUM(Img2, Img4, Z1) ∧ PLACENUMBERSUM(Z10, Z1, Z)

→ ¬SUM(Img1, Img2, Img3, Img4, Z)

# Tens Digit Constraints

w7 : NEURAL(Img1,+X) >= SUM(Img1, Img2, Img3, Img4, Z){X : POSSIBLETENSDIGITS(X, Z)}
w8 : NEURAL(Img3,+X) >= SUM(Img1, Img2, Img3, Img4, Z){X : POSSIBLETENSDIGITS(X, Z)}

# Ones Digit Constraints

w9 : NEURAL(Img2,+X) >= SUM(Img1, Img2, Img3, Img4, Z){X : POSSIBLEONESDIGITS(X, Z)}
w10 : NEURAL(Img4,+X) >= SUM(Img1, Img2, Img3, Img4, Z){X : POSSIBLEONESDIGITS(X, Z)}

# Digit Sum Constraints

w11 : NEURAL(Img1,+X) >= IMAGEDIGITSUM(Img1, Img3, Z){X : POSSIBLEDIGITS(X, Z)}
w12 : NEURAL(Img3,+X) >= IMAGEDIGITSUM(Img1, Img3, Z){X : POSSIBLEDIGITS(X, Z)}
w13 : NEURAL(Img2,+X) >= IMAGEDIGITSUM(Img2, Img4, Z){X : POSSIBLEDIGITS(X, Z)}
w14 : NEURAL(Img4,+X) >= IMAGEDIGITSUM(Img2, Img4, Z){X : POSSIBLEDIGITS(X, Z)}

# Number Sum Constraints

IMAGEDIGITSUM(Img1, Img3,+X) >= SUM(Img1, Img2, Img3, Img4, Z){X : POSSIBLETENSSUMS(X, Z)}
IMAGEDIGITSUM(Img2, Img4,+X) >= SUM(Img1, Img2, Img3, Img4, Z){X : POSSIBLEONESSUMS(X, Z)}

# Simplex Constraints

SUM(Img1, Img2, Img3, Img4,+X) = 1.

IMAGEDIGITSUM(Img1, Img2,+X) = 1.

Figure 11: NeuPSL-Latent MNIST-Add2 Model

The Tens Digit Sums and Ones Digit Sums rules compute the sum of two images in the same manner
as the Digit Sums rules in the MNIST-Add1-Constraint model. The sum of the digits is captured by
the latent variables instantiated by the predicate IMAGEDIGITSUM.

The Place Digit Sums rules use the value of the IMAGEDIGITSUM variables to infer the sum of the
images. More specifically, if the IMAGEDIGITSUM of the images in the tens place, Img1 and Img3),
is Z10, and the IMAGEDIGITSUM of the images in the ones place, Img2 and Img4) is Z1, and if
according to PLACENUMBERSUM the sum of the numbers Z10 and Z1 is Z, then the SUM of the
images must be Z. Notice that these rules are hard constraints as it is always possible and desirable
to find values of the IMAGEDIGITSUM and SUM variables that satisfy these relations.

The Tens Digit Constraints and Ones Digit Constraints are the same as those in the MNIST-Add2-
Constraint model.

The Number Sum Constraints limit the values that IMAGEDIGITSUM and SUM can take us-
ing constraints representing the possible sums in the tens and ones place. For instance, if the
IMAGEDIGITSUM of two images, Img1 and Img3, both in the tens place of two numbers being
added, is 17, then the SUM cannot be less than 170 or greater than 188. Furthermore, if the
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IMAGEDIGITSUM of two images, Img2 and Img4, both in the tens place of two numbers being
added, is 17, then the SUM cannot be less than 17 or greater than 197, and must have a 7 in the ones
place.

The MNIST-Add2-Latent model does not suffer from the same scalability issue as the MNIST-Add2-
Constraint model. The latent IMAGEDIGITSUM variables allow us to express the summation relations
via DIGITSUM which has fewer arguments than NUMBERSUM predicates. This is possible because
the summation of numbers is performed by breaking the summation into placed digit sums, for
instance 07 + 32 = 10 · (0 + 3) + 1 · (7 + 2) = 39.

MNIST-Add2 Hyperparameters
Table 6 shows the hyperparameter values and the tuning ranges of the NeuPSL MNIST-Add2 models.
The Neural Learning Rate is the learning rate of the neural model used to predict image labels and the
ADMM Max Iterations parameter is the number of ADMM iterations performed between each step of
gradient descent during learning. The hyperparameter search was performed on the MNIST-Add2
150 additions setting and the best parameters were used for the other data settings. All unspecified
values were left at their default values.

