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observed emission by the High Altitude Water Cherenkov (HAWC) Observatory extending well
past 100 TeV. The source exhibits both energy-dependent morphology and a spatially-dependent
spectral index. The emission is likely to be dominantly leptonic, and associated with the radio-
quiet PSR J1907+0602. However, one-population models do not describe the data well; a second
particle population is needed to explain the shape of the spectral energy distribution at the highest
energies. This component can be well-described by either leptonic or hadronic hypotheses.
We discuss this feature and implications for detection by multi-wavelength and multi-messenger
experiments.
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1. Previous observations

The ultra-high-energy source MGRO J1908+063 was discovered by the Milagro experiment in
2007 [1] and subsequently observed by H.E.S.S., ARGO, VERITAS, and HAWC, among others [2–
5]. The source is exceptionally bright, spatially extended, and has a hard spectrum with little or no
curvature up to ∼ 20 TeV. Recent observations by HAWC indicate that the source emits well past
100 TeV [6]. The maximum photon energy is 218 TeV at the 95% confidence level [7].

The region surrounding the TeV emission is fairly crowded, with many possible counterparts
to the emission. There are two pulsars: PSR J1907+0602 and PSR J1907+0631, as well as SNR
G40.5-0.5. PSR J1907+0602 is an exceptionally powerful, radio-faint pulsar, with an ¤� of 2.8 ×
1036 erg/s [8]. Historically, the TeV emission has been attributed to the nebula surrounding this
pulsar. There are also several molecular clouds in the region [9].

The pulsar wind nebula has not been detected at energies below GeV; for example no extended
emission has been observed in the X-ray band. Extended GeV emission was undetected until
recently [10]. An analysis using Fermi-LAT data found that there are likely two components in the
GeV region: a lower-energy (< 10 GeV) component associated with the SNR and a higher-energy
component attributed to inverse Compton scattering.

Due to the hard spectrum of the TeV emission, this source has long been considered a potential
neutrino source. It has the best p-value for a Galactic source in IceCube catalog searches, although
it is still consistent with background [11].

In this proceeding, we investigate the spectrum and morphology of the source using HAWC
data. We will then discuss possible origins of the TeV emission. Note that the results presented
here will be submitted for publication soon, with the analysis and results described in much more
detail.

2. HAWC results

The analysis presented here uses data from the High Altitude Water Cherenkov (HAWC)
Gamma-Ray Observatory, which is an extensive air shower array located at an altitude of 4100
meters in the state of Puebla, Mexico. It is optimized to detect gamma rays with energies between
a few hundred GeV and a few hundred TeV. For more details about HAWC, refer to [12].

This analysis uses 1343 days of data with reconstructed energies above 1 TeV. The energy
is estimated using the “ground parameter" energy estimation method, which relies on the charge
measured in the PMTs 40 meters from the shower core along with the zenith angle of the event [13].

The spectrum and morphology are simultaneously determined via a likelihood fit. There are
three sources in the model: 3HWC J1908+063 (where 3HWC refers to HAWC’s third catalog of
sources [5], the most recent available) as well as the lobes of SS433, which are spatially coincident
with the edge of the source [14]. A significance map of the region can be seen in Figure 1. The
likelihood fit is performed using the HAWCAccelerated Likelihood (HAL)1 plugin to the 3ML (the
Multi-mission maximum likelihood) software package [15].

1https://github.com/threeML/hawc_hal
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Figure 1: HAWC significance map of the region, for 1 < �A42>=BCAD2C43 < 316 TeV. The green circle denotes
the region of interest for the likelihood fit. The three sources included in the model are labeled. The color
scale is set to make it easy to see where the 5f threshold is but is saturated at the end of the scale. The
maximum significance in the ROI is 38.8f.

The best-fit spectrum is a log parabola shape detected in the range from ∼500 GeV to∼200 TeV.
The best-fit morphology is a diffusion morphology where the particles are continuously injected
from the center of the source. The details of the diffusion model can be found in [16].

2.1 Morphology studies

The source exhibits energy-dependent morphology, with the size of the source decreasing with
energy. This could be an indication that the emission is predominantly leptonic, as the higher-
energy particles are not able to travel far before cooling. The source remains spatially extended at
the highest energies.

The spectral index can also be spatially resolved. If one draws four concentric rings around
the center of the source and fits the spectrum to a power-law in each one, a statistically significant
softening of the spectrum is observed as a function of distance from the center of the source. This
is also an indication of leptonic emission, as electrons far away from the center of the source are
likely older and have cooled. No spectral change is expected for hadrons, since the proton cooling
timescale is approximately infinitely long.

2.2 Potential spectrum hardening feature

A potentially interesting feature can be seen at the highest energies. A standard HAWC analysis
contains energy bins that are a quarter-decade wide in log-energy space. When the last three typical
energy bins are subdivided into six smaller bins of equal size, an apparent flattening in the spectrum
can be seen by eye, with the flux points deviating from the best-fit log parabola spectrum.
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This effect is not presently statistically significant; the amount of the deviation from the best-fit
log parabola is approximately 2f. However, if this feature is shown to be significant with either
improved reconstruction algorithms or more data, it could be indicative of a second population of
particles contributing to the gamma-ray emission at the highest energies.

For a more in-depth discussion of this spectrum hardening feature, see [17] in these proceed-
ings.

3. The origin of the emission

Modeling indicates that one-population models are unlikely. Looking at the gas in the region,
a one-population hadronic model is difficult to explain as there is not enough energy available to
account for the source’s observed flux. It is difficult to fit a one-population leptonic model to the
observed TeV shape.

Therefore, two populations of particles are needed to explain the shape of the spectrum in the
TeV range. One potential model consists of a leptonic component that provides an explanation for
the bulk of the emission, with a second component that contributes mainly at the highest energies.
HAWC’s uncertainties are currently too large to determine if this second component is leptonic or
hadronic in origin.

The first leptonic component is likely the PWN associated with PSR J1907+0602. The second
component could be produced by a variety of different explanations. If it is leptonic, it could
originate from the second pulsar in the region, PRS J1907+0631. If hadronic, it could be linked to
the supernova remnant. More exotic explanations, such as hadron acceleration in PWN, are also
plausible.

Figure 2 shows the HAWC spectrum with potential models highlighted. Each model as two
components in the TeV range: the thick blue line denotes the two-population leptonic model, while
the solid red line denotes a lepto-hadronic model. Both models contain an additional component in
the GeV range, based on recent Fermi data that indicates there is a hadronic component below 10
GeV. Since HAWC is not sensitive to this energy range, we simply use the parameters from [10].

4. Future outlook

The uncertainties are presently too large to distinguish whether the component prominent
above 50 TeV is leptonic or hadronic in origin. The HAWC Collaboration is currently analyzing a
new pass over all collected data, with updated reconstruction algorithms and better gamma/hadron
separation algorithms. This may allow for the necessary sensitivity at high energies to distinguish
between these two components. HAWC’s recently-completed outrigger array will also increase the
experiment’s sensitivity at the highest energies.

This source is also an attractive target for other experiments. LHAASO has recently detected
this source above 100 TeV with a significance of 17.2f [18]. Detailed morphology studies above
this threshold could help uncover the nature of the source. The two different models presented here
start to diverge rapidly just above the energy range that HAWC is sensitive to.

Multi-wavelength data will also be important. The leptonic model and the lepto-hadronic
model have very different fluxes in the keV to MeV energy bands. In-depth measurements from
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Figure 2: Potential models that fit the available multi-wavelength data. The thick red line consists of the
hadronic component around 10 GeV from [10] along with two leptonic components in the TeV (the sum of
the dashed grey + dashed orange + dotted green lines). The thick blue line consists of the hadronic GeV
component along with a leptonic component that is prominent in the multi-TeV regime and a second hadronic
component at the very highest energies (the sum of the dashed grey + dashed orange + dotted purple lines)

.

X-ray experiments such as NuSTAR will be useful, as will observations from proposed experiments
such as AMEGO [19]. X-ray to GeV observations will also allow for better determination of the
spectral shape and energy budget.

As mentioned in the introduction, this source has long been thought of as a potential neutrino
source. Many published predictions of how much data IceCube will need to accumulate before
detecting the source assume that it is completely hadronic in nature [20, 21]. However, the analysis
presented here asserts that the source is dominantly leptonic, with only a fractional hadronic
contribution. Those predictions should be re-evaluated in light of this. IceCube-Gen2 may be
necessary to detect the source using neutrinos.

5. Conclusions

We report on the spectrum and morphology of 3HWC J1908+063, which is one of the highest-
energy known gamma ray sources. It is well-fit to a log-parabola spectrum and a diffusive morpho-
logical model. There is evidence that the source exhibits energy-dependent morphology, and there
may be hints of spectral hardening at the highest energies. More data, both from HAWC’s upgraded
array and recently-constructed experiments such as LHAASO, are needed to confirm this.
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It is likely that the source emission originates from mutliple populations of particles, with the
bulk of the emission being leptonic and powered by the high- ¤� pulsar PSR J1907+0602. However,
a hadronic contribution at the highest energies cannot be ruled out.
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