Hyperparameter Tuning Range Final Value

Neural Learning Rate {1e-2, 1e-3, 1e-4} 1e-3
ADMM Max Iterations {50, 100, 500, 1000} 100

Table 6: Hyperparameters searched over and used for the MNIST-Add1 experiments.

C.3 Visual-Sudoku-Classification

The Visual-Sudoku-Classification PSL model contains three predicates:

NEURAL(Puzzle, X, Y, Number) The NEURAL predicate contains the output class probability for
each digit image as inferred by the neural network. Puzzle is sudoku puzzle’s identifier, X and Y
represent the location of image in the puzzle, and Number is a digit that image may represent.

DIGIT(Puzzle, X, Y, Number) The DIGIT predicate has the same arguments as the NEURAL predi-
cate, and represents PSL’s digit prediction on the image.

FIRSTPUZZLE(Puzzle) The FIRSTPUZZLE predicate denotes the first correct puzzle in the train-
ing set.
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# L2 Loss

w1 : NEURAL(Puzzle, X, Y, Number) = DIGIT(Puzzle, X, Y, Number)

# Row Constraint

NEURAL(Puzzle,+X, Y, Number) = 1.

# Column Constraint

NEURAL(Puzzle, X,+Y, Number) = 1.

# Block Constraint

NEURAL(Puzzle, “0”, “0”, Number) + NEURAL(Puzzle, “0”, “1”, Number)

+ NEURAL(Puzzle, “1”, “0”, Number) + NEURAL(Puzzle, “1”, “1”, Number) = 1.

NEURAL(Puzzle, “2”, “0”, Number) + NEURAL(Puzzle, “2”, “1”, Number)

+ NEURAL(Puzzle, “3”, “0”, Number) + NEURAL(Puzzle, “3”, “1”, Number) = 1.

NEURAL(Puzzle, “0”, “2”, Number) + NEURAL(Puzzle, “0”, “3”, Number)

+ NEURAL(Puzzle, “1”, “2”, Number) + NEURAL(Puzzle, “1”, “3”, Number) = 1.

NEURAL(Puzzle, “2”, “2”, Number) + NEURAL(Puzzle, “2”, “3”, Number)

+ NEURAL(Puzzle, “3”, “2”, Number) + NEURAL(Puzzle, “3”, “3”, Number) = 1.

# Simplex Constraints

NEURAL(Puzzle, X, X,+Number) = 1.

# Pin First Row

w2 : FIRSTPUZZLE(Puzzle) + NEURAL(Puzzle, “0”, “0”, “1”) = 1

w3 : FIRSTPUZZLE(Puzzle) + NEURAL(Puzzle, “0”, “1”, “2”) = 1

w4 : FIRSTPUZZLE(Puzzle) + NEURAL(Puzzle, “0”, “2”, “3”) = 1

w5 : FIRSTPUZZLE(Puzzle) + NEURAL(Puzzle, “0”, “3”, “4”) = 1

# Hint Second Row

w6 : FIRSTPUZZLE(Puzzle) + NEURAL(Puzzle, “1”, “0”, “3”) + NEURAL(Puzzle, “1”, “0”, “4”) = 1

w7 : FIRSTPUZZLE(Puzzle) + NEURAL(Puzzle, “1”, “1”, “3”) + NEURAL(Puzzle, “1”, “1”, “4”) = 1

w8 : FIRSTPUZZLE(Puzzle) + NEURAL(Puzzle, “1”, “2”, “1”) + NEURAL(Puzzle, “1”, “2”, “1”) = 1

w9 : FIRSTPUZZLE(Puzzle) + NEURAL(Puzzle, “1”, “3”, “1”) + NEURAL(Puzzle, “1”, “3”, “2”) = 1

Figure 12: NeuPSL Visual-Sudoku-Classification Model

The Visual-Sudoku-Classification model begins by encoding the row, column, and block rules of
Sudoku into constraints. Each of these constraints restrict multiple instances of a digit from appearing
in a row, column, or block. A simplex constraint is also used to force predictions to be only one digit
label per image.

In addition to the rules encoding the constraints of Sudoku, the Visual-Sudoku-Classification model
leverages one additional technique. Because the goal of the model is to differentiate digits rather than
correctly classifying digits, the model can assign an arbitrary class to each to digit. The model uses
the first row of the first correct puzzle from the train set to choose this arbitrary label assignment.
Because the puzzle is known to be correct, all digits in the first row are guaranteed to be distinct. By
pinning the first row to arbitrary classes, the neural model will have a starting place for differentiating
between the different classes. This technique is captured by the Pin First Row rules in Figure 12.
Additionally, the Hint Second Row rules expand on the above technique by providing hints to the
second row of the first puzzle. Because the first row of the first training puzzle is pinned to arbitrary
labels, the second row (which shares the same block) has fewer options and can be constrained as
well. For example, when the first two locations in the first row are assigned to the classes 1 and 2
respectively, then the first two location in the second row are constrained to be in {3, 4}.
Visual-Sudoku-Classification Hyperparameters
Table 7 shows the hyperparameter values and the tuning ranges of the NeuPSL Visual-Sudoku-
Classification models. The hypereparameter search was performed for each data setting and the best
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performing model is reported. The Neural Learning Rate is the learning rate of the neural model used
to predict image labels The hyperparameter search was performed on all data settings and the best
results are reported for each data setting. All unspecified values were left at their default values.

Number of Images Number of Puzzles Hyperparameter Tuning Range Final Value

~64

4 Neural Learning Rate {1e-2, 1e-3, 1e-4} 0.001
ADMM Max Iterations {50, 100, 1000} 100

10 Neural Learning Rate {1e-2, 1e-3, 1e-4} 0.01
ADMM Max Iterations {50, 100, 1000} 50

20 Neural Learning Rate {1e-2, 1e-3, 1e-4} 0.001
ADMM Max Iterations {50, 100, 1000} 1000

~160

10 Neural Learning Rate {1e-2, 1e-3, 1e-4} 0.001
ADMM Max Iterations {50, 100, 1000} 100

20 Neural Learning Rate {1e-2, 1e-3, 1e-4} 0.001
ADMM Max Iterations {50, 100, 1000} 100

40 Neural Learning Rate {1e-2, 1e-3, 1e-4} 0.001
ADMM Max Iterations {50, 100, 1000} 100

~320

20 Neural Learning Rate {1e-2, 1e-3, 1e-4} 0.001
ADMM Max Iterations {50, 100, 1000} 50

40 Neural Learning Rate {1e-2, 1e-3, 1e-4} 0.001
ADMM Max Iterations {50, 100, 1000} 50

80 Neural Learning Rate {1e-2, 1e-3, 1e-4} 0.0001
ADMM Max Iterations {50, 100, 1000} 100

~1600 100 Neural Learning Rate {1e-2, 1e-3, 1e-4} 0.0001
ADMM Max Iterations {50, 100, 1000} 100

~3200 200 Neural Learning Rate {1e-2, 1e-3, 1e-4} 0.01
ADMM Max Iterations {50, 100, 1000} 100

Table 7: Hyperparameters searched over for the Visual Sudoku experiments
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D Baseline Neural Models

In this section we provide details on the CNN baseline models for both the MNIST-Add and Visual-
Sudoku-Classification experiments.

D.1 MNIST-Add

The baseline neural models for the MNIST-Add tasks are shown in Table 8. Both models were trained
to minimize cross-entropy loss.

Order Layer Parameter Value

1 Convolutional
Input Shape 28× 28
Kernel Size 5

Output Channels 6
Activation ELU

2 Max Pooling
Pooling Width 2
Pooling Height 2

3 Convolutional
Kernel Size 5

Output Channels 16
Activation ELU

4 Max Pooling
Pooling Width 2
Pooling Height 2

5 Fully Connected
Input Shape 256

Output Shape 100
Activation ELU

6 Concatenation
Input Shape 2× 100

Output Shape 200
Activation ELU

7 Fully Connected
Input Shape 200

Output Shape 84
Activation ELU

8 Fully Connected
Input Shape 84

Output Shape 19
Activation Softmax

(a) MNIST-Add1

Order Layer Parameter Value

1 Convolutional
Input Shape 28× 28
Kernel Size 5

Output Channels 6
Activation ELU

2 Max Pooling
Pooling Width 2
Pooling Height 2

3 Convolutional
Kernel Size 5

Output Channels 16
Activation ELU

4 Max Pooling
Pooling Width 2
Pooling Height 2

5 Fully Connected
Input Shape 256

Output Shape 100
Activation ELU

6 Concatenation
Input Shape 4× 100

Output Shape 400
Activation ELU

7 Fully Connected
Input Shape 400

Output Shape 128
Activation ELU

8 Fully Connected
Input Shape 128

Output Shape 199
Activation Softmax

(b) MNIST-Add2

Table 8: The architectures of the network used as the CNN baseline for MNIST-Add experiments
(from Badreddine et al. (2022)).

Table 9 shows the hyperparameter values and the tuning ranges for the baseline CNN models. All
unspecified values were left at their default values.

Hyperparameter Tuning Range Final Value

Learning Rate {1e-3, 1e-4, 1e-5} 0.001
Batch Size {16, 32, 64, 128} 16

(a) MNIST-Add1

Hyperparameter Tuning Range

Learning Rate {1e-3, 1e-4, 1e-5}
Batch Size {16, 32, 64, 128}

(b) MNIST-Add2

Table 9: Hyperparameters searched over and used for the MNIST-Add baseline models.

The hypereparameter search was performed for each data setting and the best performing model was
reported. Table 10 shows the final hyperparameters of the MNIST-Add baseline models.
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MNIST-Add1 MNIST-Add2
Number of Additions

300 3,000 25,000 150 1,500 12,500

Final Learning Rate 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
Final Batch Size 32 16 32 32 32 64

Table 10: The final hyperparameters used for the MNIST-Add baseline models.

D.2 Visual-Sudoku-Classification

D.2.1 CNN Baseline

The baseline neural models for the Visual-Sudoku-Classification tasks are shown Table 11. Both
models were trained to minimize cross-entropy loss.

Order Layer Parameter Value

1 Convolutional
Input Shape 112× 112
Kernel Size 3

Output Channels 16
Activation ReLU

2 Max Pooling
Pooling Width 2
Pooling Height 2

3 Convolutional
Kernel Size 3

Output Channels 16
Activation ReLU

4 Max Pooling
Pooling Width 2
Pooling Height 2

5 Convolutional
Kernel Size 3

Output Channels 16
Activation ReLU

6 Max Pooling
Pooling Width 2
Pooling Height 2

7 Fully Connected
Input Shape 2304

Output Shape 256
Activation ReLU

8 Fully Connected
Input Shape 256

Output Shape 256
Activation ReLU

9 Fully Connected
Input Shape 256

Output Shape 128
Activation ReLU

10 Fully Connected
Input Shape 128

Output Shape 1
Activation Softmax

(a) CNN-Visual

Order Layer Parameter Value

1 Fully Connected
Input Shape 16

Output Shape 512
Activation ReLU

2 Fully Connected
Input Shape 512

Output Shape 512
Activation ReLU

3 Fully Connected
Input Shape 512

Output Shape 256
Activation ReLU

4 Fully Connected
Input Shape 256

Output Shape 1
Activation ReLU

(b) CNN-Digit

Table 11: The architectures of the network used as the CNN baseline for Visual-Sudoku-Classification
experiments (from Badreddine et al. (2022)).

Table 12 shows the hyperparameter values and the tuning ranges for the baseline CNN models. All
unspecified values were left at their default values.
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Hyperparameter Tuning Range

Learning Rate {1e-3, 1e-4, 1e-5}

(a) CNN-Visual

Hyperparameter Tuning Range

Learning Rate {1e-3, 1e-4, 1e-5}

(b) CNN-Digit

Table 12: Hyperparameters searched over and used for the Visual-Sudoku-Classification baseline
models.

The hyperparameter search was performed for each data setting and the best performing model was
reported. Table 13 shows the final hyperparameters of the Visual-Sudoku-Classification baseline
models for each data setting.

Number of Puzzles
10 20 100 200

Final Learning Rate 1e-4 1e-3 1e-2 1e-2

(a) CNN-Visual

Number of Puzzles
10 20 100 200

Final Learning Rate 1e-3 1e-2 1e-2 1e-2

(b) CNN-Digit

Table 13: The final hyperparameters used for the Visual-Sudoku-Classification baseline models.

E Extended Evaluation Details

In this section, we provide additional details for the NeSy baselines used in the experiments. We also
provide additional experiments comparing with other NeSy baselines. In Table 14 we present results
for the following systems:

DeepProbLog (DPL): All DPL results use the neural and DPL models presented in [Manhaeve et al.,
2021a], using default hyperparameters. Code was obtained from https://github.com/ML-
KULeuven/deepproblog. DPL-gm uses default approximate inference method presented
in Manhaeve et al. [2021b]. Results for DPL-gm were averaged over 10 folds generated as
described in Appendix B. DPL-exact uses exact inference method presented in [Manhaeve
et al., 2021a]. Results for DPL-exact were averaged over 10 folds generated as described in
Appendix B. DPL-reported presents the reported results from [Manhaeve et al., 2021a].

DeepStochLog (DSL): The DeepStochLog code was obtained from https://github.com/ML-
KULeuven/deepstochlog. DSL-reported presents the reported results from [Winters et al.,
2021].

Logic Tensor Networks (LTNs): All LTN results use the neural and LTN models presented in
[Badreddine et al., 2022], using default hyperparamters. Code was obtained from
https://github.com/logictensornetworks/logictensornetworks. LTNs results were averaged
over 10 folds generated as described in Appendix B. LTNs-reported presents the reported
results from Badreddine et al. [2022], where results are averaged on the top 10 of 15 runs.

Neural Probabilistic Soft Logic (NeuPSL): All NeuPSL results use the neural and NeuPSL models
presented in Appendix C. NeuPSL results were averaged over 10 folds generated as described
in Appendix B.

Licenses for NeuPSL, DeepProbLog, DeepStochLog, are under Apache License 2.0 and Logic Tensor
Networks are under MIT License.
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Method
MNIST-Add1 MNIST-Add2

Number of Additions
300 3,000 25,000 150 1,500 12,500

CNN 17.16 ± 00.62 78.99 ± 01.14 96.30 ± 00.30 01.31 ± 00.23 01.69 ± 00.27 23.88 ± 04.32
DPL-gm 33.41 ± 16.30 67.58 ± 16.59 74.08 ± 15.33 03.52 ± 03.18 84.68 ± 01.95 92.23 ± 01.01

DPL-exact 85.61 ± 01.28 92.59 ± 01.40 –.– ± –.– 71.37 ± 03.90 87.44 ± 02.15 –.– ± –.–
DPL-reported 67.19 ± 25.72 92.18 ± 01.57 97.20 ± 00.45 72.73 ± 03.03 87.21 ± 01.92 95.16 ± 01.70
DSL-reported –.– ± –.– –.– ± –.– 97.90 ± 00.10 –.– ± –.– –.– ± –.– 96.40 ± 00.10

LTNs 69.23 ± 15.68 93.90 ± 00.51 80.54 ± 23.33 02.02 ± 00.97 71.79 ± 27.76 77.54 ± 35.55
LTNs-reported –.– ± –.– 93.49 ± 0.28 98.04 ± 0.13 –.– ± –.– 88.21 ± 00.63 95.37 ± 00.29

NeuPSL 82.58 ± 02.56 93.66 ± 00.32 97.34 ± 00.26 56.94 ± 06.33 87.05 ± 01.48 93.91 ± 00.37

Table 14: Test set accuracy and standard deviation on MNIST-Add. Most results are run under
different data constructions and are not comparable.

F Computational Hardware Details

All timing experiments were performed on an Ubuntu 20.04.3 Linux machine with Intel(R) Xeon(R)
Silver 4215R CPUs at 3.20GHz with an NVIDIA Quadro RTX 6000 GPU.

29


	1 Introduction
	2 Related Work
	3 Neuro-Symbolic Energy-Based Models
	4 Neural Probabilistic Soft Logic
	5 NeuPSL Inference and Learning
	6 Joint Reasoning in NeSy-EBMs
	7 Experimental Evaluation
	7.1 Symbolic Inference and Runtime
	7.2 Deep Learning and Symbolic Reasoning
	7.3 Joint Inference and Learning
	7.4 Visual Sudoku Classification

	8 Conclusion
	A Additional NeuPSL Optimization Details
	A.1 Simplex Constrained Symbolic Parameters
	A.2 Energy Loss Degenerate Solutions
	A.3 Projected Gradient Descent

	B Datasets
	B.1 MNIST-Add
	B.1.1 Overlap

	B.2 Visual-Sudoku-Classification
	B.2.1 Puzzle Corruption
	B.2.2 Overlap


	C NeuPSL Models
	C.1 NeuPSL Neural Model
	C.2 MNIST-Add
	C.2.1 MNIST-Add1
	C.2.2 MNIST-Add2

	C.3 Visual-Sudoku-Classification

	D Baseline Neural Models
	D.1 MNIST-Add
	D.2 Visual-Sudoku-Classification
	D.2.1 CNN Baseline


	E Extended Evaluation Details
	F Computational Hardware Details

